
THE UNIVERSITY OF ADELAIDE

South Australia

Formal Verification of Transactional and Configurable
Service-Oriented Processes

A dissertation submitted for the degree

Doctor of Philosophy in the School of Computer Science

by

Scott Bourne
Supervised by A/Prof. Michael Sheng and Dr. Claudia Szabo

2016

c© Copyright by

Scott Bourne

2016

ABSTRACT OF THE DISSERTATION

Formal Verification of Transactional and Configurable
Service-Oriented Processes

by

Scott Bourne
Doctor of Philosophy in School of Computer Science

The University of Adelaide, South Australia, 2016

The industrial rise of Web services and cloud services provides ample opportunities for business

processes to be implemented with third-party components in a way that is rapid to develop, low-

cost, and with reduced start-up risk. Service-oriented processes are business processes imple-

mented by remotely provisioning third-party services: autonomous black box implementations of

common software or hardware requirements. However, executing a workflow structure of these

distributed and heterogeneous components creates several transactional concerns. These include

ensuring an acceptable level of atomicity over long-running executions, handling a diverse range

of potential fault types, and considering the various transactional properties of component services.

In this thesis, we present three related approaches towards ensuring well-formed transactional

behavior in service-oriented processes. We address the problem of identifying issues in the trans-

actional behavior of service-oriented processes at design-time, to prevent costly issues or redevel-

opment at later stages. We adapt an expressive service-oriented process modeling approach that

allows for developers to specify detailed transactional behavior. A set of rules can be applied to

this model in order to identify transactional issues such as deadlock and invalid termination. Fur-

thermore, developers can elicit complex and varied transactional requirements for the process with

ease using our set of temporal logic templates. Model checking is used to ensure that process

designs satisfy these rules and requirements.

Recent innovations in cloud services have led to the proposal of Business Process as a Service

(BPaaS). BPaaS offers common business processes as configurable cloud services, enabling clients

ii

to perform complex or resource expensive business operations in a simple pay-be-use manner. Both

service providers and clients have concerns to be satisfied during BPaaS configuration. Providers

must enforce domain constraints to restrict the service to valid configurations, while the client

has their own application-dependent requirements for the service to meet. Using Binary Decision

Diagram (BDD) analysis and model checking as formal methods, we devise a multi-step process

that identifies a BPaaS configuration satisfying the requirements of both parties.

These verification and configuration techniques have been implemented in a prototype tool

called TL-VIEWS. We include six validation scenarios to demonstrate the effectiveness of our

methods, using real Web and cloud services. An extensive performance analysis is performed

for each model checking feature used by TL-VIEWS and the results indicate that our state-space

reduction measures can decrease verification time for complex models by up to 98.63%.

iii

ORIGINALITY STATEMENT

I certify that this work contains no material which has been accepted for the award of any other

degree or diploma in my name, in any university or other tertiary institution and, to the best of

my knowledge and belief, contains no material previously published or written by another person,

except where due reference has been made in the text. In addition, I certify that no part of this

work will, in the future, be used in a submission in my name, for any other degree or diploma in

any university or other tertiary institution without the prior approval of the University of Adelaide

and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made

available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web,

via the Universitys digital research repository, the Library Search and also through web search

engines, unless permission has been granted by the University to restrict access for a period of

time.

Scott Bourne

SELECTED PUBLICATIONS GENERATED FROM THIS THESIS

1. S. Bourne, C. Szabo, and Q.Z. Sheng. Managing Configurable Business Process as a Ser-

vice to Satisfy Client Transactional Requirements. In Proceedings of the 11th International

Conference on Services Computing, IEEE, 2015.

2. S. Bourne, C. Szabo, and Q.Z. Sheng. TL-VIEWS: A Tool for Temporal Logic Verifica-

tion of Transactional Behavior of Web Service Compositions. In Proceedings of the 12th

International Conference on Service Oriented Computing, Springer, 2014.

3. S. Bourne, C. Szabo, and Q.Z. Sheng. Verifying Transactional Requirements of Web Service

Compositions using Temporal Logic Templates. In Proceedings of the 14th International

Conference on Web Information Systems Engineering, Springer, 2013.

4. S. Bourne, C. Szabo, and Q.Z. Sheng. Ensuring Well-Formed Conversations Between Con-

trol and Operational Behaviors of Web Services. In Proceedings of the 10th International

Conference on Service Oriented Computing, Springer, 2012.

5. Q, Z. Sheng, Z, Maamar, L, Yao, C, Szabo, and S, Bourne. Behavior Modeling and Auto-

mated Verification of Web Services. In Information Sciences, Elsevier, 2012.

6. S. Bourne, C. Szabo, and Q.Z. Sheng. Transactional Design Time Verification of Web Ser-

vice Compositions. (Under review for Transactions on Services Computing, IEEE).

7. S. Bourne, C. Szabo, and Q.Z. Sheng. Verification and Assurance of Transactional Require-

ments in Service-Oriented Processes: A Survey. (Under review for Computing Surveys,

ACM).

ACKNOWLEDGMENTS

I have been extremely fortunate during my candidature to have the backing of a great support

network, both inside and outside my work environment. This thesis simply could not have been

completed without all of their presence, input, and encouragement.

I am deeply grateful to my co-supervisor Dr. Claudia Szabo for the time, guidance, effort,

input, and knowledge she has dedicated to me over the last few years. Under her encouraging,

ambitious, and understanding supervision, I felt I could really produce my best work and grow as

a researcher. Her role in improving my ability to analyze research work, rather than simply absorb

it, cannot be understated.

From day one of my candidature, my principal supervisor Associate Professor Michael Sheng

has given me valuable insight into conducting and writing research, while instilling me with the

confidence to aim high. I am very appreciative for everything he has done for me over the years,

and for the tremendous impact he has had on my professional development.

During my time at the School of Computer Science in The University of Adelaide, there have

been many other students that have provided me with support, help, encouragement, and friend-

ship. For all this, I want to thank Yihong, Ali, Javier, Lu, Lachlan, Kewen, Sujith, and Lijuan.

Away from academic life, I am very thankful to my parents for the unwavering support that has

been behind every accomplishment I have made. Regular camaraderie from my interstate brother

delivered to my inbox has been appreciated, masked in dry humour though it was. I also want to

thank my friends Michael, Daniel, Nathan, Diana, Tom, Candice, Angela, and Heather. All the fun

we have had together allowed me to keep going.

vi

TABLE OF CONTENTS

1 Introduction . 1

1.1 Motivation . 1

1.1.1 Reliable Transactional Service-Oriented Processes 2

1.1.2 Transactional Requirements Compliance in Service-Oriented Processes . . 4

1.1.3 Business Process as a Service Configuration 5

1.2 Goals . 6

1.3 Contributions . 7

1.4 Thesis Outline . 9

2 Background . 12

2.1 Advanced Transaction Models . 13

2.2 Web Service Composition . 16

2.2.1 Transactional Web Service Compositions for Business Processes 19

2.3 Cloud Services . 20

2.3.1 Business Process as a Service . 23

2.4 Summary . 25

3 Well-Formed Transactional Behavior in Service-Oriented Processes 26

3.1 Related Work . 27

3.1.1 Comparison Criteria . 27

3.1.2 Survey . 32

3.1.3 Research Direction . 37

3.2 Transactional Service-Oriented Process Modeling 38

3.2.1 Motivating Example . 38

vii

3.2.2 Control and Operational Behaviors . 40

3.2.3 Inter-Behavior Messages . 41

3.3 Well-Formed Inter-Behavior Conversations . 43

3.3.1 Conversation Structure Rules . 45

3.3.2 Message Sequence Rules . 46

3.4 Enabling Formal Verification Through Model Checking 47

3.4.1 Temporal Logic Transformations . 47

3.4.2 State Space Reduction . 49

3.5 Summary . 56

4 Temporal Logic Templates for Application-Dependent Transactional Requirements 58

4.1 Related Work . 59

4.1.1 Ensuring Transactional Requirements in Service-Oriented Processes 59

4.1.2 Temporal Logic Patterns . 65

4.1.3 Research Direction . 67

4.2 Formalizing Transactional Requirements . 68

4.2.1 Component-Level Templates . 69

4.2.2 Process-Level Templates . 72

4.3 Enabling Formal Verification Through Model Checking 74

4.3.1 Transactional Requirement Formalization 74

4.3.2 State Space Reduction . 75

4.4 Summary . 78

5 Transactional Behavior Verification in Business Process as a Service Configuration 80

5.1 Related Work . 81

5.1.1 Comparison Criteria . 81

viii

5.1.2 Survey . 82

5.1.3 Research Direction . 88

5.2 Transactional Business Process as a Service Modeling 89

5.2.1 Motivating Example . 90

5.2.2 BPaaS Model . 91

5.3 Configuration Domain Constraints . 94

5.4 Business Process as a Service Configuration and Verification 95

5.4.1 BPaaS Configuration Process . 95

5.4.2 BDD Analysis for Ensuring Domain Constraints 97

5.4.3 Model Checking Against Transactional Requirements 100

5.5 Summary . 107

6 Prototype Implementation and Experimental Analysis 109

6.1 Implementation Architecture . 110

6.1.1 Verification Against Conversation Rules and Templates 110

6.1.2 BPaaS Configuration . 114

6.2 Experimental Analysis . 115

6.2.1 Validation Scenarios . 116

6.2.2 Performance Analysis . 129

6.3 Summary . 135

7 Conclusion . 137

7.1 Summary . 138

7.1.1 Conversation Rule Checking for Well-Formed Transactional Behavior . . . 138

7.1.2 Application-Dependent Transactional Requirement Verification 139

7.1.3 Configuration of Transactional Business Process as a Service 140

ix

7.2 Future Directions . 141

7.2.1 Diagnosing Conversation Rule and Transactional Requirement Violations . 141

7.2.2 Preserving Transactional Requirements During Dynamic Configuration . . 143

7.2.3 Business Process as a Service Configuration Framework 144

References . 145

A Temporal Logic Template Specifications . 157

B Using JDD for BDD Construction . 165

C Checkout Configuration BDD . 167

D Implementation of Online Payment Scenario . 169

E Implementation of Course Enrolment Scenario . 173

x

LIST OF FIGURES

2.1 A Web service composition for sending email or postal mail to a group of customers 18

2.2 Cloud service hierarchy [159] . 22

2.3 An abstract example of a BPaaS . 24

3.1 Faults of transactional service-oriented processes 30

3.2 Fault-handling of transactional service-oriented processes 31

3.3 Overview of the online payment process . 39

3.4 Control and operational behavior models of the online payment composition 41

3.5 Two examples of exchanged inter-behavior messages during successful (a) and

failed (b) process execution . 44

3.6 Flattened behavior model of the online payment composition 52

3.7 Reduced Kripke structure for verification against conversation rules 55

4.1 Reduced Kripke structure for transactional requirement verification 78

5.1 BPMN model of the configurable checkout BPaaS 92

5.2 Configurable resources and data objects mapped to a BPMN activity 93

5.3 Inter-behavior messages used to enable communication between the checkout BPMN

and the control behavior model . 94

5.4 Feature model constraints used in our approach 95

5.5 A feature model representing configuration constraints of the checkout BPaaS . . . 96

5.6 Overview of the BPaaS configuration and verification process 97

5.7 A selection of the feature model (a) transformed into propositional logic (b) and a

BDD (c) . 98

xi

5.8 Binary Decision Diagram form of the feature model in Figure 5.7 with four feature

selections . 100

5.9 Propositional logic form of the checkout process feature model with the feature

selections of Table 5.7 . 101

5.10 Kripke structure example for verifying the checkout activity selection 103

5.11 An example of how activities with multiple resources are traversed for the second

model checking phase . 104

5.12 Kripke structure example for verifying resource and data object selection 105

5.13 BPMN of a configuration solution of the Checkout BPaaS 106

6.1 TL-VIEWS architecture . 110

6.2 TL-VIEWS process design interface . 111

6.3 TL-VIEWS requirement specification window . 112

6.4 TL-VIEWS results window following unsuccessful conversation rule verification . 117

6.5 Operational behavior model of the lesson enrolment composition 120

6.6 Conversation rule checking output for the online enrolment model 122

6.7 Transactional requirement verification output for the course enrolment model . . . 124

6.8 Violating stack trace produced by NuSMV . 127

6.9 Verification times during configuration with and without reduction for 10 to 100

requirements . 133

B.1 A Java class for implementing a BDD using the JDD library 166

C.1 Binary Decision Diagram form of the propositional logic property of Figure 5.9 . . 168

