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Abstract

Genome-wide association studies (GWA studies) identify alleles that are associ-

ated with a disease. These allele variations are called single nucleotide polymor-

phisms (SNPs). However, GWA studies do not account for interaction between

SNPs. Gene set analysis (GSA) is used in GWA studies to account for interaction.

GSA methods map SNPs to gene sets and identify gene sets that are associated

with a disease. Comprehensive reviews of GSA exist in the literature. However,

these reviews do not compare specific methods or implement them on data.

In this thesis, we compare six GSA methods. We use seven factors highlighted

by the reviews as important in GSA to compare these methods. For example, we

analyse how each method accounts for parameters that could affect the analysis.

These parameters include gene size and SNP interaction. We consider the null

hypothesis tested by each method. We also analyse the sensitivity of methods

to individual SNPs with small p-values. In contrast, the marginal effect of many

SNPs that cause diseases is often small. The p-values of such SNPs need not be

small.

We conduct a simulation study to compare four GSA methods. We investigate

the sensitivity of these methods to SNPs with very small p-values. We use Man-

hattan plots to display gene sets that were assigned disparate p-values by different

methods. We also use receiver operating characteristic curves to compare the per-

formance of each method. Finally, we recommend a method that gave excellent

performance.
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mercy, God sent his son, Jesus Christ, into the world, to take

the punishment for people’s sins, so that anyone who believes in

him can be in right relationship with God for all eternity. If you

don’t believe this good news yet, but you’d like to find out more,

please just ask me.

Also, to those of you who think that ES is a bunch of weirdos,

or are put off because you think we’re pushy about the gospel

message, please reconsider your scepticism. We just want every-

one to know the good news about Jesus Christ, and we don’t

want anyone to fall under God’s judgment. Forgive us for the

times when we have been unloving in our portrayal of the gospel

message, but please understand that we only share the gospel

message because we love you.

Finally, to those of you who resonate with what I’ve said,

and who are passionate about the ministry of ES, one more piece
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of advice. Seriously consider serving ES in full-time vocational

ministry. You know how God has used the staffworkers in ES to

change our lives, and it would be an amazing privilege to be used

by God to change the lives of the next generation of university

students. If you’d like to consider this challenge more, chat to

one of the staffworkers about it, chat to me about it, or come

along to CV Conference in 2016. Ultimately, nothing is more

important than sharing the gospel message with everyone that

does not know Jesus, and discipling those that do know Jesus, so

that they can disciple others.

In one sense, I’m sad that my time at ES has drawn to a close.

Nonetheless, I know that now is the right time for this season,

amazing as it has been, to come to an end. For the next few years,

I will be working with the ATO in Adelaide. But soon, God

willing, I will come back to serve ES as a ministry apprentice.

And then, after getting some formal theological education and

training at Bible College, I will come back to serve ES full-time,

for as long as I am physically able. And I can’t wait. Bring. It.

On. Praise God for everything.

To my parents, thank you for so much. Thank you, first and foremost, for rais-

ing me to know my Lord, Jesus Christ. Thank you for supporting me throughout

my university studies. Thank you for providing so much for me. Thank you for

loving me so much. Thank you also to my mother for proofreading my thesis and

finding approximately 15 typographical errors.

Finally, to my Father God, my Lord Jesus Christ, and the Holy Spirit. Thank

you for foreknowing me, predestining me to be conformed to the image of Jesus,

calling me, justifying me and glorifying me (Romans 8:29,30). Only by your grace

do I exist; only by your grace do I have the skills that I needed to complete this

thesis, and only by your grace did Jesus die for me, so that I can be in right



Acknowledgements xxvii

relationship with you. Please help me to keep giving my life to you, for your

glory. Amen.



Chapter 1

Introduction

1.1 Background

A genome-wide association study (GWA study) is a commonly used study in the

field of statistical genetics. The aim of a GWA study is to identify allele varia-

tions known as single nucleotide polymorphisms (SNPs) that are associated with

a given disease. This information can be used to elucidate how genetic variation

causes the disease, which can help improve treatments for the disease. GWA

studies have identified SNPs that are associated with many diseases, such as type

1 diabetes (Polychronakos and Li, 2011), Crohn’s disease (Franke et al., 2010)

and multiple sclerosis (International Multiple Sclerosis Genetics Consortium and

Wellcome Trust Case Control Consortium 2, 2011). However, GWA studies have

yielded many results that have not been replicated in independent studies (Laird

and Lange, 2011). Furthermore, they have only identified a small proportion of

the genetic variation that is associated with most diseases (Maher, 2008). Two

primary factors that contribute to these problems are small effect sizes and epis-

tasis (Hong et al., 2009; Mooney et al., 2014; O’Dushlaine et al., 2009; Wang

et al., 2010; Wang et al., 2011; Yaspan et al., 2011).

1
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SNPs have a small effect size if they have a real but small effect on the prob-

ability of disease in an individual. However, GWA studies often fail to identify

SNPs with small effect sizes due to the multiple testing problem. In a typical GWA

study, many SNPs are simultaneously tested for association with a given disease.

Consequently, using a common significance level such as α = 0.05 for each SNP

can result in many false positive findings. Reducing the significance level is a

common solution to this problem, but this can reduce the power of GWA studies

to detect such SNPs.

The other factor that impacts GWA studies is epistasis. Epistasis occurs when

the combined effect of two genetic factors (such as SNPs) is not additive. Histori-

cally, GWA studies have only considered SNPs individually, so such studies could

not account for epistasis. Epistasis occurs because genetic factors can interact

with each other in a complex way. Consequently, a number of novel methods have

been developed that analyse gene sets for association with a given disease. Fridley

and Biernacka (2011), Mooney et al. (2014), and Wang et al. (2011) refer to these

methods collectively as gene set analysis (GSA) methods.

There are many GSA methods in the literature, and they are diverse. For

example, GSA methods may differ in null hypothesis that they test, the way that

they map SNPs to genes, the way that they calculate test statistics of gene sets

and so on. Furthermore, GSA methods should account for factors that can affect

the analysis, such as gene size and linkage disequilibrium (LD), which describes

the dependency structure between SNPs on the same chromosome. Consequently,

a number of reviews of GSA methods exist in the literature, such as Fridley and

Biernacka (2011), Holmans (2009), Mooney et al. (2014), Ramanan et al. (2012),

Wang et al. (2010), and Wang et al. (2011). However, none of these reviews

compare specific GSA methods in detail or test their conclusions by implementing

GSA methods on simulated data.

In this thesis, we review six GSA methods by Askland et al. (2009), Holmans

et al. (2009), Hong et al. (2009), O’Dushlaine et al. (2009), Wang et al. (2007),
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and Yaspan et al. (2011). We compare the properties of each method, including

whether or not each method accounts for LD and gene size. We also implement

four of these methods on simulated genetic data to test our comparisons. We com-

pare the performance of each method at identifying gene sets that are associated

with a disease.

1.2 Outline

We detail the necessary background for GWA studies in Chapter 2. In Section 2.1,

we introduce the necessary biological background, including the definition of a

GWA study. In Section 2.2, we detail the statistical background that is neces-

sary to understand GWA studies. We review categorical data analysis in Subsec-

tion 2.2.1, we apply the principles of categorical data analysis to GWA study in

Subsection 2.2.2, and we review multiple hypothesis testing in Subsection 2.2.3.

Finally, in Section 2.3, we discuss the dependency structure between SNPs on the

same chromosome.

In Chapter 3, we review the GSA methods by Askland et al. (2009), Holmans

et al. (2009), Hong et al. (2009), O’Dushlaine et al. (2009), Wang et al. (2007),

and Yaspan et al. (2011). We provide a more detailed critique of traditional

GWA studies in Section 3.1. In Section 3.2, we discuss the ways that the GSA

methods map SNPs to gene sets. We then describe the six GSA methods in detail

in Section 3.3. In Section 3.4, we discuss seven important properties of GSA

methods as detailed by Fridley and Biernacka (2011), Holmans (2009), Mooney

et al. (2014), Ramanan et al. (2012), Wang et al. (2010), and Wang et al. (2011),

and we use each property to compare the six GSA methods.

In Chapter 4, we detail the methods that we used to compare the performance

of GSA methods on genetic data. In section 4.1, we discuss the advantages of using

simulated genetic data to compare GSA methods. We also discuss three methods

of simulating genetic data: the LS model (Li and Stephens, 2003), HAPGEN
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(Spencer et al., 2009) and HAPGEN2 (Su et al., 2011). In Section 4.2 we discuss

our implementation of HAPGEN2 – the method that we used to simulate genetic

data – and four GSA methods. In particular, we justify the choices that we

made for the values of the parameters that we could vary in our simulation study.

Finally, we detail the procedures that we used to compare the performance of the

GSA methods in Section 4.3.

We display and discuss our results in Chapter 5. In Section 5.1, we analyse the

effect of each method parameter on the performance of the method. In Section 5.2,

we compare the performance of the four GSA methods at identifying gene sets

associated with a disease. Finally, in Section 5.3, we investigate the sensitivity of

GSA methods to SNPs with very small p-values.



Chapter 2

Genome-Wide Association Studies

In this chapter, we summarise the well-established theory of genome-wide asso-

ciation studies (GWA studies). We give a brief overview of GWA studies in Sec-

tion 2.1. We then discuss the statistical theory necessary to perform GWA studies

in Section 2.2, including a discussion of categorical data analysis and multiple hy-

pothesis testing. Finally, we give a mathematical formulation of the dependency

structure in genomes in Section 2.3.

2.1 Biological Background

A detailed biological background can be found in literature such as Foulkes (2009),

Gonick (1991), and Laird and Lange (2011). We summarise the important points

here.

Three classes of macromolecules are deoxyribonucleic acid (DNA), ribonucleic

acid (RNA) and protein. DNA encodes the information to form proteins in its

sequence of nucleotides (A, C, G and T). According to the central dogma of molec-

ular biology, cells create proteins by transcribing the appropriate sequence of DNA

to messenger RNA, which is then translated to the amino acid sequence of the

protein. A gene is a sequence of nucleotides that codes for a particular protein.

5
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In many living organisms, DNA is partitioned into long strands, called chro-

mosomes. In diploid organisms, most cells contain pairs of chromosomes. For

example, most cells in humans contain 23 pairs of chromosomes. In contrast,

haploid organisms only have one copy of each chromosome in all of their cells. In

this thesis, we assume that all organisms are diploid. When DNA is copied or

replicated, mistakes can occur, which are often referred to as mutations. A single

nucleotide polymorphism (SNP) is a single nucleotide position with more than one

possible nucleotide. These different nucleotides are called alleles. A genetic locus

is a particular location in the chromosome that has more than one possible allele.

In this thesis, we assume that there are two possible alleles at a genetic locus.

The genotype of an individual at a genetic locus is the pair of alleles present at

that genetic locus. We say that an individual is homozygous (heterozygous) at a

genetic locus if the two alleles at that locus are the same (different).

A variation in an organism’s DNA might change the structure of an important

protein produced by the DNA, and this change could increase the probability of a

given disease. For example, in humans, sickle-cell anaemia is caused by a mutation

on Chromosome 11 in the gene that codes for haemoglobin, a protein that trans-

ports oxygen around the body through the bloodstream. A genetic locus where

a mutation affects the function of a protein such that the probability of disease

is increased is referred to as a disease susceptibility locus (DSL). Consequently,

ongoing research exists that is seeking to find DSLs for various diseases. One of

the aims of such research is to better understand how mutations cause various

diseases, so that we can develop better treatments for them.

A GWA study is a study designed to locate SNPs on the genome associated

with a given disease. However, not all SNPs on the genome are tested in a

GWA study, because there is a complex dependency structure that exists between

nucleotides on the genome. For example, there are 3×109 base pairs on the human

genome. Foulkes (2009) notes that genotyping platforms used in GWA studies

such as the Affymetrix and Illumina chips, which can genotype 5 × 105 to 106
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DSLMarker

Disease

Causation
(Genetic Signal)

Correlation or Dependency

Association

Figure 2.1: Relationship between DSL, marker and disease

SNPs simultaneously, can sufficiently characterise genetic variation in humans.

Consequently, the SNPs that are found to be associated with a given disease are

not necessarily the DSLs themselves. Such SNPs are correlated with a DSL, and

they are referred to as marker SNPs. When we test SNPs for association with

a given disease, we say that we are trying to detect the genetic signal from the

DSL. However, we cannot observe the DSL, the genetic signal, or the correlation

between the DSL and the marker directly. We can only infer the genetic signal

from the association between the marker and the disease. We summarise this

information in Figure 2.1.

To perform a GWA study, a fixed number of controls (subjects without the

disease) and cases (subjects with a given disease) are genotyped at each genetic

locus using a genotyping platform such as the Affymetrix or Illumina chips. Each

locus is then tested for association with the disease. In Section 2.2 we discuss

methods of testing the association between a single SNP and a given disease. We

also discuss the multiple testing problem in the context of GWA studies, because

many SNPs are tested in a GWA study simultaneously. Then, in Section 2.3, we

give a mathematical formulation of the dependency structure between nucleotides

in the genome.
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2.2 Statistical Background

In this thesis, we assume that the reader has a background in statistical inference,

such as that found in Casella and Berger (2002). In particular, we assume that the

reader has a good grasp of the common discrete and continuous probability dis-

tributions (Chapters 1 to 4), hypothesis testing (Chapter 8) and linear regression

(Chapter 11).

2.2.1 Categorical Data Analysis

Notation

In this subsection, we give an overview of the techniques from categorical data

analysis that are used in GWA studies to test for association between a single

genetic locus and a disease. The material is based on Agresti (2013) and Zheng

et al. (2012).

Suppose X and Y are two categorical random variables, such that X can take

values in I categories and Y can take values in J categories, where I and J are

positive integers. We write X = x and Y = y for x ∈ ZI = {0, 1, . . . , I − 1} and

y ∈ ZJ = {0, 1, . . . , J − 1} respectively.

Now, suppose that a data set is the result of many realisations of the joint

distribution of X and Y . We can then display this data set in a table with I

rows and J columns, where each cell (x, y) of the table contains the number of

realisations mx,y of the joint event that X = x and Y = y. Then the marginal

frequencies are

mx,+ =
∑
y∈ZJ

mx,y

and

m+,y =
∑
x∈ZI

mx,y,
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Y

X 0 . . . J − 1 Total

0 π0,0 . . . π0,J−1 π0,+
...

... . . . ...
...

I − 1 πI−1,0 . . . πI−1,J−1 πI−1,+

Total π+,0 . . . π+,J−1 1

Table 2.1: Notation for the joint and marginal distributions of categorical variables

and the total sample size is

m+,+ =
∑
x∈ZI

∑
y∈ZJ

mx,y.

We call such a table an I × J contingency table.

We introduce notation for the various probability distributions relating X and

Y . Let

πx,y = Pr(X = x, Y = y),

πx,+ = Pr(X = x) and

π+,y = Pr(Y = y).

Thus ∑
x∈ZI

πx,y = π+,y,

∑
y∈ZJ

πx,y = πx,+ and

∑
x∈ZI

∑
y∈ZJ

πx,y = 1.

We present this notation in Table 2.1, which is based on Table 2.2 of Agresti

(2013).

We also consider conditional distributions of X and Y . Write

πy|x = Pr(Y = y|X = x); and

πx|y = Pr(X = x|Y = y).
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Thus, from the definition of conditional probability,

πy|x =
πx,y
πx,+

and

πx|y =
πx,y
π+,y

.

It should also be clear that for all x and y,∑
y∈ZJ

πy|x = 1 and

∑
x∈ZI

πx|y = 1.

The variables X and Y are said to be independent if

πx,y = πx,+π+,y

for all x and y. However, the true distributions πx,y, πx,+ and π+,y are typically

unknown. Consequently, some methods of testing the hypothesis that X and

Y are independent use the sample proportions, which we denote by replacing π

with π̂. We use the frequencies in the contingency table to define the sample

proportions. For example,

π̂x,y =
mx,y

m+,+

,

and the marginal proportions of X and Y respectively are

π̂x,+ =
mx,+

m+,+

and

π̂+,y =
m+,y

m+,+

.

Also, the conditional distribution of Y given X can be estimated by

π̂y|x =
π̂x,y
π̂x,+

=
mx,y

mx,+

,

and the conditional distribution of X given Y can be estimated by

π̂x|y =
π̂x,y
π̂+,y

=
mx,y

m+,y

.
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In what follows, we assume that mx,y is a realisation of the random variable

Mx,y. Let

mx = (mx,0, . . . ,mx,J−1),

my = (m0,y, . . . ,mI−1,y) and

m = (m0,0, . . . ,mI−1,J−1).

with analogous notation for the corresponding random variables and probabilities.

We now discuss various distributions of the entries of contingency tables.

In contingency tables where only the grand totalm+,+ is fixed,M can be mod-

elled with a multinomial distribution with parametersm+,+ and π, and probability

mass function

Pr (M = m) = m+,+!
∏
x∈ZI

∏
y∈ZJ

π
mx,y
x,y

mx,y!
,

where mx,y ≥ 0 for all x ∈ ZI , y ∈ ZJ . A contingency table under these conditions

is called a multinomial sample.

In contingency tables where the row totals mx,+ are fixed,M can be modelled

with a product multinomial distribution with parameters mx,+ and πy|x, where

x ∈ ZI , and probability mass function

Pr (M = m) =
∏
x∈ZI

mx,+!
∏
y∈ZJ

π
mx,y

y|x

mx,y!
,

where mx,y ≥ 0 for all x ∈ ZI , y ∈ ZJ . We can consider the case where the column

totals are fixed analogously. A contingency table under these conditions is called

a product multinomial sample.

Comparing Two Proportions in Categorical Data

We now discuss various ways that we can quantify the dependency between X and

Y in a 2×2 contingency table. In what follows, let πx = π1|x, so that π0|x = 1−πx.

Then the null hypothesis that X and Y are independent is

H0 : π0 = π1.
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Thus a measure of the dependency between X and Y should capture the extent to

which π0 and π1 are different. One such quantity is the difference of proportions

π0 − π1. Since πx ∈ [0, 1], the difference of proportions can lie between −1 and 1.

However, if the probabilities are very small, then the relative risk

RR =
π0
π1

may be a more appropriate measure of comparison. For example, suppose that

π0 = 0.30 and π1 = 0.21. Then the difference of proportions is 0.09 and the

relative risk is approximately 1.4. However, if π0 = 0.10 and π1 = 0.01, then the

difference of proportions is still 0.09, but the relative risk is 10.

A third measure commonly used to compare probabilities is the odds ratio.

First, we define the odds Ω of an event as

Ω =
π

1− π
,

where π is the probability of the event. Then, if Ωx is the odds corresponding to

probability πx, the odds ratio is

θ =
Ω0

Ω1

=
π0/(1− π0)
π1/(1− π1)

. (2.1)

We can also consider the log of the odds ratio, log θ, commonly known as the log

odds ratio.

From these definitions, the following are equivalent:

• X and Y are independent,

• π0 = π1,

• The difference of proportions is zero,

• The relative risk RR = 1,

• The odds ratio θ = 1 and

• The log odds ratio log θ = 0.
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We can estimate quantities such as the difference of proportions, the relative

risk, the odds ratio and the log odds ratio using the sample proportions π̂y|x =

mx,y

mx,+
. For example, the sample odds ratio θ̂ is

θ̂ =
π̂0/(1− π̂0)
π̂1/(1− π̂1)

=
π̂1|0/(1− π̂1|0)
π̂1|1/(1− π̂1|1)

=
π̂1|0/π̂0|0
π̂1|1/π̂0|1

=
π̂1|0π̂0|1
π̂0|0π̂1|1

=
m1,0/m+,0 ×m0,1/m+,1

m0,0/m+,0 ×m1,1/m+,1

=
m1,0m0,1

m0,0m1,1

, (2.2)

which has the property that it does not change when any row or column of the

contingency table is multiplied by a non-zero constant. Furthermore, the sample

odds ratio is symmetric in the first and second indices, and a similar calculation

can be used to show that the true odds ratio has the same property (by replacing

π̂ with π). Consequently, the definition of the odds ratio does not depend on the

set of conditional probabilities (πx|y or πy|x) that are used to define it.

The difference of proportions, relative risk, odds ratio and log odds ratio can

be extended to arbitrary I × J contingency tables. In such tables, we cannot use

one of these summary statistics to estimate the association between X and Y .

We can, however, use various sets of these summary statistics. For example, if

J = 2, then we can estimate the association between X and Y by considering the

relative risks

RRx =
πx
π0
,

where x ∈ ZI\{0}.
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Large-Sample Inference for Unordered Contingency Tables

We now discuss several methods of testing the null hypothesis that X and Y

are independent in a 2 × 2 contingency table, under the assumption that the

frequencies of the cells in the contingency table are large. In particular, we discuss

methods that test the hypothesis in terms of the log relative risk and the difference

of proportions. We outline Wald statistics for these tests and the score statistic

for the difference of proportions. These tests are valid when the entries of the

contingency table are realisations of a product multinomial (binomial) sample.

These statistics are all asymptotically standard normal, hence confidence intervals

and hypothesis tests can be derived from them easily.

Assume that the row totals mx = mx,+ are fixed and let Yx = Mx,1. The case

where the column totals are fixed can be considered analogously. Then the Wald

statistic for the relative risk is
log r

σ̂(log r)
,

where

r =
π̂0
π̂1

=
Y0/m0

Y1/m1

is the sample relative risk and

σ̂(log r) ≈

√
1− π̂0
y0

+
1− π̂1
y1

is the approximate standard error of log r. Similarly, the Wald statistic for the

difference of proportions is
π̂0 − π̂1

σ̂(π̂0 − π̂1)
,

where

σ̂(π̂0 − π̂1) =

√
π̂0(1− π̂0)

m0

+
π̂1(1− π̂1)

m1

is the standard error of the sample difference of proportions π̂0 − π̂1.

Also, the score test statistic for the difference of proportions is

z =
π̂0 − π̂1

σ̃(π̂0 − π̂1)
,
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where

σ̃(π̂0 − π̂1) =

√
π̂(1− π̂)

(
1

m0

+
1

m1

)
,

and

π̂ =
y0 + y1
m0 +m1

is a pooled estimate of π0 and π1. Thus the score statistic uses a pooled estimate

of π0 and π1, whereas the Wald statistic uses separate estimates.

We also detail two methods of testing the null hypothesis in an I × J con-

tingency table. These methods can be used when the entries of the contingency

table are realisations of a multinomial sample or a product multinomial sample.

The Pearson chi-squared test (Pearson, 1900) uses the test statistic

X2 =
∑
x∈ZI

∑
y∈ZJ

(mx,y − µ̂x,y)2

µ̂x,y
,

where µ̂x,y = m+,+π̂x,+π̂+,y = mx,+m+,y

m+,+
. When I = J = 2, this test statistic is

related to the score test statistic for the difference of proportions by X2 = z2.

The likelihood ratio test uses the test statistic

G2 = 2
∑
x∈ZI

∑
y∈ZJ

mx,y log
mx,y

µ̂x,y
.

Under the null hypothesis, both test statistics have an asymptotic χ2
(I−1)(J−1)

distribution.

All of these tests rely on asymptotic distributions, and thus they should only

be used for sufficiently large values of mx,y. There are some rules of thumb in

the literature regarding how large these values need to be. The constraints are

often given in terms of the values of µ̂x,y = E[Mxy] = m+,+πx,y, but since these

values are unknown, we apply them to the mx,y. For example, for the Pearson chi-

squared test and the likelihood ratio test, the Cochran conditions state that for

tables where I > 2 or J > 2, asymptotic tests are appropriate if min(µ̂x,y) ≈ 1, as

long as less than 20% of the µ̂x,y are less than 5 (Cochran, 1954). In other words,

if all cells contain positive entries, and more than 80% of the cells are at least 5,
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then the Pearson chi-squared test and the likelihood ratio test are appropriate.

In general, the Pearson chi-squared test performs better than the likelihood ratio

test for tables with small entries, especially when m+,+

IJ
< 5.

Small-Sample Inference for Unordered Contingency Tables

When the entries of a contingency table are not sufficiently large, methods that

use exact distributions often perform better than methods that use asymptotic

distributions. The most well-known test that uses the exact distribution of the

cell counts is Fisher’s exact test (FET) (Fisher, 1922). FET is used to test the

null hypothesis that X and Y are independent in an I×J contingency table, and

it assumes that both sets of margins are fixed. Under the null hypothesis, the

conditional distribution of M is multivariate hypergeometric, with probability

mass function

Pr (M = m) =

(∏
x∈ZI

mx,+!
) (∏

y∈ZJ
my,+!

)
m+,+!

∏
x∈ZI

∏
y∈ZJ

mx,y!
,

where mx,y ≥ 0 for all x ∈ ZI , y ∈ ZJ . It is instructive to consider the case

when I = J = 2, when the multivariate hypergeometric distribution reduces

to the hypergeometric distribution. Since the margins are fixed, the table is

characterised by the value of m0,0:

Pr(M0,0 = m0,0) =

(
m0,+

m0,0

)(
m1,+

m+,0−m0,0

)
(
m+,+

m+,0

) ,

where

max(0,m0,+ +m+,0 −m+,+) ≤ m0,0 ≤ min(m0,+,m+,0).

We can use this distribution to write down the p-values for the one-sided and

two-sided versions of FET.

Loosely speaking, the p-value is the probability of obtaining a result at least

as extreme as the data under the null hypothesis. To understand what an ex-

treme result is in a one-sided FET, consider the two cases. Suppose that the null
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hypothesis is

H0 : θ ≤ 1

and the alternative hypothesis is

HA : θ > 1.

Then we have more evidence to reject H0 if the sample odds ratio (2.2) is large.

For fixed margins, this occurs for small m0,0, and hence the p-value for this test is

p = Pr(M0,0 ≤ m0,0).

Similarly, if the null hypothesis is

H0 : θ ≥ 1

and the alternative hypothesis is

HA : θ < 1,

then the p-value is

p = Pr(M0,0 ≥ m0,0).

