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Abstract 13 

IUGR in humans is associated with impaired pre- and postnatal neurodevelopment, and subsequent 14 

postnatal cognition, resulting in lower IQ, poorer memory, visuomotor and executive function 15 

skills, as well as behavioural and attentional problems. Experimental models of IUGR are needed to 16 

allow direct testing of causality and interventions, and have benefits in reducing both confounding 17 

by comorbidities such as prematurity, and variation due to environment and genetics. This review 18 

describes and discusses experimental models of IUGR in which neurodevelopmental and cognitive 19 

outcomes of IUGR have been reported. We consider the timing of neurodevelopment relative to 20 

birth and to the period of restriction, as well as the effects of each experimental perturbation on the 21 

fetal environment and development, before discussing neurodevelopmental and cognitive outcomes 22 

for progeny as fetuses, neonates and into adolescent and adult life.  Experimental IUGR induces 23 

broadly similar outcomes to human IUGR, with altered brain morphology, in particular grey matter 24 

loss and discordant trajectory of white matter development, and poorer cognition and memory 25 

reported in various studies. Nevertheless, there remain gaps in knowledge of neurodevelopment in 26 

experimental models. We end the review with recommendations for the design of future studies to 27 

further investigate the mechanisms underlying adverse neurodevelopmental consequences of IUGR, 28 

and to evaluate interventions that may subsequently improve outcomes of IUGR in humans. 29 

Keywords: IUGR, animal models, neurodevelopment, cognition, brain 30 

31 



1. Introduction 32 

Intrauterine growth restriction (IUGR) occurs in approximately 15% of births worldwide, and 7% of 33 

pregnancies in developed countries [1]. IUGR is characterised by a restrictive environment that 34 

prevents the fetus from meeting its genetic potential for growth [2], and often results in a neonate 35 

who is small relative to gestational age [SGA, born with a birth weight in the lowest 10th centile of 36 

the population, 3]. While IUGR can be induced by maternal undernutrition [4], in developed 37 

countries IUGR is predominantly associated with maternal, fetal and uterine factors [reviewed in 5], 38 

that lead to poor placental function. This includes reduced uterine artery, placental and umbilical 39 

blood-flows [5, 6], and decreased fetal oxygen and nutrient supply [7-10]. Fetal nutrient demand 40 

increases with growth as gestation progresses, and late in gestation demand approaches placental 41 

capacity even in normal pregnancy. Accordingly, placental blood flow and efficiency increases in 42 

later pregnancy [11, 12], such that there is a positive relationship between placental and birth 43 

weight in humans and sheep [11, 13], and placental size and efficiency increase with advancing 44 

pregnancy [11]. These progressive placental adaptations appear less successful in the pregnancies 45 

with an IUGR fetus, which have lower blood flow relative to fetal size developing in later 46 

pregnancy [11]. Because the level of placental dysfunction in IUGR increases as pregnancy 47 

progresses [14]  substrate deficiency in human IUGR pregnancies is greatest during the third 48 

trimester, which corresponds with maximal in utero rates of neurodevelopment [15], with lifelong 49 

structural and functional consequences.  50 

 51 

SGA status is often used as a proxy for IUGR in human studies due to limited data on fetal growth 52 

trajectories, but will also capture individuals born with a low birth weight who have not undergone 53 

the pathological exposure to a restrictive fetal environment [16]. Fetuses, neonates, children and 54 

adolescents who were subjected to IUGR and/or born SGA have reduced head circumference and 55 

reduced total and regional brain volumes compared to controls [17-23]. This is largely due to grey 56 

matter loss, as well as discordant white matter development and microstructural changes, suggesting 57 



reduced myelination and axon injury [18-20, 22-28]. The impaired functional outcomes in IUGR 58 

and SGA infants, children and adults are highly correlated with these morphological outcomes [24, 59 

25, 27-30]. Compared to infants born at a size appropriate for their gestational age (AGA), IUGR 60 

and SGA infants have more immature neurobehavioural scores [17, 24-26, 31, 32] and, as children, 61 

have lower IQ and poorer language, working and short-term memory, executive function and 62 

visuomotor skills [33-42]. There are also higher incidences of cerebral palsy, attention deficit 63 

hyperactivity symptoms and behavioural problems in offspring of IUGR pregnancies compared to 64 

AGA [27, 31, 33, 38, 43, 44]. In addition, low birth weight (<2500 g) interacts with a genetic risk 65 

for depression; in combination these are associated with a higher incidence of depressive symptoms 66 

[45], although this has not been examined in IUGR or SGA offspring. Cognitive and behavioural 67 

consequences ultimately contribute to poorer academic outcomes in IUGR and SGA children than 68 

in those who were born AGA [35, 38, 39, 42].  69 

 70 

In addition to the limitations of human studies, where IUGR may not be clearly differentiated from 71 

other causes of low birth weight, there are a number of confounding factors limiting the capacity to 72 

fully characterise the consequences of IUGR and their underlying mechanisms in humans. Firstly, 73 

IUGR is rarely a discreet condition and comorbidities are common. The incidence of preterm birth 74 

is 11-20% in the SGA population [16, 46], compared to overall rates of 6-10% worldwide [3, 16, 75 

46], and the incidence of SGA is 25% in very preterm children [16], compared to rates of 15% 76 

overall [47]. Because IUGR and preterm birth are each independently associated with adverse 77 

morphological, cognitive and motor outcomes [23, 24, 44, 48, 49], it can be difficult to separate the 78 

consequences of each. Secondly, human studies are confounded by environmental factors that are 79 

correlated with prenatal growth, postnatal growth and neurodevelopment. For example, lower 80 

family socioeconomic status and poorer maternal education are each associated with increased risk 81 

of IUGR or SGA pregnancy [16, 50-52], poorer postnatal growth in AGA and SGA children [53], 82 

and poorer cognitive and academic outcomes in healthy children [50, 54, 55]. Postnatal 83 



neurodevelopmental outcomes such as IQ correlate positively with incidence and rate of catch up 84 

growth of head circumference [38, 56-59], a proxy measure of brain size that corresponds well to 85 

frontal lobe volume [60]. Catch up growth of head circumference occurs during the first 6-12 86 

postnatal months [61], during a period of rapid postnatal brain development [62, 63], but is 87 

frequently incomplete, such that IUGR children fail to catch up to non-IUGR individuals [17].  In 88 

addition, preterm IUGR and very low birth weight children are at increased risk of failure of catch-89 

up growth of head circumference [18, 23, 61, 64]. There is therefore confounding due to the effects 90 

of both postnatal environment and gestational age on postnatal growth, which adds to the difficulty 91 

in defining effects of prenatal exposures on neurodevelopment in human cohorts.  92 