D.1 Conversation rules and Kripke structure formulated in an SMV input file for veri-

fying the online payment process . 170

xii

D.2 Kripke structure definition and transactional requirements of the online payment

process . 171

D.3 Kripke structure relation of the online payment process 172

E.1 NuSMV input file containing the temporal logic properties for verifying the course

enrolment process against conversation rules . 174

E.2 NuSMV input file containing the Kripke structure for verifying the course enrol-

ment process against conversation rules . 175

E.3 NuSMV input file containing the course enrolment transactional requirements . . . 176

E.4 NuSMV input file containing the course enrolment Kripke structure relation 177

xiii

LIST OF TABLES

3.1 Overview of comparison criteria . 28

3.2 Overview criteria of application-independent requirements approaches. 32

3.3 Support criteria of application-independent requirements approaches 33

3.4 Method criteria of application-independent requirements approaches. 34

3.5 Transactional behavior criteria of application-independent requirements approaches. 35

3.6 Initiation inter-behavior messages . 42

3.7 Outcome inter-behavior messages . 43

3.8 Conversation structure rules . 45

3.9 Message sequence conversation rules . 46

3.10 Conversation rules formalized using LTL and CTL 48

3.11 A set of inter-behavior messages defined over the online payment design 50

3.12 Temporal logic conversation rules for verifying a Kripke structure 56

4.1 Overview criteria of application-dependent requirements approaches. 61

4.2 Support criteria of application-independent requirements approaches. 62

4.3 Method criteria of application-dependent requirements approaches. 63

4.4 Transactional behavior criteria of application-dependent requirements approaches. 64

4.5 Template specification for CompensateFailure 71

4.6 Template specification for ControlStateCritical 73

4.7 Transactional requirements for the online payment process 75

4.8 Online payment process transactional requirements implemented using our tem-

plate set . 75

4.9 Temporal logic formalizations of the online payment process transactional require-

ments . 78

xiv

5.1 Comparison criteria overview . 82

5.2 Support criteria for comparing work related to BPaaS configuration 83

5.3 Correctness Criteria for comparing work related to BPaaS configuration 84

5.4 Configurable resources for the checkout BPaaS 93

5.5 Configurable data objects for the checkout BPaaS 93

5.6 Propositional logic representations of the feature model constraints of Figure 5.4 . 99

5.7 A selection of features from the checkout BPaaS 99

6.1 Transactional requirements for the online payment model 119

6.2 The inter-behavior messages used in the lesson enrolment composition 121

6.3 Transactional requirements for the course enrolment model 123

6.4 Transactional requirements for BPaaS Scenario A 126

6.5 Transactional requirements for BPaaS Scenario B 129

6.6 Additional feature selections for BPaaS Scenario B 129

6.7 Verification time (in seconds) of conversation rules with and without Kripke struc-

ture reduction . 130

6.8 NuSMV execution times for individual templates 131

6.9 Verification time (in seconds) of temporal logic templates with and without Kripke

structure reduction . 132

6.10 Details of the configurable BPaaS test suite for performance analysis 134

6.11 Verification time (in seconds) of increasingly complex configuration scenarios . . . 134

A.1 Template specification for CompensateFailure 158

A.2 Template specification for CompensateSuccess, minus temporal logic 158

A.3 LTL for the implementations of CompSuccess 159

A.4 Template specification for Alternative . 160

xv

A.5 Template specification for NonRetriable . 161

A.6 Template specification for RetriablePivot 161

A.7 Template specification for NonRetriablePivot 162

A.8 Template specification for ControlStateCritical 162

A.9 Template specification for ControlStateTrigger 163

A.10 Template specification for ControlStateReachable 163

A.11 Template specification for ControlStateUnreachable 164

A.12 Template specification for Compensation . 164

A.13 Template specification for ConditionalCompensation 164

xvi

LIST OF ALGORITHMS

1 Conversation Checking Kripke Structure Reduction: CKSR 54

2 Conversation Checking Depth-First Traversal: CDF(sx, sm, Sv) 54

3 Transactional Requirements Kripke Structure Reduction: TKSR 76

4 Transactional Requirements Depth-First Traversal: TDF(sc, sx, sk, APv) 76

xvii

CHAPTER 1

Introduction

1.1 Motivation

Service-oriented computing, an active research area [32, 133] and adopted technology within in-

dustry [2, 98] over the last decade, has given tremendous support towards the rapid development

of low-risk, distributed, loosely coupled business processes [117]. At the core of the paradigm are

services: autonomous black-boxes software and/or hardware components deployed on the Internet

or a network. Services offer implementations of commonly required functionality to customers or

users (hereafter referred to as clients), enabling remote use in a pay-per-usage agreement. Through

a service’s public network-accessible interface, clients can take advantage of the offered software

or hardware capabilities remotely, without having to purchase or develop their own local infras-

tructure.

Web services [116] began to emerge as the standard implementation of service-oriented archi-

tectures around the turn of the century. Today, there are thousands of Web services available to

potential clients through online directories and dedicated Web sites. Some common usages for

Web services include handling secure payments1, providing access to map tools2, integration with

social media3, access to search functions4, and automating transactions with other businesses5,

among many others. Through common interface standards [39], Web services offer software com-

ponents that are lightweight, easy to integrate, reusable, interchangeable, and easily interoperable.

As such, related Web services, even those from different service providers, can be composed to-

1http://developer.paypal.com/
2http://developers.google.com/places/web-service/
3http://dev.twitter.com/overview/documentation
4http://api.duckduckgo.com/api
5http://www.fedex.com/us/developer/web-services

1

gether into a single process fulfilling a complex task.

The provisioning of several Web services into a workflow structure to implement a complex

business process is known as Web service composition [120]. For example, a business process

that requires searching several different web resources could be implemented as a Web service

composition that guides users through each search step. Web service compositions enable the

rapid development of business processes as they are outsourced software components with loose

coupling and low cost [154]. Since the individual services in a composition are autonomous and

loosely coupled, revising the process or replacing services as needed is simple. Significant research

attention has been given to Web service compositions since the inception of service-oriented com-

puting [126, 133], and several standards for their definition and execution have been proposed,

such as the Web Services Business Process Execution Language (WS-BPEL) [6] and Yet Another

Workflow Language (YAWL) [139].

In this thesis, the term service-oriented process is used to refer to Web service compositions

and other similar service-based implementations, such as distributed workflows [112] and business

process-structured cloud services [118]. Further background details on service-oriented processes

can be found in Chapter 2.

A primary concern with service-oriented processes since their inception has been coordinating

their execution such that an acceptable level of reliability is achieved [66]. As services are inde-

pendent, autonomous, and heterogeneous, applying the appropriate fault prevention and recovery

measures to achieve reliable process execution is not a trivial task [18, 138]. Below, we identify

three motivational issues towards ensuring reliable and valid execution of service-oriented pro-

cesses, according to both application-independent correctness criteria and application-dependent

requirements drawn from business logic.

1.1.1 Reliable Transactional Service-Oriented Processes

Ensuring the reliable execution of service-oriented processes is an ongoing challenge, as they

can be long-running and comprised of distributed and heterogeneous components from third par-

ties [12, 22, 32]. Transactional behavior, adopted from the management of advanced distributed

2

database management [4], has been used to coordinate service-oriented process execution in a way

that handles faults and ensures an acceptable level of relaxed atomicity [18, 33, 100]. Some exam-

ples of transactional behavior applied to service-oriented processes are retrying failed component

services [18, 100], partial rollback through compensating the effect of completed or failed activ-

ities [12, 53], and using alternative services or operations [12, 33], and redundantly provisioning

several services to perform the same task to minimize the effect of faults [96, 103]. Moreover,

dependable processes require transactional behavior that avoids undesirable states, such as dead-

locking scenarios [22], and ensures execution terminates in an acceptable state [62].

Transactional behavior that is unreliable and is not verified can have serious consequences for

owners and users of the process [66, 99]. For example, information gathered by the International

Working Group on Cloud Computing Resiliency on major service outages show how even small

periods of downtime for several major service providers resulted in an estimated total of $285

million loss from 2007-2012 [64]. The massive impact these outages have had on service clients,

including those provisioning services to implement business processes, can only be speculated.

Suspended execution of service-oriented processes can lead to a disruption of business operations,

monetary loss, violation of internal policies, or a damaged consumer confidence. If faults are not

correctly handled, processes may terminate in an invalid state, such as leaving inconsistent data

across sites.

Ensuring that transactional behavior minimizes or avoids the impact of Web service component

faults can be difficult due to complex business process models, unpredictable third-party service

behavior, and unexpected outages of communication networks or services [29, 65]. Many existing

approaches aim to automatically handle faults at runtime [30, 97, 137], but this removes trans-

actional behavior from the developer’s control, which may cause unexpected process behavior or

requirement violations. Furthermore, identifying and resolving these issues early in the develop-

ment cycle, such as at design-time, can avoid costly redevelopment or unexpected faults during

execution.

3

1.1.2 Transactional Requirements Compliance in Service-Oriented Processes

Another concern for the developers of service-oriented processes is that their own application-

specific requirements over the transactional behavior are not violated [33, 57, 111]. These trans-

actional requirements concern the fault-handling behavior and are specific to each process. For

example, a service-oriented process for handling online payment requires different responses for

faults that occur during credit card payment and faults during basic read operations. Furthermore,

the developer may consider some component operations more critical to the success of the process,

and thus require more substantial fault handling. An active body of research in service-oriented

processes is dedicated to ensuring transactional requirements, specified in ways such as as valid

termination states [18, 62], critical and non-critical component services [12, 100], and whether

compensation needs to occur [53, 81], or temporal logic properties [87].