For the two-sided case, consider a result at least as extreme as the data if the

probability of obtaining the result under the null hypothesis is no greater than

the probability of obtaining the data under the null hypothesis. Then the p-value

is the sum of the probabilities of all such results that are at least as extreme as

the data:

p =
∑
t:

pt≤pm0,0

pt,

where pt = Pr(M0,0 = t). We can apply the same method to an I×J contingency

table to test the null hypothesis. Let t = (t0,0, . . . , tI−1,J−1). If

pt = Pr (M = t) ,

then the p-value is

p =
∑
t:

pt≤pm

pt. (2.3)
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The Parametric Bootstrap for Unordered Contingency Tables

The parametric bootstrap can also be used to test the null hypothesis that X and

Y are independent in an I × J contingency table, particularly when it is difficult

to calculate the p-value correctly. For example, if I, J and m are large, using FET

may be too computationally intensive.

To introduce the parametric bootstrap, assume that the null hypothesis is

simple, so that the null distribution is completely specified. Let θ̂ be a statistic

calculated from the contingency table. Simulate B ∈ N contingency tables from

the null distribution and let θ̂∗(b) be the value of the statistic for simulation

b ∈ {1, . . . , B}. If larger values of θ̂ provide more evidence to reject the null

hypothesis, then the estimated p-value using the parametric bootstrap is

p =
1

B

B∑
b=1

I{θ̂∗(b) ≥ θ̂}. (2.4)

Analogously, if smaller values of θ̂ provide more evidence to reject the null hy-

pothesis, then the estimated p-value is

p =
1

B

B∑
b=1

I{θ̂∗(b) ≤ θ̂}. (2.5)

Note that some authors, such as O’Dushlaine et al. (2009), choose to add one

to the numerator and denominator in p-values estimated using the parametric

bootstrap. The logic is that the data itself is a possible simulation, which should

be included in the calculation. And since θ̂∗(b) = θ̂ for the data, the indicator

function in both (2.4) and (2.5) are equal to one for this term. Many authors who

do not add one to the numerator and denominator, such as Wang et al. (2007),

quote p-values of zero as “< 1
B
,” where B is the number of bootstrap samples that

they used.

However, in many contingency tables, the exact null distribution is unknown.

This occurs when the null hypothesis depends on unknown parameters. In such

cases, an approximate parametric bootstrap can be used, where contingency ta-

bles are sampled from an approximate null distribution. An approximate null
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distribution can be generated by replacing the unknown parameters in the ex-

act null distribution with estimators for the parameters, such as the maximum

likelihood estimators.

For example, the cell frequencies in a contingency table where only m is fixed

may have a multinomial distribution with parametersm+,+ and πx,y, where x ∈ ZI
and y ∈ ZJ . Under the null hypothesis that X and Y are independent, πx,y =

πx,+π+,y. However, πx,+ and π+,y are unknown. To conduct an approximate

parametric bootstrap for this table, πx,+ and π+,y could be replaced with their

sample analogues, π̂x,+ = mx,+

m+,+
and π̂+,y = m+,y

m+,+
respectively. Then approximate

p-values could be sampled from this approximate null distribution, in the same

way that p-values were calculated from the exact null distribution.

Inference for Ordered Contingency Tables

In some contingency tables, one or both variables could exhibit a natural ordering.

For example, consider a study to test for association between a risk factor and a

disease. Then the level of exposure to the risk factor exhibits a natural ordering.

When this natural ordering is present, tests that take it into account are usually

more powerful than the tests that don’t (Agresti, 2013). In the following tests,

we assume that X is an ordinal variable, and J = 2.

General linear models (GLMs) can be used to test the null hypothesis that X

and Y are independent, and they take into account the ordering in X. A GLM

takes the form

g[π(x)] = α + βx, (2.6)

where g is a link function, π(x) = Pr(Y = 1|x), α is the intercept parameter,

and β is the slope parameter. Assume that the possible values of X represent the

natural ordering present in X. Of course, the model is sensitive to these values.

GLMs are defined by the choice of link function g. The simplest model is

the linear probability model, which uses the unit link function, g[π(x)] = π(x).
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However, the linear probability model is inappropriate: π(x) ∈ (0, 1), but the

right-hand side of (2.6) could be any real number. Consequently, a more appro-

priate GLM is the logistic regression model, where the link function is the log odds

or logit :

g[π(x)] = log

[
π(x)

1− π(x)

]
= logit[π(x)].

Since π(x) ∈ (0, 1), the left-hand size of (2.6) can take any real value, which is

consistent with the right-hand side.

We have assumed in GLMs that the response variable Y is random, and the

predictor variable x is fixed. This is the case in prospective studies, where the

number of subjects exposed to each level of the risk factor is fixed. However, in

case-control or retrospective studies, the disease status y ∈ {0, 1} of each subject

is fixed and X is random.

The hypothesis that X and Y are independent in a logistic regression frame-

work is equivalent to the hypothesis that β = 0. Consequently, the following

result by Prentice and Pyke (1979) demonstrates that it is appropriate to use a

prospective logistic regression model in a case-control study to test the hypothesis.

Proposition 2.2.1. Suppose that the prospective logistic regression model

log
π(x)

1− π(x)
= α + βx (2.7)

is used to model the effect of a risk factor X on the probability of disease. Further-

more, assume that the event that a subject is sampled and their level of exposure to

the risk factor X are independent. Then the slope parameter in the corresponding

retrospective logistic regression model is also β.

Proof. Let the random variable Z indicate whether or not a given subject is

sampled. Let Z = 1 for subjects that are sampled and Z = 0 for subjects that

are not. Also, let Y = 1 denote a case, let Y = 0 denote a control, and let

ρy = Pr(Z = 1|Y = y) denote the probabilities of sampling a case and a control.

Assume that the event that a subject is sampled and their level of exposure to



2.2. Statistical Background 21

the risk factor X are independent, so that

ρy = Pr(Z = 1|Y = y,X = x) (2.8)

for all x and y.

In the prospective logistic regression model, the probability of sampling an

individual is not based on the response variable Y . Consequently, we model the

probability according to

Pr(Y = 1|X = x) = π(x) =
exp(α + βx)

1 + exp(α + βx)
, (2.9)

where the last equality comes from rearranging (2.7). In contrast, in the retro-

spective logistic regression model, we condition on the fact that the subjects have

already been sampled. Hence we use the probability

Pr(Y = 1|Z = 1, X = x) =
Pr(Z = 1|Y = 1, X = x) Pr(Y = 1|X = x)∑1
y=0 Pr(Z = 1|Y = y,X = x) Pr(Y = y|X = x)

=
ρ1 Pr(Y = 1|X = x)∑1
y=0 ρy Pr(Y = y|X = x)

=
ρ1 Pr(Y = 1|X = x)

ρ0 [1− Pr(Y = 1|X = x)] + ρ1 Pr(Y = 1|X = x)

=
ρ1

[
exp(α+βx)

1+exp(α+βx)

]
ρ0

[
1− exp(α+βx)

1+exp(α+βx)

]
+ ρ1

[
exp(α+βx)

1+exp(α+βx)

]

=
ρ1

[
exp(α+βx)

1+exp(α+βx)

]
ρ0

[
1

1+exp(α+βx)

]
+ ρ1

[
exp(α+βx)

1+exp(α+βx)

]
=

ρ1 exp(α + βx)

ρ0 + ρ1 exp(α + βx)

=

ρ1
ρ0

exp(α + βx)

1 + ρ1
ρ0

exp(α + βx)

=
exp

(
α + log

[
ρ1
ρ0

]
+ βx

)
1 + exp

(
α + log

[
ρ1
ρ0

]
+ βx

) ,
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which is a logistic regression model with intercept parameter α + log
[
ρ1
ρ0

]
and

slope parameter β. Thus the slope parameter in the retrospective model is also

β.

Under the null hypothesis that β = 0, the maximum-likelihood estimators of

logistic regression models are asymptotically normal, which means that we can

use Wald, score and likelihood ratio tests to test the null hypothesis.

The last test that we detail is the Cochran-Armitage Trend Test (CATT)

(Armitage, 1955; Cochran, 1954), which tests the null hypothesis that X and

Y are independent in an I × 2 contingency table. Assume product multinomial

sampling, such that the column totals m+,y are fixed for y ∈ {0, 1}. The CATT

statistic is

ZCATT =
U√

v̂ar(U)
, (2.10)

where

U =
∑
x∈ZI

x{(1− p)mx|1 − pmx|0},

and p = m+,1

m+,+
. The variance of U can be derived as

var(U) =
m+,+

m2
+,1

p(1− p)2
∑
x∈ZI

x2πx|1 −

[∑
x∈ZI

xπx|1

]2

+
m+,+

m2
+,1

p2(1− p)

∑
x∈ZI

x2πx|0 −

[∑
x∈ZI

xπx|0

]2 ,

and it can be estimated in two ways. Each πx|y in var(U) can be estimated

separately using π̂x|y = mx,y

m+,y
. Alternatively, the null hypothesis H0 : πx|1 = πx|2

can be used to pool the estimates: π̂x|1 = π̂x|2 = mx,+

m+,+
. Both versions of the CATT

statistic are asymptotically standard normal under the null hypothesis.
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Y

X 0 1 Total

0 m0,0 m0,1 m0,+

1 m1,0 m1,1 m1,+

2 m2,0 m2,1 m2,+

Total m+,0 m+,1 m+,+

Table 2.2: 3× 2 contingency table of genotype frequencies at a genetic locus

2.2.2 Categorical Data Analysis in GWA Studies

Genotype-Based Tests

We now discuss categorical data analysis in the context of GWA studies. Recall

that in a GWA study, a fixed number of controls and cases are genotyped at each

genetic locus. Each locus is then tested for association with the disease. Also,

recall our assumption that there are two possible alleles at each genetic locus: the

common allele and the rare allele. The genotype of a subject at a genetic locus is

then the pair of alleles present at the locus. At a given locus, a subject may have

0, 1 or 2 rare alleles, which means that there are three possible genotypes.

Consequently, for each genetic locus, and for a given subject, denote by X the

number of rare alleles that are present at that locus. Also, denote the disease

status of the subject by Y : let Y = 0 if the subject is a control, and let Y = 1

if the subject is a case. Consequently, for each genetic locus, the subjects in the

GWA study can be arranged in a 3×2 contingency table according to their disease

status and the number of rare alleles present at that locus. We display this data

in Table 2.2.

Recall that the aim of a GWA study is to identify SNPs that are associated

with a disease. Consequently, at each genetic locus, we test the hypothesis that

X and Y are independent. We now discuss the application of the tests that we

detailed in Subsection 2.2.1 to GWA studies.
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Of the large-sample tests, only the Pearson chi-squared test, the likelihood

ratio test and the CATT can be used with the data in Table 2.2, since the table is

3× 2. These tests assume that the data in this contingency table are realisations

of a product multinomial sample. This assumption is reasonable, because the

total number of controls m+,0 and cases m+,1 are fixed. Recall that the Pearson

chi-squared test is more commonly used, because it is superior to the likelihood

ratio test. However, these asymptotic tests are only appropriate if all cells contain

positive entries, and more than 80% of the cells are at least 5.

FET can be used with the data in Table 2.2, and the p-value for the test is

given in (2.3). The permutation test is also often used with the data in Table 2.2.

Bootstrap samples are generated from an approximate null distribution by per-

muting the case and control labels on the subjects in the original data many times,

which removes the association between the genotype and the disease (Zheng et al.,

2012).

The number of rare alleles X at the genetic locus is an ordinal variable. Con-

sequently, the retrospective logistic regression model and the CATT can be used

to test the null hypothesis. Recall that the retrospective logistic regression model

assumes that y is fixed and X is random, which is a valid assumption, because the

number of cases and controls in the study is fixed. Similarly, the CATT assumes

that the column totals of a contingency table are fixed, which is true for the data

in Table 2.2.

It is instructive to discuss the assumptions used by many of these tests. For

example, consider tests that assume product multinomial sampling and FET, in

which the null distribution is multivariate hypergeometric. These tests assume

that each observation is independent. Since each observation is a subject, these

tests assume that the genotype of a subject is completely uninformative about

the genotypes of other subjects. However, the population from which the subjects

were sampled may have features that invalidate this assumption. For example, if

the sample contains a parent and their child, then the genotype of the parent is
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informative about the genotype of the child. In this case, these tests would not

be valid. However, we do not consider such departures from independence in this

thesis.

Consequently, many tests from Subsection 2.2.1 can be used to test the null

hypothesis that X and Y are independent. However, we also detailed tests that

can only be used with data in a 2×2 contingency table, such as the one-sided FETs.

We now discuss two methods that can be used to display the data in Table 2.2

in a 2 × 2 contingency table. One method aggregates the data in Table 2.2, and

the other method uses the frequency of the alleles in the analysis. Of course, the

following methods make certain assumptions about the genotype data and/or the

underlying probabilities. Consequently, the accuracy of tests used with the data

in a 2 × 2 contingency table depends on whether or not these assumptions are

accurate.

Using Genetic Models in Genotype-Based Tests

In statistical genetics, four primary genetic models are often used to describe the

way that a genotype can affect the probability of disease. These models are often

described in terms of the conditional probabilities

πx = π1|x = Pr(Y = 1|X = x)

or the relative risks

RRx =
πx
π0
.

We refer to πx as the penetrance of x rare alleles.

We present these models in Table 2.3. In all of these models, we assume that

adding rare alleles to the genotype does not decrease the penetrance (π2 ≥ π1 ≥

π0). Also, assume that the penetrance of having two disease alleles is strictly

greater than the penetrance of having no disease alleles (π2 > π0).
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Model Penetrance Relationship Relative Risk Relationship

Recessive (REC) π1 = π0 RR1 = 1

Additive (ADD) π1 = π0+π2
2

RR1 = 1+RR2

2

Multiplicative (MUL) π1 =
√
π0π2 RR1 =

√
RR2

Dominant (DOM) π1 = π2 RR1 = RR2

Table 2.3: Commonly used genetic models in statistical genetics

In the additive and multiplicative models, the penetrances increase with the

number of rare alleles additively or multiplicatively. We do not use these models

in genotype-based tests, but we use them later in this thesis.

In the recessive model, the rare allele “recedes” in the presence of the common

allele, so the penetrance does not increase with one rare allele. The penetrance

only increases in the recessive model when there are two rare alleles. In contrast,

in the dominant model, the rare allele “dominates” the common allele. The pen-

etrance increases with one rare allele, but it does not increase any more if there

are two rare alleles.

If we assume that the dominant or recessive model holds at a genetic locus,

then we can aggregate the genotypes into two categories: low-risk and high-risk.

For example, under the dominant model, subjects with no rare alleles are low-risk,

whereas subjects with at least one rare allele are high-risk. In contrast, under the

recessive model, subjects with two rare alleles are high-risk, and subjects with

less than two rare alleles are low-risk. Let X = 0 and X = 1 denote low-risk

and high-risk genotypes respectively. Then to test the null hypothesis under the

assumption of the dominant model or the recessive model, aggregate the data

in Table 2.2 by combining the frequencies of subjects with high-risk or low-risk

genotypes respectively. We display the aggregated frequencies for the dominant

model and the recessive model in Tables 2.4 and 2.5 respectively.

Since the genotype data is displayed in a 2 × 2 contingency table, any of the

tests in Subsection 2.2.1 can be used with it to test the null hypothesis.
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Y

X 0 1 Total

0 m0,0 m0,1 m0,+

1 m1,0 +m2,0 m1,1 +m2,1 m1,+ +m2,+

Total m+,0 m+,1 m+,+

Table 2.4: 2×2 contingency table of aggregated genotype frequencies to use under

the assumption of a dominant model

Y

X 0 1 Total

0 m0,0 +m1,0 m0,1 +m1,1 m0,+ +m1,+

1 m2,0 m2,1 m2,+

Total m+,0 m+,1 m+,+

Table 2.5: 2×2 contingency table of aggregated genotype frequencies to use under

the assumption of a recessive model

Allele-Based Tests

To test the null hypothesis at a genetic locus, we can also consider the frequency

of the alleles in the analysis, rather than the frequencies of the genotypes in the

subjects. For example, let X = 0 and X = 1 represent the common allele and

the rare allele respectively. Then use the data in Table 2.2 to display the allele

frequencies in controls and cases in Table 2.6. Note that since each of the m+,+

subjects in the GWA study has two alleles, the total number of alleles in the table

is 2m+,+.

Since the allele data is displayed in a 2× 2 contingency table, any of the tests

in Subsection 2.2.1 can be used to test the null hypothesis. Recall that these

tests assume that the observations in a contingency table are independent. For

genotype-based tests, this is equivalent to the assumption that the genotypes of

the subjects in the analysis are independent. However, since each observation
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Y

X 0 (Case) 1 (Control) Total

0 2m0,0 +m1,0 2m0,1 +m1,1 2m0,+ +m1,+

1 m1,0 + 2m2,0 m1,1 + 2m2,1 m1,+ + 2m2,+

Total 2m+,0 2m+,1 2m+,+

Table 2.6: 2× 2 contingency table of allele frequencies at a genetic locus

in Table 2.6 is an allele, we need to assume that the alleles in the analysis are

independent.

Suppose that at a given genetic locus, the two possible alleles are B and

b. Furthermore, denote by p the probability that a randomly selected allele at

the locus is B. Within an individual, if the two alleles at a genetic locus are

independent, then the probability of obtaining each possible genotype is

Pr(G) =


p2 if G = BB

2p(1− p) if G = Bb

(1− p)2 if G = bb.

These equations are known as the Hardy-Weinberg proportions (Hardy, 1908;

Weinberg, 1908).

During reproduction, an offspring receives one chromosome from each parent.

Consequently, to ensure that the alleles at a genetic locus are independent for all

subjects in a population, we need to assume that the mating in a population is

random. Hardy-Weinberg Equilibrium (HWE) is a commonly used condition in

statistical genetics that provides a set of stronger assumptions than the Hardy-

Weinberg proportions. Many of the tests in Subsection 2.2.1 can be used to test

the null hypothesis that HWE holds in a population. The interested reader is

referred to literature such as Foulkes (2009), Laird and Lange (2011), and Zheng

et al. (2012) for more details.
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2.2.3 Multiple Hypothesis Testing

In Subsections 2.2.1 and 2.2.2, we detailed a number of different methods that

can be used to test the null hypothesis that a genetic locus and a disease are in-

dependent. Typically, a testing procedure fixes the probability of falsely rejecting

the null hypothesis (a false positive or type I error) at α ∈ (0, 1), which is known

as the significance level. The procedure then rejects the null hypothesis if the

p-value is less than α. Often a significance level of α = 0.05 is used, but other

values may be more appropriate in certain circumstances.

In a typical GWA study, however, up to 106 SNPs are tested simultaneously.

Consequently, using this testing procedure could result in many false positive

findings. In general, this problem is known as the Multiple Testing Problem, and

extensive research exists in the literature that details various ways to overcome this

problem. In the remainder of this subsection, we give a brief historical overview of

some of the procedures that have been developed to tackle the Multiple Testing

Problem. Many of these procedures aim to control a measure of error that is

a generalisation of the significance level. We define two such measures of error

and detail some commonly used procedures that control these quantities. This

material is based on summaries by Foulkes (2009) and Ge et al. (2003), as well as

literature such as Benjamini and Hochberg (1995) and Storey (2003).

Measures of Error in Multiple Hypothesis Testing

Suppose that we test m ∈ N null hypotheses, Hi, where i ∈ {1, . . . ,m}. Denote

by pi the p-value obtained from testing hypothesis Hi, and suppose that m0 of

the m null hypotheses are true. Let

• S be the number of correctly rejected null hypotheses (true positives),

• U be the number of correctly accepted null hypotheses (true negatives),

• V be the number of incorrectly rejected null hypotheses (false positives) and
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Null Hypotheses Accepted Rejected Total

True U V m0

False T S m−m0

Total m−R R m

Table 2.7: Contingency table in multiple hypothesis testing

• T be the number of incorrectly accepted null hypotheses (false negatives).

Also, let R = V + S be the total number of rejected null hypotheses. We display

this notation in Table 2.7, which is Table 1 of Benjamini and Hochberg (1995).

In this framework, accepting or rejecting a null hypothesis is based on the p-

value of the test, which is a random variable. Consequently, R, S, T, U and V are

random variables. Furthermore, since we do not know which null hypotheses are

true, S, T, U and V are unobservable random variables. However, we know how

many null hypotheses we reject in total, so R is an observable random variable.

We use this notation to define the measures of error that are commonly con-

trolled in multiple hypothesis testing.

Definition 2.2.2 (Family-Wise Error Rate). The family-wise error rate (FWER)

is the probability of at least one false positive. That is, FWER = Pr(V > 0). 4

In situations where even one false positive could have disastrous consequences,

controlling the FWER makes sense. However, Benjamini and Hochberg (1995)

note that often controlling the FWER in a multiple testing situation is not needed.

For example, in microarray experiments, it is acceptable if a small number of

genes are falsely classified as differentially expressed (Ge et al., 2003). Storey

(2003) also comments that often, the role of the statistician is to find “as many

interesting features in a data set as possible”, rather than worrying about the

(almost inevitable) chance of making at least one type 1 error.

Consequently, Benjamini and Hochberg (1995) defined the false discovery rate.

It is approximately the expected ratio of the number of false positives to the total



2.2. Statistical Background 31

Control Type Condition

Weak All null hypotheses are true

Exact The correct set of true and false null hypotheses

Strong For all 2m combinations of true and false null hypotheses

Table 2.8: Weak, exact and strong control in multiple hypothesis testing

number of rejected hypotheses, E
[
V
R

]
. However, this expression is undefined if

there are no rejected hypotheses (R = 0). When this is the case Benjamini and

Hochberg (1995) note that there cannot be any false positives, and hence the ratio

should be equal to zero. Consequently, we have the following definition:

Definition 2.2.3 (False Discovery Rate). Let

Q =


V
R
, R > 0

0, R = 0.

Then the false discovery rate (FDR) is E[Q]. 4

We need to be precise about what it means to control one of these error rates.

A procedure controls the FWER or FDR at level α if it guarantees that the error

rate is less than α. Furthermore, a procedure is said to have weak, exact, or strong

control of the FWER or FDR if it controls the error rate

• under the condition that all null hypotheses are true,

• under the correct set of true and false null hypotheses and

• for all 2m combinations of true and false null hypotheses, respectively.

We display these conditions in Table 2.8. Foulkes (2009) comments that since we

do not know which hypotheses are indeed true, strong control is usually desir-

able. In contrast, weak control is usually undesirable, especially in situations like

microarray experiments where null hypotheses are often false.
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We can also define adjusted p-values for procedures that control the FWER or

FDR. The adjusted p-value corresponding to hypothesis Hi under some multiple

testing procedure is

p̃i = inf{α′ : The procedure rejects Hi at FWER or FDR α′}.

The testing procedure would then reject hypothesis Hi if p̃i < α, for some signifi-

cance level α.

We now discuss methods of controlling the FWER and FDR, since some of

them are used in the literature that we discuss in Chapter 3.

Methods of controlling the FWER

We may divide methods of controlling the FWER into single-step and step-down

procedures. A commonly used single-step procedure is the Bonferroni adjustment

(Bonferroni, 1936). Under the Bonferroni adjustment, the significance level for

each test is set at α′ = α
m
. Then the test that rejectsHi if pi < α′ strongly1 controls

the FWER at level α. Laird and Lange (2011) comment that the Bonferroni

adjustment makes no assumptions about the independence of the events. However,

since the Bonferroni adjustment is based on controlling the FWER, its power to

detect associations is limited. The Bonferroni adjusted p-values for hypothesis Hi

are given by

p̃i = min(mpi, 1).

More precisely, the p̃i are conservative lower bounds for the adjusted p-values,

which cannot be calculated more accurately without further assumptions.

Step-down procedures such as the Holm procedure (Holm, 1979) generally pro-

vide more power than single step procedures, while still providing strong control

of the FWER. Denote by p(1) ≤ . . . ≤ p(m) the ordered p-values and denote by

H(1), . . . , H(m) the corresponding hypotheses. Let

i∗ = arg min
i

{
p(i) >

α

m− i+ 1

}
.

1Defined in Table 2.8.
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The Holm procedure rejects hypotheses H(1), . . . , H(i∗−1) if i∗ exists, and it rejects

all hypotheses otherwise. The Holm step-down adjusted p-values are given by

p̃(i) = max
k∈{1,...,i}

{
min[(m− k + 1)p(k), 1]

}
.

Since the p-values are multiplied by m − k + 1 ≤ m, the Holm procedure is less

conservative than the Bonferroni procedure. However, in a typical GWA study,

m > 105 SNPs are tested for association with a disease, and the number of rejected

hypotheses i∗ − 1 is small. Consequently, there is little benefit in using the Holm

procedure over the Bonferroni adjustment in GWA studies.

Methods of controlling the FDR

We now discuss two methods of controlling the FDR. The Benjamini-Hochberg

(BH) procedure (Benjamini and Hochberg, 1995) assumes that the p-values cor-

responding to the true null hypotheses are independent. Let

i∗ = arg max
i

{
p(i) ≤

i

m
α

}
.

If i∗ exists, the BH procedure rejects hypotheses H(1), . . . , H(i∗), and it accepts all

hypotheses otherwise. The adjusted p-values for the BH procedure are

p̃(i) = min
k∈{1,...,m}

{
min

(m
k
p(k), 1

)}
.

Benjamini and Yekutieli (2001) note that one of the shortcomings of using the

BH procedure is that often, the p-values corresponding to the true null hypotheses

are not independent due to experimental considerations. Consequently, Benjamini

and Yekutieli (2001) developed a method of controlling the FDR that allows for

dependent test statistics. Let

i∗ = arg max
i

{
p(i) ≤

i

m
∑m

l=1 l
−1α

}
.