 93 

Animal models are therefore necessary to control for, or minimise, these confounding factors, and 94 

also allow direct testing of causality and greater investigation of underlying mechanisms. To enable 95 

translation of the findings from these preclinical models to defining mechanisms that may apply in 96 

humans, and to evaluate and identify effective interventions to improve long-term outcomes, it is 97 

important to consider the timing of neurodevelopment relative to both birth and the gestational age 98 

at onset of the restricted intrauterine growth. This review compares the different animal models 99 

used to study effects of prenatal growth restriction on neurodevelopment, describes the 100 

neurodevelopmental and cognitive outcomes of these, and the gaps in knowledge and suggests 101 

future directions for research in this field. 102 

 103 

2. Timing of neurodevelopment in animal models of experimental IUGR 104 

Rats, guinea pigs, rabbits and sheep are the non-human species most commonly used to examine the 105 

effects of IUGR on neurodevelopmental outcomes. However, the timing of neurodevelopmental 106 

events and gestation lengths vary between these species, and from those in humans (Figure 1).  107 

These inherent differences make comparisons between models difficult, and extrapolating findings 108 



from one species to another largely invalid. For example, rats are one of the most frequently utilised 109 

model species, but many neurodevelopmental events that occur during gestation in humans occur 110 

postnatally in this species [Figure 1, 15].  Brain growth rate accelerates in the last trimester in 111 

humans, peaking around birth, but occurs comparatively later in the rat, peaking around postnatal 112 

days 7-8 [15]. Similarly, fetal neurogenesis and white matter development begin later in gestation in 113 

rats than humans [65]. Central myelination occurs entirely postnatally in the rat [15], but begins in 114 

the human brain-stem at 29 weeks gestation [Figure 1, 66]. As in humans, central myelination 115 

commences in late gestation in rabbits and guinea pigs and is sensitive to hypoxic damage in utero 116 

[Figure 1, 67, 68, 69]. However, myelination in peripheral as well as central and higher brain 117 

regions commences before birth in the sheep.  Myelination of the majority of higher brain regions in 118 

humans commences postnatally, so sheep neurodevelopment is comparatively more advanced at 119 

birth than it is in humans [Figure 1, 15, 70]. Neurodevelopment in pigs shares some similarities to 120 

human, including occurrence of prenatal neurogenesis and both peri- and postnatal myelination, , 121 

although humans have more advanced development relative to percentage of gestation [reviewed in 122 

71]. Some cognitive and neurodevelopmental consequences have been studied in pigs with 123 

spontaneous, naturally occurring growth restriction either due to large litter size or variable growth 124 

within a litter. These share similarities with outcomes reported in human IUGR, including brain 125 

sparing at birth [72], morphological changes including decreased grey matter [73], and altered 126 

cognition [73-75]. In depth discussion of this model is omitted from this paper however, as changes 127 

in the fetal environment has not yet been well characterised. 128 

 129 

3. Methods and timing of experimental IUGR in animal models 130 

A variety of paradigms of experimental IUGR have been utilised in studies of neurodevelopmental 131 

and cognitive outcomes. Experimental IUGR is generally induced by restricting fetal nutrient 132 

availability via global or nutrient-specific undernutrition of the mother, or by surgical or 133 



pharmaceutical induction of placental insufficiency to restrict placental capacity to transfer nutrients 134 

from mother to fetus (Figure 2). Fetal and neonatal body and brain weights are reduced in the 135 

majority of these preclinical models, as is seen in human IUGR (Table 1, 2), although each model 136 

affects neurodevelopment, and in turn cognitive outcomes to varying degrees. While there are 137 

additional animal models of perturbed prenatal development in which neurodevelopment and/or 138 

cognitive outcomes have been investigated, for example those investigating effects of 139 

periconceptional and early gestational undernutrition in the sheep [76-78], these models do not 140 

restrict fetal growth in late gestation or reduce size at birth as occur in human IUGR and are 141 

therefore not discussed further in this review. Similarly, this review is limited to those models of 142 

IUGR in which neurodevelopmental and/or cognitive outcomes have been reported. This section 143 

describes key features of these models, including effects on fetal nutrient supply and metabolism, 144 

and development and timing relative to neurodevelopment. Specific neurodevelopmental and 145 

cognitive outcomes induced by IUGR in each model are described in following sections.  146 

 147 

3.1. Maternal undernutrition 148 

Models of IUGR based on maternal undernutrition (UN) differ from human IUGR associated with 149 

poor placentation, in that restriction is largely of nutrients without substantial restriction of oxygen. 150 

There is also considerable variability in the length, degree and timing of nutritional restriction 151 

between studies [79-88], with some studies restricting throughout gestation or the entire length of 152 

pregnancy studied [79, 82, 86, 89], whilst others may only restrict during part of gestation [80, 83, 153 

84, 88], or extend maternal nutrient restriction into lactation [85, 87]. The patterns of restriction in 154 

these models also differ from that in human IUGR due to placental insufficiency, which 155 

progressively worsens during pregnancy [Figure 2, 14]. Differing types of nutrient restriction have 156 

been utilised, particularly in rats, with some restricting dietary protein, while others impose global 157 

nutrient restriction [79, 86, 88, 90-92]. Variation between studies in the severity and nature of the 158 



nutrient restriction accounts in part for variable reductions in birth weight (Table 2). These range 159 

from 4 to 34% in progeny of globally nutrient-restricted rats [79, 87, 88, 93-96], whilst more severe 160 

restriction is seen in models of maternal protein restriction, with 7 to 52% reduction in birth weight 161 

in progeny [91, 92, 97-101]. The reported decrease in birth weight following the levels of maternal 162 

nutrient restriction used in neurodevelopmental studies in sheep and rabbits is milder ranging from 163 

9.5% to 17.5% [83, 89, 102, 103]. Effects on fetal nutrient supply and metabolism also differ 164 

between the various models of IUGR (Table 1). For example, fetal blood glucose does not appear to 165 

be reduced by maternal protein restriction in rats [104, 105], but is reduced in other models of 166 

IUGR, such as utero-placental ligation in the guinea pig and in both utero-placental embolisation 167 

and carunclectomy-induced placental restriction in sheep [11, 106-111].  168 

 169 

One particular limitation of models of maternal nutrient restriction in rodents is that the restriction 170 

is imposed only during earlier stages of neurodevelopment than are affected by IUGR in humans. 171 

For example, if maternal undernutrition is imposed in rats only during gestation, this does not 172 

impact the period of myelination, which occurs postnatally in rats, but commences prior to birth in 173 

humans [Figure 1, 66]. This can be addressed by continuing maternal undernutrition postnatally 174 

throughout lactation in the rat, but many studies do not do this.  175 

 176 

3.2. Placental restriction induced during mid to late pregnancy 177 

IUGR can be induced by restricted placental growth and/or function (PR). In small animals this is 178 

induced by restriction of uteroplacental blood flow during late pregnancy, which in the rat involves 179 

uterine artery ligation (ie. uteroplacental vessel ligation, UPL), usually at day 17 of the 21-22 day 180 

pregnancy [112-115]. In the rabbit, the period of restriction similarly comprises a relatively short 181 

proportion of gestation, with 40-50% of uteroplacental vessels ligated at day 25 of the 31 day rabbit 182 

pregnancy, and pups surgically delivered five days later [Fig 2, 102, 116, 117, 118]. Placental 183 

insufficiency is induced at an earlier stage of gestation in the guinea pig, with the uterine artery of 184 



one horn ligated at mid-gestation [at day 30-35 days of the 68 day pregnancy, Fig 2, 106, 119-121]. 185 