Violating transactional requirements can result in serious consequences such as mismanaged

funds, or violated internal policies [87]. However, ensuring transactional requirements is challeng-

ing. Firstly, transactional requirements must be expressed in a language that allows for formal

methods or machine interpretation. This specification can be error prone, because it requires ex-

pertise in a formal language, and requirements can be very complex [23, 59]. Secondly, as Web

services are heterogeneous, autonomous, and loosely coupled, requirement compliance can be im-

peded by the unpredictable behavior such as outages or updates [18].

Several approaches have addressed this issue by nominating a specification method for trans-

actional requirements, and automating or verifying the service-oriented process accordingly [32].

Common issues with specification methods have are difficulty scaling to large process models,

being unable to expressive complex requirements, or being error-prone for developers to use [23].

For example, Acceptable Termination States (ATS) models [83] allow a developer to exhaustively

define how a process may terminate, but becomes laborious to implement or revise as the size of a

process grows. However, simpler methods such as binary variables [53] or selecting critical com-

ponents [12, 100] are unable to formalize complex requirements, such as fault-handling for certain

operations. Using formal languages like temporal logic [56] for transactional requirements [87]

allows for complex and varied properties, but requires expert knowledge in the language. In sum-

4

mary, current approaches have so far been unable to support component-level and process-level

transactional requirements in a way that greatly reduces the capacity for human error. They also

suffer from state space explosion when applying formal verification to large models.

1.1.3 Business Process as a Service Configuration

In recent years, cloud services have become a popular paradigm for offering a diverse range of

utilities over the Internet, such as software applications, storage, and computing capacity [154,

159]. Cloud services differ from traditional Web services as they offer a wide variety of software,

platform, and infrastructure service types, are highly scalable to changes in workload, and make

efficient use of pooled virtualized resources [7, 49].

Business Process as a Service (BPaaS) [118, 121, 142] is an emerging type of cloud service that

offers business processes as a remote executable service for clients. The aim of BPaaS providers

is to target a large potential market by offering business processes that are common, proven, or

require complex or expensive resources to execute. Clients benefit from using BPaaS as they can

execute business processes in a pay-by-use agreement, rather than obtaining and developing the

necessary hardware, software, or other infrastructure. A BPaaS can be developed by mashing up

external third-party services to fulfil process tasks or roles, such as other types of cloud services,

Web services, and local software and hardware [25, 118]. For example, a BPaaS could handle

similar payment operations or document processing tasks for a diverse range of business clients.

A key property of cloud services is configurability [129, 146], which allows services to be

personalized to meet the requirements of individual client. Configurable service properties can

be functional or non-functional, such as Quality of Service (QoS) guarantees, service structure,

user interface, auxiliary features, and underlying resources [114, 143]. From the service provider

perspective, configurability allows services to reach a larger market, and provide financial benefit

through economies of scale. Managing the process of configuring cloud service to satisfy client

requirements has been an area of research interest in recent years [118, 129, 142].

Managing BPaaS configuration remains a largely open issue in research. Clients should be

able to configure BPaaS from numerous perspectives, such as removing activities, reprovisioning

5

resources or services, or selecting data objects vital to the process [94]. Furthermore, as the com-

plexities of BPaaS are hidden from clients, there must be a guarantee that the transactional behavior

of the process adheres to the client’s requirements. Without establishing this trust, there is great

risk for business clients outsourcing entire processes of the internal operations to BPaaS providers.

At the same time, if BPaaS providers were able to provide a formal guarantee of transactional re-

quirements provided by prospective clients, it would make their services much more attractive. At

present, this challenge hasn’t been addressed in BPaaS research.

1.2 Goals

The above issues lead us to target three main objectives:

Uncovering and resolving transactional behavior issues in service-oriented processes at design-

time

Firstly, we will aim to develop a design-time verification method for service-oriented process that

allows developers to ensure reliable transactional behavior. This will require a formal model for

service-oriented processes that includes a detailed view of the transactional behavior. Rules or

correctness criteria that express well-formed transactional behavior must also be defined. Finally,

an appropriate use of formal methods for verification will allow transactional design issues to be

identified in the model. The end result will be an easy-to-use verification process and its associated

tool that helps developers find and resolve critical problems, such as deadlocking or incomplete

transactional behavior, before starting development.

Formalizing complex transactional requirements for the verification of service-oriented pro-

cesses

Secondly, we aim to create a design-time verification approach that can elicit application-dependent

transactional requirements from developers, in order to verify service-oriented processes against

them. This method will include a requirement specification method that is easy-to-use, capable

6

of both simple and complex requirements, and scalable to large process models. This will enable

developers to verify complex transactional behavior before development, and will provide greater

flexibility and scalability over state-of-the-art approaches, through the breadth and depth of behav-

ior coverage offered by our requirements.

A BPaaS configuration method that preserves provider constraints and client transactional

requirements

Finally, we will develop a configuration process and associated tool for clients to use when provi-

sioning a BPaaS. This process will ensure the satisfaction of transactional requirements and feature

selections from the client, while preserving domain constraints over configuration. The BPaaS will

be able to be configured from numerous perspectives, including activities, resources, and data ob-

jects. Therefore, it requires an expressive model of configurable and transactional BPaaS, formal-

ization of configuration constraints, and formal methods capable of handling large and complex

models in a timeframe reasonable for clients. Ensuring transactional requirements will be able to

provide clients with a greater level of trust to outsource business operations to BPaaS. Our model

will also be able to offer high configurability, to increase the potential market of the service.

1.3 Contributions

In this thesis, we present work providing the following contributions to research in transactional

service-oriented processes:

An expressive design-time model for transactional service-oriented processes

Our service-oriented process model [22, 23] uses statecharts [74] and provides separate views

of the transactional and functional views of the process behavior. This allows each perspective

to be designed and modified by domain experts, and enabling formal methods to be applied for

verification.

7

Rules for well-formed transactional behavior

In [22], we propose a set of rules that can be applied to our service-oriented process model in

order to verify that the transactional behavior is well-formed. These rules ensure that the transac-

tional behavior of the process always i) initiates correctly, ii) avoids deadlocking scenarios, and

iii) terminates in a valid state. These rules can be expressed in temporal logic [56] for formal

verification.

Temporal logic templates as a transactional requirement specification method

We develop a set of temporal logic templates [52] to enable formalization of simple or complex

transactional requirements over service-oriented processes [23]. These templates do not require

expertise in any formal languages to use, and can be used in verification. Compared to exist-

ing specification methods, the template set is easy-to-use, scalable for large process models, and

capable of expressing a diverse range of transactional requirements.

A BPaaS modeling approach that combines transactional behavior, domain constraints, and

configurable activities, resources, and data objects

At the core of our BPaaS configuration process [25], we propose a modelling approach that in-

corporates all these necessary properties in a way that allows formal methods. Business Process

Modelling and Notation (BPMN) [156] is utilized in conjunction with statecharts, feature mod-

els [82], and Binary Decision Diagrams (BDDs).

A BPaaS configuration process that preserves service provider domain constraints and client

transactional requirements

We compose a multi-step configuration process for BPaaS that applies BDD analysis for ensuring

domain constraints, and model checking with temporal logic templates for verification against

client transactional requirements [25]. This allows clients to configure a BPaaS from activity,

resource, and data object perspectives, while ensuring the process satisfies their requirements.

8

A prototype tool for verification of service-oriented process designs and BPaaS configuration

Our proposed verification and configuration approaches are implemented in a Java-based proto-

type tool called TL-VIEWS [24]. The prototype integrates a statechart modelling programs with

formal verification tools for model checking and BDD analysis. It contains interfaces for process

modelling and verification, and for client-driven configuration of BPaaS.

1.4 Thesis Outline

The remaining chapters of this thesis are organized as follows:

• Chapter 2 contains a summary of the background for transactional service-oriented pro-

cesses. We discuss how transactional management of service-oriented processes has built on

concepts from advanced database transactions, namely, the compensation-enabled SAGAS

model, nested transactions, and advance models that apply transactional properties to local

managers. Then, we provide background on the transactional requirements and possibilities

of Web service compositions, including standards, benefits, and the challenges in ensuring

transactional requirements. We also discuss cloud services, which is a type of service that

has risen in prominence in recent years, offering a wide range of utilities from storage, to

development environments, to software. Finally, we introduce BPaaS as a novel form of

cloud service and explain why transactional behavior is an important management factor.

• Chapter 3 details our approach for ensuring well-formed transactional behavior in service-

oriented processes at design-time. Our analytical survey of related work identifies a need for

design-time verification to identify issues in transactional behavior. We introduce our mod-

elling approach for service-oriented processes, which allows separate views of transactional

and functional behavior. These models interact using a series of messages, which allows

them to pass instructions and remain consistent with each other’s status. The messages rep-

resent the transactional behavior of the process, and we propose a set of rules that can be

applied to this model to make sure this behavior is well-formed. We apply temporal logic

and model checking for verification, and use a state space reduction algorithm to address the
9

state space explosion problem inherent in model checking.

• Chapter 4 focuses on ensuring application-dependent transactional requirements at design-

time. From an in-depth analysis of existing work, we show that transactional requirement

specification methods so far applied to service-oriented processes have had issues with ex-

pressibility, scalability, and usability. We propose our requirement specification method,

namely, using temporal logic templates for formalization and design-time verification. Com-

plex and varied transactional requirements can be specified using our template set by assign-

ing simple variables. Developers are not required to have expertise in temporal logic. Our

template set allows the specification of transactional requirements applying to single com-

ponents or the entire process. Model checking is used for verification, with a state space

reduction method to increase verification performance with complex process models and

large sets of transactional requirements.

• Chapter 5 presents our configuration approach for BPaaS. From analyzing the state-of-the-

art in both configurable cloud services and configurable business processes, we identify that

configuring BPaaS while preserving transactional requirements and a valid structure remains

an open issue. For modeling configurable BPaaS, we adapt Business Process Modeling and

Notation (BPMN) with our separation of behaviors model for service-oriented processes,

while including mapping of configurable resources and data objects. Feature models are

adapted from the software product line engineering domain for representing domain con-

straints over valid configurations. Our configuration process combines the temporal logic

templates and model checking of our design-time verification approach with Binary Deci-

sion Diagram (BDD) analysis for constraint checking.

• Chapter 6 contains the details of our prototype tool, and the results of validation and perfor-

mance tests. We provide an overview our prototype tool architecture, with detailed descrip-

tions of each module. The implementations of the modeling, verification, and configuration

approaches of Chapters 3-5 are explained. A set of six validation tests with real world ser-

vices are conducted to demonstrate the effectiveness of our approaches. Finally, each func-

tion that uses model checking for verification undergoes a thorough performance evaluation

10

with large models and property sets, in order to verify the effectiveness of our state space

reduction measures.