The Benjamini-Yekutieli (BY) procedure rejects hypotheses H(1), . . . , H(i∗) if i∗

exists, and it accepts all hypotheses otherwise. The adjusted p-values for the BY

procedure are

p̃(i) = min
k∈{1,...,m}

{
min

(
m
∑m

l=1 l
−1

k
p(k), 1

)}
.
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2.3 Linkage and Linkage Disequilibrium

We now return to a formal discussion and mathematical formulation of the de-

pendency structure between different genetic loci on a chromosome.

Most cells in humans contain pairs of chromosomes. However, sperm and

egg cells, which are collectively known as gametes, only contain one copy of each

chromosome. If parents passed on one of their chromosomes to their offspring

without any genetic modification, the potential for genetic variation would be

quite limited. However, during meiosis, the cell division process through which

gametes are formed in organisms, crossover events can occur that increase the

number of combinations of alleles that a parent may pass on to its offspring.

These combinations of alleles are known as haplotypes. We demonstrate meiosis

and crossover events with an example, illustrated in Figure 2.2.

Suppose that a parent has four genetic loci on a pair of autosomal chromo-

somes, and that there are two possible alleles at each locus. We label the alleles

A and a; B and b; C and c; and D and d. Furthermore, suppose that the parent

has haplotypes ABCD and abcd on the two chromosomes. In meiosis, each auto-

somal pair of chromosomes duplicates, as shown in the top and middle panels of

Figure 2.2. The duplicated chromosomes are referred to as sister chromatids, and

any two chromosomes that are not duplicates are referred to as non-sister chro-

matids. Crossover events may occur between two non-sister chromatids. During

each crossover event, the chromosomes overlap, and all of the DNA on one side

of the crossover event is exchanged between them. A crossover event is shown in

the middle and bottom panels of Figure 2.2 between the B/b and C/c loci on the

middle two chromosomes. Many crossover events may occur between pairs of non-

sister chromatids in a meiosis. Consequently, a meiosis produces four gametes,

each containing a single chromosome, and the number of possible haplotypes on

each chromosome is large.
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Chromosomes 
duplicate

CBA

cba

D

d
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cba
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d

cba d

CBA D
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Non-sister 
chromatids

Non-sister 
chromatids

Crossover event between 
non-sister chromatids

BA

cba d

c

ba

d

CBA D

C D
Single chromosomes 

in four gametes

Figure 2.2: Example – crossing-over during the formation of gametes in meiosis
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Since we cannot observe crossover events during meiosis directly, we infer them

through recombination events. A recombination event occurs between two genetic

loci if the alleles at the two loci were inherited from different chromosomes. We

refer to a chromosome on which a recombination event has occurred as a re-

combinant. We illustrate crossover and recombination events using the parent in

Figure 2.2 with haplotypes ABCD and abcd.

For simplicity, we assume that crossover events only occur between one pair of

non-sister chromatids, and we only consider the two gametes that are produced

as a result of these crossover events. Of course, the other two gametes that are

produced are ABCD and abcd, as in the bottom panel Figure 2.2. If there is a

crossover event between the B/b and C/c loci, as in Figure 2.3, then a recombi-

nation event has occurred between these loci, and the two gametes are ABcd or

abCD. In contrast, if two crossover events occur between the B/b and C/c loci, as

in Figure 2.4, then no recombination event has occurred between these loci, and

the two gametes are ABCD or abcd. However, multiple crossover events could

occur between different pairs of loci. For example, consider Figure 2.5. The first

crossover event occurs between the A/a and B/b loci, which exchanges the alleles

at the B/b, C/c and D/d loci. The second crossover event occurs between the C/c

and D/d loci, which exchanges the alleles at the D/d locus. Thus recombination

events have occurred between the A/a and B/b loci, and between the C/c and

D/d loci. In this example, the two gametes are AbcD and aBCd.

We can see from these examples that a recombination event occurs between

two genetic loci if and only if the number of crossover events that occur between

them is odd. The recombination fraction is the probability that a recombination

occurs between two genetic loci, and it is denoted by θ. We say that linkage is

present between these loci if θ < 1
2
. If linkage is present between two loci, then

the alleles present at these loci are not independent. In contrast, if θ = 1
2
, then

the alleles at these loci are independent.
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Figure 2.3: Example – two of the four gametes produced when one crossover event

occurs between non-sister chromatids
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Figure 2.4: Example – two of the four gametes produced when two crossover

events occur between the same loci on non-sister chromatids
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Figure 2.5: Example – two of the four gametes produced when two crossover

events occur between different loci on non-sister chromatids
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Proposition 2.3.1 (Mather’s Law). The recombination fraction θ can be written

in terms of the probability P0 that no crossover events occur between two loci:

θ =
1− P0

2
.

Proof. Denote by X the total number of crossover events that occur between two

genetic loci on non-sister chromatids in a meiosis. Furthermore, suppose that

each pair of non-sister chromatids has equal probability of participating in each

crossover event. Suppose also that after all of the crossover events, we sample one

chromosome from the four chromosomes produced during the meiosis with equal

probability.

If X = 0, then P0 = 1 and the probability of recombination θ is zero. Conse-

quently, with probability 1 − P0, X ≥ 1. Under this assumption, we show that

Pr(selected chromosome is a recombinant) = 1
2
.

For a randomly sampled chromosome, the probability that it participates in

an arbitrary crossover event is 1
2
. Since there are X independent crossover events

between the genetic loci in total, the number of crossover events B that occur

between the genetic loci on the chromosome has a binomial distribution with

parameters X and 1
2
. It is straightforward to show that Pr(B odd) = 1

2
. A recom-

bination event between two loci occurs if and only if the number of crossover events

that occur between the loci is odd. Thus the probability that a recombination

event occurs between the two loci is 1
2
, which completes the proof.

Genetic Distance

In statistical genetics, it is often useful to plot a map of genetic loci on a chro-

mosome which includes a measure of distance. One such measure of distance is

physical distance, which is simply the number of base pairs (bp) between the two

loci.

In general, there is strong linkage between genetic loci that are close together

(in terms of physical distance), and hence θ is small. In contrast, genetic loci
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that are far apart are nearly independent, and θ is close to 1
2
. However, there are

other factors that can influence linkage between genetic loci. For example, there

are locations on chromosomes where crossover events are likely to occur, known

as recombination hotspots. Consequently, it is useful to define a distance measure

based on the recombination fraction between pairs of genetic loci. In particular,

the genetic distance between two loci is the expected number of crossovers that

occur between them, per gamete. The unit of genetic distance is the Morgan (M).

Recall from Figure 2.2 that one crossover between non-sister chromatids pro-

duces two gametes with a crossover, and two gametes without a crossover. Thus

the genetic distance between two loci is

L =
1

2
E[X], (2.11)

where X is the total number of crossover events that occur between the two loci

on non-sister chromatids in a meiosis. Consequently, genetic distance is additive

along the chromosome.

As an example, we consider Haldane’s measure of genetic distance (Haldane,

1919). Haldane assumed that X has a Poisson distribution, and since its mean is

2L, X has probability mass function

Pr(X = k) =
e−2L(2L)k

k!

for nonnegative integers. Consequently, we have that P0 = e−2L, and hence

θ =
1− e−2L

2

using Mather’s Law. Rearranging for L, we find that

L(θ) = −1

2
log(1− 2θ).

Laird and Lange (2011) comment that a Poisson distribution is likely to be

inaccurate due to factors such as recombination hotspots. However, Haldane’s

measure still has some nice properties:
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B b Total

A pAB = pApB +D pAb = pApb −D pA

a paB = papB −D pab = papb +D pa

Total pB pb 1

Table 2.9: Haplotype frequencies under LD

1. Since θ ∈ [0, 1
2
), L(θ) ≥ 0, which is desirable for a distance measure.

2. If the recombination fraction θ is close to zero, then L(θ) is close to zero.

3. If θ is close to 1
2
, which indicates that the genetic loci are almost independent,

then L(θ) is large. In fact, limθ→ 1
2
L(θ) = +∞.

4. L(θ) is increasing in θ. That is, as the recombination fraction increases and

the loci become more independent, the genetic distance increases.

Linkage Disequilibrium

Linkage disequilibrium (LD) is commonly used to measure the degree of associ-

ation between alleles on a chromosome. Denote by A and a the two possible

alleles at one genetic locus, and denote by B and b the two possible alleles at a

second genetic locus. Furthermore, let pA, pa, pB and pb be the frequency of alleles

A, a,B and b at the respective genetic loci. We say that the alleles are in linkage

equilibrium (LE) if they are independent.

However, when the alleles at the loci are not independent, D = pAB−pApB 6= 0.

We say that the two alleles are in LD, and D is an LD Coefficient (Laird and

Lange, 2011). Note that since the margins of Table 2.9 are fixed, the magnitude

of D does not change, no matter which difference we use to define it.

Unfortunately, D is not ideal as a measure of the strength of association be-

tween allele frequencies. For example, if one allele frequency is low, then the

magnitude of D is also low. Consequently, D should be standardised.
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From the diagonal entries of Table 2.9, D ≥ −pApB and D ≥ −papb. Thus

D ≥ max{−pApB,−papb} = −min{pApB, papb}.

Similarly, from the off-diagonal entries

D ≤ min{papB, pApb}.

Consequently, define Dmin = −min{pApB, papb} and Dmax = min{papB, pApb},

which are the minimum and maximum values that D can have respectively. Then

define

D′ =


D

Dmax
if D > 0

D
Dmin

if D < 0.

Thus D = 0 implies D′ = 0, and D′ = 1 if any haplotype has zero frequency.

However, Laird and Lange (2011) note that even if D′ is large, we cannot

necessarily use the allele frequencies at one locus to predict the allele frequencies

at the other locus with high accuracy. Nonetheless, if we let

r2 =
D2

pApBpapb
, (2.12)

then r2 = 0 if and only if D = 0, and r2 = 1 only if pA = pB and pa = pb. In

other words, the alleles are independent if and only if r2 = 0, and if r2 = 1, then

the allele frequencies at one locus predict the allele frequencies at the other locus

with perfect accuracy.

2.4 Chapter Summary

In this chapter, we have outlined the necessary background of GWA studies. As

we discussed in Section 2.1, the aim of a GWA study is to identify SNPs that

are associated with a given disease. In Section 2.2, we discussed the statistical

techniques used to perform GWA studies. In a GWA study, controls and cases

are genotyped at a large number of genetic loci. Techniques from categorical
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data analysis are then used at each genetic locus to test the null hypothesis that

disease status and genotype/allele are independent. We gave a general overview

of these techniques in Subsection 2.2.1, and we discussed the application of these

techniques to GWA studies in Subsection 2.2.2. However, since over 105 SNPs

are tested simultaneously, techniques from multiple hypothesis testing need to be

used to adjust the p-value obtained for each SNP. We discussed these techniques

in Subsection 2.2.3. Finally, in Section 2.3, we discussed in detail the concepts of

linkage and LD, which describe the dependency structure between the SNPs on a

chromosome. As we discuss in Chapter 3, linkage and LD between SNPs need to

be accounted for when the results of a GWA study are interpreted.



Chapter 3

Gene Set Analysis Methods

In Section 3.1, we introduce gene set analysis (GSA)methods, and we explain their

advantages over traditional GWA studies. In Sections 3.2 and 3.3, we review six

GSA methods in the literature, which were developed by Askland et al. (2009),

Holmans et al. (2009), Hong et al. (2009), O’Dushlaine et al. (2009), Wang et al.

(2007), and Yaspan et al. (2011). These methods were compared qualitatively

by Yaspan et al. (2011). We include some necessary preliminary material in

Section 3.2, and then we explain the methods in Section 3.3. In Section 3.4,

we review the issues that need to be addressed in GSA methods, as detailed by

Fridley and Biernacka (2011), Holmans (2009), Mooney et al. (2014), Ramanan

et al. (2012), Wang et al. (2010), and Wang et al. (2011). We then use these issues

to guide a detailed theoretical comparison of the six GSA methods.

3.1 Motivation for GSA

In their review of GWA studies, Visscher et al. (2012) note that numerous SNPs

have been identified as associated with various diseases, including Crohn’s disease,

prostate cancer and breast cancer in at least one study. However, it is important

to check that an association between a SNP and a given disease is replicable (Laird

and Lange, 2011). That is, we can only say with confidence that a SNP is associ-

43
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ated with a disease if the result can be replicated in multiple independent studies.

Many associations have been replicated in this way, such as SNPs associated with

type 2 diabetes (Visscher et al., 2012). However, many GWA studies have yielded

unreplicated results. Also, GWA studies have only identified a small proportion

of the genetic variation that is associated with many diseases (Maher, 2008). Two

primary factors that contribute to this problem are small effect sizes and epistasis

(Hong et al., 2009; Mooney et al., 2014; O’Dushlaine et al., 2009; Wang et al.,

2010; Wang et al., 2011; Yaspan et al., 2011). We now discuss each of these effects.

Many disease SNPs have a small effect size. That is, the occurrence of the

disease allele leads only to a small increase in the risk of disease. For such a SNP,

the p-value obtained from testing the null hypothesis that it is not associated with

the disease is often not very small. Consequently, a GWA study is less likely to

classify disease SNPs with a small effect size as significant. Increasing the number

of cases and controls in GWA studies can improve their power to find disease

SNPs with small effect sizes. However, the issue of small effect size is exacerbated

by the necessity of using multiple testing procedures in GWA studies.

In a typical GWA study, between 105 and 106 SNPs are tested for association

with a disease simultaneously. Laird and Lange (2011) comment that “given the

many false positive findings in the history of genetic association studies”, proce-

dures that conservatively control the FWER such as the Bonferroni correction

are preferred to procedures that seek to maximise statistical power. In partic-

ular, if the unadjusted significance level in a GWA study is α = 0.05 and the

GWA study contains 106 SNPs, then the Bonferroni-adjusted significance level is

α′ = α
106

= 5× 10−8. Consequently, SNPs that modestly increase the probability

of a given disease are unlikely to be identified as significant by a GWA study.1

Changing the significance level from α = 0.05 to α = 5 × 10−8 increases

the number of controls m+,0 and cases m+,1 that are necessary to achieve the

1The consensus now is that a fixed significance level of 5× 10−8 should be used, regardless

of the number of SNPs genotyped (personal communication with Professor David Balding)
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same statistical power in SNP association tests. We illustrate this effect with an

example, assuming that m+,0 = m+,1. Suppose that the probability of disease for

an individual with no disease alleles is π0 = 0.001, and the probability of disease

for an individual with at least one disease allele is π1 = 0.01 (we are assuming

a dominant model here). Suppose also that we use a two-sided test to test the

null hypothesis that the SNP is not associated with the disease (π0 = π1), and

that the entries of the contingency table are realisations of a product binomial

sample. Then for a given significance level, we can use the normal approximation

to the binomial distribution to calculate the required number of controls and

cases to achieve a statistical power of 0.8. For example, if the significance level

α = 0.05, then we require m+,0 = m+,1 = 1059. However, if the significance level

α = 5× 10−8, then we require m+,0 = m+,1 = 5346.

The other issue that GWA study methods fail to account for is epistasis. Epis-

tasis occurs when the combined effect of two genetic factors (such as SNPs) is not

additive. Many GWA studies only consider SNPs individually, so they cannot

account for epistasis. Epistasis occurs because genetic factors can interact with

each other in a complex way. However, considering all possible sets of genes is sta-

tistically and combinatorially prohibitive. Consequently, attention is restricted to

predefined sets of genes, such as biological pathways. A biological pathway can be

defined as “a set of interacting genes ... that together perform a specific biological

function” (Mooney et al., 2014). A number of databases of biological pathways

exist, including the Kyoto Encyclopaedia of Genes and Genomes (KEGG) (Kane-

hisa and Goto, 2000) and Protein ANalysis THrough Evolutionary Relationships

(PANTHER) (Mi et al., 2013).

Biological pathways may have certain levels of redundancy. We illustrate the

concept of redundancy with a simplified example. Consider the two pathways

illustrated in Figure 3.1. The aim of each pathway is to produce protein 3. In

pathway 1, the cell needs protein 1 to produce protein 2, and it needs protein 2 to

produce protein 3. Similarly, in pathway 2, the cell needs proteins 1a and 1b to
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Protein 1 Protein 2 Protein 3

Pathway 1

Protein 1a Protein 2a
Protein 3

Pathway 2

Protein 1b Protein 2b

Figure 3.1: Illustration – pathway redundancy and dysfunction. If protein 2 dys-

functions in pathway 1, then it cannot produce protein 3. However, if protein 2a

dysfunctions in pathway 2, then the pathway can still use protein 2b to produce

protein 3.

produce proteins 2a and 2b respectively. However, if either protein 2a or protein

2b is present, then the cell can produce protein 3.

In the example in Figure 3.1, consider the event that a SNP affects protein 2

in pathway 1, such that it can no longer produce protein 3. When this occurs,

we say that the pathway is dysfunctional. However, if a SNP affects protein 2a in

pathway 2, the pathway can still use protein 2b to produce protein 3, and hence

the pathway is not dysfunctional. We say that there is redundancy present in

pathway 2, because a SNP can stop a protein in the pathway from functioning

correctly without causing the entire pathway to become dysfunctional. However,

there is no redundancy present in pathway 1, because the dysfunction of any

protein in pathway 1 causes the entire pathway to become dysfunctional.

The aim of GSA is to estimate the degree of association between a gene set

and a disease. Unlike GWA studies, GSA can account for the interaction between
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SNPs and interaction between genes in the gene set. Consequently, GSAs can

help to elucidate the underlying biology of the disease in ways that GWA studies

are unable to.

A number of other methods exist in the literature that can be used to account

for SNP interaction. For example, Zheng et al. (2012) detail a logistic regression

approach that uses interaction terms to account for SNP interaction. However,

even if the genetic models are fully specified at each locus, a model that only

includes interactions up to second-order has

1 +M +

(
M

2

)
terms, where M is the number of SNPs in the GWA study. The number of

subjects in a GWA study is typically in the order of 103 to 104, but the number

of SNPs in a GWA study is typically at least 105. Consequently, the number of

parameters in the model would be orders of magnitude greater than the number

of observations, which renders logistic regression impossible.

Zheng et al. (2012) also detail Multifactor Dimensionality Reduction, a method

which uses the original genotype data to group each combination of genotypes

into “high-risk” and “low-risk”. As the name suggests, this reduces the number

of parameters in the model. However, since the number of interaction terms is

so large, using this method in a GWA study is still infeasible. Consequently, we

do not consider such methods any further. Instead, we turn our attention to the

GSA methods developed by Askland et al. (2009), Holmans et al. (2009), Hong

et al. (2009), O’Dushlaine et al. (2009), Wang et al. (2007), and Yaspan et al.

(2011). However, we first need to discuss some preliminary procedures that are

used in some of these GSA methods.

3.2 The Mapping Problem

GSA methods can be divided into one-step and two-step methods (Fridley and

Biernacka, 2011; Mooney et al., 2014). In one-step methods, SNPs are directly
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SNPs

LD/LE Blocks

(Partition) (No Partition)

Genes(No Partition) Gene Sets(No Partition)

Figure 3.2: Illustration – maps between SNPs, blocks, genes and gene sets. SNPs

are partitioned into LD and LE blocks, but SNPs and blocks may be in zero genes,

one gene or many genes. Similarly, genes may be in zero gene sets, one gene set

or many gene sets.

mapped to gene sets. However, in two-step methods, SNPs are mapped to genes

or blocks. An LD block is defined as a set of SNPs in high LD with each other, and

an LE block is defined as an individual SNP in LE with other SNPs. Furthermore,

the blocks can themselves be mapped to genes. The genes are then mapped to

the gene sets that are analysed using each method.

In the methods that map SNPs to blocks, the blocks partition the SNPs. Each

SNP in the GWA study is mapped to exactly one block. However, when SNPs

or blocks are mapped to genes, and genes are mapped to gene sets, the mapping

is not a partition. For example, a SNP or block can be mapped to no genes, one

gene, or many genes. Note that a SNP can be mapped to multiple genes because

genes can overlap on a chromosome, and because a SNP can be mapped a gene

even if the SNP does not lie within the gene. Similarly, a gene can be mapped

to no gene sets, one gene set, or many gene sets. We illustrate these maps in

Figure 3.2.

Consequently, many of the six GSA methods use various procedures that cal-

culate the p-value or test statistic of a unit (such as a gene, block or gene set) from

the p-value or test statistic of each subunit that is mapped to the unit. In this

section, we detail some of these procedures that were developed independently of
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the GSA method(s) that use them. Denote by S the gene set that we are calcu-

lating or estimating a p-value for, denote by g the total number of genes in the

study, and denote by gS the number of genes in S.

3.2.1 MaxT and MinP

The maxT and minP procedures are simple procedures to calculate the test statis-

tic or p-value of a unit from the test statistic of each subunit that is mapped to

the unit. They are equivalent if the distribution of each test statistic under the

null hypothesis is the same, and if a larger test statistic provides more evidence to

reject the null hypothesis. The maxT procedure calculates the test statistic of the

unit as the maximum of the subunit test statistics. Similarly, the minP procedure

calculates the p-value of the unit as the minimum of the subunit p-values. Many

GSA methods use the minP method to calculate the p-value of each gene from

the p-value of each SNP that is mapped to the gene (Fridley and Biernacka, 2011;

Holmans, 2009; Ramanan et al., 2012; Wang et al., 2011).

3.2.2 Gene Set Enrichment Analysis (GSEA)

The rest of the procedures that we detail in this section calculate the p-value of

a gene set from the p-value or test statistic of each gene mapped to the gene

set. Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005) calculates

a p-value for a gene set using the test statistic of each gene in the gene set.

Subramanian et al. (2005) used it in the context of gene expression. However, we

are interested in its use in GSA.

Denote by rj a test statistic for gene Gj, and assume that a larger test statistic

provides more evidence to reject the null hypothesis. Also, assume that r1 >
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r2 . . . > rg.2 Then the enrichment score (ES) of S is

ES(S) = max
1≤j≤g


1

NR

∑
1≤k≤j
Gk∈S

|rk|p −
1

g − gS

∑
1≤k≤j
Gk /∈S

1

 , (3.1)

where

NR =
∑

k:Gk∈S

|rk|p.

Here, p is a parameter that weights the importance of genes with large test statis-

tics. Subramanian et al. (2005) recommend using p = 1. When p = 0, the ES

reduces to the Kolmogorov-Smirnov statistic.

According to Subramanian et al. (2005), we can estimate the significance of

an ES as follows. Simulate P data sets by permuting the case and control labels

in the original genotype data, and re-calculate the ES for each simulated data set.

Let ES(S, πi) be the ES obtained using the ith simulated data set. The empirical

p-value is then the proportion of simulations where the ES is larger than the ES

calculated from the real data.

We demonstrate calculating an ES in GSEA with an example, illustrated in

Figure 3.3. In this illustration, the yellow circles represent genes in a gene set,

and the white circles represent genes not in the gene set. Thus there are five genes

in the GWA study and the test statistic for each gene is

r1 = 10, r2 = 7, r3 = 6,

r4 = 4, r5 = 1.

Using these results, we calculate the ES of the gene set defined by the yellow

circles in Figure 3.3. Note that in the figure, we have ordered the genes by their

test statistics (descending order), to better illustrate the calculation of the ES. To

perform the calculation, note that there are g = 5 genes in the GWA study and

the number of genes in the gene set is gS = 3. Also, we assume that p = 1, which
2We were unable to find documentation regarding the appropriate procedure to use if two

test statistics are equal.
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j fT (j) fU(j) fT (j)− fU(j)

1 10
15

0 2
3

2 10
15

1
2

1
6

3 10
15

1
2

+ 1
2

−1
3

4 10
15

+ 4
15

1
2

+ 1
2

− 1
15

5 10
15

+ 4
15

+ 1
15

1
2

+ 1
2

0

Table 3.1: Example – using GSEA to calculate the ES of a gene set. For each

value of j, the value of the two terms inside the braces in (3.1) is shown in the

middle two columns, and the difference of these two terms is shown in the right

column. The ES is the maximum of the differences over all j.

means that

NR =
∑

k:Gk∈S

|rk|p = 10 + 4 + 1 = 15.

To calculate the ES, note that as we increase j, we add the next-highest test

statistic to one of the two sums. If the corresponding gene is in S, then we add

a term to the first sum, and we add a term to the second sum otherwise. For

notational simplicity, let

fT (j) =
1

NR

∑
1≤k≤j
Gk∈S

|rk|p =
1

15

∑
1≤k≤j
Gk∈S

|rk|

and

fU(j) =
1

g − gS

∑
1≤k≤j
Gk /∈S

1 =
1

2

∑
1≤k≤j
Gk /∈S

1.

We manually perform the calculation of the ES as in Table 3.1. The ES is then

the maximum of fT (j) − fU(j). From Table 3.1, the first sum in the ES (the

second column) is equal to the proportion of genes in the gene set that have been

included in the sum, weighted by their test statistics. And the second sum in the

ES (the third column) is the unweighted proportion of genes not in the gene set

that have been included in the sum. Thus the ES is 2
3
.

GSEA also includes two methods that adjust the empirical p-value of each

gene set when multiple gene sets are tested simultaneously. In particular, these
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methods control the FDR and the FWER respectively. For a given S, let

ES(S) =
1

P

P∑
i=1

ES(S, πi)

be the sample mean of the ESes over all simulations πi. Then the normalised

enrichment score (NES) of a gene set S calculated using the real data is

NES(S) =
ES(S)

ES(S)

and the NES of a gene set S calculated using the data simulated from permutation

π is

NES(S, π) =
ES(S, π)

ES(S)
.

For a given S, the FWER-adjusted p-value is

1

P
×
∣∣∣{π : max

S′
NES(S ′, π) > NES(S)

}∣∣∣ ,
and the FDR-adjusted p-value is

%(S ′, π) with NES(S ′, π) ≥ NES(S)

% of observed S ′ with NES(S ′) ≥ NES(S)

=
1

P
× |{(S

′, π) : NES(S ′, π) ≥ NES(S)}|
|{S ′ : NES(S ′) ≥ NES(S)}|

.