IUGR can be induced during pregnancy in sheep by uteroplacental embolisation (UPE), where 186 

occlusion of the uteroplacental blood vessels is induced via repeated infusion of microspheres into 187 

the placental vascular bed, titrated to maintain a defined level of hypoxia [108, 110, 122, 123]. In 188 

the majority of studies, reduced placental blood flow is not maintained until term (Figure 2), with 189 

the duration of embolisation ranging from 6-30 days, and generally commencing on day 110-120 of 190 

gestation [108-110, 122, 123, 124 , 125].  191 

 192 

All of these experimental models reduce fetal and neonatal growth, placental growth and fetal 193 

substrate supply (Table 1, 2), and induce clear signs of neurodevelopmental disruption in progeny 194 

(Tables 3 and 4) that persists into adulthood in small animal models (Table 5). To date, there are no 195 

reports of outcomes in adulthood in large animal models, such as the UPE sheep. Compounding 196 

this, the varying timing of restriction induced by UPL or UPE, and species-specific differences in 197 

temporal aspects of neurodevelopment, results in perturbations at different stages of 198 

neurodevelopment in each model (Figure 2). For example, IUGR induced by UPL in late gestation 199 

in rats occurs at a neurodevelopmental stage similar to mid-gestation in the human [15]. In contrast, 200 

late pregnancy placental restriction in the UPL guinea pig and rabbit, and UPE sheep, affects 201 

neurodevelopmental at stages similar to those occurring during late gestation in the human, 202 

including neurogenesis and white matter development [Figure 2, 67, 69, 70, 126].  203 

 204 

One major drawback to all these models of IUGR induced in mid to late pregnancy is the need for 205 

surgical intervention during pregnancy, which may have additional consequences for fetal 206 

development.  Even sham surgeries are associated with reduced fetal weight compared to controls 207 

in rats [127], due to mechanisms potentially including maternal stress. The UPL and UPE models 208 

are also predominantly models of late-pregnancy restriction, imposed acutely on previously 209 

unrestricted pregnancies. Pharmaceutical interventions may provide another, less acute avenue to 210 



introduce placental restriction, although this has only been examined in rats to date. Placental 211 

restriction induced by intraperitoneal infusion of synthetic thromboxane A2 (STA2) analogues in the 212 

rat constricts placental blood vessels, which reduces birth and brain weight (Table 2). This in turn 213 

alters neurodevelopment in the fetus and neonate (Table 3, 4), and impairs neuromotor, cognitive 214 

and behavioural development at least to adolescence (Table 6). Pumps to infuse STA2 are implanted 215 

at day 13 of gestation, thus the period of placental restriction is longer than uterine artery ligation 216 

models in rats, and with shorter and less invasive surgery, which reduces maternal compromise 217 

[128-131]. Further experimentation is needed to delineate the adult outcomes and underlying 218 

neurodevelopmental changes in this model of IUGR. 219 

 220 

3.3. Placental restriction throughout pregnancy 221 

The carunclectomy model of placental restriction (CX) in sheep is induced by removal of the 222 

majority of uterine caruncles (placental attachment sites) prior to pregnancy, which reduces 223 

placental size, in spite of compensatory hypertrophic growth of remaining placentomes [132]. 224 

Reduced placental size in turn impairs placental blood flow, and the efficiency and delivery of 225 

nutrients to the fetus (Table 1). Neonates from CX pregnancies are smaller than controls at birth 226 

with reductions of 20-30% in birth weight [133, 134], and smaller decreases (5%) in skull width, 227 

indicative of brain sparing [133, 135-137]. The advantages of this model are that, similar to human 228 

IUGR, the fetuses are hypoxic, and restriction is chronic and increases throughout the course of 229 

pregnancy [Figure 2, 11]. Moreover, no surgical intervention is required during pregnancy. 230 

Additionally, CX sheep offspring have similar postnatal endocrine and growth outcomes to the 231 

IUGR human, including insulin resistance [133, 138], increased visceral adiposity [135], and 232 

neonatal catch-up growth [135-141].  233 

 234 

4. Neurodevelopmental and cognitive consequences of experimental IUGR 235 



4.1. Fetal neurodevelopment 236 

Fetal neurodevelopment has been examined more frequently in the UPL guinea pig and UPE sheep 237 

models than rat models of IUGR, but not at all in the UPL rabbit or CX sheep. In both the UPL 238 

guinea pig and UPE sheep there are morphological signs of disrupted development (see below), 239 

increased apoptosis and decreased expression of neurotropins, such as brain-derived neurotrophic 240 

factor [Table 2, 108, 109, 120, 142, 143]. In the late gestation guinea pig fetus, UPL decreases 241 

overall and neuronal volume of the whole brain, cerebrum and hippocampus (Table 3), consistent 242 

with the human IUGR fetus [19, 21, 22, 25, 28]. The impaired development of the hippocampus, 243 

myelination and white matter development in the UPL guinea pig have been investigated in detail, 244 

with both delays and decreases in myelination reported (Table 3). Region-specific changes in 245 

concentration and metabolism of neurotransmitters and catecholamines in the brain also occur in the 246 

UPL guinea pig. UPL elevates serotonin concentration in the frontal and temporal cortex, increases 247 

noradrenaline in the caudate nucleus, and alters dopamine and noradrenaline metabolism in a 248 

number of regions [144]. Similar patterns of volume loss and neurodevelopmental damage, 249 

including decreases in cortical myelination, and decreases in mitotic division and increased post-250 

mitotic cell death in the cerebellum, but not hippocampus, have been reported for the UPE sheep 251 

(Tables 3 and 4). Specific attention has been paid to examining damage in the hippocampus, and to 252 

a lesser extent cerebellum in the UPE sheep. Similar damage is seen in both regions in UPE sheep, 253 

including white matter lesions, gliosis, loss of neurons, and decreased gross volume [109, 125, 254 

145]. These models thus demonstrate causal effects of restricted placental function on fetal 255 

neurodevelopment by specifically manipulating this variable without genetic or environmental 256 

confounders associated with IUGR in human cohorts.  257 

 258 

4.2. Neonatal neurodevelopment and cognitive outcomes 259 

The majority of rat and rabbit studies have examined outcomes in neonates, whereas neonatal 260 

outcomes have not been examined in any great detail in the guinea pig, or at all in sheep models of 261 



IUGR. In all rat IUGR models, and in the UPL rabbit, neonatal brain volume is decreased overall 262 

and within specific brain regions (Table 4). In addition to loss of volume, neuron number is also 263 

further impacted by decreased neuronal density in a number of brain regions, at least in  progeny of 264 

rat pregnancies subject to maternal undernutrition or UPL (Table 4).Studies in the STA2 rat suggest 265 

this may be due to delayed neuronal migration [146], which may be due to the decreased expression 266 

of neural cell adhesion molecule and brain derived neurotrophic factor, which guide neuronal 267 

differentiation and migration, observed in these animals [147]. Studies in the UPL rat have 268 

continued into early postnatal life to examine the onset of myelination. In early postnatal life, 269 

structural damage, decreased myelin volume, and region specific changes to numbers of pre-270 

oligodendrocytes and oligodendrocytes, are evident in the UPL rat, indicating discordant brain 271 

development (Table 4). The UPL rat also has a loss of white matter volume in the corpus callosum 272 

at birth and during the first two weeks of postnatal life, as is the case in human IUGR neonates [23], 273 

whilst in the UPL rabbit there is decreased white matter volume in the hippocampus at birth (Table 274 