• Chapter 7 contains a concluding summary of the work presented in this thesis, as well as

identified directions for future research. We revisit each goal stated above, and discuss how

we implement them in the approaches detailed in Chapters 3-5, and the prototype tool in

Chapter 6. We several extensions that would allow our work to make further contributions

towards transactional service-oriented processes. These are the diagnosis of requirement vi-

olations identified by model checking, enabling dynamic BPaaS configuration in a way that

preserves client transactional requirements and domain constraints, and a BPaaS configura-

tion framework that would realise our approach with deployed services.

11

CHAPTER 2

Background

This chapter provides the background and historical perspective of the research areas relevant to

this thesis. Our work contributes towards the domains of Web service composition and cloud ser-

vices, while building on transaction concepts first proposed in database management. This chapter

will provide the necessary background in each area. Below, we first provide a historical overview of

advanced transaction models for complex distributed database transactions, and highlight features

relevant to the service-oriented process domain, namely, backwards recovery measures, nested

transactions, and transactional properties for heterogeneous resources.

Secondly, we discuss how service-oriented computing has affected the realization of repeat-

able business processes, by enabling Web services to be composed together to fulfil complex tasks.

Web service composition provides new opportunities to transactional management of business pro-

cesses, such as service replacement and late binding, but also challenges in ensuring transactional

requirements over distributed components. We also provide a brief overview of standards that have

been proposed for Web service composition definition, execution, and coordination.

Finally, we provide an overview of cloud services, and give particular focus to Business Pro-

cess as a Service (BPaaS), a type of service still in early stages of research. Cloud services have

emerged in recent years as delivery method for a wide range of utilities, such as storage, database

management, computing capacity, Web application hosting, and software. Distinctive cloud ser-

vice properties such as configurability, multi-tenancy, and elasticity provide benefit both service

providers and clients. While the existing cloud service architecture contains Infrastructure as a

Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS), BPaaS has emerged

in recent years as a prospective fourth layer. BPaaS providers deliver business processes as cloud

services, by potentially mashing up services from numerous third-party providers.

12

2.1 Advanced Transaction Models

Database transaction management, in general, aims to control read and write access to data re-

sources in a way that maximises their reliability and availability [12]. Many transaction models

and protocols that have been proposed to accomplish this for distributed and complex systems

have been extended or adapted towards managing distributed business process execution, in order

to guarantee or improve their correctness and completeness [4, 47, 72]. Traditional transactional

management [70], from which more advanced models have been derived, targets the four ACID

properties, namely, atomicity, consistency, isolation, and durability:

Atomicity: A transaction must either complete in full, or not at all. The transaction can never be

left in an incomplete state, and failed transactions should leave no impact.

Consistency: Transactions must leave all involved databases or resources in a valid state, accord-

ing to any local constraints applicable to those databases.

Isolation: This property prevents any concurrently executing transactions from affecting each

other. In other words, the same resulting database state would be obtained if transactions

upon it were executed concurrently or sequentially.

Durability: The effect of a transaction must be permanent once it has been committed. The result

of the transaction is preserved and not compromised by crashes or failures in the system.

ACID transactions are desirable because they have guaranteed failure atomicity. A series of

ACID transactions also have serializability [15] in their scheduling, which means they can occur

in any order and will leave data resources in the same state. However, the ACID properties are

not always practical for complex business operations, and may need to be relaxed in a controlled

manner [40, 66, 67]. The reasons for this include:

• Business processes can require a nested structure of transactions, where the process can be

seen as a parent transaction whose success is dependent on a set of sub-transactions [55]. In

these scenarios, the atomicity of the process is not trivial to ensure. Traditional ACID trans-

actions are not flexible enough to handle partial failures of composite transactions, when
13

some sub-transactions have succeeded while others have failed. Partial failures can be ac-

ceptable in a business process scenario, as long as faults are handled in a way that satisfies

the requirements of stakeholders [18]. For example, the failure of some minor tasks may not

require the entire process to be aborted, so long as the failures are properly compensated.

• A transaction with strict isolation requires locks to be placed on the resources it uses, which

prevent other transactions from reading or writing to them until the first transaction com-

pletes. This is not feasible for many long-running transactions, as they create unacceptable

delays for other transactions executing concurrently [67]. For example, a booking system in

use by one client cannot lock out all others without causing unacceptable outages and delays.

• Business processes can require the coordination of multiple heterogeneous partners or ser-

vices, such as payment services, database resources, and systems serving different functions

within the business. These components can have varying transactional requirements and

interaction patterns [59]. This is difficult to handle with traditional transaction models, as

resources cannot be handled in a uniform manner [18].

To address these concerns, several advanced transaction models were proposed. These models

were developed to handle composite transactions in distributed multi-database systems over poten-

tially long-running execution times. We highlight a selection of influential advanced transaction

models to discuss the significant innovations they contribute towards service-oriented processes.

Nested transactions [113] were proposed to handle composite transactions or tasks in dis-

tributed systems. Indivisible work units are labelled as sub-transactions, which can be nested

by arranging into a hierarchical structure expressing dependencies. This allows for a transactional

manager to treat sub-transaction failures in ways that prevent the whole process from being aborted,

such as in simple single-level transactions. Further extensions into multilevel transactions [155] al-

low for management of sub-transactions composed into more complex tree structures. Multilevel

transactions are designed to execute on layered system architectures, such that each level in the

transaction tree corresponds to work units in abstraction layers in the system.

The SAGAS transaction model [67] addresses the problem of managing long-running processes

composed of multiple transactions with some level of atomicity. SAGAS executes nested long-
14

running transactions without locking resources. Instead, completed sub-transactions can be undone

or reversed by associating each with a compensation operation. Each compensation operation

removes the effect of a completed sub-transaction, such as removing a record from a database.

When a fault occurs, the associated compensation operations of committed sub-transactions are

executed in the reverse order of completion to rollback the progress of the process. The rollback

halts upon reachign a pre-defined save-point. These save-points in the process can be specified by

the designer, to indicate that execution may resume once rollback has reached a certain point. For

example, a set of closely-related sub-transactions can be recovered and re-attempted as a group

any time a single one fails by specifying a save-point directly before them.

Another notable innovation is the management of nested transactions that utilize heteroge-

neous resources for sub-transactions. In [107], a transactional property for each sub-transaction

is obtained from the local manager of each resource. These properties classify sub-transactions

as retriable (no consequence for failure and may be retried), compensatable (has an associated

compensation operation, such as SAGAS sub-transactions), or pivot (neither retriable or com-

pensatable). This enables forward and backward recovery to be applied to an in-progress nested

transaction as appropriate given what is permitted by transactional properties. Nested transactions

with transactional properties can also be analyzed for correctness criteria. For example, at most,

only one pivot operation should be used during execution, otherwise an unrecoverable state may

occur when a fault occurs between two pivot operations [149].

Concepts from these advanced transaction models have since been applied to standardiza-

tion [27] and research [12, 18] efforts for transactional management of service-oriented processes.

However, as they have been developed with a focus on complex database systems, their design

neglects many features of workflows and service-oriented processes [4], such as using several ser-

vices to implement a task to increase reliability or provide alternatives, and managing both activity

and data flow.

15

2.2 Web Service Composition

The rise of service-oriented computing [116, 133] over the last 15 years has had a large impact on

how businesses conduct common and repeatable software operations. Web services are indepen-

dent and reusable black-box software entities publicly published on the Internet with discoverable

interfaces. Clients, in the form of applications, users, or other services, can remotely invoke Web

services through a public service interface defined by the provider. When invoking a Web service,

clients include input parameters, which are translated by the provider into inputs for the underly-

ing software. The service returns output to the client once the request has been processed, such as

confirmation, error notifications, or more complex data schemas.

Common interface standards help make Web services highly re-usable and interoperable. Web

Service Descriptive Language (WSDL) [39] descriptions are a common XML-based format for

Web service interfaces, which contain the parameters, outputs, and technical details for invoking

the service. Representational State Transfer (REST) [60] APIs are an alternative frequently used

for Web services with simpler communication requirements. RESTful Web services are called by

URIs that invoke methods with HTTP verbs such as GET, DELETE, and PUT. These lightweight

interfaces can be more appropriate for services with basic inputs and less security requirements.

Web services have been developed and deployed to provide a wide variety of functionalities

from accounting operations, to domain traffic analytics, to image, file, or text processing. Even

social networks such as Twitter1 and Facebook2 have public Web service APIs to provide soft-

ware developers with access to their search functions or application platforms. At present, thou-

sands of Web services are accessible to potential clients through service directories such as Pro-

grammableWeb3.

The benefit of Web services from a client perspective is that they can lower development cost

and risk, while meeting some software requirements. The pay-per-use model of provisioned Web

services can be more attractive for small or medium businesses than buying or developing private

software and infrastructure. Common Web service interfaces also make integration with internal

1https://dev.twitter.com/rest/public
2https://developers.facebook.com/
3http://www.programmableweb.com/apis/directory

16

systems simple. For providers, deploying Web services makes their software products easy to

use and readily available to a large market. Furthermore, Web services’ versatility means the same

piece of software can be used by applications, human users, and various platforms with no changes

required to the service itself.

A Web service composition is an aggregation of Web services in a workflow structure that

together perform a complex task [120, 132]. The component Web services in a composition can

be from several service providers, such that each provides some necessary functionality towards

a common goal. For example, a business process for handling payment may contain transaction

managment Web services from numerous providers for users to choose from, in addition to other

Web services for accounting. Several languages have been developed in order to implement Web

service compositions, with WS-Business Process Execution Language (WS-BPEL) [6] emerging as

the de-facto standard. WS-BPEL supports business processes using basic programming constructs,

such as conditional statements, sequences, while loops, and parallel execution. Another key feature

is that late-binding can be used to automatically decide which concrete version of a WS-BPEL

process is to be used until runtime, such as selecting which Web services to invoke.

There are two common perspectives for Web service composition: Web service orchestration

and Web service choreography [120]. An orchestration is an ordered, executable process of provi-

sioned Web services from a single perspective. For example, an internal business process managed

by a single department, but using external Web services for some tasks, is an orchestration. A

choreography is a multi-perspective view of how two or more complex parties interact with each

other through Web service invocations. A choreography can be seen as two or more related or-

chestrations or stateful services, each with their own local manager, that require several points of

interaction between each other. In our work, we limit our focus to Web service orchestration, as

we aim to address transactional issues in single perspective service-oriented processes.

Figure 2.1 shows an example Web service composition for a business to send email or postal

mail content to a group of customers, such as promotional details or newsletters. The composition

uses Web services from the Retain.cc4 API for customer relationship management and sending

4https://retain.cc/api.html

17

Figure 2.1: A Web service composition for sending email or postal mail to a group of customers

emails, and a Web service from PostalMethods5, which sends postal mail of input documents. The

composition retrieves a group of users, and then for each entry, obtains the user’s contact details,

and sends an email or letter. At each task implemented by a Web service, the provisioned service is

invoked by the composition engine sending a request along with input. The response from the Web

service contains the output, which could be used in ways such as data input for another service in

the process, confirmation of a task complete, or input for a local system.