Subramanian et al. (2005) also provide an alternative to GSEA, GSEAPre-

ranked (GSEAPR). In GSEAPR, each simulated data set is obtained by assign-

ing each gene to a random gene test statistic from the real data. The enrichment

scores ES(S, π) and normalised enrichment scores NES(S, π) for each simulation

are then calculated accordingly.

3.2.3 Exploratory Visual Analysis (EVA)

Exploratory Visual Analysis (EVA) (Reif et al., 2005) uses FET to calculate the

p-value of S from a list of significant and nonsignificant genes in the study. Denote

by hS the number of significant genes in S and denote by h the total number of

significant genes in the study. We display the gene-level association results in
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10 7 6 4 1

Gene 3 1 2 5 4

j 1 2 3 4

Statistic

5

Figure 3.3: Example – using GSEA to calculate the ES of a gene set. Yellow

circles represent genes in the gene set, and white circles represent genes not in the

gene set. The genes are arranged such that the corresponding test statistics are

in decreasing order from left to right.

Number of Genes In S Not in S Total

Significant hS h− hS h

Insignificant gS − hS g − gS − h+ hS g − h

Total gS g − gS g

Table 3.2: Gene-wide significance results to use in EVA
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Number of Genes In S Not in S Total

Significant hS − 1 h− hS h− 1

Insignificant gS − hS g − gS − h+ hS g − h

Total gS − 1 g − gS g − 1

Table 3.3: Gene-wide significance results to use in EASE

Table 3.2. EVA can also calculate a p-value for the gene set using a simulation

procedure. EVA does not account for testing multiple gene sets simultaneously.

In EVA, the simulation procedure works as follows. For each simulation, sam-

ple gS genes from the study without replacement. The empirical p-value of S is

then the proportion of simulations where the number of significant genes is no less

than hS.

We assume that EVA uses the one-sided FET, because it tests S for an enrich-

ment of significant genes. Using the notation displayed in Table 3.2, the one-sided

FET p-value is

pS =
∑
t≥hS

(
gS
t

)(
g−gS
h−t

)(
g
h

) . (3.2)

3.2.4 DAVID and EASE

Expression Analysis Systematic Explorer (EASE) (Hosack et al., 2003) is a test

provided by the Database for Annotation, Visualization and Integrated Discovery

(DAVID) (Dennis Jr et al., 2003) that performs a one-sided FET to calculate the

p-value of a gene set. However, EASE reduces the number of significant genes in

each gene set by one. We display the modified contingency table that EASE uses

in Table 3.3. The p-value for this test is then obtained by deducting 1 from g, h,

gS and hS in (3.2).

EASE can adjust for multiple testing in a number of different ways, including

the Bonferroni correction and bootstrap methods for estimating the FDR. We

refer interested readers to Hosack et al. (2003) for more details.
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3.2.5 Ingenuity Pathway Analysis (IPA)

QIAGEN’s Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City, www.

quiagen.com/ingenuity) performs a one-sided FET identically to EVA (Reif et

al., 2005). It also performs the Benjamini-Hochberg (BH) procedure (Benjamini

and Hochberg, 1995) to adjust the p-value assigned to each gene set if multiple

gene sets are tested simultaneously.

3.3 Review of Six GSA Methods

In this section, we detail the GSA methods developed by Askland et al. (2009),

Holmans et al. (2009), Hong et al. (2009), O’Dushlaine et al. (2009), Wang et al.

(2007), and Yaspan et al. (2011). Each method calculates a p-value for a gene set

using either the original genotype data, or the results of a GWA study in the form

of a p-value assigned to each SNP in the GWA study. We defer a comparison of

these methods to Section 3.4.

3.3.1 Pathway Analysis by Randomization Incorporating

Structure (PARIS)

Pathway Analysis by Randomization Incorporating Structure (PARIS) (Yaspan

et al., 2011) partitions the SNPs in the study into LD and LE blocks. As an

example of this partitioning procedure, consider Figure 3.4. Each black circle in

this figure represents a SNP on a chromosome. The red squares indicate pairs of

SNPs in high LD, and the pink squares indicate SNPs in low LD. For example,

high LD exists between SNPs 1 and 2, between SNPs 1 and 3, and between SNPs

5 and 6. The black borders around groups of SNPs indicate block boundaries.

In PARIS, a block is mapped to a gene if the block contains a SNP that is

mapped to the gene. A gene set S is then a collection of blocks that map to genes

in S. The structure of S is the number and size of the blocks in S. For example,

www.quiagen.com/ingenuity
www.quiagen.com/ingenuity
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4 62 531SNP

Block C D E

Figure 3.4: Example – Grouping SNPs into blocks in PARIS. Black circles repre-

sent SNPs on the chromosome (numbered 1 to 6), red squares indicate high LD

between two SNPs, and pink squares indicate low LD between two SNPs. Black

borders around groups of SNPs indicate block boundaries. We use the letters C,

D and E to refer to the blocks.

suppose that the six SNPs in Figure 3.4 make up S. This gene set contains block

C (which is the LD block of size three containing SNPs one, two and three), block

D (which is the LE block of size one containing SNP four) and block E (which is

the LD block of size two containing SNPs five and six).

To test S for association with a disease, PARIS compares S with random

collections of blocks from the rest of the genome, such that each block collection

has a similar structure to S, in terms of the number and size of the blocks.

However, there are more small blocks in the genome than large blocks, which

complicates sampling random block collections. PARIS accounts for the non-

uniform distribution of block sizes in the genome as follows. The list of LD

blocks in the genome is sorted by size, and the order of blocks of the same size is

random. The first B blocks in the list are assigned to bin 1, the next B blocks in

the list are assigned to bin 2, and so on. Yaspan et al. (2011) use bins containing
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approximately B = 10000 blocks. However, LE blocks are all assigned to the

same bin.

Denote by nk the number of blocks in both S and bin k. To compare S with

random block collections, PARIS removes the blocks in S from the bins, and

then creates P random block collections. Each block collection contains nk blocks

from bin k, for all k. Sampling an individual block collection is performed without

replacement, but sampling the N block collections is performed with replacement.

In other words, the same block cannot be present twice within an individual

block collection, but the same block may be present in different block collections.

Yaspan et al. (2011) use N = 1000 block collections.

PARIS defines a block to be significant if it contains at least one significant

SNP. Yaspan et al. (2011) use the significance level α = 0.05. The empirical

p-value of S is the proportion of simulated block collections that contain more

significant blocks than S. PARIS does not account for testing multiple gene sets

simultaneously.

We now give an example of using PARIS to calculate the p-value of a gene

set S. Suppose that in Figure 3.5, the top rectangle containing red and black

sub-rectangles represents the genome. Each sub-rectangle represents a block, and

the size of each sub-rectangle indicates the number of SNPs in the block. Sub-

rectangles with red borders indicate significant blocks, while sub-rectangles with

black borders indicate nonsignificant blocks. Gene set S is highlighted in yellow.

We remove S from the genome, and divide the blocks in the rest of the genome

into bins of size B = 3. We note that S contains nk = 1 block from bin k, for

k ∈ {1, 2, 3}. Consequently, to create each of the N = 3 block collections, we

sample one block from each bin. Finally, S contains two significant blocks, but

none of the three block collections contain more than two significant blocks. Thus

the empirical p-value of S is 0
3

= 0.



58 Chapter 3. Gene Set Analysis Methods

Gene Set

Block Collection 1 Block Collection 2 Block Collection 3

Bin 1

Bin 2

Bin 3

Gene Set

Figure 3.5: Example – using PARIS to estimate the p-value of a gene set. The top

rectangle containing red and black sub-rectangles represents the genome. Each

sub-rectangle represents a block, and the size of each sub-rectangle indicates the

number of SNPs in the block. Red sub-rectangles represent significant blocks,

and black sub-rectangles represent non-significant blocks. Highlighted blocks rep-

resent blocks that are in the gene set. The blocks not in the gene set have been

arranged into bins, as shown in the middle of the figure. We display random block

collections in the bottom of the figure, and the number of significant blocks in

each collection is compared to the number of significant blocks in the gene set to

obtain the p-value of gene set.



3.3. Review of Six GSA Methods 59

3.3.2 The SNP Ratio Test (SRT)

The SNP Ratio Test (the SRT) (O’Dushlaine et al., 2009) performs a GWA study

in the usual way by using an association test such as FET at each genetic locus.

Then for a given significance level α ∈ [0, 1], denote by m the total number of

significant SNPs in the GWA study. O’Dushlaine et al. (2009) recommend using

α ∈ {0.001, 0.005, 0.01, 0.05} in various situations. Denote by mS the number of

significant SNPs in S.

The SRT simulates P ∈ N data sets by permuting the case and control labels

on the original genotype data. O’Dushlaine et al. (2009) use P = 1000. A GWA

study is then performed on each simulated data set. Let m(k)
S be the number of

significant SNPs in S in simulation k. However, in the simulations, the SNPs with

the smallest m p-values are defined as significant, instead of using the significance

level α. Let s be the number of simulations where S contains at least as many

significant SNPs as in the real data:

s =
∣∣∣{k : m

(k)
S ≥ mS

}∣∣∣ .
Then the empirical p-value of S is

p =
s+ 1

P + 1
. (3.3)

The SRT does not correct for testing multiple gene sets simultaneously.

As an example, illustrated in Figure 3.6, suppose that three cases and three

controls are genotyped at six genetic loci in a GWA study. The genotype data

are given in the top panel of Figure 3.6. We calculate the p-value of gene set

S defined by SNPs 4, 5 and 6. Suppose that we apply an association test to

this data, which gives the result that SNPs 1, 4 and 5 are significant. We then

create P = 2 simulated data sets by permuting the case and control labels in the

original genotype data, and perform a GWA study on each simulated data set.

The results of these analyses are shown in the bottom panels of Figure 3.6. In

the first simulation, SNPs 2, 4 and 6 are significant, and in the second simulation,
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SNPs 4, 5 and 6 are significant. Thus the number of significant SNPs in S for the

real data is mS = 2, and in the simulations, m(1)
S = 2 and m(2)

S = 3. Consequently,

s = |{k : m
(k)
S ≥ mS}| = 2,

and hence the p-value of S in this example is

pS =
2 + 1

2 + 1
= 1.

3.3.3 MinP and Exploratory Visual Analysis (MPEVA)

Askland et al. (2009) calculate the p-value of each gene from the SNP p-values

using the minP procedure. The genes with the smallest 10% of p-values are then

classified as significant. EVA is used to calculate the p-value of each gene set from

the p-value of each gene in the gene set. Askland et al. (2009) used a one-sided

FET and the simulation procedure with P = 105 simulations. Finally, the p-value

of each gene set is adjusted using the Bonferroni correction.

3.3.4 ProxyGeneLD

ProxyGeneLD assumes that the set of SNPs in a GWA study is a subset of the

set of all SNPs in a database. Hong et al. (2009) refer to these sets as the study

SNPs and HapMap SNPs respectively. The HapMap SNPs are then partitioned

into LD and LE blocks. Hong et al. (2009) generate each LD block iteratively by

adding SNPs to the block if they are in high LD with any other SNP in the block,

according to the threshold r2 ≥ 0.8. Recall that r2 is the measure of correlation

between alleles at two genetic loci given in (2.12). ProxyGeneLD calculates the

p-value of each gene by using the minP procedure on the set of all study SNPs

in blocks that contain at least one study SNP that maps to the gene. The p-

value is then adjusted by multiplying it by the number of blocks included in the

calculation (the adjustment factor).3

3In summarising this part of ProxyGeneLD, we have followed the description by Hong et al.

(2009) in the main text. However, in the example in Figure 1, Hong et al. (2009) are inconsistent.
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Figure 3.6: Example – using the SRT to estimate the p-value of a gene set.

Genotype data for three cases and three controls at six loci (numbered 1 to 6)

are shown in the top row of the figure. The gene set contains loci 4 to 6, and

the corresponding data are shown in blue. A significance criterion is used which

identifies three loci as significant; we use ticks to indicate significant loci, and

crosses to indicate nonsignificant loci. We use the same notation in the bottom

row of the figure, except the case and control labels in the original genotype data

have been permuted to obtain simulated data sets. To obtain the p-value of the

gene set, the number of significant SNPs in the gene set for the real data set is

compared with the number of significant SNPs in the gene sets for the simulated

data sets.
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4 62 531

Gene

SNP

0.1 0.4 NA 0.50.3 NAp

1 2

Block C D E

Figure 3.7: Example – calculating the p-values of genes in ProxyGeneLD. Black

circles represent SNPs on the chromosome (numbered 1 to 6), red squares indicate

high LD between two SNPs, and pink squares indicate low LD between two SNPs.

Black borders around groups of SNPs indicate block boundaries. We use the

letters C, D and E to refer to the blocks. We represent genes with blue lines

at the top of the figure. The variable p is the p-value of each SNP, where NA

indicates that the SNP is not a study SNP.
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We give an example to demonstrate how ProxyGeneLD calculates gene p-

values. We illustrate this example in Figure 3.7. Suppose that there are six

HapMap SNPs, where the LD structure is given by the squares in Figure 3.7. As

in Figure 3.4, a dark red square indicates high LD between SNPs, and a pink

square indicates low LD. Suppose also that the p-value of each SNP is as given in

Figure 3.7, where “NA” indicates that the SNP is not a study SNP. Also, suppose

that SNPs 1 and 2 have been mapped to gene 1, and SNPs 3 to 6 have been

mapped to gene 2.

Gene 1 only contains study SNPs in block A (1 and 2), so the adjustment

factor is 1 and the p-value is min{0.1, 0.4}×1 = 0.4. Gene 2 contains study SNPs

in blocks B and C (4 and 6). Note that gene 2 does contain SNP 3, but since it

is not a study SNP, we do not include block A in our calculation of the p-value of

gene 2. Thus the adjustment factor is 2 and the p-value is min{0.3, 0.5}×2 = 0.6.

ProxyGeneLD provides three different methods of estimating the p-value of a

gene set S from the p-value of each gene in S. One of these methods is GSEA

(Subramanian et al., 2005). Yaspan et al. (2011) notes that ProxyGeneLD does

not require the original genotype data, so we assume that ProxyGeneLD uses

GSEAPR, which permutes the gene test statistics rather than the case and control

labels on the original genotype data. In GSEA, genes with test statistics larger

in magnitude have a greater level of association with the disease. Using a test

statistic of − log10(pG) for each gene, where pG is the p-value of the gene G, is

inappropriate. This is because ProxyGeneLD multiplies the unadjusted p-value

of each gene by the adjustment factor, which may result in genes having p-values

greater than one. Consequently, − log10(pG) may be negative, and hence the

level of association between each gene and the disease does not increase with the

magnitude of − log10(pG) in general.

The p-value of gene 1 is calculated correctly, but the p-value of gene 2 is not. Hong et al. (2009)

only consider the study SNPs that are assigned to gene 2. Study SNPs in proxy cluster 1 that

are not assigned to gene 2 are not considered, even though proxy cluster 1 contains a study SNP

that is assigned to gene 2.
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Thus ProxyGeneLD uses a test statistic of

rG = − log10(pG) + log10(pmax)

for each gene, where pmax is the maximum of the adjusted p-values of all of the

genes in the study. Since rG ≥ 0 for all genes, this test statistic satisfies the

assumptions of GSEA. In the analysis using GSEAPR, Hong et al. (2009) used

P = 5000 permutations and p = 1. Hong et al. (2009) restricted analysis to gene

sets containing 15 to 500 genes, and investigated all gene sets with FDR < 0.25.

ProxyGeneLD also uses DAVID and IPA to calculate the p-value of S from the

p-value of each gene in S. Hong et al. (2009) classified each gene as significant if

its p-value was in the smallest x% of p-values of all genes. For the analysis using

DAVID, Hong et al. (2009) used x ∈ {1, 2, 3}, and for the analysis using IPA,

Hong et al. (2009) used x = 1.

3.3.5 Association LIst Go AnnoTatOR (ALIGATOR)

Association LIst Go AnnoTatOR (ALIGATOR) (Holmans et al., 2009) classifies

each gene as significant if it contains at least one significant SNP. We refer to the

set of significant genes as the significant gene list. P gene lists are then simulated

as follows. Each gene list is simulated by randomly sampling SNPs from the GWA

study without replacement and adding to the gene list the genes that the sampled

SNP maps to. For each gene list, SNPs are sampled until the number of genes in

the gene list is the same as the number of significant genes in the study.4 Holmans

et al. (2009) simulate P1 = 5000 gene lists in this way.

Denote by g
(k)
S the number of genes that are in both S and gene list k ∈

{1, . . . , P}. The p-value of S is then

pS =
1

P
×
∣∣∣{k : g

(k)
S ≥ gS

}∣∣∣ (3.4)

4We assume that if a SNP maps to multiple genes such that the number of genes in the

simulated gene list is greater than the number of genes in the significant gene list, then no more

SNPs are sampled.
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the proportion of simulated gene lists where the number of genes that are in both

S and the simulated gene list is no less than the number of genes that are in both

S and the significant gene list.

To adjust the p-value of each gene set for testing multiple gene sets simultane-

ously, ALIGATOR generates B bootstrap sets (of simulated gene lists) as follows.

Each set is generated by randomly selecting one of the P simulated gene lists to

be the “observed data”. P gene lists are then sampled from the rest of the gene

lists with replacement. Holmans et al. (2009) generate B = 1000 bootstrap sets

in this way. For each bootstrap set, the p-value of S is calculated in the same way

as the unadjusted p-value of S. In (3.4), the number of genes that are in both S

and the observed data gene list replaces the number of genes that are in both S

and the significant gene list, and the bootstrap set of simulated gene lists replaces

the original set of simulated gene lists. Denote by p(b)S the p-value of S calculated

using bootstrap set b. The adjusted p-value for gene set S is then

1

B
×
∣∣∣{b : min

S′
p
(b)
S′ ≤ pS

}∣∣∣ ,
the proportion of bootstrap sets where the minimum of the p-values of all gene

sets is no greater than unadjusted p-value of gene set S.

We demonstrate ALIGATOR with an example, illustrated in Figure 3.8. Sup-

pose that in a GWA study, SNPs in five genes are analysed. The genes are labelled

one to five, and significant SNPs are highlighted in yellow. We use ALIGATOR

to calculate the p-value of gene sets 1 and 2. We simulate P = 3 gene lists by

randomly sampling SNPs from the study without replacement, which are shaded

in pink. Since there are three genes in the significant gene list, we sample SNPs

from the study until each simulated gene list contains three genes. We summarise

the number of genes that are in both a given gene set and a given gene list in

Table 3.4.

To calculate the p-value of gene set 1, note that there is one gene that is in

both gene set 1 and the significant gene list. Furthermore, for two of the three

simulated gene lists (k ∈ {2, 3}), there is at least one gene in both gene set 1 and
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Figure 3.8: Example – calculating the raw p-value of gene sets in ALIGATOR. In

the top row of the figure, the SNPs in the genes numbered 1 to 5 are represented

by small numbered squares, and significant SNPs are highlighted in yellow. The

gene sets are represented by black rectangles around the genes that they contain.

In the bottom of the figure, we show three simulated data sets. In each data set,

SNPs that were randomly sampled from the study are shaded in pink.

the simulated gene list. Consequently, the p-value of gene set 1 is 2
3
. Similarly,

there are two genes that are in both gene set 2 and the significant gene list.

Furthermore, for one of the three simulated gene lists (k = 1), there is at least

two genes in both gene set 2 and the simulated gene list. Consequently, the p-value

of gene set 2 is 1
3
.

We also illustrate adjusting these p-values for multiple testing. We use the

same example, but we now refer to Figure 3.9, in which we have used slightly

different notation. Here, genes in the significant gene list are shaded in yellow,
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No. Genes in Gene Set and Gene List Real Data k = 1 k = 2 k = 3

Gene set 1 1 0 1 2

Gene set 2 2 2 1 0

Table 3.4: Example – calculating the raw p-value of gene sets in ALIGATOR.

Each row corresponds to a gene set, and each column corresponds to a different

data set that we use to calculate the raw p-value. The second column corresponds

to the real data set, and the three rightmost columns correspond to the three

simulated data sets. The entry in each cell of the table is the number of genes in

both the gene list (for the given data set) and the given gene set.

and genes in the simulated gene list are shaded in pink. To calculate the adjusted

p-value of each gene set, we create B = 3 bootstrap sets. For each bootstrap set

and each gene set, we calculate the bootstrap p-values p(b)S in the same way that

we calculated the unadjusted p-values. The results of these calculations are shown

in Table 3.5. The adjusted p-value for a given gene set is then the proportion of

bootstrap sets where the minimum p-value over all gene sets is less than or equal

to the unadjusted gene set p-value. For both gene sets 1 and 2, all three bootstrap

sets have minimum p-values less than or equal to the unadjusted p-value, so the

adjusted p-value of both gene sets is 1.

3.3.6 Modified Gene Set Enrichment Analysis (MGSEA)

Wang et al. (2007) use the maxT algorithm to assign a test statistic to each gene

in the GWA study from the test statistic assigned to each SNP in the GWA study.

GSEA is then used to calculate the p-value of a gene set from the test statistic

assigned to each gene in the gene set. GSEA adjusts the p-value of each gene set

for testing multiple gene sets simultaneously.

However, Wang et al. (2007) comment that the definition of the NES by Sub-

ramanian et al. (2005) fails to account for the variability of the ESes over all

permutations. Consequently, Wang et al. (2007) modify the definition of the NES
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Figure 3.9: Example – correcting for multiple testing in ALIGATOR. We use the

same example as in Figure 3.8, but we represent the data in a slightly different

way. In the top row of the figure, the numbered squares represent genes, and genes

highlighted in yellow are in the significant gene list. Gene sets are represented

by boxes around the genes that they contain. The second row from the figure

displays the simulated data sets. For each data set, genes highlighted in pink are

in the simulated gene list. The remainder of the figure displays three bootstrap

replicates in three rows. In each row, the simulated gene list that is selected to

be the “observed data” is shown on the left, and the (bootstrap) set of gene lists

randomly sampled from the remainder of the simulations is shown on the right.
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p-value Real Data b = 1 b = 2 b = 3

Gene set 1 2
3

1 0 2
3

Gene set 2 1
3

0 1 1
3

Minimum - 0 0 1
3

Table 3.5: Example – correcting for multiple testing in ALIGATOR. Each row,

apart from the bottom row, corresponds to a gene set, and each column corre-

sponds to a different data set used in the calculation. The three rightmost columns

correspond to the three bootstrap replicates. The entry in each cell of the table,

apart from the bottom row, is the raw p-value calculated using the given data set

for the given gene set. In the bottom row, we display for each bootstrap replicate

the minimum of the p-values over all gene sets.

in Subramanian et al. (2005) to account for this variability. In addition to the

notation established in Subsection 3.2.2, let

sES(S) =

{
1

P − 1

P∑
i=1

[
ES(S, πi)− ES(S)

]2}1/2

be the sample standard deviation of the ESes over all permutations πi. Wang

et al. (2007) then define the NES of a gene set S calculated using the real data as

NES(S) =
ES(S)− ES(S)

sES(S)
,

and the NES of a gene set S calculated using the data simulated from permutation

π as

NES(S, π) =
ES(S, π)− ES(S)

sES(S)
.

3.4 Theoretical Comparison of GSA Methods

We now conduct a theoretical comparison of the six GSA methods that we detailed

in Section 3.3. We structure our comparison around seven questions highlighted

in reviews of GSA by Fridley and Biernacka (2011), Holmans (2009), Mooney

et al. (2014), Ramanan et al. (2012), Wang et al. (2010), and Wang et al. (2011):
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1. How do we define meaningful gene sets to test for association with a disease?

2. What null hypothesis should we test, and how do we calculate a test statistic

to test it?

3. Do we need the original genotype data, or only the p-value of each SNP

obtained in a GWA study?

4. Do we map SNPs to gene sets directly, or do we map SNPs to intermediaries

such as genes or blocks which are then mapped to gene sets?

5. How do we map SNPs to genes?

6. How do we prevent factors such as LD, the number of SNPs in genes and the

number of genes in gene sets from impacting the results of GSA in unwanted

ways?

7. How do we correct the results of our analysis for testing multiple gene sets

simultaneously?

3.4.1 Defining Gene Sets

Recall that the purpose of GSA is to test for association between gene sets and

a given disease, in order to elucidate the underlying biology of the disease. Con-

sequently, it is critical that the gene sets analysed in GSA are biologically mean-

ingful.

Two classes of gene set that are commonly analysed using GSA are gene on-

tologies (GOs) (Ashburner et al., 2000) and biological pathways, such as those

found in KEGG (Kanehisa and Goto, 2000) and PANTHER (Mi et al., 2013).

Recall that a biological pathway is a set of interacting genes that together per-

form a specific biological function. In contrast, GOs contain genes that have

similar functions, but the relationship between genes in a GO is not known in

general. Mooney et al. (2014) comments that other choices for gene sets include

biological networks and disease biomarkers.
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A biological network, such as a protein-protein interaction network, describes

relationships between genes or proteins. However, unlike biological pathways,

the genes or proteins in a biological network do not contribute to a biological

function. On the other hand, disease biomarkers are sets of genes that have been

individually identified as associated with a particular disease. However, genes in

a disease biomarker need not interact with each other.

Most GSA methods can theoretically be used to analyse any gene set, in-

cluding PARIS, the SRT, MinP-EVA (MPEVA), ProxyGeneLD, ALIGATOR and

Modified GSEA (MGSEA). Consequently, while we recognise the importance of

ensuring that gene sets are biologically meaningful, we do not discuss this question

any further.

3.4.2 Choosing a Null Hypothesis and Calculating a Gene

Set Test Statistic

In any statistical method that calculates a p-value to measure the significance

of an association, a precise null hypothesis is critical. In the context of gene

expression, Tian et al. (2005) formulated two distinct null hypotheses for testing

the association between a gene set and a disease:

1. The genes in the gene set show the same level of association with the disease

as the genes in the rest of the genome.

