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Abstract  

 

Functionally graded thermal barrier coatings (FG TBCs) are advanced 

multi-phase composites that are engineered to have a smooth spatial gradation 

of material constituents, which are normally ceramics and metal. The smooth 

gradation results in the reduction of thermal stresses, minimization or 

elimination of stress concentrations and singularities at interface corners, and 

increase in bonding strength. FG TBCs are able to survive very high 

temperatures and temperature gradients, which makes them very promising in 

many current and future applications including nuclear reactors, engines, 

turbines and leading edges of hypersonic vehicles. 

FG TBCs inherit fatal weaknesses of ceramics, its brittleness, which often 

leads to fractures during temperature excursions. Despite of many studies on 

toughening of brittle ceramics conducted in the past three decades, there was 

not much work so far done on the toughening of FG TBCs.  

The present project has two aims. The first aim is to develop a general 

micromechanical theory of the stress-induced transformation toughening of 

multi-phase composites and the second aim is to develop a theoretical model for 

FG TBCs toughened by transformable particles, which can be used in the design 

and fabrication of FG TBCs for applications where the high fracture resistance is 

mandatory.  

A new theoretical model for transformation toughening in multi-phase 

composites is developed based on a combination of micromechanics and 

fracture mechanics approaches. According to the developed model, the effect of 

thermal residual stresses due to the mismatch in thermal expansion coefficients 

of constituent phases on toughening is found to be very strong.  

A methodology of design of FG TBCs toughened by phase transformation 

of ZrO2 is investigated by incorporating the developed micromechanics-based 

model for transformation toughening in multi-phase composites into the 

classical lamination theory (CLT). A new parameter such as an effective stress 

intensity factor is introduced for investigating the fracture behaviour and 

toughening effect in FG TBCs. As an example, Ni-ZrO2 FG TBC systems 

subjected to a thermal shock conditions are analysed and general guidelines for 

the design of such system with improved fracture properties are developed.  
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