Using Web service compositions for business process execution has several domain-specific

challenges. For instance, as Web services are third-party black box entities, verification or analysis

of Web service composition behavior is limited [26, 50, 62]. Furthermore, the execution of Web

service compositions is dependent on network, hardware, and software reliability issues outside

of the client’s control, such as Internet connection integrity, and Web service outages [61, 103].

Ensuring transactional requirements or correctness in Web service compositions is also a challenge,

as we discuss below.
5http://www.postalmethods.com/postal-api

18

2.2.1 Transactional Web Service Compositions for Business Processes

Implementing and executing business processes as Web service compositions creates new chal-

lenges in ensuring transactional requirements, such as:

• Managing the heterogeneous interaction requirements or transactional protocols of compo-

nent services [12, 18, 59]. A web service composition may require component services from

providers that have interaction requirements or local transaction protocols that are strict, re-

laxed, or non-existent. Furthermore, as services implement a variety of software operations,

they cannot all be considered retriable or recoverable upon failure, and hence cannot be

handled in a uniform manner.

• Ensuring or verifying the correctness of the composition with respect to transactional re-

quirements drawn from business rules. These requirements could include component ser-

vices whose success is considered critical for the composition to commit [100], acceptable

failure conditions[18, 111], or formalized behavioral properties [59].

• Handling the several types of faults that Web services are vulnerable to. Behavioral faults

occur when Web services return an error notification as output, while outages in the net-

work or Web service infrastructure lead to communication and availability faults respec-

tively [61, 151]. Invisible faults can also occur, such as Web services returning incorrect

data as output [103]. The appropriate recovery or prevention measures to apply to faults can

depend on the precise fault type [29].

The nature of service-oriented computing opens many possible means of transactional behavior

to address these issues. Transactional behavior that has been applied to Web service compositions

to prevent or handle faults includes service replacement [12, 61, 111], semantic service discovery

[12, 33], fault tolerance strategies [96, 103, 105], backwards recovery through compensating activ-

ities [18, 53, 100], dynamic workflow restructuring using planning methods [65], and architectural

context-based fault diagnosis [29].

Several standards for managing the transactional aspect of Web service compositions have been

developed, such as WS-AtomicTransaction (WS-AT) [28], WS-BusinessActivity (WS-BA) [27], and
19

Business Transaction Protocol (BTP) [35]. These standards either implement or relax the classic

ACID properties in various ways during Web service composition execution, such as avoiding re-

source locks to ensure strict isolation in favour of attaching compensating activities to undo oper-

ations. WS-BPEL also allows developers to define scopes within a process, which are comparable

to both save-points in SAGAS and sub-transactions in nested transactions.

In addition, ensuring transactional requirements in Web service compositions has been an ac-

tive research area since the inception of service-oriented computing [32, 66]. Concepts from ad-

vanced transaction model have been applied, such as partial rollback through compensating activ-

ities [12, 18, 23], and directing or verifying transactional behavior from the properties of compo-

nent services [53, 100, 111], eg., retriable, pivot, and compensatable. Other innovations include

dynamic re-provisioning [30, 33, 135], whereby component Web services that have caused a fault

are replaced at runtime with an alternate service providing the same functionality. Well-proven

fault tolerance strategies from software engineering have also been adapted, such as provisioning

several Web services to perform the same action, in order to reduce the likelihood and impact of

faults [96, 103]. We will provide an in-depth analysis of this research landscape in Chapters 3 and

4.

2.3 Cloud Services

In recent years, cloud services have had a dramatic impact on the research [21] and industry [106]

landscape of service-oriented computing. Cloud computing has become a popular paradigm for

delivering or provisioning a wide range of services, such as software applications, computing ca-

pacity, storage, and virtual platforms [49, 159]. Cloud service providers can offer these utilities to

clients over the Internet in a pay-by-use manner similar to Web services. Apart from the diversity

of service types, cloud services have a number of distinctive properties that make them innovative

and appealing for providers and clients:

On-demand access over networks: Cloud services are easily accessed through network connec-

tions, most commonly the Internet [159]. Access to these services is on-demand and in-

20

stantaneous, without the need for human interaction with the service provider. Easy access

is commonly provided across heterogeneous platforms, such as smartphones, tablets, and

laptops [49].

Pooled resources with elasticity: Clients are provided with access to shared resources, such as

servers, applications, CPU time, or storage. The precise capacity and capability of resources

provisioned and released by the client are dynamic in response to their workload. This refers

to the elasticity property of cloud services. Clients only use the resources they need, while

the service architecture applies appropriate mechanisms to measure their usage [7, 49, 159].

This benefits both client and provider by lowering service provisioning costs and increasing

the number of clients the service handles within a given amount of resources.

Configurability: The potential market of a service is significantly increased if clients are able to

adjust the behavior or properties of that service to suit their own requirements or preferences.

Configuration can affect such service properties as software structure, features, UI, data,

access control, and QoS [92, 101, 128]. Another benefit is that highly configurable services

can satisfy the requirements of particularly unique clients, in a way that is overall more

cost-effective than deploying separate services for all client types [37].

Multi-tenancy: Services that are multi-tenant are able to handle several clients (or tenants) with a

single software instance in a way that prevents any interference between clients and their spe-

cific configurations [16, 49, 131]. Multi-tenant services allow providers to exploit economies

of scale and serve more clients with less supporting infrastructure. As clients are efficiently

sharing infrastructure, the cost of the provider to serve a given number of clients reduces.

Although cloud services share similarities with pre-existing technologies such as Grid Comput-

ing and Web services, there are distinctions [159]. A computing grid virtualizes physical resources

on a large scale to work towards a common goal, and is generally used for computationally ex-

pensive tasks [20]. Cloud services also utilize a pool of resources, but these are dynamically

provisioned and de-provisioned as required. Furthermore, cloud services expand beyond the in-

frastructure layer of virtualized physical resources, into platforms and software. Similarly, this

21

Figure 2.2: Cloud service hierarchy [159]

elasticity property and the multi-tier architecture of service types distinguish cloud services from

Web services.

Figure 2.2 shows the traditional cloud hierarchy, comprised of three layers of cloud services.

Each layer is able to provide the base (infrastructure or platform) for running services within the

layer above [49], although real-world services vary in how they are deployed [38]. Infrastructure

as a Service (IaaS) is the bottom service layer, providing access to virtualized physical resources,

such as storage and computation capacity. Computing capacity offered by Amazon EC26 or IBM

SmartCloud Enterprise+7 are examples of IaaS offerings. Platform as a Service (PaaS) provides

access to utilities such as software development and hosting frameworks. For example, Google

App Engine8 and Microsoft Azure9 both contain PaaS features for web application development

and hosting. Finally, Software as a Service (SaaS) are software applications deployed in a way that

is Internet accessible, automatically scaling, and multi-tenant. SaaS enables clients to remotely

use software complex systems, such as customer relationship management through Salseforce10,

6https://aws.amazon.com/ec2/
7http://www-07.ibm.com/au/managed-cloud-hosting/
8https://cloud.google.com/appengine/docs
9https://azure.microsoft.com/en-gb/

10www.salesforce.com/au/

22

or payroll management with ePayroll11.

2.3.1 Business Process as a Service

A proposed fourth level of the cloud service architecture residing above SaaS has been in the form

of Business Process as a Service (BPaaS), which has had increasing research interest in recent

years [1, 25, 104, 118]. The driving idea behind BPaaS is to mash-up services from numerous

providers into a business process structure, which can then be offered to clients as its own service.

BPaaS providers will naturally target common or proven business processes that apply to a large

potential market, or require management of several complex components. This is appealing to

clients as it provides them with an outsource option for integral business operations that is low in

cost and risk.

It is important to clarify that the definition of BPaaS we use is not yet universally recognised.

BPaaS has also been used to describe approaches for enabling Business Process Management

(BPM) using cloud services [51]. BPM management as a cloud service has also been proposed

as Orchestration as a Service (OaaS) [75] and Composition as a Service (CaaS) [127] in research

publications. In our work, we consider BPaaS to be a cloud service offering an executable business

process, rather than a BPM environment for business processes provided by clients.

Figure 2.3 shows an abstract example that demonstrates the structure and variety of services

and resources that a BPaaS can utilize. In this example, the BPaaS is composed of heterogeneous

component services from the service provider and third parties. Two SaaS used by the BPaaS are

hosted and managed by the same provider. Private internal software exclusive to the BPaaS is also

required. Two of the SaaS services are from external sources - SaaS 3 is from a third party, while

SaaS 4 is another service of the BPaaS provider, but hosted on an external PaaS.

Like other services in the cloud hierarchy, configurability is an important property for BPaaS.

Business process configuration can affect several of its properties, such as the workflow struc-

ture [109, 145], resources used [71, 91], and variables [94]. This allows clients to bring these

services as in-line as possible with their internal business operations and policies, while providers

11http://www.epayroll.com.au/epayroll

23

Figure 2.3: An abstract example of a BPaaS

can exploit economies of scale by offering their service to a larger potential market. For example,

some business clients may have internal systems already in place to handle certain steps, while

smaller businesses may be looking to outsource more features.

At present, research and adoption of BPaaS is still in its infancy. Despite cloud services in-

creasing their presence in industry, with directories such as Cloudbook12 and Cloud Showplace13

listing services from several thousand vendors, services advertised as BPaaS remain scarce. As

such, there are many open issues for research in BPaaS to address. These include managing con-

figuration, composing cloud services together, maintaining elasticity, multi-tenancy, and ensuring

correctness and transactional behavior [118, 119].

Transactional management is a critical concern for BPaaS. Like Web service composition,

BPaaS execution requires the potentially long-running coordination of several heterogeneous black-

box resources from numerous parties. However, BPaaS are implemented and managed by service

12http://www.cloudbook.net/
13http://www.cloudshowplace.com/

24

providers rather than clients, so the transactional management must be formal and substantial for

clients to trust outsourcing sensitive business operations, such as managing finances or customer

details. To the best of our knowledge, this is a BPaaS issue that is yet to be addressed in the current

state of research.

2.4 Summary

Our work builds on research contributions first proposed in managing complex database transac-

tions. Concepts such as compensation, relaxed ACID properties, and transactional properties of

sub-transactions were first proposed in advanced transaction models, and have since been applied

to service-oriented computing.

Web services, black-box software units deployed online with public interfaces, bring a host

of challenges and opportunities to business processes and their management. By composing Web

services together to perform a set of related tasks, businesses can implement their processes in a

rapid and low-cost manner. Transactional management of Web service composition has been the

attention of several proposed standards and years of research. Advanced transaction model con-

cepts such as compensation and nested transactions have been applied, while the service-oriented

computing paradigm allows for behavior such as dynamic Web service re-provisioning and fault

tolerance strategies.

A recent innovation in service-oriented computing is cloud services, which offer clients access

to a virtualized pool of computing utilities in an on-demand fashion. Cloud services offer storage,

computing capacity, software applications, and developments platforms amongst other services.

BPaaS is an emerging type of cloud service that allows clients to provision business processes

from service providers and configure them to their requirements. Like Web service composition

and long-running distributed transactions, BPaaS execution requires transactional management to

ensure an acceptable level of atomicity, consistency, isolation, and durability. However, as BPaaS

25

research is still in its infancy, this remains a largely open issue.

