# A numerical study on the distortion of magnetotelluric data from topography, near-surface conductors and basins

Thesis submitted in accordance with the requirements of the University of Adelaide for an Honours Degree in Geophysics.

Dennis Conway

November 2013



#### ABSTRACT

Magnetotelluric (MT) data may be distorted by a variety of structures, including nearsurface inhomogeneities, topographic gradients and large conductive bodies. A synthetic study is undertaken to analyse these three factors in the Curnamona Province, South Australia. Firstly, the effect of topography in the northern Flinders Ranges is investigated by the use of forward models. The results show both a galvanic and an inductive distortion concentrated at high topographic gradients. The effect of near-surface conductors is also investigated with forward models, using data from Lake Frome as input. The models show a small area of galvanic distortion around the circumference of the lake, but no regional effect. These results are compared with distortion analyses of real data. Finally, thin-sheet modelling is used to determine the effect of a synthetically calculated conductance using data from the eastern Arrowie Basin. Results from the thin-sheet model show that the Arrowie Basin has the potential to inductively distort MT data on a regional scale. Using this result as motivation, two three-dimensional (3-D) inversions are undertaken on the Geoscience Australia "08GA-C1 MT" line; one incorporating the Arrowie Basin as a prior model and the other starting from a homogeneous half-space. The results of these inversions are overlain with interpretations from seismic data collected along the same line. The best agreement between the seismic and MT data is achieved with the prior-model inversion, supporting the hypothesis that basin scale conductivity structures distorts MT data and showing that this effect is alleviated by incorporating basin structure as a prior model during inversion.

#### **KEYWORDS**

Distortion, magnetotellurics, Curnamona Province, synthetic, topography, modelling

## **Table of Contents**

| Introduction            | 8  |
|-------------------------|----|
| Theory                  | 10 |
| Synthetic studies       | 14 |
| Background              | 14 |
| Topography              | 16 |
| Methods                 | 16 |
| Results                 | 18 |
| Near-surface conductors | 21 |
| Methods                 | 21 |
| Results                 | 23 |
| Basinal distortion      | 23 |
| Methods                 | 23 |
| Results                 | 29 |
| Comparison to real data | 29 |
| Background              | 29 |
| Methods                 | 31 |
| Results                 | 34 |
| Discussion              | 37 |
| Topography              | 37 |
| Near-surface conductors | 38 |
| Basinal distortion      | 41 |
| Conclusion              | 42 |

| A numerical study on the distortion of magnetotelluric data | 5  |
|-------------------------------------------------------------|----|
|                                                             |    |
| Acknowledgements                                            | 43 |
| References                                                  | 43 |
| Appendix: Model fit plots                                   | 47 |

## List of Figures

| 1.  | Map of the Curnamona Province                          | 15 |
|-----|--------------------------------------------------------|----|
| 2.  | Topographic map of the northern Flinders Ranges        | 18 |
| 3.  | Results of topographic distortion modelling            | 19 |
| 4.  | Input model used for modelling near-surface conductors | 22 |
| 5.  | Results of near-surface conductor modelling            | 24 |
| 6.  | Depth to basement and conductance map                  | 28 |
| 7.  | Thin-sheet model results                               | 30 |
| 8.  | Station locations for 08GA-C1 MT line                  | 32 |
| 9.  | Mesh used for inversions                               | 33 |
| 10. | WALDIM plot for 08GA-C1 MT line                        | 35 |
| 11. | Inversions results                                     | 36 |

## **List of Tables**

| 1. | Classification scheme for the WALDIM code        | 14 |
|----|--------------------------------------------------|----|
| 2. | Basal model used in the thin-sheet forward model | 29 |
| 3. | Site locations for the 08GA-C1 MT line.          | 31 |