2. The genes in the gene set are not associated with the disease.

Goeman and Bühlmann (2007) subsequently named these tests competitive and

self-contained, respectively. In other words, competitive tests depend on genes

outside of the gene set, whereas self-contained tests do not depend on genes outside

of the gene set. We can also consider analagous hypotheses in terms of SNPs or

LD blocks.
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Many competitive methods can be further divided into overrepresentation

(OR) methods, and gene set enrichment (GSE) methods (Holmans, 2009). These

classes describe how a test statistic is calculated for each gene set. In OR methods,

units such as SNPs, genes or blocks are classified as significant or nonsignificant

based on a criterion such as a significance level α. The number of significant and

nonsignificant units in the gene set is then compared with significant and non-

significant units outside of the gene set. In contrast, GSE methods use the test

statistic or p-value of each unit directly to calculate the gene set p-value, without

using a significance criterion. The original GSE procedure is GSEA (Subramanian

et al., 2005). It is apparent that GSEA is a competitive method, because (3.1)

includes both genes in the gene set, and genes not in the gene set.

One advantage of using GSE methods is that they do not require the user

to choose an arbitrary significance criterion to classify units such as genes as

significant or nonsignificant (Holmans, 2009). In fact, GSEA was designed to

overcome this shortcoming (Subramanian et al., 2005). However, GSEA also has

a significant weakness compared to OR methods. In GSEA, the ES of a gene

set that contains a highly significant SNP or gene is likely to be large (Holmans,

2009; Wang et al., 2007). Consequently, GSEA is more likely to identify gene sets

that contain a single, highly significant SNP or gene, and less likely to identify

gene sets that contain a number of moderately significant SNPs or genes. This

is a weakness of GSEA, because one of the aims of GSA is to identify gene sets

that contain a number of moderately significant SNPs or genes, that cannot be

identified by GWA studies. In contrast, the results obtained by using OR methods

will not be affected by the presence of a single, highly significant SNP or gene.

Consequently, OR methods that use liberal significance levels such as α = 0.05

may be more suited to GSA (Holmans et al., 2009; O’Dushlaine et al., 2009).

From Section 3.3, PARIS, MPEVA, ProxyGeneLD and ALIGATOR use OR

methods; ProxyGeneLD and MGSEA use GSE methods; and the SRT is a self-

contained method.
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3.4.3 What Input Data are Required for GSA?

Most GSA methods can be classified into two groups: methods that only require

the results of a GWA study in the form of a p-value assigned to each SNP, and

methods that require the original genotype data of each subject at each genetic

locus (Wang et al., 2010; Yaspan et al., 2011). It is important to analyse the

type of data that each method requires as input for a number of reasons. For

example, the original data is not always available (Holmans et al., 2009; Wang

et al., 2010; Yaspan et al., 2011). Furthermore, many methods that require the

original data permute the case and control labels on the original data and then

perform a GWA study on each simulated data set. Depending on the number of

permutations P used, this operation can be computationally expensive (Holmans

et al., 2009; Wang et al., 2011; Yaspan et al., 2011).

PARIS, MPEVA, ProxyGeneLD and ALIGATOR only require the results of

a GWA study, but the SRT and MGSEA require the original genotype data.

3.4.4 One-Step and Two-Step Methods

Recall that one-step GSA methods calculate a test statistic for each gene set

directly from the test statistic or p-value of each SNP, without using intermedi-

aries such as genes or blocks. These methods are also known as SNP-based GSA

methods (Wang et al., 2011). In contrast, two-step GSA methods calculate a test

statistic for each intermediary first. These methods then use these test statistics

to calculate a test statistic for each gene set.

One of the benefits of two-step GSA methods that calculate a test statistic for

each gene in the analysis is that when the results of the analysis are interpreted,

the genes in a gene set can be ranked according to their significance (Fridley and

Biernacka, 2011; Mooney et al., 2014). Ranking genes in this way can highlight

genes that warrant further investigation. However, such gene-based GSA methods

require the calculation of a test statistic for each gene. Such calculations can
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Method b

PARIS 50000

The SRT Not specified

MPEVA Not specified

ProxyGeneLD 1000

ALIGATOR {0, 20000}

MGSEA 500000

Table 3.6: Gene boundary extensions used in different methods

impact the analysis in unwanted ways, due to factors such as the LD structure

of the SNPs in the genome and the number of SNPs in genes. We discuss these

effects in Subsection 3.4.6.

From Section 3.3, PARIS is a two-step method that uses blocks as intermedi-

aries; the SRT is a one-step method; and MPEVA, ProxyGeneLD, ALIGATOR

and MGSEA are two-step methods that use genes as intermediaries.

3.4.5 Mapping SNPs to Genes

The aim of GSA is to estimate the degree of association between a gene set and a

disease. Consequently, all GSA methods need to map SNPs to genes. The basic

map assigns a SNP to a gene if the position of the SNP is between the position

endpoints that define the gene.5 However, some of the DNA just outside gene

boundaries has been shown to play an important role in promoting or inhibiting

the production of proteins from genes. Consequently, some methods also map

SNPs to genes if the SNP is within b bp of the gene. We display the gene boundary

extension b used by the GSA methods in Table 3.6.

For methods where the gene boundary extension b > 0, SNPs may map to

multiple genes. This can affect the results obtained by the method in an unwanted

5Gene boundaries can be found in various databases, such as the Ensembl database (Cun-

ningham et al., 2015).
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way. For example, consider calculating the p-value of a gene set containing two

genes, where both genes contain a highly significant SNP. If the method calculates

a test statistic for each gene, then the significant SNP may be double-counted

in the calculation of the gene set p-value. In particular, this problem would

affect MGSEA if no amendments were made to it, because it calculates gene test

statistics.

However, Wang et al. (2007) use the following amendment in MGSEA to cir-

cumvent this problem in most circumstances. Assume that a SNP would ordinarily

map to two genes when the gene boundary extension is taken into account. If the

SNP is not located in either gene (when the gene boundary extension is not taken

into account), map the SNP to the closest gene. If the SNP is located in one gene,

map the SNP to that gene. However, if the SNP is located in both (overlapping)

genes, then map the SNP to both genes. Wang et al. (2007) comment that the

situation where a SNP is located in both genes occurs very rarely. Consequently,

this amendment will almost always be effective.

3.4.6 Accounting for LD and Gene Size

Several factors can impact the results of GSA in unwanted ways, such as the LD

structure of the SNPs in the genome and the number of SNPs in genes (Fridley and

Biernacka, 2011; Holmans, 2009; Mooney et al., 2014; Ramanan et al., 2012; Wang

et al., 2010; Wang et al., 2011). Yaspan et al. (2011) confirmed experimentally

that these issues can impact GSA if they are not considered carefully. In this

subsection, we explain why these issues exist, and how some of the procedures

that we detailed in Section 3.2 can impact GSA in unwanted ways. For each GSA

method, we then discuss whether or not each factor impacts the results of the

method.

To illustrate the impact that LD can have on GSA, suppose that two marker

SNPs are associated with a given disease. There are two situations in which this

can occur. In the first situation, the LD between the two marker SNPs is low,
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Figure 3.10: Illustration – two SNPs in low LD associated with a disease

as in Figure 3.10. This is usually the case when the two marker SNPs are highly

correlated with different and functionally independent DSLs. Consequently, the

two marker SNPs correspond to separate genetic signals. In the second situation,

the LD between the two marker SNPs is high, as in Figure 3.11. This is usually

the case when the two marker SNPs are highly correlated with the same DSL.

Consequently, the marker SNPs correspond to the same genetic signal.

Furthermore, suppose that the p-value of each marker SNP in the two situa-

tions is the same. Then a procedure that combines the p-values of these SNPs

without accounting for LD may impact the analysis in unwanted ways. For ex-

ample, suppose that in each situation, a gene is defined by the two marker SNPs.

Then the minP procedure, which is widely used in GSA, assigns the same p-value

to both genes (Fridley and Biernacka, 2011; Holmans, 2009; Ramanan et al., 2012;

Wang et al., 2011). However, the gene containing the marker SNPs in low LD

has a greater degree of association with the disease, because the marker SNPs are

highly correlated with different DSLs and correspond to different genetic signals.

To account for LD, some methods, such as PARIS and ProxyGeneLD, partition

SNPs into LD and LE blocks. The aim of this procedure is to ensure that each

block corresponds to at most one genetic signal. Of course, the effectiveness of



3.4. Theoretical Comparison of GSA Methods 77

DSLMarker

Disease

Genetic 
Signal

High Correlation

Association

High Correlation

Marker

Association

High LD

Figure 3.11: Illustration – two SNPs in high LD associated with a disease

this procedure depends on the criteria used to partition the SNPs; this problem

is an area of ongoing research.

The number of SNPs in genes and the number of genes in gene sets can also

impact the results of GSA in unwanted ways, because larger genes and gene sets

are more likely to contain a larger number of significant SNPs and SNPs with

smaller p-values. For example, if the minP procedure is used, larger genes are

more likely to be assigned smaller p-values by chance (Hong et al., 2009; Wang

et al., 2007).

Recall that some GSA methods simulate data sets by permuting the case and

control labels on the original data set. These methods then compare a test statistic

from the original data to a test statistic calculated using the simulations. This

procedure accounts for factors such as LD and gene size, because the calculation

of the test statistics uses the same genes and LD structure (Fridley and Biernacka,

2011; Mooney et al., 2014; Ramanan et al., 2012; Wang et al., 2010; Wang et al.,

2011).
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PARIS

Recall that PARIS partitions SNPs into LD and LE blocks. In particular, in the

partitioning method that Yaspan et al. (2011) used, a SNP in a block does not

need to be in high LD with all other SNPs in the block. Consequently, a single

LD block may represent a number of different genetic signals, which may impact

the results of PARIS.

A block is then said to be significant if it contains at least one significant SNP.

Consequently, blocks with more SNPs are more likely to be significant. However,

this does not adversely affect the results of PARIS, because PARIS simulates block

collections where the number and size of blocks in each collection are similar to

the blocks in the gene set. Also, since PARIS does not calculate gene p-values, it

should not be adversely affected by gene size.

The SRT

The SRT simulates data sets by permuting the case and control labels on the

original data set. It then compares the number of significant SNPs in each gene set,

calculated using the original data, to the number of significant SNPs calculated

using the simulated data sets. Consequently, the results of the SRT account for

LD and gene size.

MPEVA

MPEVA uses the minP procedure to calculate gene p-values. Consequently, the

probability that a randomly chosen gene is significant is not uniform; it depends

on LD and gene size (Holmans, 2009). This means that the number of significant

genes in each gene set does not follow a hypergeometric distribution. Conse-

quently, the use of FET to calculate gene set p-values is inappropriate; it does

not account for the unwanted effects of LD and gene size introduced by the minP

procedure.
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ProxyGeneLD

Like PARIS, ProxyGeneLD partitions SNPs into blocks. Recall that Proxy-

GeneLD partitions SNPs into blocks iteratively, where a SNP is added to a block

if it is in high LD with any other SNP in the block. Hong et al. (2009) use the

criterion r2 ≥ 0.8 to define high LD. Consequently, the extent to which LD im-

pacts the results of ProxyGeneLD depends on whether or not a single LD block

may represent a number of different genetic signals. The results of ProxyGeneLD

are also adversely affected by gene size. To see this, recall that the p-value of a

gene is calculated using the minP procedure, and adjusted by multiplying by the

adjustment factor. This Bonferroni-type adjustment could penalise large genes

too much (Yaspan et al., 2011).

ProxyGeneLD uses IPA and EASE to calculate gene set p-values. Recall that

these methods use FET, which is inappropriate, since it does not account for the

unwanted effect of gene size that has been introduced. ProxyGeneLD also uses

GSEAPR to calculate gene set p-values. Since GSEAPR only permutes gene test

statistics, it compares the set of test statistics in the gene set to a random set of

test statistics. Consequently GSEAPR does not account for the unwanted effect

of gene size.

ALIGATOR

ALIGATOR defines a gene to be significant if it contains a significant SNP. Conse-

quently, large genes are more likely to be significant. However, when ALIGATOR

simulates gene lists, the probability of adding a gene to the list is proportional to

the number of SNPs in the gene. Consequently, ALIGATOR accounts for gene

size.

However, Holmans et al. (2009) explicitly assume in ALIGATOR that LD

between SNPs in a gene set is approximately constant. This assumption is inap-

propriate, because the LD structure of genomes can be quite complex. Thus the
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results of ALIGATOR are adversely affected by LD. Holmans et al. (2009) detail

an alternative to ALIGATOR which replaces the genes in the simulation with a

set of SNPs in low LD with each other. Unlike the partitioning procedures, this

procedure omits SNPs from the analysis to create the set of SNPs in low LD.

Holmans et al. (2009) use a low threshold (r2 < 0.2) to increase the likelihood

that no SNPs in the set correspond to the same genetic signal. However, using a

low threshold could also reduce the power of the analysis, since fewer SNPs are

used.

MGSEA

MGSEA uses the maxT algorithm to calculate gene test statistics. However, the

method accounts for LD and gene size, because it compares the ES obtained from

the real data with the ESes obtained from data that is simulated by permuting

the case and control labels on the real data.

3.4.7 How Does Each Method Correct for Multiple Test-

ing?

Finally, we briefly discuss how some of the GSA methods adjust the p-value as-

signed to each gene set for testing multiple gene sets simultaneously. Recall that

many multiple testing procedures control the FWER, which is the probability

of at least one false positive, or the FDR, which is the expected proportion of

rejected null hypotheses that are true.

In the context of GSA, controlling the FDR is generally preferable to control-

ling the FWER (Holmans, 2009). We will not go into further detail here, but

the interested reader is encouraged to explore literature such as Holmans (2009),

Ramanan et al. (2012), and Wang et al. (2010) for more details.

PARIS and the SRT do not provide a multiple testing correction. MPEVA uses

the Bonferroni correction to test for multiple gene sets, which controls the FWER.
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ProxyGeneLD uses GSEA, which provides methods of controlling the FWER and

FDR; IPA, which applies the BH procedure (Benjamini and Hochberg, 1995) to

control the FDR; and EASE, which provides a variety of different correction pro-

cedures, including Bonferroni and bootstrapping procedures. ALIGATOR uses a

bootstrapping technique to adjust gene set p-values for multiple testing. How-

ever, it is not apparent which measure of error is controlled by the bootstrapping

technique used by Holmans et al. (2009). Finally, MGSEA uses GSEA, which

provides methods of controlling the FWER and FDR.

Of these multiple testing corrections, we favour methods that control the FDR

using simulation techniques, such as those used in ALIGATOR and GSEA. The

Bonferroni correction conservatively controls the FWER, hence it lacks power to

detect gene sets that are associated with the disease. Also, the BH procedure

assumes that gene sets are independent, which is inappropriate in GSA.

3.4.8 Overview of GSA Methods

We tabulate the key information about each GSA method that we have discussed

in Table 3.7 and make some recommendations. If a self-contained method is

preferred, then the SRT is a good choice, because it accounts for LD and gene

size. Furthermore, since it uses a SNP significance criterion, it is not sensitive to

individual SNPs with very small p-values. However, the SRT requires the original

genotype data and it can be computationally intensive. On the other hand, the

situation is less clear if a competitive method is preferred. While MGSEA accounts

for LD and gene size, it is sensitive to SNPs with very small p-values. Furthermore,

like the SRT, it requires the original genotype data and it can be computationally

intensive. In contrast, PARIS does not require the original genotype data, and

it accounts for gene size. However, PARIS can be affected by LD if a block

corresponds to more than one genetic signal. Further research into methods that

partition SNPs into blocks, with the aim of ensuring that each block corresponds

to at most one genetic signal, is required.
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Method Method Type Gene Set Test Statistic Input Intermediaries

PARIS OR Permutation method that accounts for size

of blocks

p-values Blocks

The SRT Self-Contained Compares no. of sig. SNPs in gene set

from real data with no. from simulations

Genotypes -

MPEVA OR FET p-values Genes

ProxyGeneLD OR and GSE FET, GSEAPR p-values Genes

ALIGATOR OR Permutation method where probability of

sampling genes proportional to gene size

p-values Genes

MGSEA GSE GSEA Genotypes Genes

Method Gene Boundary Extension LD1 Gene Size1 Multiple Testing

PARIS b = 50000 ?2 3 -

The SRT ? 3 3 -

MPEVA ? 7 7 FWER (Bonferroni)

ProxyGeneLD b = 1000 ?2 7 FDR (GSEA, BH, Bootstrapping), FWER

(GSEA, Bonferroni)

ALIGATOR b ∈ {0, 20000} 73 3 Bootstrap method

MGSEA b = 500000 3 3 FDR, FWER (GSEA)

1 Is the method robust to this factor?
2 Depends on partitioning method.
3 Original method.

Table 3.7: Theoretical comparison of the six GSA methods
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3.5 Chapter Summary

In Section 3.1, we reviewed some of the shortcomings of traditional GWA studies,

and we explained why GSA is often used with GWA study data. We explained the

mapping problem in Section 3.2, including a discussion of some procedures com-

monly used in GSA, such as GSEA, FET and the minP procedure. In Section 3.3,

we reviewed six GSA methods: PARIS, the SRT, MPEVA, ProxyGeneLD, ALI-

GATOR and MGSEA. Finally, we conducted a detailed review of these methods

in Section 3.4, and we structured our comparison around the reviews by Fridley

and Biernacka (2011), Holmans (2009), Mooney et al. (2014), Ramanan et al.

(2012), Wang et al. (2010), and Wang et al. (2011). However, like these reviews,

our review has been purely theoretical. Consequently, in Chapter 4, we detail

the procedures that we used to implement some of the GSA methods, so that we

could compare their performance.





Chapter 4

Procedures to Implement and

Compare GSA Methods

The aim of this thesis is to compare PARIS, the SRT, MPEVA, ProxyGeneLD,

ALIGATOR and MGSEA. We compared these methods theoretically in Chap-

ter 3. In this chapter, we discuss the procedures that we use to compare the

performance of four of these methods at identifying gene sets that are associated

with a given disease. In particular, we implement four methods on various sets

of simulated gene sets with different properties, and compare the performance of

these method for each data set. By simulating gene sets, we are able to choose

values for parameters such as the location of genetic loci that are associated with

the disease and the relative risks at each locus. In contrast, this information is

often not known in real data.

Simulation studies have been used previously in GSA. The study by Jia et

al. (2011) is the most similar to ours; it compares the SRT, GSEA and a hy-

pergeometric test. However, our study is different for a number of reasons. We

compared six methods, including two methods analysed by Jia et al., 2011 (the

SRT and GSEA). We also use a different simulation routine to Jia et al. (2011).

In particular, we use HAPGEN2 (Su et al., 2011) to simulate genotype data, be-

cause it can include multiple disease loci on the same chromosome. In contrast,

85
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Jia et al. (2011) performed a simulation study by implementing GSA methods on

random sets of genes in a real data set. We discuss HAPGEN2 and two methods

from which HAPGEN2 was derived in Section 4.1. In Section 4.2, we discuss the

values that we choose for parameters in our simulation study, to ensure that the

simulated data accurately reflects real data.

To compare GSA methods, we also need to precisely define what is meant by

the performance of a method. To do this, we assume that a gene set is associated

with a disease if and only if it satisfies particular criteria. For example, if we

were analysing a single locus for association with a disease, we could assume that

subjects have the disease if and only if they have two disease SNPs (a recessive

model) or at least one disease SNP (a dominant model). Similarly, in our simula-

tion study, we assume that a subject with at least x disease SNPs in the gene set

has the disease, for some positive integer x. We used empirical receiver operating

characteristic (ROC) curves to compare the performance of GSA methods. Empir-

ical ROC curves can be used to evaluate the performance of classification method

that classifies a hypothesis as true or false using the p-value of the hypothesis.

Other simulation studies have also used empirical ROC curves to compare the

performance of GSA methods, including Lu et al. (2014) and Zhang et al. (2014).

We provide more details about the procedures that we used to compare the GSA

methods, including empirical ROC curves and our use of them, in Section 4.3.

4.1 Simulating Genotype Data

In Subsection 4.1.1, we detail a method developed by Li and Stephens (2003), the

Li and Stephens (LS) model, to model the distribution of haplotypes in genotype

data. The LS model can be used to simulate haplotypes (sets of alleles on a

chromosome) from a set of real haplotypes, such that the LD structure of the real

data and the simulated data is similar. This ensures that the LD structure of

the simulated data is realistic. In Subsection 4.1.2, we detail HAPGEN (Spencer
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et al., 2009), an extension of the LS model that includes one disease SNP in the

simulation. HAPGEN2 (Su et al., 2011) is a further extension of HAPGEN that

allows for multiple disease SNPs in the simulation. We use HAPGEN2 to simulate

genotype data for our simulation study, and we provide details about HAPGEN2

in Subsection 4.1.3.

4.1.1 Simulating Genotype Data with No Disease SNPs

The LS model (Li and Stephens, 2003) can be used to simulate genotype data

with a similar LD structure to real genotype data.

In the LS model, suppose that for S biallelic loci on a chromosome, there are

n haplotypes h1, . . . , hn. We assume that these haplotypes come from n
2
diploid

individuals, that is, individuals that possess pairs of chromosomes in their cells.

The aim of the LS model is to generate the conditional distribution

πA(hk+1|h1, . . . , hk)

of haplotype hk+1 given haplotypes h1, . . . , hk, for some k ∈ {1, . . . , n− 1}. Con-

sequently, if only haplotypes h1, . . . , hk were known, the LS model could be used

to simulate haplotype hk+1.

The LS model uses the following methodology to model the conditional dis-

tribution πA(hk+1|h1, . . . , hk). Assume that at each allele, haplotype hk+1 copies

one of the previous k haplotypes, h1, . . . , hk. Let Xj ∈ {1, . . . , k} be the haplo-

type that hk+1 copies at allele j ∈ {1, . . . , S}. The Xj are referred to as copying

states. However, the LS model also simulates mutations; haplotype hk+1 may copy

an allele incorrectly. Consequently, the haplotypes h1, . . . , hk and copying states

X1, . . . , XS do not completely determine the new haplotype hk+1.

To motivate the LS model, consider the Ewens sampling formula (Ewens,

1972), a well-known model for simulating new haplotypes from a conditional dis-

tribution. The Ewens sampling formula assumes that a population satisfies the

following:
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• The population consists of individuals that randomly select their mate from

the population;

• the population has constant size N ;

• the population has rate of mutation µ per generation; and

• any mutation results in a completely new haplotype, such that hk+1 is not

equal to any of h1, . . . , hk.

Under these conditions, Ewens (1972) showed that the probability of mutation

(and hence a new haplotype) is
θ

k + θ
, (4.1)

where θ = 4Nµ. Consequently, the probability that the simulated haplotype is a

copy of an existing haplotype is k
k+θ

. Ewens (1972) also showed that if an existing

haplotype is copied, then the probability of any specific haplotype being chosen

follows a discrete uniform distribution, with probability 1
k
.

Li and Stephens (2003) designed the LS model to satisfy the following five

properties:

1. Haplotypes that are more common in h1, . . . , hk are more likely to be copied

by hk+1 if a mutation does not occur.

2. As k, the number of haplotypes, increases, the probability of generating a

new haplotype decreases.

3. As θ (which is directly proportional to the mutation parameter µ) increases,

the probability of mutation increases.

4. If a mutation occurs that produces a new haplotype, then the new haplotype

is far more likely to be similar to the haplotypes that already exist than

completely different.
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5. These similarities should occur in blocks of alleles, where the size of the

block is inversely proportional to the recombination rate in that area of the

genome.

Li and Stephens (2003) comment that the Ewens sampling formula captures

properties one to three, but it does not satisfy properties four and five. To capture

property four, Stephens and Donnelly (2000) designed a model (the SD model)

such that the number of differences M between the new haplotype and a random

existing haplotype followed a geometric distribution, such that Pr(M = 0) = k
k+θ

.

Consequently, according to the SD model, one of the haplotypes to copy is chosen

randomly (with probability 1
k
), and then the number of mutations is simulated

using the geometric distribution. Thus the new haplotype is a (possibly imperfect)

copy of one of the existing haplotypes. The model by Fearnhead and Donnelly

(2002) (the FD model) then extends the SD model to account for property five.

Li and Stephens (2003) use a Markov model to mimic the effects of recombi-

nation. In this model, the copying state X1 has a uniform distribution over all

haplotypes, so

Pr(X1 = x) = k−1

for all x ∈ {1, . . . , k}. The Markov transition probabilities are then given by

Pr(Xj+1 = x′|Xj = x) = k−1(1− αk,j) + αk,jI{x′ = x} (4.2)

for all x, x′ ∈ {1, . . . , k}, where

αk,j = exp

(
−4Ncjdj

k

)
. (4.3)

In other words, with probability 1−αk,j, a crossover event occurs between alleles

j and j + 1. The crossover events split up the haplotype into segments, and the

copying state of each segment is sampled uniformly from {1, . . . , k}. Note that

the copying state of two adjacent segments may be the same.

In (4.3), dj is the physical distance between loci j and j+1 on the chromosome

in base pairs and cj is the average rate of crossover per base pair per meiosis
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between loci j and j + 1. Thus the quantity cjdj is the genetic distance between

loci j and j + 1. Also, N is the effective population size, which can be thought

of as the number of breeding individuals in a population. However, there are a

number of definitions of effective population size, and a detailed discussion of them

is beyond the scope of this thesis. The interested reader is referred to literature

such as Wright (1931) and Wright (1938) for more information.

To simulate mutation events at a given allele on haplotype hk+1, let hi,j denote

the jth allele on the ith haplotype, where i ∈ {1, . . . , n} and j ∈ {1, . . . , S}.