26

CHAPTER 3

Well-Formed Transactional Behavior in Service-Oriented

Processes

This chapter presents our method for identifying and resolving issues in the transactional behavior

of service-oriented processes. First, we overview the state-of-the-art, which comprises of design

tools, composition frameworks, service brokers, transactional protocols, and other approaches re-

lated to service-oriented processes. Our analysis finds that design-time approaches have been

been under-represented, which may be a concern to developers looking to identify and resolve is-

sues prior to costly development. Furthermore, most approaches conduct automatic transactional

behavior, which may not allow developers to ensure that fault-handling conforms to their own

requirements or expectations.

To address these issues, we develop a design-time modeling and verification approach for

service-oriented processes. We propose a statechart-based model transactional service-oriented

processes, and demonstrate it with an example scenario using Web services for handling differ-

ent payment methods. This model separates the behavior of the process into two perspectives,

namely, control and operational behavior. Inter-behavior messages are used to co-ordinate these

two models and apply transactional behavior to the process. We define and target well-formed

inter-behavior conversations as a correctness property for transactional service-oriented processes,

and present a set of rules to enforce it.

A verification process formalizes the conversation rules in temporal logic, and applies model

checking to exhaustively verify that process models conform to them. Furthermore, we apply

state space reduction measures to improve verification performance for large and complex models.

An algorithm is defined in order to transform the control and operational behavior models into a

27

minimal Kripke structure. The NuSMV model checker is used for verification as it provides sup-

port for temporal logic properties formulated in Linear Temporal Logic (LTL) and Computational

Tree Logic (CTL), which are both required to express our conversation rules. The online payment

process is used to demonstrate the effectiveness of our conversation rules in identifying errors in

transactional behavior, and the state space reduction achieved by our Kripke structure generating

algorithm.

3.1 Related Work

Since the advent of service-oriented computing [116], ensuring a level of transactional correctness

for business processes implemented with services has been an active research area [32]. In this

section, we discuss the state-of-the-art and apply a set of criteria to compare each approach. Using

the comparison results, we identify open issues to address with our work.

3.1.1 Comparison Criteria

We define a set of criteria that we apply to compare all approaches for ensuring transactional be-

havior correctness in service-oriented processes. The criteria we use is divided into four categories,

namely, Overview, Support, Method, and Transactional Behavior. as shown in Table 3.1 shows the

criteria that fall into each category, with example values from the literature.

3.1.1.1 Overview

The overview category contains criteria to describe the approach in a high-level manner, focusing

on the lifecycle phase and implementation of the approach.

Lifecycle phase refers to the stage in the service-oriented process development lifecycle where

the approach is applied. As service-oriented processes encompass many domains, such as Web

service compositions and distributed workflows, we consider three broadly applicable lifecycle

phases:

28

Table 3.1: Overview of comparison criteria

Category Criteria Values

Overview
Lifecycle
Phase Design, Development, Runtime

Implementation Verification tool, Development framework, Broker, Standard extension, etc.

Support Process Model Supported workflow patterns, data representation, transactional properties,
adopted or extended standards

Method

Transactional
Requirements

Relaxed atomicity, fault-tolerance, mandatory operations for commit,
composition compensatability, etc.

Verification or
Assurance

Model checking, service provisioning strategy, composition rules, recovery
algorithms, etc.

Transactional Faults Behavioral, logical, communication, availability, etc.

Behavior Fault-handling The fault recovery and prevention operations shown in Figure 3.2.
Specification Automated, Semi-automated, Manual

• In the design phase, a formal model of the eventual process is produced, and may be checked

for correctness. The details of the formal model depend on the approach, but the specifi-

cation can include the workflow structure of tasks in the process, the interactions between

business partners, process variables and the flow of data between tasks or partners, exception

handling, transactional behavior, and other properties.

• Development encompasses all tasks following the design phase until the process is deployed

and ready for use. These tasks may include Web service discovery and selection, necessary

coding, and the deployment of the process.

• The runtime phase refers to the execution of the process, following a user request. This

phase can include invoking operations or services, exception handling, monitoring execu-

tion, service replacement, determining optimal recovery to faults, and service coordination

according to a transaction protocol.

The implementation criterion is a high-level description of how the approach is realized. This

includes design-time formal verification [90], service provisioning strategies [17], runtime coordi-

nation frameworks [33], among other implementations.

29

3.1.1.2 Support

The support category contains the process model criterion, which indicates the complexity of pro-

cesses supported by the approach. Process models may not always be easily comparable, as such

formalisms as statecharts [23], workflow graphs [62], and Petri-nets [33] have all been applied.

Therefore, we identify the following common set of properties to consider:

• The supported workflow patterns [147], such as parallel (AND), exclusive choice (XOR),

inclusive or (IOR), and iteration (Itr), have a large impact on the complexity of processes

that can be supported. The AND pattern allows workflow tasks to branch into two or more

paths executing simultaneously. XOR and IOR provide a split of paths of which only one or

one or more can be executed respectively. Iteration refers to cyclic patterns in the workflow.

Even this basic set of patterns can be broken down into several semantic variations [147].

• Transactional properties (TP) may be attached to component operations to indicate ba-

sic transaction requirements for their invocation and fault-handling [18, 53, 100]. Com-

monly considered transactional properties in for component services include retriable, non-

retriable, compensatable, and pivot (not retriable or compensatable).

• The data representation supported by the model, which can include process variables [87]

or data flow between components [86].

• The standards that are directly adapted, supported, or extended for process modeling or

execution, such as WS-BPEL [87] or other workflow formalisms [57].

3.1.1.3 Method

The method category identifies the targeted transactional requirements or correctness criteria, and

the verification or assurance method applied towards their satisfaction. Such requirements can

include fault tolerance [103], relaxed atomicity [17], and compensatability [108]. Verification

methods, such as model checking [22], apply formal methods to ensure that requirements or prop-

erties are met. In contrast, assurance methods manage design, development, or runtime in such

30

Behavioral
Contract/Requirement Violations

Communication
Availability

Contract/Requirement Violations

Logical

Non-functionalFunctional

Detectable

Faults

Silent

Functional

Figure 3.1: Faults of transactional service-oriented processes

a way that preserves requirements. These methods include recovery algorithms [29], automated

reprovisioning at runtime [61], and composition rules [17].

3.1.1.4 Transactional Behavior

The transactional behavior category contains three criteria to describe the faults it can handle, the

fault-handling measures it supports, and the specification method of this behavior.

The faults criterion lists the fault types that each approach detects and handles. Service-oriented

processes are subject to several types of faults [29]. Figure 3.1 shows these faults organized ac-

cording to silent, detectable, functional, and non-functional categories. Logical faults occur when a

service produces incorrect output with no notification that a fault has occurred. In contrast, behav-

ioral faults are explicitly flagged by the service. Communication and availability faults are caused

by outages in the network or service infrastructure respectively. Contract or requirement violations

are when the terms of a pre-approved service-level agreement between client and provider are vi-

olated. In cases where the fault types are not specified by the approach, we assume that behavioral

faults are the focus.

Fault-handling compares the techniques each approach employs or supports to handle the oc-

currence of faults. These can be divided into fault-prevention and fault-recovery measures, as

shown in Figure 3.2. Fault recovery measures can be further divided into forward recovery, which

attempts to resume execution without changes to the process state, and backward recovery, which

executes necessary recovery operations before execution can be resumed or aborted.

31

Retrial
Reprovisioning

Alternative
Skip

Ignore
Wait
Log

Restructure
User Intervention

Rollback
Compensation
Cancellation

User Intervention

2PC
Redundancy
N-Version

Ping

BackwardForward

Recovery

Fault-Handling

Prevention

Figure 3.2: Fault-handling of transactional service-oriented processes

Prevention measure include enforcing strict ACID properties through protocols such as two-

phase commit (2PC) [122, 123], testing component liveness before invocation [22], and fault-

tolerance strategies such as redundantly provisioning or implementing several services for the same

task [96, 103]. Commonly used forward recovery strategies include retrying services [17, 63], re-

provisoning a functionally equivalent service as a replacement [33, 137], and executing pre-defined

alternative operations [96, 130]. Other options include dynamically restructuring the workflow to

handle the fault [65], and lower-level exception handling such as waiting, skipping, ignoring, and

logging faults [100]. Backwards recovery applied to service-oriented processes include partial

rollback of completed components [10, 105], full compensation of a completed process [97, 149],

and cancellation or concurrently executing components [90, 111]. Some approaches also rely on

user intervention in some instances to direct recovery operations or select from a list of proposed

actions [29, 135].

Finally, the specification criterion indicates the level of developer control over transactional

behavior. Approaches are categorised according to three possible values; manual, automated, and

semi-automated. In manual approaches, the developer specifies all transactional behavior in the

process [22], while automated approaches coordinate fault-handling automatically according to an

algorithm or transactional properties of components [17]. Semi-automated approaches enable de-

32

Table 3.2: Overview criteria of application-independent requirements approaches.
Approach Lifecycle Phase Implementation

Kumar et al. [90] Design Verification algorithm
Bhiri et al. [17] Design, development Design method
Gabrel et al.[63] Design, development Composition framework

Gaaloul et al. [62] All Design verification and runtime
monitoring framework

Vonk et al. [150] All Cross-organisational workflow
management framework

WS-FTM [103] Runtime Broker extending FT-Grid [140]
FTWS [96] Development, runtime Broker
Mansour, Dillon
[105] Runtime Broker

XIP [115] Runtime Transaction protocol
Mei et al. [108, 153] Runtime Transaction mechanism
Cao et al. [29] Runtime Transaction mechanism
Schuldt [130] Runtime Execution framework
REL [61] Runtime WS-BPEL extension
Gajewske et al. [65] Runtime Re-planning mechanism
Hwang et al. [77] Runtime Provisioning strategy
Stein et al. [137] Runtime Provisioning strategy
Wagner et al. [151] Runtime Provisioning strategy
Cardinale et al. [33] Runtime Execution framework
Li et al. [97] Runtime Execution framework
Cao et al. [30] Runtime Execution framework

velopers to partially specify aspects of the fault-handling behavior while automating others [100].

3.1.2 Survey

In order to identify the unique contribution of our work, we apply our comparison criteria to the

state-of-the-art of work in ensuring application dependent transactional requirements in service-

oriented processes. The results of the overview, support, method, and transactional behavior cri-

teria are shown in Tables 3.2, 3.3, 3.4, and 3.5 respectively. We discuss design-time verification

approaches, followed by service brokers, transactional protocols and mechanisms, service selec-

tion strategies, and other implementation methods.

Related design-time verification approaches include the work of Gaaloul et al. [62] and Kumar

et al. [90]. Gaaloul et al. propose to model Web service composition with a formalism based on

event calculus [88], and verify them at design-time against rules to prevent transactional inconsis-

tencies. Kumar et al. present a verification algorithm that identifies partial synchronization errors

33

Table 3.3: Support criteria of application-independent requirements approaches
.