4). While cognitive studies are not possible at this young age, neonatal neurobehaviour, including 275 

reflex development, is impaired in IUGR rats induced by either maternal global UN or STA2 rat, 276 

and UPL rabbit models of IUGR (Table 6), consistent with observations in human IUGR neonates 277 

and toddlers [17, 26, 31, 32]. 278 

 279 

4.3. Adolescent and adult neurodevelopment and cognitive outcomes 280 

Outcomes in the adolescent or adult have not been examined in the majority of experimental models 281 

of IUGR. Importantly, and consistent with persistent functional consequences of IUGR, SGA and 282 

low birth weight in humans [30, 39, 42, 148], existing studies do suggest long-term structural 283 

damage following experimental IUGR. These include damage which occurs during exposure to 284 

restriction and persist from fetal life, such as decreased neuronal density [117], which can be 285 

contributed by grey matter loss in utero resulting in decreased neuron numbers in later life. This 286 



also includes further changes that develop after birth, including decreased myelination [112, 117, 287 

149]. Studies in adolescent and adult animals (Table 5) also provide evidence of causation for long-288 

term effects of a restricted environment in utero, by providing a common postnatal environment 289 

including diet and environmental stimuli in which all progeny are assessed. The adult UPL rat and 290 

UPL rabbit both have decreased neuronal density and myelination in multiple brain regions (Table 291 

5). Maternal global or protein feed restriction in rats induces limited changes in brain volume in the 292 

adult (Table 6), in contrast to the volume losses and decreased levels of myelination seen in 293 

adolescent and young adult humans affected by IUGR and SGA [18, 27]. It is not clear whether 294 

these comparatively limited effects of maternal undernutrition on brain structure are a consequence 295 

of relatively mild restriction in this model, or are a characteristic of this species, since volumes of 296 

specific brain regions have not been reported for other experimental rat models of IUGR. There are 297 

also few gross structural consequences of IUGR in the adult CX sheep, in which grey and white 298 

matter areas remain unchanged in the prefrontal cortex (Hunter et al., unpublished data). The 299 

addition of structural studies in other experimental models of IUGR and detailed histological 300 

studies to assess more subtle changes will assist in comparisons of lasting neurodevelopmental 301 

consequences between these experimental models of IUGR and with human IUGR. 302 

 303 

The majority of studies examining postnatal cognition have been conducted using rat models of 304 

IUGR. Maternal global or protein feed restriction in rats impairs reversal learning (a measure of 305 

executive function, in which rules or discriminations to solve a task are initially learned and then 306 

reversed), in pups and adult progeny, but in the majority of models there are no signs of spatial 307 

learning or memory impairments (Table 6). The opposite is true in the sheep (Table 6), in which 308 

initial learning but not memory is impaired during simple maze tasks in UPE lambs [sexes 309 

combined, 122], and during diamond maze tasks in male CX lambs and young adult sheep [150], 310 

but reversal learning is not impaired.  311 

 312 



4.4. Gaps in knowledge and future directions 313 

 314 

Taken in combination there are clear gaps in knowledge when comparing outcomes between animal 315 

models, and to human IUGR. Firstly, the different ages studied make it difficult to make 316 

comparisons between species, in part due to the differing neurodevelopmental trajectories (Figure 317 

1). Models and studies differ in the timing of exposure to restriction, whilst the variable timing at 318 

which outcomes are evaluated determine what outcomes it is possible to observe. For example, in 319 

the majority of rat studies, brains are studied at postnatal day 0 and 1. Thus examination of white 320 

matter development is impossible, as central myelination has not yet commenced at this age in the 321 

rat [15]. Earlier timing of neurodevelopment in other species, such as the guinea pig (Table 3) and 322 

rabbit (Table 4), mean that these species are useful in determining effects of experimental IUGR on 323 

fetal and neonatal neurodevelopment and reflexes. Sheep undergo neurodevelopment even earlier 324 

and may prove particularly useful for fetal studies in experimental IUGR. The lamb has previously 325 

been used to investigate white matter injury following asphyxia and preterm birth [151-155], and 326 

effects of perinatal exposure to corticosteroids [156-159] due to the onset of myelination in late 327 

pregnancy. There is therefore a considerable body of literature in this species examining possible 328 

mechanisms by which IUGR may influence outcomes, such as via hypoxia. Comparable 329 

neurodevelopmental data in the human is not currently available. To date, studies of the IUGR 330 

human fetus and neonate have largely examined grey matter volume, whereas the greatest effects of 331 

IUGR on neurodevelopment in toddlers and adolescents are on white matter [20, 26, 27].  332 

 333 

The techniques used to study neurodevelopment and cognition in each experimental species also 334 

differ, which further complicates comparisons between species. Animal models are the only means 335 

by which mechanisms of damage associated with IUGR can be examined at the tissue or molecular 336 

level, as human studies rely on rare donations of tissue from miscarried fetuses, and thus are 337 

obtained at varying stages of prenatal development, and often exposed to pathological conditions 338 



[19]. Assessment of neurodevelopmental outcomes in the rat and guinea pig frequently analyse 339 

microstructural, histological and gene expression outcomes [79, 85, 121, 128, 142, 160-162], but 340 

have not yet directly studied functional outcomes into adult life. In UPL rabbits, MRI and imaging 341 

techniques have been utilised [117, 163]; methods that are also used to assess brain morphology 342 

following IUGR in humans [18, 26, 29, 164].  Nevertheless, as is the case in humans, MRI studies 343 

do not permit for examination of causality. Studies that incorporate these imaging techniques 344 

concurrently with histological studies and measures of learning outcomes could prove a valuable 345 

way to relate structure (eg. myelination) with functional outcomes in future. It simply is not clear at 346 

present how the fetal and neonatal structural outcomes observed in rats, rabbits, sheep and guinea 347 

pigs translate to functional outcomes, nor what mechanisms underlie the structural and functional 348 

outcomes of IUGR. 349 

 350 

Comparison of cognitive outcomes is also difficult between models, due to study at different ages 351 

and with varying tests.  Neonatal neurobehavioural outcomes, such as development of reflexes, 352 

have been studied in the IUGR rat following maternal global or protein feed restriction or STA2 353 

administration [79, 87, 129, 165] and in the UPL rabbit [67, 68], but similar studies are not possible 354 

in guinea pigs and sheep, which are born more developed and with these reflexes already 355 

established [166]. Impairments of later memory and visuomotor skills have been observed in the 356 

majority of animal models of IUGR (Table 6), although some differences exist in outcomes 357 

between species and studies. Initial and reversal learning and memory are impaired in maze testing 358 

in progeny of maternal global feed restricted and UPL rats [79, 97, 113, 115, 167]. In contrast, 359 

although UPE and CX in sheep impair initial learning of maze routes in progeny [122, 150], 360 

reversal tasks are solved more quickly by CX than control progeny [150]. It is not clear whether this 361 

reflects differences in the type and timing of restriction, or behavioural differences between species. 362 