Assume that the alleles {hk+1,j : j ∈ {1, . . . , S}} are conditionally independent,

given the haplotypes h1, . . . , hk and the copying statesX1, . . . , XS. Then the allele

hk+1,j is simulated using the conditional probability

Pr(hk+1,j = a|Xj = x, h1, . . . , hk) =
θ̃

2(k + θ̃)
+

k

k + θ̃
I{hx,j = a}, (4.4)

where a ∈ {0, 1} denotes the allele, j ∈ {1, . . . , S}, and

θ̃ =

(
n−1∑
m=1

1

m

)−1
(4.5)

is Watterson’s point estimate (Watterson, 1975) for θ = 4Nµ. We briefly detail the

justification of Li and Stephens (2003) for using (4.4). From (4.1), an estimate for

the probability of mutation can be obtained by using Watterson’s point estimate:
θ̃

k+θ̃
. If a mutation occurs, then the allele is sampled uniformly from the wild-type

allele and the rare allele. This ensures that as θ̃ →∞ and the estimated mutation

probability tends to one, the likelihood of both alleles tends to 1
2
(Li and Stephens,

2003). Thus with probability

νk =
1

2
× θ̃

k + θ̃
(4.6)

the allele is copied incorrectly; the factor of 1
2
exists because the alleles are sampled

uniformly in the event of a mutation. Similarly, with probability

1

2
× θ̃

k + θ̃
+

k

k + θ̃
= 1− νk (4.7)
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the allele is copied correctly; the first summand corresponds to the event that

a mutation occurs, and the second summand corresponds to the event that a

mutation does not occur.

As an example, consider the haplotypes in the top panel of Figure 4.1, which

is based on Figure 2 of Li and Stephens (2003). The background of each haplo-

type has been given a different colour, and the black and white circles represent

one of the two possible alleles at each genetic locus. In this example, Li and

Stephens (2003) simulate haplotypes h4A and h4B from haplotypes h1, h2 and h3.

We illustrate two perspectives of the LS model.

In the first perspective, the copying state X1 at locus 1 has been simulated

from a uniform distribution. In the centre-left panel of Figure 4.1, X1 = 3 for

both h4A and h4B, as illustrated by the blue rectangles. Then, in the centre-right

panel, the rest of the copying states have been simulated from (4.2), so that the

colour of the rectangles indicates the copying state at each allele. Thus

(X1, X2, X3, X4, X5) =

(3, 3, 2, 2, 2) for haplotype h4A

(3, 1, 2, 3, 2) for haplotype h4B.

Alternatively, in the second perspective, crossover events occur between alleles

j and j+1 with probability 1−αk,j, which break up the haplotypes into segments.

The crossover events are indicated by the black vertical lines in h4A and h4B in the

top-right panel. Then, in the centre-right panel, the copying state of each segment

is then sampled uniformly from {1, 2, 3}. Finally, in the bottom panel, the alleles

on each haplotype have been simulated according to (4.4). In particular, both

h4A and h4B copied h2 at locus 3, but the copy is incorrect. That is, a mutation

event has occurred at locus 3. However, at all other loci, no mutation event has

occurred, and hence the copy is correct.

We refer the interested reader to Li and Stephens (2003) for more details

regarding their choice of parameters, and an alternative conditional distribution

that performs better in their simulation study. However, we are not concerned
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Figure 4.1: Example – using the LS model to simulate two new haplotypes from

three existing haplotypes. Each existing haplotype is represented by a different

background colour, and the colour of each circle represents one of two possible

alleles. We illustrate two perspectives of the LS model. In the first perspective,

the copying state at locus 1 for each new haplotype has been simulated in the

centre-left panel, and all other copying states have been simulated in the centre-

right panel. In the second perspective, crossover events have been simulated on

each new haplotype in the top-right panel, and the copying state of each resultant

segment has been simulated in the centre-right panel. Finally, the copying state

on each new haplotype at each allele has been simulated in the bottom panel.
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with the alternative distribution in this thesis, because HAPGEN and HAPGEN2

build on the conditional distribution we have already discussed.

4.1.2 Simulating Genotype Data with One Disease SNP

We now discuss HAPGEN, an extension of the LS model by Spencer et al. (2009)

designed to include the presence of a disease SNP. HAPGEN can simulate an

arbitrary number of controls and cases.

HAPGEN uses the same framework as the LS model to simulate new haplo-

types from known haplotypes h1, . . . , hk using copying states. The known haplo-

types may include both real and simulated haplotypes. However, unlike the LS

model, HAPGEN simulates haplotypes hk+1 and hk+2 simultaneously, which are

assumed to come from a diploid organism. Also, the copying state is initialised

at the disease locus d ∈ {1, . . . , S}, not the first locus, and it is initialised after

simulating the alleles on the two haplotypes at the disease locus, hk+1,d and hk+2,d.

We now detail the methodology of HAPGEN.

To simulate the alleles at the disease locus, denote by a or 0 the wild-type

allele, and denote by A or 1 the minor or rare allele. Assume that the presence of

one or two rare alleles at the disease locus in an individual increases the probability

of disease. Thus the three possible genotypes G are aa, Aa and AA. Write

(hk+1,d, hk+2,d) =


(1, 1) if G = AA

(1, 0) if G = Aa

(0, 0) if G = aa.

Also, denote by p the sample minor allele frequency at this locus, that is, the

proportion of haplotypes where the allele at this locus is the minor allele. Denote

the event that an individual is a case by D. Assume that controls are random

individuals from the population, not individuals from the population specifically

selected to not have the disease. The procedure that HAPGEN follows to simulate

alleles hk+1,d and hk+2,d depends on the disease status of the subject.
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Suppose that the simulated individual is a control. Consequently, hk+1,d and

hk+2,d are simulated independently, according to the sample allele frequencies.

Thus for b ∈ {1, 2},

Pr(hk+b,d = c) =

p if c = 1

1− p if c = 0.

Consequently, the genotype probabilities are

Pr(G = g) =


p2 if g = AA

2p(1− p) if g = Aa

(1− p)2 if g = aa,

(4.8)

which are used to simulate alleles hk+1,d and hk+2,d for a control.

Now, suppose that the simulated individual is a case. Denote by α and β

respectively the penetrance of having one or two disease alleles compared to having

no disease alleles. The parameters α and β are also known as the heterozygote

relative risk and the homozygote relative risk respectively. Thus

α =
Pr(D|G = Aa)

Pr(D|G = aa)
(4.9)

and

β =
Pr(D|G = AA)

Pr(D|G = aa)
.

Then for each genotype g ∈ {AA,Aa, aa}, by Bayes’ theorem,

Pr(G = g|D) =
Pr(D|G = g) Pr(G = g)

Pr(D)
. (4.10)
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Using the law of total probability,

Pr(D) =
∑
g

Pr(D|G = g) Pr(G = g)

= Pr(D|G = aa) Pr(G = aa) + Pr(D|G = Aa) Pr(G = Aa)

+ Pr(D|G = AA) Pr(G = AA)

= Pr(D|G = aa)(1− p)2 + αPr(D|G = aa)2p(1− p)

+ β Pr(D|G = aa)p2

= Pr(D|G = aa)[(1− p)2 + 2αp(1− p) + βp2]

= Pr(D|G = aa)γ, (4.11)

where γ = (1− p)2 + 2αp(1− p) + βp2 for notational brevity. Hence, from (4.10)

and (4.11),

Pr(G = g|D) =
Pr(D|G = g) Pr(G = g)

Pr(D|G = aa)γ
.

Thus we can calculate the probability Pr(G = g|D) for g ∈ {AA,Aa, aa}. For

example,

Pr(G = Aa|D) =
Pr(D|G = Aa) Pr(G = Aa)

Pr(D|G = aa)γ

=
Pr(D|G = Aa)

Pr(D|G = aa)

2p(1− p)
γ

(from (4.8))

= α[2p(1− p)]γ−1 (from (4.9))

= 2γ−1αp(1− p).

Similarly,

Pr(G = aa|D) = γ−1(1− p)2

and

Pr(G = AA|D) = γ−1βp2.

Combining these probabilities, we have that

Pr(G = g|D) =


γ−1βp2 if g = AA

2γ−1αp(1− p) if g = Aa

γ−1(1− p)2 if g = aa,

(4.12)
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which are used to simulate alleles hk+1,d and hk+2,d for a case. In particular, note

that when α = β = 1, γ = (1 − p)2 + 2p(1 − p) + p2 = 1. Thus from (4.8) and

(4.12), the probability distribution for a case reduces to that for a control.

HAPGEN uses the alleles hk+1,d and hk+2,d to initialise the copying state Xd

at the disease loci on both haplotypes. For b ∈ {1, 2}, Xd is simulated according

to

Pr(Xd = x) ∝

1− νk if hx,d = hk+b,d

νk if hx,d 6= hk+b,d,
(4.13)

where νk is given in (4.6). In other words, with probability 1 − νk, the copying

state simulated corresponds to the event that hk+b,d is a correct copy, and with

probability νk, the copying state corresponds to the event that hk+b,d is an incor-

rect copy. These are the same probabilities as (4.6) and (4.7) in the LS model.

However, in the LS model, these probabilities are used to sample the haplotypes

from the copying states; here, these probabilities are used to sample the copying

states from the haplotypes. Also, more than one copying state x may satisfy the

events hx,d = hk+b,d and hx,d 6= hk+b,d. Consequently, for each event, the copying

state is sampled uniformly from the set of copying states satisfying the event.

Once the copying state at the disease allele is initialised, the copying states

to the right of the disease locus are simulated according to (4.2) for j ∈ {d, d +

1, . . . , S − 1}. Similarly, the copying states to the left of the disease locus are

simulated according to

Pr(Xj−1 = x′|Xj = x) = k−1(1− αj−1) + αj−1I{x′ = x}, (4.14)

where j ∈ {2, 3, . . . , d}, and x, x′ ∈ {1, . . . , k}. Recall that αk,j is the probability

that a crossover event does not occur between alleles j and j + 1. Finally, (4.4) is

used to simulate the alleles on hk+1 and hk+2 at all loci except the disease locus.

We now detail an example of using HAPGEN to simulate two haplotypes on

a diploid organism for a case or a control. Suppose that we simulate haplotypes

h4 and h5 in a diploid organism from haplotypes h1, h2 and h3, as in the top left
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panel of Figure 4.2. In this example, the disease locus d = 3, with relative risks

α = 2 and β = 4. We use the same notation in this figure as in Figure 4.1, except

the alleles at the disease locus are indicated by stars.

In the top right panel, we simulate the alleles at the disease locus. Suppose

that h4 and h5 come from a control. Then we simulate the disease alleles according

to (4.8), where p is the frequency of the minor allele, which we denote by A. In

the figure, the minor allele is indicated by the white star, so p = 1
3
. Thus, from

(4.8), we simulate the disease alleles on h4 and h5 according to the probability

distribution

Pr(G = g) =


1
9

if g = AA

4
9

if g = Aa

4
9

if g = aa.

However, if haplotypes h4 and h5 come from a case, then we simulate the disease

alleles according to (4.12), where γ = (1 − p)2 + 2αp(1 − p) + βp2 = 16
9
. Hence

these probabilities are

Pr(G = g|D) =


1
4

if g = AA

1
2

if g = Aa

1
4

if g = aa.

Suppose that the alleles simulated on haplotype h4 and h5 are A and a respec-

tively, as in the top right panel of Figure 4.2, and denoted by a white star and

a black star respectively. We then simulate the copying states at these alleles in

the centre-right panel of this figure. These copying states are simulated according

to (4.13). For example, for b = 1, which corresponds to haplotype h4, hx,3 = h4,3

for x = 2, and hx,3 6= h4,3 for x ∈ {1, 3}. In other words, if h4 copies h2 at locus

3, then the copy is correct, but if h4 copies h1 or h3, then the copy is incorrect.

Thus the simulation probabilities are

Pr(X3 = x) ∝

1− ν3 if x = 2

ν3 if x ∈ {1, 3}.
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Figure 4.2: Example – using HAPGEN to simulate two new haplotypes from

three existing haplotypes. Each existing haplotype is represented by a different

background colour, and the colour of each circle and star represents one of two

possible alleles. Circles indicate alleles at the non-disease loci and stars indicate

alleles at the disease locus. In the top-right panel of the figure, the alleles at the

disease locus have been simulated for both new haplotypes. In the centre-right

panel, the simulated alleles are used to simulate copying states, which are used to

simulate the copying states at the rest of the loci in the centre-left panel. Finally,

in the bottom panel, the alleles at the rest of the loci are simulated for both new

haplotypes.
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Normalising, we have that

Pr(X3 = x) =


1
2
ν3 if x = 1

1− ν3 if x = 2

1
2
ν3 if x = 3.

In the centre-right panel of Figure 4.2, X3 = 1 for h4 and X3 = 3 for h5.

In the centre-left panel of the figure, the copying states to the right of X3 are

simulated according to (4.2), and the copying states to the left of X3 are simulated

according to (4.14). Finally, in the bottom panel of this figure, the alleles at the

non-disease loci are simulated according to (4.4).

4.1.3 Simulating Genotype Data with Many Disease SNPs

In this subsection, we detail HAPGEN2 (Su et al., 2011), the method that we

used to simulate genotype data. Su et al. (2011) use somewhat different notation

to Li and Stephens (2003) and Spencer et al. (2009). Due to the complexity of

HAPGEN2, we will use the notation from Su et al. (2011) in our description of it.

Denote the set of haplotypes in the real data by

HR = {h1, . . . , hr},

the set of haplotypes to be simulated for controls by

HP = {hr+1, . . . , hp},

and the set of haplotypes for cases by

HQ = {hp+1, . . . , hq}.

Each haplotype consists of alleles at L genetic loci, so write hi = (h(i,1), . . . , h(i,L)).

Denote by 0 the wild-type allele and 1 the rare allele.

Suppose that K genetic loci harbor disease SNPs. Denote these loci by dk ∈

{1, . . . , L}, where k ∈ {1, . . . , K}. Let D = {dk : k ∈ {1, . . . , L}} be the set of
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such loci. Assume that the presence of one or two rare alleles at locus dk increases

the probability of disease, and denote the respective penetrances by rr1k and rr2k
respectively. Also, for notational simplicity, let rr0k = 1 be the trivial penetrance

of having no disease alleles.

HAPGEN2 simulates control haplotypes HP first, and then case haplotypes

HQ. The simulation of control haplotypes occurs in exactly the same way as the

LS Model (Li and Stephens, 2003). We recall the method here, because it will aid

our explanation of the way that HAPGEN2 simulates case haplotypes. Consider

simulating haplotype hi+1 ∈ HP from h1, . . . , hi. As in Li and Stephens (2003) and

Spencer et al. (2009), the copying state of haplotype hi+1 at locus j ∈ {1, . . . , L}

is the haplotype in {h1, . . . , hi} that hi+1 copies at locus j. However, Su et al.

(2011) denote this copying state by zi+1,j. The first copying state is simulated

uniformly from {1, . . . , i}. The rest of the copying states are then simulated using

the probabilities

Pr(zi+1,j = z′|zi+1,j−1 = z) =
1− αi,j

i
+ αi,jI{z = z′},

where αi,j is given in (4.3). However, in this equation, i replaces k. Also, Su et al.

(2011) define cj and dj using loci j−1 and j. In contrast, Li and Stephens (2003)

and Spencer et al. (2009) define these quantities in terms of loci j and j + 1.

In other words, with probability αi,j no crossover event occurs between j − 1

and j. If the crossover event does occur, then the new copying state zi+1,j is

simulated uniformly from {1, . . . , i}. The process of simulating copying states

can be considered as the splitting up of haplotype hi+1 at each crossover event

into segments, hi+1,s1 , . . . , hi+1,sn , where the copying state of each allele on each

segment is the same.

Finally, the allele at each locus is simulated according to the probability

Pr(hi+1,j = hz,j|zi+1,j = z) = 1− νi,

where νi = θ̃
2(i+θ̃)

to account for the possibility of a mutation. That is, with

probability νi allele hi+1,j is copied from allele hz,j incorrectly, where z is the
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haplotype being copied at locus j. As in Li and Stephens (2003) and Spencer

et al. (2009), θ̃ is Watterson’s point estimate (4.5).

We now discuss simulating a pair of haplotypes on a case individual with

HAPGEN2. For b ∈ {1, 2}, crossover events between alleles hi+b,j−1 and hi+b,j on

haplotype hi+b are simulated using the probability 1− αi,j. Let

hbD = {hi+b,d1 , . . . , hi+b,dk}

be the set of disease alleles on haplotypes hi+1 and hi+2 respectively. The crossover

events split up hbD into nb segments{
hbsb1

, . . . , hbsbnb

}
.

Bayes’ theorem is then used to calculate the probability of observing alleles h1D
and h2D on the disease loci of haplotypes hi+1, hi+2 for a case:

Pr[(h1D, h
2
D)|case] ∝ Pr[case|(h1D, h2D)] Pr(h1D, h

2
D) (4.15)

=

[
K∏
k=1

Pr(case|hi+1,dk , hi+2,dk)

]
Pr(h1D, h

2
D) (4.16)

=

[
K∏
k=1

Pr(case|hi+1,dk , hi+2,dk)

]
Pr(h1D) Pr(h2D) (4.17)

∝

[
K∏
k=1

rr
hi+1,dk

+hi+2,dk
k

]
Pr(h1D) Pr(h2D) (4.18)

=

[
K∏
k=1

rr
hi+1,dk

+hi+2,dk
k

]
n1∏
j1=1

Pr
(
h1s1j1

) n2∏
j2=1

Pr
(
h2s2j2

)
, (4.19)

where Pr(hs) is the marginal frequency of the haplotype segment hs in the original

haplotype data HR and the controls HP . Note that the probabilities will be

normalised by considering all possible sets of alleles (h1D, h
2
D).

We now justify this calculation. (4.15) is equal to (4.16) because HAPGEN2

assumes that the penetrances at multiple disease loci combine multiplicatively.

(4.16) is equal to (4.17) because Pr(h1D, h
2
D) = Pr(h1D) Pr(h2D), a consequence of
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the fact that the haplotypes on the two chromosomes are independent. (4.17) is

proportional to (4.18) because

Pr(case|hi+1,dk , hi+2,dk) ∝ rr
hi+1,dk

+hi+2,dk
k ,

for all k, by definition of the penetrances. Finally, for b ∈ {1, 2}, the set of

segments {
hbsbb
, . . . , hbsbnb

}
are separated by crossover events, which means that they are independent. Thus

(4.18) is equal to (4.19).

The simulated alleles at the disease loci are used to simulate the copying state

for each segment s on haplotypes hi+1 and hi+2 separately. Consider haplotype

hi+b, where b ∈ {1, 2}. If a segment includes a disease allele, then the copying

state is simulated using the probability

Pr(zi+b,j = z) ∝
∏

dk:dk∈s

ν
1−Ii+b,dk
i+b (1− νi+b)1−Ii+b,dk , (4.20)

for all j ∈ s and z ∈ {1, . . . , i}. In this probability, Ii+b,dk = I {hi+b,dk = hz,dk}.

In other words, if there are disease alleles present on the segment, then for each

disease allele, weight the probability of a given copying state by νi+b for each

incorrect copy corresponding to the copying state, and weight the probability by

1− νi+b for each correct copy corresponding to the copying state.

Otherwise, if a segment does not include a disease allele, then the copying state

is sampled uniformly from {1, . . . , i}. Finally, alleles that are not on disease loci

are simulated from the respective copying states in the same way as the controls.

We demonstrate HAPGEN2 with an example, illustrated in Figure 4.3. In

particular, suppose that we haplotypes h1, h2 and h3 are the real data, and that

we simulated h4 and h5 for a control. We demonstrate simulating a case using

HAPGEN2. As in Figure 4.2, we display alleles at disease loci with stars. In this

example, the disease loci are d1 = 2 and d2 = 3. Let the penetrances at d1 = 2 be

rr11 = rr21 = 3, and let the penetrances at d2 = 3 be rr12 = 2 and rr22 = 4.
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h1
h2
h3

Simulate alleles at 
non-disease loci

Simulate crossover 
events

Simulate alleles at 
disease loci

h4
h5
h6
h7

s2
1

s1
2

Simulate copying 
states

h1
h2
h3
h4
h5
h6
h7

h1
h2
h3
h4
h5
h6
h7

s1
2

Locus 1 2 3 4 5 1 2 3 4 5

s1
1

Figure 4.3: Example – using HAPGEN2 to simulate two new haplotypes from

five existing haplotypes. Each existing haplotype is represented by a different

background colour, and the colour of each circle and star represents one of two

possible alleles. Circles indicate alleles at the non-disease loci and stars indicate

alleles at the disease loci. In the top-right panel, crossover events are simulated

which break up the new haplotypes into segments. In the centre-right panel, the

alleles at the disease loci are simulated, and these are used in the centre-left panel

to simulate coping states on all loci of the new haplotypes. Finally, the alleles at

the non-disease loci are simulated in the bottom panel.



104 Chapter 4. Procedures to Implement and Compare GSA Methods

(h6,2, h6,3, h7,2, h7,3) rr
h6,2+h7,2
1 rr

h6,3+h7,3
2 Pr(h6,2) Pr(h6,3) Pr(h7,2, h7,3)

(0, 0, 0, 0) 1× 1× 3
5
× 4

5
× 2

5
= 24

125

(1, 0, 0, 0) 3× 1× 2
5
× 4

5
× 2

5
= 48

125

(0, 1, 0, 0) 1× 2× 3
5
× 1

5
× 2

5
= 12

125

(0, 0, 1, 0) 3× 1× 3
5
× 4

5
× 2

5
= 72

125

(0, 0, 0, 1) 1× 2× 3
5
× 4

5
× 1

5
= 24

125

(1, 1, 0, 0) 3× 2× 2
5
× 1

5
× 3

5
= 36

125

(0, 1, 0, 1) 1× 4× 3
5
× 1

5
× 1

5
= 12

125

(0, 0, 1, 1) 3× 2× 3
5
× 4

5
× 0 = 0

Table 4.1: Example – calculating simulation probabilities in HAPGEN2

Simulate crossover events on the top right panel of the figure, where a crossover

event occurs between alleles hk+b,j−1 and hk+b,j with probability 1 − εk,j, for b ∈

{1, 2}. These crossover events break up the alleles at the disease loci into segments.

In particular, on haplotype h6, the disease loci are broken up into n1 = 2 segments,

h1
s11

= {h6,2} and h1s12 = {h6,3}. However, on haplotype h7, the disease loci lie on

n2 = 1 segment h2
s21

= {h7,2, h7,3}. Consequently, we can reduce (4.19) to

Pr(h6,2, h6,3, h7,2, h7,3|case)

∝ rr
h6,2+h7,2
1 rr

h6,3+h7,3
2 Pr(h6,2) Pr(h6,3) Pr(h7,2, h7,3). (4.21)

Recall that Pr(hs) is the frequency of haplotype segment hs in the real haplotypes

and the simulated control haplotypes. Denote by 0 the wild-type allele, which is

displayed by a black shape in Figure 4.3, and denote by 1 the rare allele, which

is displayed by a white shape in the figure. There are 24 = 16 possible values for

(h6,2, h6,3, h7,2, h7,3), and we display the product of the right-hand side of (4.21) for

some of these values in Table 4.1. Of course, the products must be normalised to

ensure that (4.21) is a valid probability distribution. We then simulate the alleles

on h6 and h7 at the disease loci using this probability distribution. We display a

possible realisation of this simulation in the centre right panel of Figure 4.3.
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In the centre left panel of Figure 4.3, we simulate the copying state of each

segment of h6 and h7. We only detail some of the simulation probabilities for

these haplotypes. From the centre right panel of Figure 4.3, the leftmost seg-

ment contains no disease alleles, so the copying state is simulated uniformly from

{1, . . . , 5}. However, the second segment from the left only contains locus 2. Let

I6,2 = I{h6,2 = hz,2} be the indicator of the event that the copy at the disease

allele on the segment is correct for a given copying state. Thus

I6,2 =

0 if z ∈ {3, 4}

1 if z ∈ {1, 2, 5}.

Hence, (4.20) reduces to

Pr(z6,2 = z) ∝ ν
1−I6,2
6 (1− ν6)I6,2

=

ν6 if z ∈ {3, 4}

1− ν6 if z ∈ {1, 2, 5}

Thus the simulation probabilities are

Pr(z6,2 = z) =


1
2
ν6 if z ∈ {3, 4}

1
3
(1− ν6) if z ∈ {1, 2, 5}.

We also give an example of simulating the copying state of the first segment

of h7, which we denote by s2. Let I7,2 = I{h7,2=hz,2} and I7,3 = I{h7,3 = hz,3} be

the indicators of the events that the copies at the disease alleles on the segment

are correct. Thus,

I7,2 =

0 if z ∈ {1, 2, 5}

1 if z ∈ {3, 4}

and

I7,3 =

0 if z = 2

1 if z 6= 2.
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Hence, for all j ∈ s2 = {1, 2, 3}, (4.20) reduces to

Pr(z7,j = z) ∝ ν
1−I7,2
7 (1− ν7)I7,2ν

1−I7,3
7 (1− ν7)I7,3

=


ν27 if z = 2

ν7(1− ν7) if z ∈ {1, 5}

(1− ν7)2 if z ∈ {3, 4}.

The simulation probabilities are then normalised as before.

Finally, the alleles on the non-disease loci are simulated from the copying states

in the same way as they were for the controls. We illustrate this in the bottom

panel of Figure 4.3.

4.2 Implementing HAPGEN2 and the GSA Meth-

ods

We now discuss the procedures that we used to simulate gene sets and implement

the GSA methods. In particular, we selected realistic values of each parameter

that we could vary in our study. We discuss our choices for the values that we

used for each parameter, based on the relevant literature.

4.2.1 Some Comments on Implementation

To run HAPGEN2, users need to specify three input files:

1. a file containing real haplotype data on a given chromosome for a number

of individuals;

2. a legend file containing reference SNP (rs) identifiers from the Database of

Short Genetic Variations (dbSNP) (Sherry et al., 2001), position numbers

and the two possible alleles at each locus; and
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3. a file containing the genetic distance between each SNP.