Approach Process Model
AND XOR IOR Itr TP Notes

Kumar et al. [90]
√ √ √

Bhiri et al. [17]
√ √ √

Transactional dependencies between components
Gabrel et al. [63]

√ √ √

Gaaloul et al. [62]
√ √ √

Transactional dependencies between components
Vonk et al. [150]

√ √ √

WS-FTM [103] Independent of process model
FTWS [96] Unspecified
Mansour, Dillon
[105] Sequential workflow only

XIP [115]
√ √

Mei et al. [108, 153]
√ √ √

Cao et al. [29]
√

Schuldt [130]
√ √

REL [61]
√ √ √ √

WS-BPEL equivalent
Gajewske et al. [65]

√ √ √

Hwang et al. [77]
√ √ √ √

WS-BPEL equivalent
Stein et al. [137]

√

Wagner et al. [151]
√ √

Cardinale et al. [33]
√ √ √

Li et al. [97]
√ √ √ √

WS-BPEL equivalent
Cao et al. [30]

√ √ √ √
WS-BPEL equivalent

in workflows. This algorithm ensures that, during execution, if one or more incoming branches to

a synchronization pattern is inactive, or more than one incoming branch to a merge pattern [147]

is active, that rollback is applied successfully to reach a strictly correct state.

A common implementation to ensure fault-tolerant execution is to develop a service broker to

implement fault-tolerance strategies. One such broker, the Web Service-Fault Tolerance Mecha-

nism (WS-FTM) [103], is an implementation of the n-version [36] fault-tolerance strategy for Web

services. It transparently invokes several functionally equivalent services from different sources

to perform the same operation. A majority vote is used to select the result from the numerous

responses. Implementing component operations in this way addresses the risk of logical faults.

Fault-Tolerant Web Services (FTWS) [96] is another n-version broker strategy that enables sev-

eral voting strategies and performance metrics to determine the result. The broker proposed by

Mansour and Dillon [105] applies the rockery block fault-tolerance strategy [125]. If the result

returned from a service is deemed unacceptable by an internal testing mechanism, rollback and

34

Table 3.4: Method criteria of application-independent requirements approaches.

Approach Transactional Requirements Verification or Assurance

Kumar et al. [90] Process model soundness, compensation
of incomplete scopes Verification algorithm

Bhiri et al. [17] Relaxed atomicity Composition rules
Gabrel et al. [63] Relaxed atomicity 0-1 Linear Programming
Gaaloul et al. [62] Relaxed atomicity Composition rules with runtime monitoring

Vonk et al. [150] Autonomic fault-handling of a partner
workflow Compensation algorithm

WS-FTM [103] Fault-tolerance Fault-tolerance strategy
FTWS [96] Fault-tolerance Fault-tolerance strategies
Mansour, Dillon
[105] Fault-tolerance Fault-tolerance strategies

XIP [115] Deadlock and livelock free Backwards recovery algorithm

Mei et al. [108, 153] Compensatable compositions,
deadlock and livelock free

Petri-net composition modeling and
generation of compensation.

Cao et al. [29] Optimal fault recovery strategies given
precise type of faults Context-aware recovery algorithm

Schuldt [130] Relaxed atomicity Process development framework
REL [61] Communication fault-tolerance Runtime provisioning strategy
Gajewske et al. [65] Fault tolerance Automated workflow re-planning
Hwang et al. [77] Higher completion rate Runtime provisioning strategy
Stein et al. [137] Higher completion rate Runtime provisioning strategy
Wagner et al. [151] Higher completion rate Runtime provisioning strategy
Cardinale et al. [33] Fault-tolerance Colored Petri-net fault-handling algorithm
Li et al. [97] Fault-tolerance Case-based reasoning

Cao et al. [30] Adaptation to context changes, including
faults Context monitoring and policy library

reprovisioning is applied to recover to process to an acceptable state.

The following approaches define transaction protocols or mechanisms to ensure transactional

requirements at runtime. XIP [115] is a transaction protocol for composite Web services that en-

ables both forward and backward recovery. A process-level parent transaction manager cooperates

with component-level child transaction managers to coordinate complex distributed transactions

free of deadlock and livelock. The protocol considers whether or not component transactions are

cancellable as a transactional property. Mei et al. [108, 153] propose transactional mechanisms that

use Petri-nets to dynamically construct recovery processes at runtime. The Web service composi-

tion transaction mechanism proposed by Cao et al. [29] evaluates the context of faults to diagnose

them using a detailed set of fault types, so the optimal recovery strategy can be applied.

A set of approaches aim to reduce the likelihood of faults by dynamically selecting services

35

Table 3.5: Transactional behavior criteria of application-independent requirements approaches.
Approach Faults Fault-handling Specification

Kumar et al. [90] Partial synchronization Rollback, cancellation Manual

Bhiri et al. [17] Behavioral Retrial, rollback, cancellation,
compensation, reprovisioning Automated

Gabrel et al. [63] Behavioral Retrial, rollback Automated

Gaaloul et al. [62] Behavioral Rollback, compensation,
cancellation, reprovisioning Automated

Vonk et al. [150] Behavioral Rollback, compensation Automated

WS-FTM [103] Behavioral, communication,
logical, availability N-version strategy Automated

FTWS [96] Behavioral, communication,
logical, availability Alternative, N-version strategy Manual

Mansour, Dillon
[105]

Behavioral, communication,
availability Rollback, reprovisioning Automated

XIP [115] Behavioral, timeout Retrial, compensation,
cancellation, ping Automated

Mei et al. [108, 153] Behavioral Rollback, compensation Automated

Cao et al. [29]

Behavioral, contract violations,
temporary and permanent network
failures, replaceable and
irreplaceable physical failures

Retrial, rollback, user
intervention, reprovisioning

Semi-
automated

Schuldt [130] Behavioral Retrial, rollback, alternative Automated
REL [61] Communication Reprovisioning Automated
Gajewske et al. [65] Behavioral, contract violations Cancellation, re-planning Automated

Hwang et al. [77] Behavioral, timeout Reprovisioning, rollback,
compensation Automated

Stein et al. [137] Behavioral, communication,
availability Reprovisioning, redundancy Automated

Wagner et al. [151] Behavioral, communication,
availability Reprovisioning Semi-

automated
Cardinale et al. [33] Behavioral Retrial, rollback, reprovisioning Automated

Li et al. [97] Behavioral, communication,
availability, contract violations

Retrial, reprovisioning,
compensation, restructuring Automated

Cao et al. [30] Behavioral, communication,
availability Reprovisioning, restructuring Automated

36

at runtime based on predicted reliability. Hwang et al. [77] propose two dynamic Web service

selection strategies that are directed by an aggregated reliability value indicating the probability

of successful execution. This probability is calculated and maintained at each state according to

component service reliability values. Similarly, the dynamic selection strategy proposed by Stein

et al. [137] proactively deals with communication, availability and behavioral faults. Web services

are selected based on predicted performance, and redundancy and reprovisioning are utilized to

tolerate faults. Wagner et al. [151] enable some user control over service selection by producing a

set of selections to compare. In addition to component service reliability, other QoS attributes such

as response time and price are considered in finding optimal selections. Gabrel et al. [63] apply 0-1

linear programming for selecting Web services to maximise the process reliability. Their model

extends similar approaches that consider the QoS values of candidate services by also including

transactional properties such as retriable, compensatable and pivot.

Implementing approaches as execution frameworks allows transactional behavior to be auto-

matically managed to satisfy certain requirements. The Web service composition execution frame-

work proposed by Cardinale et al. [33] uses colored Petri nets [78] to model and monitor Web

service compositions. Colored Petri-nets are used to dynamically determine if forward recovery

is possible, and track executed tasks for backward recovery purposes. Li et al. [97] develop a

fault-tolerant framework for composed Web services using case-based reasoning. When a fault

occurs, the type is determined from symptoms, and a recovery solution is proposed based on the

most similar case found in a case history. The framework proposed by Cao et al. [30] uses context-

awareness to dynamically adapt to changes in the Web service composition execution environment.

An adaptive algorithm is used to determine the optimal solution given the current context and a

policy library.

Other approaches do not fit into the implementation categories discussed so far. Bhiri et al. [17]

extend a set of workflow patterns with transactional dependencies between components, forming

transactional patterns for Web service composition. These patterns contain dependencies between

components for transactional behavior such as rollback, alternative, and cancellation. The Robust

Execution Layer (REL) is a SOAP proxy that extends the WS-BPEL execution engine to automate

the handling of communication faults by reprovisioning.

37

In the distributed workflow domain, Vonk et al. [150] presented an architecture for process

specification and transactional support that extends the SAGAS model. A transaction model called

X-transactions enables intra-organizational and inter-organizational rollback by computing an ap-

propriate compensation process in response to a fault. Gajewski et al. [65] utilize replanning to

reconfigure the remainder of the process structure in the event of unexpected faults. Their method

draws on research in automated workflow composition [126]. Schuldt [130] addresses atomicity

and isolation for distributed business processes. Component operations of the process are partially

ordered, managed as conventional transactions, and are scheduled by a process manager.

3.1.3 Research Direction

Table 3.2 indicates that 70% of approaches are not enabled until runtime. The implication of this is

that potential issues in managing transactional behavior are not identified or addressed until late in

the process lifecycle. If there are design issues in the process that impede correct transactional be-

havior, the necessary revisions become more costly than if they were addressed before the process

was developed and deployed.

Another trend in the state-of-the-art is the heavy reliance on automated transactional behav-

ior, with only 10% of surveyed approaches enabling manual specification. Automated and semi-

automated transactional behavior reduces the burden on the process developer by coordinating

fault-handling according to a protocol or algorithm. These are used in such a way that assures

application-independent transactional requirements, as shown in Table 3.4. However, a critical

trade-off with this approach is that the developer may not be able to ensure that fault-handling con-

forms to their expectations or business rules. For example, while some payment services may be

automatically compensatable, it may violate a company policy to reimburse payments without con-

ducting an internal review process. Manually specified transactional behavior allows developers to

retain control over how faults are handled in the process.

The most common targeted transactional requirements, as shown in Table 3.4, include relaxed

atomicity, fault-tolerance as enabled by a set of strategies, and higher rates of successful completion

by provisioning the most reliable component services. As most approaches are assurance methods,

38

very few attempt verify developer specified transactional behavior for correctness issues. As such,

verifying service-oriented process transactional behavior for reliability issues such as deadlock and

invalid termination remains a largely open area. These issues can suspended process execution,

or leave inconsistent states across resources, which can cause problems such as halted business

operations, loss of funds, violation of business policies, and damaged consumer confidence.

From this analysis, we direct our work towards identifying and resolving reliability issues in

transactional behavior at design-time. Furthermore, we aim to give the developer control of the

transactional behavior through a service-oriented process design model, so that they may ensure

all faults are handled in the most suitable manner.

3.2 Transactional Service-Oriented Process Modeling

To address the identified issues, we propose a design-time model for service-oriented processes that

enables transactional behavior to be specified and verified against rules for well-formed behavior.

Our model separates process behavior into two views; control and operational behavior models.

