A Sequence Stratigraphic approach to interpreting the $\delta^{13}\text{C}$ record using an Early Cambrian Carbonate Platform

Thesis submitted in accordance with the requirements of the University of Adelaide for an Honours Degree in Geology

Claire Marie Kenefick November 2013

TITLE

A Sequence Stratigraphic approach to interpreting the $\delta^{13}C$ record using an Early Cambrian Carbonate Platform

RUNNING TITLE

Sequence Stratigraphic approach to interpreting the $\delta^{13}C$ record

ABSTRACT

The Early Cambrian Wilkawillina Platform displays a continuous platform to basin facies that enables physical time surfaces to be used to compare roughly synchronous $\delta^{13}C$ values of carbonates to test their lateral variation in range. The two sections measured showed a progression from shallow water deposition of the Woodendinna Dolomite to deeper water deposition of the Oraparinna Shale in the basin while biostromes of Archaeocyatha developed on the shelf. Using a sequence stratigraphic approach, the sections were correlated using the time significant sequence boundaries shared between the two sections. Correlated by the sequence boundaries, stable isotopes $(\delta^{13}C$ and $\delta^{18}O)$ were then compared and found to be out of phase with each other. A chronostratigraphic diagram shows that carbonate deposition is not continuous over time and therefore, the $\delta^{13}C$ record is episodic. This approach emphasises the punctuated nature of the record and the predominance of depositional hiatus in sections, while previous chemostratigraphic studies have assumed the $\delta^{13}C$ record to be largely continuous through time when making correlations.

KEYWORDS

Sequence Stratigraphy, δ^{13} C record, carbonate platforms, Wilkawillina Platform, Early Cambrian, stratigraphic correlation, chemostratigraphy.

TABLE OF CONTENTS

Title	2
Running title	2
Abstract	2
Keywords	2
List of Figures and Tables	4
Introduction	5
Geological Setting	
Methods	17
Observations and Results	
Stratigraphic Sections	
Sequence Stratigraphy	23
Physical stratigraphic model	27
Stable Isotopes	29
Discussion	32
Conclusions	40
Acknowledgments	
References	43
Appendix A: Methods	46
Appendix B: Supplementary Results	46

LIST OF FIGURES AND TABLES

Figure 1: Sequence boundaries separate lithologies, facies, and stable isotope signals;
even if previously correlated. Only the younger stratigraphy lying above the SB can be
correlated, and the older stratigraphy below, but never the stratigraphy from either side
of the SB. Hence only δ^{13} C values from the same side of the boundary can be
correlated
Figure 2: Location Map for the Wilkawillina Platform, Flinders Ranges, South
Australia
Figure 3: (a) Section 1 represents the slope to basin facies of the Wilkawillina platform.
(b) Section 2 represents the slope to platformal facies
Figure 4: Evidence of diagenetic alteration. (a) Recrystallised onlite of the
Woodendinna Dolomite stained with Alizarin red S, note the meteoric calcite cements
infilling pore spaces around ooids (equant calcite; white arrow, XPL). (b) Recrystallised
Bunkers Sandstone stained with Alizarin red S, calcite (red) and dolomite (yellow
arrows) fill pore spaces in an interlocking pattern with quartz grains (XPL). (c) Red-
dashed line shows the dolomitic front of discolouration at a karst surface. (d)
Discoloured and brecciated karst surface atop biostrome three in section (e)
Petrographic image (XPL) of an iron-stained fissure fill of detrital quartz grains from
the Bunkers Sandstone (white arrow) in a dolomitised sample from (c). (f) Brecciated
texture of a biostromal packstone, stained with Alizarin red S, calcite is red and
dolomite does not stain. Secondary calcite veins (white arrow) crosscut the micritic
matrix (PPL). Stained samples in (a), (b) and (f) are from Clarke (1988) samples JDAC
3-5-342, 3-5-353A, and, 3-5-379 respectively
Figure 5: Sequence stratigraphic succession of the Wilkawillina Platform and adjacent
basin
Figure 6: Map of the Wilkawillina Platform
Figure 7: A physical stratigraphic model for the Wilkawillina platform and adjacent
slope and basin (Bunkers graben) using two stratigraphic sections. SB = Sequence
Boundary, MFS = Maximum Flooding Surface
Figure 8: The covariance of δ^{13} C and δ^{18} O for section 1 (left) and section 2 (right). R^2
values do not show any significant linear relationship between δ^{13} C and δ^{18} O
Figure 9: Stable isotope results for the Wilkawillina Platform correlated using the
physical stratigraphic model
Figure 10: Evolution of the δ^{13} C curve from the complete sections in Figure 9 to
sequence packages as shown in Figure 11
Figure 11: Chronostratigraphic diagram for the Wilkawillina Platform and adjacent
basin. With δ ¹³ C curve from sections 1 and 2
Figure 12: Conceptual chronostratigraphic diagram of the Maloof et al. (2010a) global
composite δ^{13} C data. Based on chemostratigraphic sections from Maloof et al. (2005) 39