For example, in T and Y-maze tasks sheep rapidly acquire bias towards entering one arm 363 

preferentially and become averse to entering the other maze arm in reversal tasks [122, 168, 169]. 364 



In contrast, rats find novelty far more attractive, and are therefore more likely to explore maze arms 365 

they have not previously been able to access [170]. 366 

 367 

Understanding and comparison of cognitive outcomes of IUGR may also be limited by availability 368 

of validated tools for cognitive testing in many species, with few tools able to be utilised in both 369 

experimental and human IUGR. The majority of human studies report IQ, memory and other 370 

cognitive measures taken via written, oral or manual dexterity tests [33-42], which are obviously 371 

not possible in animal models. Perhaps more importantly, the vast majority of human motor and 372 

cognitive assessments were designed to detect relatively frank disability, and may well miss more 373 

subtle but still physiologically-relevant neurodevelopmental impairments. No group differences in 374 

mean neurodevelopmental scores exist between preterm IUGR and preterm AGA infants at twelve 375 

months corrected age [64], although the incidence of abnormal scores is increased in IUGR 376 

compared to AGA infants [31, 32]. Limited capacities in infancy limit the ability to measure subtle 377 

changes in development and cognition, particularly prior to language development. Tools such as 378 

the Assessment of Preterm Infants Behaviour therefore assess measures such as motor tone, 379 

attention and self-regulation in neonates [171] rather than cognition. There is a sharp trajectory of 380 

cognitive development after age six into adolescence, during which humans develop more complex 381 

cognitive abilities, especially executive functions. This enables use of a wider battery of testing 382 

tools in children than infants, which detect lower scores in IUGR children for a number of IQ 383 

subscales from the age of six onwards [172]. Few human IUGR studies have examined 384 

neurodevelopmental or cognitive outcomes past childhood and into adulthood, however. Maze 385 

testing is a useful measure of learning and memory and has been utilised in IUGR rats and sheep 386 

[95, 122, 150, 167], but to date only one study has utilised this in human IUGR with toddlers 387 

completing a maze task directly comparable to those tests used in animal studies [36]. Object 388 

recognition tests have been utilised in UPL rats and rabbits, allowing discrimination between 389 

different kinds of memory, specifically recognition and spatial memory [113, 115, 117]. Although 390 



maze [150, 169, 173-175], and executive function tasks [168, 174] have been utilised in studies of 391 

sheep behaviour, not all of these tools have been yet applied to IUGR models. Use of a greater 392 

variety of tests in animal models of IUGR, to evaluate outcomes including executive function, 393 

dexterity, learning and non-spatial forms of memory, are necessary to enable better comparisons of 394 

functional deficits between human and experimental IUGR. 395 

 396 

In all of these experimental models of IUGR, there is currently a lack of detailed longitudinal 397 

studies of cognitive changes throughout the lifespan in parallel with studies of structural 398 

neurodevelopment. Such studies are needed both to allow comparisons of outcomes with those of 399 

human IUGR, and to evaluate long-term consequences of interventions. Such longitudinal studies in 400 

large animal models may be precluded by husbandry costs and the lifespan, and be more feasible in 401 

small animal models due to their rapid neurodevelopment. Although longitudinal assessment of 402 

brain structure and reflex development has been performed in the UPL rabbit using MRI acquisition 403 

[116, 163], concurrent functional assessments are not yet available. To date, there have been few 404 

longitudinal studies of cognitive outcomes in any species, and due to the cost of maintaining animal 405 

cohorts, the same animals are generally tested at multiple ages. Experimenters therefore also need to 406 

account for effects of prior learning during analysis of data, as species such as sheep are capable of 407 

remembering both visual cues [176] and strategies required to solve maze tasks [150] for periods 408 

ranging from a month to a year after initial learning. 409 

 410 

Finally, it is vital that more studies examine cognition in intact post-pubertal adults of each sex. In 411 

the rat, maternal UN has sex-specific effects on cognition [84], and these may in part be due to 412 

interactions with sex steroids. Sex hormones, particularly testosterone, affect behavioural stress 413 

responses in sheep [177, 178], whereas in rats both oestrogen and testosterone appear to 414 

independently affect both stress response and spatial learning [179-182]. Therefore studies utilising 415 

one sex or pre-pubertal animals are unlikely to produce data applicable to human adults. 416 



Additionally, stress induced by human contact and isolation during the course of testing may impact 417 

outcomes differently dependent on species. Sheep find proximity to observers aversive [183-186], 418 

and minimising stress is critical to avoid confounding during cognitive testing. Further complicating 419 

this issue, prenatal exposures also have sex-specific effects on stress responses. For example in 420 

adult sheep progeny of maternal globally-feed restricted pregnancies, UN males have a greater 421 

locomotion response than control males in response to sudden movement (reactivity test) [84]. Both 422 

UN and control females share this rapid locomotion response, but this persists for a shorter duration 423 

in UN than control females [84]. Low birth weight (in term-born children and thus likely to reflect 424 

restricted growth in utero) also has sex-specific effects on the cortisol response to stress in pre-425 

pubertal human children [187]. As adults, low birth weight women have greater systolic blood 426 

pressure during stress tasks than controls, and also greater heart rate during the luteal but not 427 

follicular phase of the menstrual cycle [188]. Responses to the same stress tasks do not differ 428 

between control and low birth weight men [188]. Stress affects cognitive outcomes including 429 

memory [189], and both stress response and effects of IUGR appear to be sex-specific and reactive 430 

to levels of sex steroids. It is therefore important to include gonadally-intact animals of both sexes 431 

and evaluate outcomes before and after puberty to fully characterise the effects of IUGR on 432 

cognition [84]. 433 

 434 

5. Conclusions and recommendations 435 

Animal models of IUGR have enabled examination of causal links between IUGR and 436 

morphological and cognitive outcomes, and minimisation of environmental and genetic 437 

confounders and variation. There are merits and drawbacks to each currently utilised experimental 438 

model of IUGR. Nevertheless, in the majority of models, experimental IUGR produces progeny 439 

with broadly similar outcomes to human IUGR, including altered brain morphology, particularly 440 

grey matter loss and discordant trajectory of white matter development, and poorer cognition and 441 

memory. These preclinical studies have been limited, however, by lack of concurrent and detailed 442 



characterisation of mechanisms and functional outcomes, and a paucity of longitudinal studies 443 

including pre- and post-pubertal animals of both sexes.  444 

 445 

In order to further investigate the mechanisms underlying adverse neurodevelopmental and 446 

functional consequences of IUGR, and to evaluate interventions that will subsequently improve 447 

outcomes of IUGR in humans, we recommend that preclinical studies need to incorporate the 448 

following design considerations: 449 

1. The method of restriction should induce similar changes in the intrauterine environment to 450 

those seen in human IUGR, including decreased nutrient and oxygen availability. 451 