We used genomic data collected from CEPH (Utah residents with ancestry from

northern and western Europe) (abbreviation: CEU) as part of the International

HapMap Project (Gibbs et al., 2003). In particular, we used the HapMap 3

(release 2) haplotypes, and we refer these data hereafter as the HapMap CEU

Data. To simplify our simulations, we only simulated genotype data from Chro-

mosome three. 96537 SNPs on Chromosome three are included in the HapMap

CEU Data.

For each of the six GSA methods, we investigated whether we should use the

author’s implementation or implement it ourselves. For example PARIS and Prox-

yGeneLD use data that describes the LD structure of the genome. Consequently,

it was easier to try using the implementations of these methods by Yaspan et al.

(2011) and Hong et al. (2009) respectively. We used the implementation of PARIS

by Yaspan et al. (2011), but the link to the implementation of ProxyGeneLD by

Hong et al. (2009) in the literature was broken, so we could not use it. The

other methods do not require additional input data, so we sought to implement

them ourselves in R (R Core Team, 2013). Due to time constraints, we only

implemented the SRT, MPEVA, and MGSEA ourselves.

PARIS maps SNPs to genes using SNP positions and gene position ranges from

the Ensembl database (Cunningham et al., 2015). In particular, PARIS uses the

National Center for Biotechnology Information (NCBI) build 37a, Ensembl release

56, and dbSNP build 130 (Sherry et al., 2001). The dbSNP database defines the

rs ID for each SNP. However, the HapMap CEU Data that we used is based

on NCBI build 36 and dbSNP build 126 (Sherry et al., 2001). Consequently, to

compare each method, we converted the positions and rs identifiers of each SNP

from the databases used in the HapMap CEU Data (which we use in HAPGEN2)

to positions and rs identifiers in the databases used in PARIS. We performed the

necessary data conversions using the following procedure.
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We used data from dbSNP to convert the rs identifiers on the HapMap CEU

Data from dbSNP build 126 to dbSNP build 130. We also obtained a map be-

tween SNP rs IDs and positions that was consistent with Ensembl release 56 and

dbSNP build 130 by running PARIS with a list of gene symbols from Chromo-

some three. We obtained the list of gene symbols from the Ensembl database

using the R package biomaRt (Durinck et al., 2005; Durinck et al., 2009). We

then compared the position of each SNP that was consistent with Ensembl re-

lease 56 with the position given by the HAPGEN2 legend. While the position

of each SNP was different, the order of the SNPs using both databases was al-

most identical. However, the order of three SNPs (rs11130263, rs11928389 and

rs13093798) had reversed between databases, and the position of two SNPs had

changed completely (rs1979334 and rs9837104). Consequently, we tagged these

SNPs to ensure that we did not include them in any gene sets that we analysed.

When we removed these SNPs and reordered the SNPs by position using both

databases, the ordering was exactly the same. We then ran PARIS again using

the list of gene symbols and “good” SNPs to generate SNP to gene maps that were

consistent with the databases that PARIS uses.

The other database that PARIS uses is version 27 of the HapMap LD data.

Unfortunately, the corresponding data that provides the genetic distance between

SNPs is not available for this LD data, so we decided to use the genetic distance

data provided with the HapMap CEU Data. We recognise that this decision may

reduce the accuracy and precision of our analyses that use PARIS.

We used the SNP to gene map data provided by PARIS and genotype data

simulated using HAPGEN2 to implement each GSA method. Since we only sim-

ulated data from Chromosome three, we implemented each method on arbitrary

gene sets. We then used R to implement the SRT, MPEVA and MGSEA on

our simulated data, and we used the implementation of PARIS by Yaspan et al.

(2011). For each method, we performed GWA studies by arranging the genotype

data at each genetic locus into a 3× 2 contingency table. We then used Pearson’s
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chi-squared test at each locus if the Cochran conditions were satisfied, and FET

otherwise. Recall that a contingency table satisfies the Cochran conditions if no

cell contains a zero, and if more than 80 per cent of the cells contain a number no

less than five. Since PARIS and the SRT do not include a correction for testing

multiple gene sets simultaneously, we decided to compare the results obtained

by each method without correcting them for multiple testing. For the interested

reader, the code is available on request on GitHub.

4.2.2 Selecting Simulation Parameters

As discussed earlier, it is important to select realistic values for parameters in a

simulation study. Consequently, we reviewed the necessary literature to inform

our choices, and we summarise these values in Table 4.2. In this table, sets of

values in braces indicate that we simulated data using all of the values in braces.

In particular, we varied the homozygote relative risk r (three values), the number

of base pairs b to extend gene boundaries (four values), and the size of gene

sets m in terms of the number of genes (four values). Consequently, we simulated

3×4×4 = 48 data sets for our simulation study. In each simulation, we simulated

2000 gene sets in total: 500 with k disease genes for k ∈ {0, 1, 2, 3}. We now justify

the choices that we made for the value(s) of each parameter.

The Relative Risks and Disease Model

Spencer et al. (2009) conducted a simulation study that used a multiplicative dis-

ease model and heterozygote relative risks of 1.3, 1.5 and 1.7. Su et al. (2011) also

used a heterozygote relative risk of 1.3 in demonstrating HAPGEN2. We decided

to simulate genotype data using multiplicative disease models and heterozygote

relative risks of 1.2, 1.5 and 1.8, to explore a slightly wider area of the parameter

space and to see what effect changing the relative risk had on the performance
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Parameter Values

Homozygote relative risk r {1.44, 2.25, 3.24}

Disease model at each genetic locus Multiplicative

Disease SNPs per disease gene 1

Size of genes in gene sets [5, 12]

Random seed used to select genes to be disease genes 1

Random seed used to select SNPs to be disease SNPs 1

Number of cases and controls 500 each

Number of base pairs b to extend gene boundaries {0, 1000, 20000, 50000}

Size of gene sets m in terms of the number of genes {5, 10, 20, 50}

Random seed used to select gene sets 1

Number of disease genes k in each gene set {0, 1, 2, 3}

Number of gene sets with each level of disease genes 500

Table 4.2: Parameters used to simulate gene sets

of each GSA method. We parameterised our simulations using the homozygote

relative risk r and disease model. Thus r ∈ {1.44, 2.25, 3.24}.

The Number of Disease SNPs and Disease Genes

We reviewed the literature to select realistic values for the number of disease SNPs

and disease genes to include in our study. However, HAPGEN2 often returned

segmentation fault errors when we attempted to use it with more than ten disease

SNPs. Consequently, to ensure that the code did not return errors, we limited

the number of disease SNPs that we used in our simulations. In particular, we

simulated genotype data using three disease genes, where each disease gene had

one disease SNP in it.
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The Number of Base Pairs to Extend Gene Boundaries and the Range

of Gene Sizes

As we saw in Chapter 3, the authors of the GSA methods gave quite different

recommendations regarding the number of base pairs b to extend gene boundaries

to account for possible promoter regions. For example, Holmans et al. (2009) used

both b = 0 and b = 20000, Hong et al. (2009) used b = 1000, Yaspan et al. (2011)

used b = 50000 and Wang et al. (2007) used b = 500000.

In our simulation study, we measured the size of a gene in terms of the number

of SNPs that lie within the positional boundaries of the gene, without taking into

account the gene boundary extension detailed above. We adopted this convention

to ensure that we could change the gene size range and gene boundary extension

parameters separately. Furthermore, we kept the gene size range fixed at [5, 12].

That is, we simulated gene sets using genes that contained 5 to 12 SNPs in them,

not taking into account the number of base pairs to extend gene boundaries.

However, we used gene boundary extensions b ∈ {0, 1000, 20000, 50000} to reflect

the choices made by most of the authors of the GSA methods. Nonetheless, when

we varied b, we used the same genes in each simulation. Consequently, we were

able to vary the effective size of each gene (in terms of the number of SNPs, taking

b into account) in the gene set, while preventing our results from being effected

by using entirely different genes.

Number of Cases and Controls

The number of cases and controls analysed in a GWA study can vary considerably.

For example, O’Dushlaine et al. (2009) applied the SRT to a GWA study that

genotyped 900 cases and 867 controls, Holmans et al. (2009) applied ALIGATOR

to a GWA study that genotyped 1748 cases and 2953 controls, and Wang et

al. (2007) applied MGSEA to a GWA study that genotyped 267 cases and 270
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Method Parameter Values

PARIS SNP significance level α {0.001, 0.005, 0.01, 0.05}

PARIS Approximate bin size B {500, 1000, 2000}

PARIS Random seed to sample block collections {1, 2, 3, 4, 5}

PARIS Number of block collections to sample 1000

The SRT SNP significance level α {0.001, 0.005, 0.01, 0.05}

The SRT Number of data sets to simulate 1000

MPEVA Gene significance level α {0.001, 0.005, 0.01, 0.05}

MGSEA GSEA parameter p 1

MGSEA Number of data sets to simulate 1000

Table 4.3: Parameters used in GSA methods

controls. We decided to simulate genotype data for 500 cases and 500 controls in

all of our simulations.

The Size of Gene Sets in Terms of the Number of Genes

The size of gene sets analysed in a GWA study can vary considerably, too. For

example, one of the gene sets that Yaspan et al. (2011) analysed, KEGG hsa:00072,

has nine genes in it, and the GO categories identified by Holmans et al. (2009) as

associated with Crohn’s disease contained between 3 and 492 genes. We analysed

gene sets containing m ∈ {5, 10, 20, 50} genes in them, to investigate the effect of

changing gene set size on the performance of each method.

4.2.3 Selecting Method Parameters

Recall that there are parameters in PARIS, the SRT, MPEVA and MGSEA that

can be varied. We display in Table 4.3 the parameters in each method and the

values that we chose for them. We make some brief comments about these pa-

rameters.
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For the methods that use a significance criterion, we saw in Chapter 3 that

choosing an appropriate criterion is important. Consequently, we decided to use

PARIS, the SRT and MPEVA with a range of significance criteria. For simplicity,

we used the same criteria for all of these methods. We followed the recommenda-

tion of O’Dushlaine et al. (2009) in using α ∈ {0.001, 0.005, 0.01, 0.05}. Similarly,

PARIS, the SRT and MGSEA all use a simulation procedure to calculate an em-

pirical p-value for each gene set. Each author used 1000 simulations, so we did

the same.

Yaspan et al. (2011) recommend using an approximate bin size B = 10000

in PARIS. However, the recommendation is based on analysing data from all

chromosomes. In contrast, our simulation study only uses genotype data from

Chromosome three, so we tried using smaller bin sizes. We also varied the random

seed used in PARIS to sample the random block collections, even though we expect

changing the seed to have a negligable effect on the results obtained by PARIS.

Finally, Subramanian et al. (2005) recommend using p = 1 in GSEA, so we did

the same in MGSEA.

4.3 Comparing the GSA Methods

We now discuss the methods that we used to compare PARIS, the SRT, MPEVA

and MGSEA. We display and discuss our results in Chapter 5.

To analyse the performance of the GSA methods, we classed gene sets as non-

disease or disease, according to the number of disease genes in them. Recall that

we analysed 2000 gene sets in each simulation, where 500 had k disease genes in

them for k ∈ {0, 1, 2, 3}. Consequently, in each simulation, we classed a gene set

as disease if it contained at least d disease genes, where d ∈ {1, 2, 3}.

We can interpret d in the context of biological pathways as follows. Recall that

biological pathways are sets of genes that together perform a specific biological

function. Furthermore, a biological pathway has redundancy if it can perform its
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function even when a protein that was produced by a gene in the pathway does

not function correctly. Consequently, a pathway with a high level of redundancy

corresponds to a large value of d.

4.3.1 ROC Curves

We compared the performance of each method at classifying gene sets using em-

pirical ROC curves. We briefly define and discuss ROC curves. For the interested

reader, a more detailed discussion of ROC curves can be found in literature such

as Metz (1978).

Many hypothesis tests reject a null hypothesis H0 if and only if the p-value is

no greater than a significance level α ∈ [0, 1]. Let

F0(α) = Pr(reject H0 at level α|H0 true), and

F1(α) = Pr(reject H0 at level α|H0 false).

An ROC curve plots F1(α) on the y-axis against F0(α) on the x-axis for all

α ∈ [0, 1].

The probabilities F0 and F1 are often unknown. However, in a simulation

study, these probabilities can be estimated empirically by repeating the test many

times when the null hypothesis is true and when the null hypothesis is false. We

say that the false positive rate (FPR) is the proportion of true null hypotheses

that are incorrectly rejected, and the true positive rate (TPR) is the proportion of

false null hypotheses that are correctly rejected. An empirical ROC curve plots

the TPR against the FPR for each α. However, since there are a finite number

of points on an empirical ROC curve, they are often connected with straight

lines. These straight lines interpolate the TPR and FPR, but it is important

to remember that the interpolated points on an empirical ROC curve cannot be

reached by any significance level.

Tests that perform well have empirical ROC curves that contain points in

the upper left-hand corner of the unit square, close to the point (0, 1), and the
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area under the ROC curve (AUC) is close to 1. In contrast, mediocre tests have

empirical ROC curves that lie close to the line FPR = TPR, which corresponds

to a test that classifies by random chance. The AUC for a mediocre test is close

to 1
2
. In Figure 4.4, we display examples of ROC curves corresponding to a test

with good performance and a test with mediocre performance. In this figure,

the x-coordinate is the FPR and the y-coordinate is the TPR. The colour of the

empirical ROC curve corresponds with the performance of the test.

4.3.2 Using ROC curves to Compare GSA methods

To compare PARIS, the SRT, MPEVA and MGSEA, we first used empirical ROC

curves to determine the method parameters, listed in Table 4.3, that only changed

the performance of each method negligibly. To reduce the number of analyses that

we needed to perform, we fixed the gene set size m = 5 and gene boundary exten-

sion b = 0 in these simulations. Consequently, when we compared the methods

with each other, we only varied the parameters that markedly affected the per-

formance of each method. We display and discuss these results in Section 5.1.

We then compared PARIS, the SRT, MPEVA and MGSEA by producing scat-

terplots of the AUC obtained by each method. We implemented these methods

on gene sets simulated using the parameters in Table 4.2 to elucidate the relation-

ship between the performance of each method and the parameters gene set size

m, gene boundary extension b and homozygote relative risk r. We display and

discuss scatterplots of the AUC in Section 5.2.

4.3.3 Other Procedures to Compare GSA Methods

We also tested the sensitivity of PARIS, the SRT and MGSEA to SNPs with

very small p-values. To conduct these tests, we identified gene sets that were

assigned disparate p-values by the GSA methods. We then produced Manhattan

plots to display the p-values of SNPs in these gene sets. Manhattan plots display
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Figure 4.4: Example – empirical ROC curves corresponding to tests with good

performance and mediocre performance. The x-coordinate is the FPR and the

y-coordinate is the TPR. The colour of the empirical ROC curve corresponds

with the performance of the test. These empirical ROC curves are made up of

only two straight lines to emphasise the property that all empirical ROC curves

are made up of straight lines. Furthermore, in some of our results, the empirical

ROC curves are also made up of a small number of straight lines. However, many

empirical ROC curves are made up of a larger number of straight lines.
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− log10(p) on the y-axis, where p is the SNP p-value, and SNP position on the

x-axis. We display and discuss these Manhattan plots in Section 5.3.

4.4 Chapter Summary

In Section 4.1, we discussed three methods of simulating genotype data: the LS

model (Li and Stephens, 2003), HAPGEN (Spencer et al., 2009) and HAPGEN2

(Su et al., 2011). We used HAPGEN2 in our simulation study, because it can sim-

ulate genotype data with multiple disease loci. However, we deferred the details

of HAPGEN2 to Subsection 4.1.3. In a simulation study, it is important to select

values of parameters to ensure that the simulated data are realistic. Consequently,

in Section 4.2, we discussed the values that we chose for each parameter. We also

detailed the procedures that we used to implement the simulation methods and

the GSA methods. Finally, we discussed the procedures that we used to compare

the performance of the GSA methods in Section 4.3. We display and discuss the

results that we obtained in Chapter 5.





Chapter 5

Results

In this chapter, we display and discuss results about the performance of PARIS,

the SRT , MPEVA and MGSEA. In Section 5.1, we display empirical ROC curves

to analyse the effect of changing the value of each method parameter on the

performance of the method. In particular, we present the method parameters

that markedly affected the performance of the methods. We display the method

parameters that we used in Table 5.1.

We then display scatterplots of the AUC obtained by each GSA method in

Section 5.2 for various values of the gene set size m, gene boundary extension b

and homozygote relative risk r, as detailed in Table 5.2. We use these scatterplots

to recommend the GSA method that gives the best overall performance.

Finally, in Section 5.3, we display Manhattan plots to investigate gene sets

that were assigned disparate p-values by different methods. In particular, we test

the sensitivity of different methods to SNPs with very small p-values.

To assist our discussion of the results, we display in Figure 5.1 Manhattan

plots for the genotype data simulated using the parameters in Table 5.2. In each

plot in this figure, each point represents a SNP. The x-coordinate of each point

represents the position of the SNP on chromosome three, and the y-coordinate of

each point is − log10(p), where p is the SNP p-value obtained in the GWA study.
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Method Parameter Values

PARIS SNP significance level α {0.001, 0.005, 0.01, 0.05}

PARIS Approximate bin size B {500, 1000, 2000}

PARIS Random seed to sample block collections {1, 2, 3, 4, 5}

PARIS Number of block collections to sample 1000

The SRT SNP significance level α {0.001, 0.005, 0.01, 0.05}

The SRT Number of data sets to simulate 1000

MPEVA Gene significance level α {0.001, 0.005, 0.01, 0.05}

MGSEA GSEA parameter p 1

MGSEA Number of data sets to simulate 1000

Table 5.1: Parameters used in GSA methods

Parameter Values

Homozygote relative risk r {1.44, 2.25, 3.24}

Disease model at each genetic locus Multiplicative

Disease SNPs per disease gene 1

Size of genes in gene sets [5, 12]

Random seed used to select genes to be disease genes 1

Random seed used to select SNPs to be disease SNPs 1

Number of cases and controls 500 each

Number of base pairs b to extend gene boundaries {0, 1000, 20000, 50000}

Size of gene sets m in terms of the number of genes {5, 10, 20, 50}

Random seed used to select gene sets 1

Number of disease genes k in each gene set {0, 1, 2, 3}

Number of gene sets with each level of disease genes 500

Table 5.2: Parameters used to simulate gene sets
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Figure 5.1: Manhattan plots obtained from genotype data simulated using HAP-

GEN2. The three panels correspond to different values of the homozygote relative

risk r. The x-coordinate is the position of each SNP on the chromosome, and the

y-coordinate is − log10(p) on the y-axis, where p is the SNP p-value. Non-disease

SNPs are represented by black circles, and disease SNPs are represented by red

circles.

Furthermore, we use black circles to indicate non-disease SNPs and red circles to

indicate disease SNPs. Each panel in the figure contains a Manhattan plot for the

genotype data simulated using a different value of the homozygote relative risk r.

In the Manhattan plots, we expect p to be close to zero for disease SNPs, and

uniformly distributed on (0, 1) for non-disease SNPs. Consequently, we expect

that − log10(p) to be large for disease SNPs, and between 0 and 2 for most non-

disease SNPs. From Figure 5.1, for r ∈ {1.44, 2.25}, the p-values of the non-disease

SNPs are approximately uniformly distributed. However, for r = 1.44, − log10(p)

is not large at all for the disease SNPs. Also, for r = 3.24, there are a considerable

number of non-disease SNPs very close to the disease SNPs with very small p-
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values, which are not following a uniform distribution. This is probably a result of

LD between SNPs that are close to each other on the chromosome. Consequently,

we can consider these non-disease SNPs as markers for the respective disease SNPs.

However, in the following results, we assume that markers are false positive. If

the aim of the analysis is to identify genetic factors that cause the disease, then

this assumption makes sense, because markers are merely correlated with the

disease. However, if the aim of the analysis is diagnosis or prediction, then our

assumption is invalid, because genetic markers are critically important in diagnosis

or prediction.

As we discuss, these properties of the simulated genotype data impacted our

analyses.

5.1 Analysing the Effect of GSA Method Param-

eters on Performance

In our simulation study, we analysed the effect of changing method parameters

on the performance of each GSA method. To conduct this part of the study, we

used the parameters in Table 5.2, although we fixed the gene set size m = 5 and

the gene boundary extension b = 0.

5.1.1 PARIS: Varying the Seed and Bin Size

In our simulation study, we found that changing the approximate bin size B and

seed used by PARIS only negligibly changed its performance. This is consistent

with the comment by Yaspan et al. (2011) that the results of PARIS are robust to

the choice of bin size. We display in Figure 5.2 empirical ROC curves that indicate

the performance of using PARIS with approximate bin sizes B ∈ {500, 1000, 2000}

on simulated gene sets. In this figure, we fixed the seed to 1 and the SNP signif-

icance level α = 0.05. Each column of panels corresponds to changing the value
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of r, the homozygote relative risk. Each row of panels corresponds to a different

value of d, the minimum number of disease genes in a disease gene set. And in

each panel, we display empirical ROC curves corresponding to using PARIS with

different bin sizes.

Similarly, in Figure A.1, we plot empirical ROC curves that display the per-

formance of using PARIS with random seeds of 1, 2, 3, 4 and 5 on simulated gene

sets. In this figure, we fixed the SNP significance level α = 0.05 and the approxi-

mate bin size B = 1000. This figure demonstrates that changing the random seed

also had a negligible effect on the performance of PARIS, as we expect.

Consequently, we used PARIS with a seed of 1 and approximate bin size B =

1000 in the rest of our analyses.

5.1.2 PARIS: Changing the SNP Significance Level

Empirical ROC Curves

Unlike changing the seed and bin size, the performance of PARIS changed markedly

when we changed the SNP significance level α. We display empirical ROC curves

that illustrate these differences in Figure 5.3 and make several comments about

them. In these comments, we measure performance using the AUC.

From Figure 5.3, no significance level α gives the best performance overall. For

example, from the left column of the figure, using a = 0.05 gives the best perfor-

mance when r = 1.44. Also, from the middle and right columns of Figure 5.3, when

r ∈ {2.25, 3.24} and d = 1, the performance of PARIS with α ∈ {0.001, 0.005} is

generally better than the performance of PARIS with α ∈ {0.01, 0.05}. However,

this relationship reverses as d increases.

The result for r = 1.44 is consistent with the left panel of Figure 5.1: when

r = 1.44, two disease SNPs have p-values greater than 0.05, and the other has
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Figure 5.2: Empirical ROC curves obtained from using PARIS with a seed of 1,

SNP significance level α = 0.05 and different bin sizes on gene sets simulated

using gene set size m = 5, gene boundary extension b = 0 and different values

of the homozygote relative risk r. Each row corresponds to a different value of

d, the minimum number of disease genes in a disease gene set, and each column

corresponds to a different value of r. The approximate bin size B is indicated by

the colour used to display the empirical ROC curve.
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Figure 5.3: Empirical ROC curves obtained from using PARIS with a seed of 1,

approximate bin size B = 1000 and different SNP significance levels on gene sets

simulated using gene set size m = 5, gene boundary extension b = 0 and different

values of the homozygote relative risk r. Each row corresponds to a different value

of d, the minimum number of disease genes in a disease gene set, and each column

corresponds to a different value of r. The SNP significance level α is indicated by

the colour used to display the empirical ROC curve.
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a p-value between 0.01 and 0.05. Thus the only significance level that correctly

classifies a disease SNP as significant is 0.05.

Frequency Polygons

Some of the empirical ROC curves in Figure 5.3 have the notable property that

they are made up of obvious straight lines. We explored this feature further by

producing histograms and frequency polygons of the p-values of the gene sets,

which we display in Figure 5.4. When we display such plots, each column of

panels corresponds to a different value of r, and each row corresponds to the p-

values obtained using a different method. The histograms display the distribution

of p-values in all gene sets, and the frequency polygons display the distribution of

p-values in the gene sets with k disease genes in them, for k ∈ {0, 1, 2, 3}. We use

a bin width of 0.05 to display the histograms and frequency polygons. We also

use a logarithmic scale to display the frequencies in the plots, because it made

the distributions of the p-values for each set of gene sets clearer.

In the plots in Figure 5.4, the line corresponding to k = 0 displays the distri-

bution of the p-values assigned to gene sets with no disease genes in them. Conse-

quently, we may expect this distribution to be approximately uniform. However,

as k increases, we expect the distribution of the p-values of the gene sets with k

disease genes in them to become more and more positively skewed. Consequently,

we expect the histograms, which display the sum of the counts displayed by the

frequency polygons, to be positively skewed as well.

The frequency polygons in Figure 5.4 have a number of features that do not

follow our expectations. For example, when α 6= 0.05, the p-values of the gene

sets are either less than 0.15, or greater than 0.95. This property severely violates

our expectation that the p-values of the gene sets with no disease genes in them

should be close to a uniform distribution.

Furthermore, consider the distribution of the p-values of gene sets with no

disease genes in them obtained by PARIS with α = 0.05. For r ∈ {1.44, 2.25},
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Figure 5.4: Frequency polygons and histograms obtained from using PARIS with

a seed of 1, approximate bin size B = 1000 and different SNP significance levels

on gene sets simulated using gene set size m = 5, gene boundary extension b = 0

and different values of the homozygote relative risk r. Each row corresponds to

a different SNP significance level α and each column corresponds to a different

value of r. In each panel, the histogram displays the distribution of the p-values

of all simulated gene sets, and the frequency polygons display the distribution of

the p-values of the gene sets according to the number of disease genes in them.

The colour of the frequency polygons indicates the number of disease genes in the

gene sets.



128 Chapter 5. Results

the distribution is still not uniform, even though the gap in the distribution is far

smaller than the distributions corresponding to the other significance levels. For

example, there are nearly 100 gene sets in the p ∈ [0, 0.05] bin. Suppose that the

minimum number of disease genes in a disease gene set d = 1, so that the non-

disease gene sets are those with no disease genes in them. If a gene set significance

level of 0.05 is used, then the FPR is nearly 100
500

= 0.2. This is unusually large for

a test with a significance level of 0.05.