2. The timing of growth restriction relative to neurodevelopment should be similar to that seen 452 

in human IUGR.  453 

3. Neurodevelopmental and cognitive outcomes should resemble those reported following 454 

human IUGR, including incidence of brain sparing in more severe cases of restriction, 455 

reduction of brain volume at birth, particularly grey matter volume, delayed and discordant 456 

white matter development, and impaired learning, memory, visuomotor and executive 457 

function skills.  458 

4. Species-appropriate cognitive tests that minimise confounding by factors including stress 459 

should be used. 460 

5. Outcomes should be evaluated across the life course and in gonadally-intact animals of both 461 

sexes.  462 

463 
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Figure 1 – Timing of neurodevelopment in humans and in species utilised in animal models of 465 

IUGR. N = onset of neurogenesis, green panel = onset of myelination, hollow arrow indicates onset 466 

of puberty. Data on onset of neurogenesis and onset of myelination were taken directly from the 467 

literature for rats and sheep [15, 65, 70].Timing of neurogenesis and myelination of the guinea pig 468 

and rabbit was extrapolated using the most recent models predicting developmental timing across 469 

species from available information from mapped developmental events and based on data on white 470 

matter development after the apparent onset of myelination in these species [67, 68, 119, 166, 190]. 471 

Data on onset of puberty were taken from data using species-appropriate measures in human [191], 472 



rat [192], guinea pig [193, 194], rabbit [195, 196] and sheep [197, 198]. Diagram does not show 473 

maturation of myelination, which continues into adolescence in the majority of species for which 474 

data is available [e.g. rats and humans, 15]. 475 

476 
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Figure 2 – Timing of placental restriction (PR) in human IUGR and animal models of IUGR. 478 

UPL = uteroplacental vessel ligation, THROM = thromboxane A2 analogue (STA2) administration, 479 



UPE = uteroplacental vessel bed embolisation, CX = carunclectomy, N = onset of neurogenesis, 480 

hollow arrow = onset of puberty, green bar = period of majority of myelination, solid red bar = 481 

period of acute restriction, with multiple bars indicating different periods of restriction used in the 482 

same IUGR model, red gradient = chronic restriction with gradually increasing strength, purple box 483 

= period of catch up growth in species in which it has been reported (no data are available for rabbit 484 

or guinea pig following UPL). Periods of restriction depicted in this figure were chosen as most 485 

representative of the timing described in the literature: rat UPL [112, 115], guinea pig UPL [119-486 

121], rabbit UPL [116-118], sheep UPE [109, 123, 125] and sheep CX [107, 132, 133]. Maternal 487 

global feed or protein restriction have been applied for multiple periods in rats, encompassing 488 

whole or part of gestation and may end at delivery or continue throughout lactation [79-88] – due to 489 

the variety of timing used in these studies they are not shown above.490 



Table 1 – Fetal growth outcomes in animal models of IUGR.  
↓ decreased compared to healthy controls, ↑ increased compared to healthy controls, = unchanged/not different to controls, + present in this model. Days of 

pregnancy are designed by embryonic day, eg. E10. 

 Rat 

maternal feed 

restriction 

Rat 

maternal protein 

restriction 

Sheep 

maternal feed 

restriction 

Rat 

maternal 

thromboxane 

Rat 

uteroplacental 

vessel ligation 

Guinea pig 

uteroplacental 

vessel ligation 

Rabbit 

uteroplacental 

vessel ligation 

Sheep 

uteroplacental 

embolisation 

Sheep 

carunclectomy 

Fetal 

weight 
↓13% [199] ↓5-35% 

[86, 104, 200] 

↑7-25%  [201] 

= [80] [82] 

↓11% [82] 

↓[128] ↓8-31%  
[112 , 202-204] 

= E19, ↓E21 
[160] 

↓22-63%  
[106, 119, 121, 142-

144, 161, 162, 205-

207] 

↓20-36%  
[102, 208, 209] 

↓20-42% 
[108, 109, 111] 

↓15-43% 
[11, 107, 210, 211] 

Placental 

weight 
 ↓9.5-35% 

[104, 200] 

= [86] 

↑↓ during 

pregnancy [201] 

= [89] 

↓size as 

pregnancy 

progresses [82]  

 

 ↓20% [202] ↓21-40%  
[106, 142-144, 161, 

206] 

= [102, 208] 

↓44% [212] 

↓35%  
[109] 

↓36-64% 
[11, 107, 132, 210, 

211] 

Fetal brain 

size 
 = [86] 

↑12% [201] 

↓E90, = E135  
[82] 

=E16, E18 [128] 

↓E20 [128] 

= E19, E22  
[160, 203] 

↓10-20%  
[142, 143, 161, 162, 

205, 207] 

= [144, 206] 

↓10-22% 
[102, 208, 209] 

= E25 [208] 

=  
[108, 111, 123] 

↓8.5% [109] 

↓14-17% [11] 

Brain 

sparing 
 + [86],  

- [201] 

= [80, 82]  + [160] + [119, 142, 144, 

161, 162, 205-207] 
+ [102, 208] + [108, 109, 122, 

123] 
+ [11] 

Hypoxia   = d113-116 [80]   + peripheral blood, 

severity varies in 

brain [144] 

+ [208] + [108, 109, 111, 

122, 125] 

+ transient [123] 

+ [11, 210, 213] 

Fetal 

glucose 
 ↑E14, = E21 

[104] 
↓[82] 

= [80] 

 ↓E22 [203] ↓E49-51 [106]  ↓ [108, 109, 111] ↓ [107, 213] 

Fetal 

insulin 
 ↑E14, = E21 

[104] 
= E90, ↓E135 

[82] 
 = E22 [203] ↓E49-51 [106]   ↓[107] 

Fetal amino 

acids 
 ↑↓ [200] = protein [82]       

Gestation 

length 
= [79, 87]  = [89]     =/↓ [124] 

↓3-16 [122, 125] 

= [135, 139, 141] 

↓2.2 days [134] 



Table 2 – Neonatal and long-term growth outcomes in animal models of IUGR.  
↓ decreased compared to healthy controls, ↑ increased compared to healthy controls, = unchanged/not different to controls, + present in this model. 

 Rat 

maternal feed 

restriction 

Rat 

maternal protein 

restriction 

Sheep 

maternal 

feed 

restriction 

Rat 

maternal 

thromboxane 

Rat 

uteroplacental vessel 

ligation 

Guinea pig 

uteroplacental 

vessel ligation 

Rabbit 

uteroplacental 

vessel ligation 

Sheep 

uteroplacental 

embolisation 

Sheep 

carunclectomy 

NEONATE 

Birth 

weight 
= [214] 

↓4-23% [79, 

87, 88, 93-96] 

= [201, 215] 

↓7-52% [91, 92, 97-101, 

216] 

↓9.5-14% 
[83, 89] 

= [84] 

↓[128, 129, 131, 

146] 
↓8-40% [99, 112, 114, 

115, 160, 203, 217, 218] 
↓36-42% [145, 

162] 
↓18-44% [102, 

116-118, 163, 212] 
↓42-48% [122, 

124, 125] 
↓17-28% [132, 

134-141] 

Brain 

size 
= [214] 

↓cerebrum, 

11% [79] 

↓11-66% [90, 99, 101] 

=  [201, 215] 

 ↓[129] = [160, 203] 

↓33% [99] 

↓forebrain [217] 

↓14% [162] 

↓forebrain [145] 

↓10-34% [102, 

116, 118, 212] 
 ↓5% skull 

width [136-138, 

141] 

Brain 

sparing 
   + [129] - [160] + [162] + [102, 116] 

= [118] 

+ [124] + [136] 

Catch up 

growth 

+ [85, 94-96] 
- [93, 199] 

- [90, 100] 

+ [92, 97] 

= [89] - [129] 

+ [131] 

- [112, 217] 

+ [114, 115, 160, 203] 

=/- [218] 

  + [124] 

- [122] 

+ [135-141, 219] 

ADULT 

Adult 

body 

weight 

= [79, 95] 

↓8% [85, 93, 

94] 

= [97, 215, 216] 

↓4-53% [97-

100] 

= [83, 84] = [131] = [114, 115, 160] 

↓14-33% [99, 112] 

= / ↓ [218] 

↓15% [162] = [117, 163]  = [139, 141] 

=/↓sex specific 
[219] 

Adult 

brain size 
= forebrain 

[79, 85] 

↓4% [93] 

= [215]    ↓12% [162] = [163]  = skull width 
[141] 



Table 3: Fetal neurodevelopmental outcomes in animal models of IUGR. Gestational age is shown as embryonic day, eg E20 for day 20 of gestation. CA1, CA2, 

CA3, CA4 = cornu ammonis fields 1-4 respectively, DG = dentate gyrus, ↓ decreased compared to healthy controls, ↑ increased compared to healthy controls, = 

unchanged/not different to controls, + present in this model. 

Outcomes Rat 

maternal thromboxane 

Rat 

uteroplacental vessel ligation 

Guinea pig 

uteroplacental vessel ligation 

Sheep 

uteroplacental embolisation 

VOLUME 

Total ↓26.9% E20 [128]  ↓ 9% [205] ↓ 9.5% [109] 

Cerebrum ↓44.5% E20 [128]  
↓ 13.5% [205] 

= [162] 
= [109] 

Hippocampus   ↓ 26% [205]  

Cerebellum   = [162] = [109] 

Striatum   ↓ 13% [205]  

Ventriculomegaly   + [205]  

NEURONAL DENSITY 

Cortex  ↓parietal cortex [160] ↓ [69, 149]  

Hippocampus   ↓dentate gyrus [69] = [111] 

Cerebellum 
   ↓ Purkinje neurons and 

molecular layer width [108] 

HIPPOCAMPAL DEVELOPMENT 

Synaptogenesis   ↓CA1, CA3, DG [121]  

Synaptic maturation  ↓CA1,  DG [121]  

Dendrite length   ↓ apical and basal arbor, CA1, DG [161]  

Dendrite number   = apical, ↓basal intersections, CA1 [161]  

Dendritic branches   = basal, ↓ apical, CA1 [161]  

Dendritic spines   ↑ CA1, DG [161]  

Region measurements  ↓stratum oriens, mossy fibre layer [142] = [108, 111] 



Outcomes Rat 

maternal thromboxane 

Rat 

uteroplacental vessel ligation 

Guinea pig 

uteroplacental vessel ligation 

Sheep 

uteroplacental embolisation 

WHITE MATTER 

Volume   ↓ cerebrum, E60 [162] 

↓cerebellum E60 [142, 162] 

 

Myelination   ↓cerebrum, cerebellum, CA1 hippocampus, 

dorsal fornix, dorsal fimbria, corpus 

callosum, periventricular white matter, 

parasagittal white matter [119, 121, 143, 206] 

=/↓ spine, age dependent [119] 

= subcortical white matter, d65 [143] 

Delayed maturation of myelin [162] 

↓cerebral cortex, striatum [108] 

Thinner sheaths, signs of 

degeneration [108] 

Damage    + lesions in cerebrum [108] 

+ lesions, gliosis, axonal 

degeneration [109] 

Oligodendrocytes   ↑ numbers in cerebellum [162]  

ASTROGLIOSIS 

Cerebrum   = E52 [119] 

↑E60, E62 [119, 162] 

= E65 [143] 

↑cortex [108, 109] 

Striatum    ↑ [108] 

Cerebellum   = [119] 

↑ E60 [162] 

 

Hippocampus   = E65 [143]  

 



Table 4 – Neonatal and pre-weaning neurodevelopmental outcomes in animal models of IUGR. ↑ increased compared to healthy controls, = unchanged/not 

different to controls, + present in this model. VMH = ventromedial hypothalamic nucleus, PVH = paraventricular hypothalamic nucleus, CC = corpus callosum, 

CA1, CA2, CA3, CA4 = cornu ammonis fields 1-4 respectively, DG = dentate gyrus. Age indicated in days from birth where appropriate, eg. d10 for day 10 

postnatal age. 

 Rat 

maternal feed 

restriction 

Rat 

maternal 

protein 

restriction 

Rat 

maternal 

thromboxane 

Rat 

uteroplacental 

vessel ligation 

Guinea pig 

uteroplacental 

vessel ligation 

Rabbit 

uteroplacental 

vessel ligation 

Sheep 

uteroplacental 

embolisation 

VOLUME 

Brain ↓11% [79] ↓11% [90] ↓17.3% [128, 129]   ↓10-18% [116, 

212] 
= [125] 

Forebrain ↓10-15% [79, 85]  ↓ [129]  ↓13-16% [145, 162] ↓19% [212] = [125] 

Cortex   ↓31% [128]   ↓20% [217]  

Striatum      ↓12% [212]  

Hippocampus = [85] = [91]  ↓CA1, males, d0 [220] 

= CA2, CA3, d0 [220] 

 ↓22.5% [212]  

Cerebellum   ↓ [129]  ↓23% [145, 162]  = at birth [125] 

↓22%, 8 weeks [125] 

Hypothalamus  ↓18% [91]      

Dentate gyrus    ↓females, d0 [220]    

Corpus callosum    ↓ [114]    

NEURONAL COUNT 

Cortex ↓ [79]  ↓ density, d0 

= density, d7 [129] 

  = [118] = density, 8 weeks 
[125] 

VMH and PVH  ↑ density [90]      

Dentate gyrus = [214]   ↓females, d0 [220]    

Hippocampus = CA1,  CA3 
[214] 

↓CA2, CA4 [214] 

  ↓CA1, CA3, males 

d0 [220] 

↓19% CA1 [145]   



Cerebellum     ↓17% molecular layer, 

↓22.5% granule layer 
[145] 

 = density, delayed 

migration, 8 weeks 

old [125] 

Cell proliferation ↑↓hippocampus, 

hypothalamus, 

age and region 

specific [199] 

  =/↑ cingulate white 

matter, dependent 

on severity of 

restriction [218] 

   

WHITE MATTER 

Volume     ↓cortex, cerebellum, 

hippocampal CA1 and 

stratum oriens [145, 162] 

 ↓hippocampal 

stratums oriens 

width [125] 

Structural damage 

and lesions 

   + [112] 

↑ axonal 

degeneration [114] 

  + cerebrum, 

cerebellum [125] 

Apoptosis    ↑d0, d3 [112, 218, 221 ]    