However, these results may be consequences of parameter values that we used

in this simulation, such as the number of disease SNPs (3) and the number of

genes in gene sets (5). If we simulated genotype data with more disease SNPs,

or if we simulated gene sets with more genes in them, then these anomalies may

disappear. However, we do not investigate this problem further, because the aim

of this section is to analyse the effect of changing the SNP significance level on

the performance of PARIS.

Summary

In summary, the performance of PARIS was affected by changing the SNP signif-

icance level. Consequently, to compare PARIS with the other GSA methods, we

implemented it with multiple significance levels.

5.1.3 The SRT and EVA: Changing the Significance Levels

Similarly to PARIS, changing the SNP significance level α in the SRT and the

gene significance level α in MPEVA changed the performance of these methods

considerably. We display empirical ROC curves for the SRT and MPEVA in

Figures A.2 and A.3 respectively.

From the empirical ROC curves, no significance level α gives the best perfor-

mance for the SRT or MPEVA. For example, from the left column of the figures,

using the SRT and EVA with α = 0.01 gives the best performance when r = 1.44.
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However, consider using the SRT on the gene sets simulated using r ∈ {2.25, 3.24}.

From Figure A.2, there is no clear relationship between the significance level that

yields the best performance and d. In contrast, from Figure A.3, the relation-

ship between the optimal significance level to use with EVA and the relative risk

is clearer. When r = 2.25, the optimal significance level α = 0.005, and when

r = 3.24, the optimal significance level α = 0.001.

In summary, the performance of the SRT and MPEVA was affected by chang-

ing the significance levels. Consequently, to compare these methods with the other

GSA methods, we implemented them with multiple significance levels.

5.2 Comparing the GSA Methods

In the previous section, we concluded that the performance of PARIS, the SRT and

MPEVA was markedly affected by the changing the SNP or gene significance level

α. Consequently, we compared the AUC obtained by applying each method to

simulated gene sets using different significance levels α ∈ {0.001, 0.005, 0.01, 0.05}

to determine which level gives the best performance for each method and each

simulation. We also compared the methods with each other, to determine which

method gives the best overall performance.

From the empirical ROC curves that we displayed in Section 5.1, the homozy-

gote relative risk r had a significant effect on the performance of PARIS, the

SRT and MPEVA. However, the performance of each method was very similar

for r = 2.25 and r = 3.24. Consequently, we compared the performance of each

method separately for r = 1.44 and r = 2.25.

In Figures 5.5 and 5.6, we display scatterplots of the AUC obtained by using

each method on gene sets simulated using different values of b and m, where

r = 1.44 and r = 2.25 respectively. In each panel in these figures, we plot the

method on the x-axis and the AUC on the y-axis. We have also drawn dotted

lines where AUC = 0.5, which corresponds to the method that classifies gene sets
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by random chance. The colour of each element in each scatterplot corresponds

to the size m of the gene sets analysed, and the shape corresponds to a different

value of d, the minimum number of disease genes in a disease gene set. Each row

in this figure corresponds to a different value of the gene boundary extension b.

We expect the points in the scatterplots to be closer to the line AUC = 0.5

in Figure 5.5 compared to Figure 5.6, because the empirical ROC curves in Sec-

tion 5.1 are closer to the line FPR = TPR for the simulations where r = 1.44

compared with the simulations where r = 2.25. This result is apparent from Fig-

ure 5.1: overall, the p-values of the disease SNPs are smaller than the p-values

of the non-disease SNPs when r = 2.25, but this is not the case when r = 1.44.

Consequently, classifying gene sets is more difficult when r = 1.44.

We also expect the performance of each method to decrease as b and m in-

crease, because the proportion of disease SNPs in gene sets decreases as these

parameters increase. However, as we saw from the empirical ROC curves, the

relationship between performance and d is complex.

It is also important to remember that the values of the AUC displayed in

Figures 5.5 and 5.6 are based on empirical ROC curves, which are only estimates

of the true ROC curves. Consequently, there is a measure of uncertainty to the

values of the AUC that we display in these figures.

We use each figure to comment on the significance levels α that gives the best

results for each method, and we also comment on the methods that gives the best

overall performance.

5.2.1 The Performance of Each Method when r = 1.44

Recall that for tests whose performance is comparable to random chance, the

AUC is approximately 0.5. Consequently, from Figure 5.5, the performance of all

methods is not markedly better than random chance, regardless of the significance

level used. However, the performance of MPEVA, PARIS and the SRT is sensitive
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Figure 5.5: The AUC obtained by using each GSA method on gene sets simulated

using homozygote relative risk r = 1.44. Each row corresponds to a different value

of the gene boundary extension b, and each column corresponds to a different

method. The AUC obtained by each method is given on the y-axis, and the

method (with a significance level, if appropriate) is given on the x-axis. The

shape of each object corresponds to a different value of d, the minimum number

of disease genes in a disease gene set, and the colour of each object corresponds

to a different value of the gene set size m.
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to the significance level α. For example, the optimal significance level α = 0.01 for

MPEVA and the SRT, whereas the optimal significance level α = 0.05 for PARIS.

We do not expect the optimal significance level for these methods to be the same,

because they use the significance level in different ways.

As we expect, the overall performance of the methods decreases as the gene

boundary extension b and gene set size m increase. However, there is no obvious

relationship between the AUC and d, the minimum number of disease genes in a

disease gene set.

In this set of simulations none of the methods were effective and it is not

possible to draw meaningful conclusions about their relative performance.

5.2.2 The Performance of Each Method when r = 2.25

From Figure 5.6, the AUC obtained by all methods is better when r = 2.25

compared with r = 1.44, as we expect. Overall, the method that obtained the

highest AUC is the SRT. Furthermore, from the far-right column of Figure 5.6,

the performance of the SRT is robust to the choice of significance level, excluding

the case where α = 0.05. In contrast, the performance of PARIS and EVA is more

sensitive to changes in α.

From the Figure 5.6, there is no obvious relationship between the AUC and

d or b. The lack of relationship between the AUC and b is unexpected. For

example, increasing b reduces the performance of EVA with α 6= 0.001 and the

SRT with α = 0.05. In contrast, increasing b increases the performance of EVA

with α = 0.001, and it does not affect the performance of MGSEA, PARIS with

α = 0.05 and the SRT with α = 0.01.

As we expect, the AUC obtained by MGSEA and MPEVA decreases as m

increases. However, for PARIS and the SRT with α ∈ {0.001, 0.005} and d = 3,

the AUC decreases as m decreases. Recall that if d = 3, then gene sets with one

or two disease genes in them are non-disease gene sets. If the number of disease
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Figure 5.6: The AUC obtained by using each GSA method on gene sets simulated

using homozygote relative risk r = 2.25. Each row corresponds to a different value

of the gene boundary extension b, and each column corresponds to a different

method. The AUC obtained by each method is given on the y-axis, and the

method (with a significance level, if appropriate) is given on the x-axis. The

shape of each object corresponds to a different value of d, the minimum number

of disease genes in a disease gene set, and the colour of each object corresponds

to a different value of the gene set size m.
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genes is held constant, then the proportion of disease genes in a gene set is larger

for smaller gene sets. Consequently, for smaller m, gene sets with one or two

disease genes in them have smaller p-values more often than larger gene sets, and

hence they are more likely to be false positives. This may be why the performance

of PARIS and the SRT decreases as m decreases.

We summarise the results obtained by each method when r = 2.25 using

Figure 5.7. In this figure, we display boxplots of the AUC obtained by each

GSA method. Each boxplot displays the distribution of the AUC obtained by

each GSA method, with different significance levels for all methods apart from

MGSEA, and different values of d, on gene sets simulated usingm ∈ {5, 10, 20, 50}.

The AUC is given on the y-axis, and the method is given on the x-axis. The

colour of each boxplot corresponds to a different value of b. From the middle two

columns of Figure 5.7, the methods whose performance varies the most across

our simulations are MPEVA and PARIS. Also, the boxplots corresponding to the

SRT are closer to AUC = 1 than the boxplots corresponding to any other method.

Consequently, for the range of scenarios that we considered, the SRT often gives

the best performance, and it is unlikely to perform markedly worse than any other

method.

5.2.3 Summary of the Performance of Each Method

The AUC obtained by all methods was uniformly greater when r = 2.25 compared

with r = 1.44, as we expect. For MPEVA, PARIS and the SRT, we display the

significance level α that gives the best performance when r ∈ {1.44, 2.25} in

Table 5.3.

The methods that gives the best overall performance are the SRT with α ∈

{0.001, 0.005, 0.01}. We recommend using α = 0.01, since one of the aims of GSA

is to detect gene sets containing multiple moderately significant SNPs that may

not be detected by classical GWA studies.
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Figure 5.7: Boxplots of the AUC obtained by using each GSA method on gene

sets simulated using homozygote relative risk r = 2.25. Each boxplot displays the

distribution of the AUC obtained by each GSA method, with different significance

levels for all methods apart from MGSEA, and different values of d (the minimum

number of disease genes in a disease gene set), on gene sets simulated using gene

set size m ∈ {5, 10, 20, 50}. The AUC is given on the y-axis, and the method is

given on the x-axis. The colour of each boxplot corresponds to a different value

of b, the gene boundary extension.

r 1.44 2.25

MPEVA 0.01 0.005 (small b) or 0.001 (large b)

PARIS 0.05 Varies

The SRT 0.01 0.01

Table 5.3: Optimal significance levels for each method, where the homozygote

relative risk r ∈ {1.44, 2.25}.
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5.3 Gene Sets Assigned Disparate p-values

In this section, we highlight gene sets that were assigned disparate p-values by

different GSA methods. In particular, we tested the sensitivity of each method

to SNPs with very small p-values. To perform this sensitivity analysis, analysed

gene sets containing

1. a highly significant SNP but few significant SNPs otherwise, and

2. many SNPs that are significant, but not highly significant.

In these categories, a highly significant SNP is a SNP with a very small p-value,

and a significant SNP is a SNP with a p-value less than some significance level α.

Recall that MGSEA is a GSE method, which means that it directly uses SNP

and gene test statistics without using a significance criterion. Consequently, we

expect MGSEA to assign a small p-value to gene sets in category one, and a larger

p-value to gene sets in category two. In contrast, we expect the reverse relationship

for PARIS and the SRT, which only use the p-values of SNPs to categorise them

as significant or nonsignificant.

For simplicity, we simulated gene sets using r = 2.25,m = 5 and b = 0. We

divide the results that we display in this section into results that followed our

expectations, and results that were contrary to our expectations.

5.3.1 Gene Sets that Followed our Expectations

Gene Sets in Category One

As we expect, many gene sets in category one were assigned small p-values by

MGSEA and larger p-values by PARIS and the SRT. We highlight two examples.

In Figure 5.8, we display a Manhattan plot highlighting a gene set that was

assigned p-values of 0.002 and 0.2867 by MGSEA and the SRT (α = 0.05) respec-

tively. In this plot, the grey circles represent non-disease SNPs that are not in the
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gene set. Coloured circles represent SNPs that are in the gene set, and the colour

indicates the gene that the SNP is in. Black squares indicate disease SNPs that

are not in the gene set. As in Figure 5.1, we plot the position of the SNP on the

x axis, and − log10(p) on the y-axis, where p is the SNP p-value. We also draw

horizontal dotted lines where p ∈ {0.0001, 0.001, 0.01, 0.05}, to aid our discussion

of the results.

The reason for the disparate results is clear: the gene set in Figure 5.8 contains

a SNP with p < 0.001 in the ZIC4 gene, which is markedly affecting the result

obtained by MGSEA. However, this SNP is not a disease SNP, and it is not in

LD with any of the disease SNPs. Consequently, this is a false positive gene set

for MGSEA, and a true negative gene set for the SRT.

We also display in Figure 5.9 a gene set assigned p-values of 0.000 and 0.659

by MGSEA and PARIS (α = 0.05) respectively. This gene set contains a disease

SNP with p < 0.0001 in the SLC25A20 gene, which we display using a coloured

square, and two other SNPs with p < 0.05. However, all of the other SNPs in

this gene set have p-values greater than 0.05. Consequently, this gene set is also

consistent with our expectations. If d = 1, then this gene set is a disease gene set;

it is a true positive gene set for MGSEA and a false negative gene set for PARIS.

Gene Sets Containing Many Significant SNPs

As we expect, many gene sets that contained numerous significant SNPs, but no

highly significant SNPs, were assigned small p-values by PARIS and the SRT, and

larger p-values by MGSEA.

For example, consider the gene set highlighted in the Manhattan plot in Fig-

ure 5.10, which was assigned p-values of 0.043 and 0.198 by the SRT (α = 0.05)

and MGSEA respectively. This gene set has five SNPs with p < 0.05, but none of

these SNPs are highly significant.
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Figure 5.8: Manhattan plot highlighting a gene set in category one that follows our

expectations. This gene set was assigned p-values of 0.002 and 0.2867 by MGSEA

and the SRT (α = 0.05) respectively. The grey circles represent non-disease SNPs

that are not in the gene set. Coloured circles represent SNPs that are in the gene

set, and the colour indicates the gene that the SNP is in. Black squares indicate

disease SNPs that are not in the gene set. The x-coordinate is the position of the

SNP on the chromosome, and the y-coordinate is − log10(p), where p is the SNP

p-value. Since this gene set contains no disease genes, this is a false positive gene

set for MGSEA and a true negative gene set for the SRT. Furthermore, since this

gene set is in category one, the results obtained by the SRT and MGSEA for this

gene set are expected.
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Figure 5.9: Manhattan plot highlighting a gene set in category one that follows our

expectations. This gene set was assigned p-values of 0.000 and 0.659 by MGSEA

and PARIS (α = 0.05) respectively. The grey circles represent non-disease SNPs

that are not in the gene set. Coloured circles represent SNPs that are in the gene

set, and the colour indicates the gene that the SNP is in. Black squares indicate

disease SNPs that are not in the gene set, and coloured squares indicate disease

SNPs that are in the gene set. The x-coordinate is the position of the SNP on the

chromosome, and the y-coordinate is − log10(p), where p is the SNP p-value. This

gene set contains one disease gene. Consequently, if d = 1, this is a true positive

gene set for MGSEA and a false negative finding for PARIS. Since this gene set

is in category one, the results obtained by PARIS and MGSEA for this gene set

are expected.
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Figure 5.10: Manhattan plot highlighting a gene set in category two that follows

our expectations. This gene set was assigned p-values of 0.043 and 0.198 by the

SRT (α = 0.05) and MGSEA respectively. The grey circles represent non-disease

SNPs that are not in the gene set. Coloured circles represent SNPs that are in

the gene set, and the colour indicates the gene that the SNP is in. Black squares

indicate disease SNPs that are not in the gene set. The x-coordinate is the position

of the SNP on the chromosome, and the y-coordinate is − log10(p), where p is the

SNP p-value. Since this gene set is in category two, the results obtained by the

SRT and MGSEA for this gene set are expected.
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5.3.2 Gene Sets that did not Follow our Expectations

In contrast to the previous results, numerous gene sets did not follow our expec-

tations regarding the sensitivity of the GSA methods to SNPs with very small

p-values. In particular, some gene sets in category one were assigned smaller

p-values by PARIS or the SRT. We illustrate this result using the gene set high-

lighted in Figure 5.11. This gene set was assigned p-values of 0.000 and 0.158

by PARIS (α = 0.05) and MGSEA respectively. This gene set contains one SNP

with p < 0.001 and two with p < 0.05, but no other significant SNPs (α = 0.05).

Consequently, the results obtained by PARIS and MGSEA are unexpected.

We speculate about the reason that this unexpected result occurred. Recall

that since we only used three disease SNPs in our analysis and since this gene set

only has five genes in it, the distribution of p-values obtained by each method may

have been distorted. This could be why PARIS is assigning this gene set a p-value

of zero, even though it only has three significant SNPs (α = 0.05). This result

also highlights the fact that the results obtained by GSE methods are affected

by factors other than SNPs with very small p-values, and the results obtained by

methods that use a significance criterion are affected by factors other than the

number of significant SNPs in the gene set.

5.4 Chapter Summary

In Section 5.1, we displayed ROC curves to demonstrate that the only method-

specific parameters that affected the performance of PARIS, the SRT and MPEVA

non-negligibly are the SNP and gene significance levels α. Consequently, when we

compared PARIS, the SRT, MPEVA and MGSEA in Section 5.2, we varied the

significance levels. In this section, we used scatterplots of AUC to demonstrate

that the SRT performed best in our simulation study. In Section 5.3, we displayed

Manhattan plots to demonstrate that MGSEA is often affected by the presence of

single, highly significant SNPs, while PARIS and the SRT are often robust to such
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Figure 5.11: Manhattan plot highlighting a gene set in category one that does not

follow our expectations. This gene set was assigned p-values of 0.000 and 0.158

by PARIS (α = 0.05) and MGSEA respectively. The grey circles represent non-

disease SNPs that are not in the gene set. Coloured circles represent SNPs that

are in the gene set, and the colour indicates the gene that the SNP is in. Black

squares indicate disease SNPs that are not in the gene set, and coloured squares

indicate disease SNPs that are in the gene set. The x-coordinate is the position

of the SNP on the chromosome, and the y-coordinate is − log10(p), where p is

the SNP p-value. This gene set contains one SNP with p < 0.001 and two with

p < 0.05, but no other significant SNPs (α = 0.05). Consequently, the results

obtained by PARIS and MGSEA for this gene set are unexpected.
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SNPs. However, not all gene sets followed these trends. This result highlights the

fact that other factors impact the results obtained by GSE methods and methods

that use a significance criterion.





Chapter 6

Conclusion

GWA studies are designed to gain further information about the SNPs that are

associated with a given disease. One of the purposes of GWA studies is to elucidate

the way that genetic variation as a whole causes diseases, so that treatments

for them can be improved. We detailed the necessary biological and statistical

background for GWA study in Chapter 2.

However, GWA studies have a number of shortcomings. For example, they

lack power to detect SNPs with a small effect size, and they cannot account for

epistasis. Consequently, many novel methods have been developed to identify

gene sets that are associated with a disease. These methods are known as GSA

methods. A number of reviews of GSA methods exist in the literature, such as

Fridley and Biernacka (2011), Holmans (2009), Mooney et al. (2014), Ramanan

et al. (2012), Wang et al. (2010), and Wang et al. (2011). However, none of

these reviews compare specific GSA methods in detail or test their conclusions by

implementing GSA methods on data.

In Chapter 3, we detailed six GSA methods: PARIS, the SRT, MPEVA, Prox-

yGeneLD, ALIGATOR and MGSEA. We then compared these methods theoret-

ically. We structured our comparison around seven important issues that need to

be considered in GSA, as detailed in the reviews by Fridley and Biernacka (2011),
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Holmans (2009), Mooney et al. (2014), Ramanan et al. (2012), Wang et al. (2010),

and Wang et al. (2011).

In particular, the SRT is the only method that tests a self-contained null

hypothesis; all of the other methods test a competitive null hypothesis. If a

self-contained method is required, then the SRT is a good choice, because it

accounts for LD and gene size. The only competitive method that accounts for

LD and gene size is MGSEA. However, unlike the other methods, it is sensitive to

SNPs with very small p-values. PARIS and ProxyGeneLD attempt to account for

LD by partitioning SNPs into LD and LE blocks, however, current partitioning

methods do not guarantee robustness to LD, and more research into this problem

is required. In contrast, MPEVA and ALIGATOR do not account for LD at

all. Regarding gene size, PARIS and ALIGATOR both account for it, whereas

MPEVA and ProxyGeneLD do not.

In Chapter 4, we detailed the advantages and disadvantages of comparing these

methods using a simulation study, and we discussed three methods of simulating

genetic data: the LS method (Li and Stephens, 2003), HAPGEN (Spencer et al.,

2009) and HAPGEN2 (Su et al., 2011). We used HAPGEN2, because it can

simulate genetic data in the presence of multiple disease SNPs. We then detailed

the procedures that we used to simulate genetic data using HAPGEN2, implement

the GSA methods, and compare their performance. Due to time constraints and

the availability of software and data, we only implemented PARIS, the SRT,

MPEVA and MGSEA. We also reviewed the literature to ensure that we selected

realistic values for each parameter that we could vary in our simulation study.

Finally, in Chapter 5, we displayed and discussed our results. While no method

gave the best performance in all simulations, we recommend using the SRT, be-

cause it consistently performed well in our study. Furthermore, we recommend

using a SNP significance level α = 0.01, because the aim of GSA is to detect

gene sets containing many moderately significant SNPs that may not be detected

by traditional GWA study. Unfortunately, the performance of the competitive
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methods was not as robust to parameters such as gene set size and gene boundary

extension. This lack of robustness was expected, because we allowed these param-

eters to vary while we kept constant the number of disease SNPs in the gene sets.

Consequently, the proportion of disease SNPs in the gene sets decreased, which

reduced the performance of these methods.

Much future work still needs to be done in the area of GSA. Due to the time

constraints in writing this thesis, we only compared six GSA methods. However,

Mooney et al. (2014) detail 55 GSA methods in Table 1 that can be used on GWA

study data. These methods use a wide range of statistical techniques, such as

Bayesian methods (Shahbaba et al., 2012), ridge regression (Chen et al., 2010) and

principle component analysis (Lu et al., 2014). Consequently, a future simulation

study could implement and compare more of these methods. Furthermore, we

only simulated genetic data on chromosome three, and while our choices for the

values of the parameters in our simulation study were realistic, we only performed

a small number of simulations. Consequently, a future simulation study could

simulate data from more chromosomes, use more simulations, and vary the values

of parameters more. Alternatively, the GSA methods could be implemented on

real genetic data.

Another area of future work concerns measuring the performance of a method.

For example, we focused on using ROC curves and the AUC, noting that other

simulation studies had also used the AUC to measure performance (Lu et al., 2014;

Zhang et al., 2014). However, when gene sets are analysed using GSA methods, a

significance level α ≤ 0.05 is commonly used. Consequently, the section of ROC

curves where FPR > 0.05 lacks meaning. A common approach is to calculate the

statistical power obtained by methods at given significance levels (Jia et al., 2011;

Lu et al., 2014). However, we could also consider the AUC between FPR = 0 and

FPR = 0.05. For example, suppose that the ROC curve of a method follows the

line FPR = TPR until FPR = 0.05, and then the TPR increases rapidly. Then

the set of gene sets with p-values less than 0.05 would contain a similar number
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of true positives and false positives (α = 0.05). Thus the performance of using

the method with gene set significance level α = 0.05 is no better than random

chance. In this case, the AUC between FPR = 0 and FPR = 1 is high, but the

AUC between FPR = 0 and FPR = 0.05 is the same as the method that classifies

by random chance.

Finally, we were unable to test our theoretical conclusions about how robust

each GSA method is to parameters such as LD and gene size. Regarding gene

size, this occurred because we used the number of disease SNPs in a disease gene

as a parameter in our simulation study. Consequently, increasing the number

of SNPs in the gene sets (by increasing the gene boundary extension) decreased

the proportion of disease SNPs in the gene sets, which may have confounded our

results. In future simulation studies, we recommend keeping the proportion of

disease SNPs or disease genes fixed.



Appendix A

Additional Figures to Compare

GSA Methods

A.1 Varying the Approximate Bin Size in PARIS

In Figure A.1, we plot empirical ROC curves that display the performance of

using PARIS with random seeds of 1, 2, 3, 4 and 5 on simulated gene sets. In this

figure, we fixed the SNP significance level α = 0.05 and the approximate bin size

B = 1000. This figure demonstrates that changing the random seed also had a

negligible effect on the performance of PARIS, as we expected.

A.2 Varying the Significance Levels in the SRT

and MPEVA

Similarly to PARIS, changing the SNP significance level α in the SRT and the

gene significance level α in MPEVA changed the performance of these methods

considerably. We display empirical ROC curves for the SRT and MPEVA in

Figures A.2 and A.3 respectively.
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Figure A.1: Empirical ROC curves obtained from using PARIS with SNP signifi-

cance level α = 0.05, approximate bin size B = 1000 and different random seeds

on genetic data simulated using gene set size m = 5, gene boundary extension

b = 0 and different values of the homozygote relative risk r. Each row corresponds

to a different value of d, the minimum number of disease genes in a disease gene

set, and each column corresponds to a different value of r. The seed is indicated

by the colour used to display the empirical ROC curve.
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From the empirical ROC curves, no significance level α gives the best perfor-

mance for the SRT or MPEVA. For example, from the left column of the figures,

using the SRT and EVA with α = 0.01 gives the best performance when r = 1.44.

However, consider using the SRT on the gene sets simulated using r ∈ {2.25, 3.24}.

From Figure A.2, there is no clear relationship between the significance level that

yields the best performance and d. In contrast, from Figure A.3, the relation-

ship between the optimal significance level to use with EVA and the relative risk

is clearer. When r = 2.25, the optimal significance level α = 0.005, and when

r = 3.24, the optimal significance level α = 0.001.

In summary, the performance of the SRT and MPEVA was affected by chang-

ing the significance level. Consequently, to compare these methods with the other

GSA methods, we implemented them with multiple significance levels.
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Figure A.2: Empirical ROC curves obtained from using the SRT with different

SNP significance levels on gene sets simulated using gene set size m = 5, gene

boundary extension b = 0 and different values of the homozygote relative risk r.

Each row corresponds to a different value of d, the minimum number of disease

genes in a disease gene set, and each column corresponds to a different value of r.

The significance level α is indicated by the colour used to display the empirical

ROC curve.



A.2. Varying the Significance Levels in the SRT and MPEVA 153

Figure A.3: Empirical ROC curves obtained from using MPEVA with different

gene significance levels on gene sets simulated using gene set size m = 5, gene

boundary extension b = 0 and different values of the homozygote relative risk r.

Each row corresponds to a different value of d, the minimum number of disease

genes in a disease gene set, and each column corresponds to a different value of r.

The significance level α is indicated by the colour used to display the empirical

ROC curve.
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