MYELINATION 

Brain      ↓ [116]  

Cerebrum     = [162]  = [125] 

Corpus callosum    ↓d7 [112, 218] 

↓d14 [222] 

   

Pre-

oligodendrocytes 

   ↓cingulum and CC 

d7 [112, 218] 

   

Oligodendrocytes    ↓ CC d14 [218, 222] 

↑↓ cingulum, p7, 

dependent on 

severity [218] 

↑↓ CA1, sex specific 
[220] 

= immature 

oligodendrocytes, 

CA3, DG, d0 [220] 

   



ASTROGLIOSIS 

Cerebrum       + parietal, frontal 

and temporal lobes 
[125] 

Hypothalamus  ↓ [90]      

Hippocampus    ↑CA3, males, d0 
[220] 

   

Dentate gyrus    ↑males, d0 [220]    

Corpus callosum    ↑d21 [222]    

Cingulum    ↑d7, d13, d14, d21, 

adults [112, 114, 218] 

   

Internal capsule    ↑d7, d14 [112]    

External capsule    = [112]    

 



Table 5 – Adolescent and adult neurodevelopmental outcomes in animal models of IUGR. Gestational age is shown in days of gestation, eg d20 for day 20 of 

gestation. CA1, CA2, CA3, CA4 = cornu ammonis fields 1-4 respectively, DG = dentate gyrus, ↓ decreased compared to healthy controls, ↑ increased compared to 

healthy controls, = unchanged/no different to controls, + present in this model. 

 

Outcomes Rat 

maternal 

protein 

restriction 

Rat 

maternal 

thromboxane 

Rat 

uteroplacental 

vessel ligation 

Guinea pig 

uteroplacental 

vessel ligation 

Rabbit 

uteroplacental 

vessel ligation 

VOLUME 

Brain ↓ [93]   ↓[162] = [163] 

Cerebrum = [79, 85] 
↓ [93] 

    

Midbrain ↓ [93]     

Hippocampus = [85, 93]     

Cerebellum = [79, 85]  

↓ [93] 

  ↓[162]  

Corpus callosum   ↓ [115] ↓width [162]  

NEURONAL DENSITY 

Cerebrum = [79]    ↓insular, temporal and 

occipital cortex, indirect 

evidence [117] 

Hippocampus = [85] ↑ neuronal 

proliferation, 

adolescent females [131] 

= [113, 115] 

↑degenerating  

neurons, CA3 [113] 

 ↓indirect evidence [117] 

Dentate gyrus   = [101]   

Cerebellum = [79]    ↓ indirect evidence via 

MRI [117] 

Fornix   ↑ degenerating neurons [113]   

Entorhinal cortex   ↓ [113, 115] 

↑ degenerating neurons [113] 

  



Cingulate cortex   = [113]   

External capsule   ↑ degenerating neurons [113]   

Prefrontal cortex   = [115]  ↓ indirect evidence [117] 

GABAergic interneurons   ↑ prefrontal cortex [115]   

WHITE MATTER 

Axonal density     ↓ left hemispheric anxiety 

and memory pathways 
[117] 

Axonal degeneration   + cingulate and somatosensory 

cortices, internal capsule, 

pontocerebellar tract [115] 

  

Microstructural 

reorganisation 

    
+ [163] 

MYELINATION 

Cerebrum    = [162] ↓ [117] 

Corpus callosum   = [222]  

↓ d60 [40] 

  

Cingulum   ↓ d60 [112]   

Internal and external capsule   = d60 [112]   

Astrogliosis 

Hippocampus   ↑CA1 [113, 115]   

Dentate gyrus   ↑ [113, 115]   

Entorhinal cortex   ↑ [113, 115]   

Cingulum   ↑ [113, 115]  

= [94] 

  

Fornix   ↑ [113]   

Motor cortex   = [115]   

Somatosensory cortex   ↑ [115]   



Table 6 – Neurobehavioural and cognitive outcomes in animal models of IUGR. Postnatal age is shown days where appropriate, eg. d10 for 10 postnatal days of 

age. ↓ decreased compared to healthy controls, ↑ increased compared to healthy controls, = unchanged/not different to controls, + present in this model. 

Outcome Rat 

maternal feed 

restriction 

Rat 

maternal protein 

restriction 

Sheep 

maternal feed 

restriction 

Rat 

maternal 

thromboxane 

Rat 

uteroplacental 

vessel ligation 

Rabbit 

uteroplacental 

vessel ligation 

Sheep 

uteroplacental 

embolisation 

Sheep 

carunclectomy 

Neonatal 

neurobehaviour 
= reflexes [79] 

↓ righting reflex, 

d3-4 males, d3 

females [87] 

↓cliff avoidance, d7 

females, d8, both 

sexes [87] 

↓negative geotaxis, 

d7-8 males [87] 

= reflexes d10-21 
[165] 

 ↓surface 

righting, d2-9 

↓ negative 

geotaxis d 4-15 
[129] 

 ↓righting 

reflexes, 

locomotion, head 

turning and 

smell test scores 

as d1 neonates 
[116] 

  

Neuromotor  ↓ grip strength 

adult males [165] 

 ↓ motor 

learning, males 
[129] 

↓motor learning, 

adults [222] 

   

Spatial learning = adult males [95] 
 

= adults [97, 165]   = adult males 
[167] 

 ↓initial simple 

maze tests 

(lambs) [122] 

= extended 

simple maze 

testing, obstacle 

course tasks, t-

maze tasks 

(lambs) [122] 

↓initial simple 

maze tests (male 

lambs and young 

adults) [150] 

Reversal 

learning 
↓ male pups [79] ↓ adult males, 

with ↑ 

perservarative 

errors [97] 

↓ in maze tasks, 

adult males [84] 

= maze tasks, 

adult females [84] 
 

    ↑ lambs, young 

adults [150] 

Fear and 

avoidance 

learning 

↑ male pups [79] 

= adult males [95] 

  ↓ [129]     



MEMORY  

Recognition     ↓ adults [113, 115, 

223] 
↓ adults [117]   

Spatial = adult males [95] = adult males [97]  ↓ adolescent 

females [131] 

↓ adult males 
[115, 167] 

  = lambs and 

adults [150] 

Short term  = adult males [97]   = adults males 
[167] 

   

BEHAVIOUR  

Behavioural 

anxiety 
= male pups [79] 

=/↑ adult males [93, 

94] 

↓ adults [98, 216] ↑ reactivity to 

physical 

restraint and 

surprise, adults 
[84] 

↑ adolescent 

females 

= adolescent 

males [131] 

 ↑ adults [117]  ↑ low birth 

weight female 

lambs [150] 

Spontaneous 

ambulation 
= adult males [94, 

95] 
↑ females [165] ↑ in isolation 

tasks, adults [84] 

 ↑ adults [113-115] 

↓ adult males 
[160] 

↓   

Hyperactivity  ↑ adult females  
[165] 

  ↑adults [113-115]    

Exploratory 

behaviour 

 ↑adult females 
[216] 

  ↑adults [113-115] ↓ adults [117, 163]   

Response to 

novelty 

  ↓novelty seeking, 

adults [84] 

 = adults [113]    
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