This allows transactional and functional behavior to be modeled and revised independently by

developers with relevant expertise. The following section outlines our modeling approach by ap-

plying it to an example scenario.

3.2.1 Motivating Example

We consider a scenario where online payment transactions are managed using Web services. This

process is to be developed by a small business that uses a web store to handle sales. The busi-

ness manages a customer repository and transaction history internally, but wishes to outsource

operations for handling credit card and direct deposit payments. Other related operations such

as registering customer details, checking inventory, confirming price and shipping, are handled

outside the scope of this process.

We implement this process using the Paylane Web Service API 1. Figure 3.3 shows an overview

1http://devzone.paylane.com

39

Figure 3.3: Overview of the online payment process

of the operations. After retrieving customer details, various Web services from the API are used to

handle payment using credit card information, direct deposit, or resales stored payment informa-

tion from a previous sale. The response from PayLane controls the result of the sale. Following a

card payment attempt, payment either succeeds, or is unable to be processed. Furthermore, Pay-

Lane responds with a fraud score value, which indicates the likelihood of attempted credit card

fraud. If this score is above a threshold decided by the Web store, it must be logged. The outcome

of direct deposit payments must be checked after they are invoked until they are confirmed by the

Web store’s financial institution. After storing the payment outcome, the process can also handle

refund requests to compensate completed sales. However, due to internal policies of the business

composing this process, not all sales will be refundable.

The consequences of unreliable transactional behavior in this process could lead to payments

being suspended, incorrectly completed, or unverified. This could lead to serious consequences

such as mismanaged funds, loss of consumer confidence, unlogged or undetected instances of

credit card fraud, and violation of company policies. Therefore, it is critical that the transactional

40

behavior of the process is ensured and verified to be reliable before it is developed and deployed.

3.2.2 Control and Operational Behaviors

We propose a design-time modeling approach for service-oriented processes that applies the sep-

aration of concerns principle, to produce transactional and functional views of process behavior.

This allows each perspective to be designed and revised independently by relevant domain experts.

Our model builds on the approach proposed in [134], which separates process into two models,

namely, control and operational behavior.

The purpose of the control behavior model is to maintain the transactional state of the pro-

cess, while directing execution and recovery operations. The states of the control behavior include

the transactional states a process may encounter from prior to invocation to termination, namely,

NotActivated, Activated, Suspended, Rollback, Done, Aborted, and Compensated. In con-

trast, the operational behavior model contains the control flow of component tasks, and reports

events such as faults, invocation requests, and process completion. As such, the states and control

flow of the operational behavior depend on the application.

These behavior models can be expressed using statecharts [74], as shown in Figure 3.4, which

models the online payment scenario. The control behavior contains transactional states and tran-

sitions of the process, from NotActivated until termination occurs through Done, Aborted, or

Compensated. The operational behavior model contains all component activities as states, such

as credit card and direct deposit payment operations, and logging potential fraud incidents. Fur-

thermore a compensatory process is included to undo the effect of a committed payment, by pro-

cessing a refund request. Event-condition-action (ECA) labels are attached to transitions in order

to restrict their activation to appropriate conditions, and trigger other operations. For example, the

success or failure of a process that is Activated determines whether the Done or Aborted control

behavior states are reached.

These two behavior models can be expressed formally as a 5-tuple B = 〈S,L, T ,F〉, where:

• S is a finite set of state names

41

Sync

[Fail]

[Fail]

[Success]

[Success]

Recover

[Fault]
Recover

[Syncreq |
Fault | timeout]

Sync
[Syncreq] [Syncreq]

Sync

Control Behavior

[cannot retry]

Compensated

GET
Customer

Data

PUT Card
Data

PUT Account
Data

Resale

MultiSale
Card

MultiSale Direct
Deposit

Check Sales

Sale OK

High Fraud
Score

Create Report

Decline Sale

GET Sale
Result

Refund

Request
Processed

Non-
Refundable

Operational Behavior

[fraud_score > 0.3]

[ERROR]

[ERROR]

[OK]

[OK]

AbortedDone

RollbackSuspended

ActivatedNot Activated

[Condition]

Action

Figure 3.4: Control and operational behavior models of the online payment composition

• s0 ⊆ S is the initial state

• F ⊆ S is a set of final states

• L is a set of ECA labels

• T ⊆ S × L × S is the transition relation, where each t ∈ T consists of a source and target

state, and a transition label

As such, the control behavior model is expressed as Bc = 〈Sc,Lc, T c,F c〉, while the operational

behavior model is defined as Bo = 〈So,Lo, T o,Fo〉.

3.2.3 Inter-Behavior Messages

Communication between the behavior models is necessary in order for them to pass instructions

and remain aware of each other’s status. For example, the control behavior requires a message to
42

Table 3.6: Initiation inter-behavior messages
Message Source Role Effect

Sync Activated
Used to initiate or resume execution of the
composition.

Activates an operational behavior
state.

Recover Rollback
Triggers backwards recovery actions,
whether they be partial rollback or service
compensation.

Activates an operational behavior
state.

Delay Activated
Forces a response from the operational
behavior after an unacceptable delay has
occurred.

The control behavior enters the
Suspended state until a valid
outcome message is received.

Ping Activated
Tests the liveness of an operational behavior
state.

The control behavior enters the
Suspended state until an
acknowledgement is received.

trigger the execution of operational behavior states once the process becomes Activated, while the

operational behavior must indicate the nature of termination to trigger the correct control behavior

state. We propose a set of inter-behavior messages to enable this. These messages can originate

from any behavior model state, and target a state from the alternate behavior model.

We divide these messages into two types, namely, initiation and outcome messages. Initiation

messages, shown in Table 3.6, are sent from control behavior states to operational behavior states.

Their functions include triggering the execution of process operations, initiating backwards recov-

ery, forcing a response following unacceptable delay, and testing the liveness of services. Outcome

messages, shown in Table 3.7, originate from operational behavior states and target the control be-

havior. These messages can indicate successful or failed completion, the presence of a fault that

requires recovery, request to retry or resume execution, or acknowledge service liveness. For each

message type, the tables contain the valid source or target control behavior states, a description of

its purpose, and the effect it has on the activity of the models once it has been received.

Two examples of inter-behavior messages in action are shown in Figure 3.5. In Figure 3.5a,

a Sync message is used to initiate the process, which responds with a Success message once

the payment was successful. Figure 3.5b shows a scenario where checking the result of a di-

rect deposit payment results in a Fault message, which triggers Recover to decline sale, be-

fore the process aborts through a Fail message. These examples each demonstrate a conver-

sation session; an ordered sequence of inter-behavior messages that are used from the initial-

ization of the process until termination. Formally, a conversation session can be defined as a

43

Table 3.7: Outcome inter-behavior messages

Message Target Role Effect

Success
Activated,
Rollback

Indicates the successful commit of the
service or completion of compensation.

Activates the Done or Compensated
control behavior state and halts operational
behavior execution.

Fail
Activated,
Rollback

Sent when the service is to be aborted.
Activates the Aborted control behavior
state and halts operational behavior
execution.

Fault Activated
Indicates the presence of a fault that
requires recovery.

Activates the Suspended control
behavior state and halts operational
behavior execution.

Syncreq
Activated,
Rollback

Requests a Sync message to retry a task
or following the completion of partial
backwards recovery.

Activates the Suspended control
behavior state and halts operational
behavior execution.

Ack Activated
Acknowledges the liveness of an
operational behavior state.

Activates the Activated control
behavior state and resumes operational
behavior execution.

sequence of message types of length n, where each message is expressed as m(t) such that

m ∈ [Sync,Recover,Delay, P ing, Success, Fail, Fault, Syncreq, Ack], and t denotes the or-

der such that t ∈ [1, ..., n]. For example, Figure 3.5b can be expressed as:

Sync(1).Fault(2).Recover(3).Fail(4)

These conversation sessions represent, at a high-level, the transactional behavior used during

an instance of the process. In the following section, we outline our approach for ensuring the

reliability of the transactional behavior of a process, by verifying that all possible conversation

sessions conduct reliable transactional behavior.

3.3 Well-Formed Inter-Behavior Conversations

Our separated behaviour model allows design issues with transactional behavior to be identified

and resolved at design-time, to avoid costly revisions during development. As inter-behavior con-

versations model the transactional behavior of a process, they can be checked for problems that

may suspend the execution or prevent it from terminating correctly. For example:

Sync(1).Syncreq(2).Delay(3)

44

Activated

GET
Customer

Data
Sale OK

Done

PUT Card
Data

MultiSale
Card

Not
Activated

Sync Success

Control Behavior

Operational Behavior

Activated

GET
Customer

Data

Suspended

PUT Card
Data

MultiSale
Direct Deposit

Not
Activated

Sync Fault

Control Behavior

Operational Behavior

Check
Sales

Rollback Aborted

Decline
Sale

Recover Fail

(a)

(b)

Figure 3.5: Two examples of exchanged inter-behavior messages during successful (a) and failed
(b) process execution

is a conversation session suspended by a deadlock. The operational behavior is waiting for a Sync

message before if can continue, while the control behavior is in the Suspended state until it receives

a reply to the Delay message. Moreover, conversation sessions can also terminate in an invalid

manner, such as:

Sync(1).Ping(2).Ack(3).Ping(4).Ack(5)

This lacks a message to indicate to the control behavior that the process has terminated. As a result,

the control behavior permanently remains in the Activated state.

To avoid issues such as these, we aim to ensure that inter-behavior conversation sessions are

well-formed. We refer to inter-behavior conversations as well-formed if they:
45

Table 3.8: Conversation structure rules
ID Conversation Rule
CSR1 Sync(1)

CSR2 ∃m ∈ [Success, Fail, P ing, Syncreq],m(n)

(i) Always initialize with a valid inter-behavior message type.

(ii) Are free of deadlocking scenarios between the behavior models.

(iii) Are guaranteed to terminate with a message type from the valid set of {Success, Fail, P ing,

Syncreq}.

We propose a set of conversation rules to make sure all inter-behavior conversations are well-

formed. These rules can be expressed as if-then conditions in the form:

∀mi ∈ I,∃mj ∈ J ,∀t ∈ T ,mi(t)⇒ mj(t+ 1)

where I,J ⊆ [Sync, Success, Fail, Syncreq,Delay, P ing, Ack] and T ⊆ [1, ..., n− 1]. The

set I specifies a set of message types, andJ defines those that can immediately follow. Our rule set

is divided into conversation structure rules and message sequence rules, which are both outlined

below.

3.3.1 Conversation Structure Rules

Conversation structure rules ensure that inter-behavior conversations initialize and terminate in a

valid way. This prevents incomplete inter-behavior conversation sessions that leave the result of

the process undetermined. Our two conversation structure rules are shown in Table 3.8.

CSR1 simply specifies that the first message in any conversation must be Sync. This is because

Sync is used to trigger the execution of operational behavior states, which must begin once a

process becomes Activated.

CSR2 defines the valid termination messages for conversation sessions. Success and Fail are

included as they indicate process should commit or abort respectively. Ping can be the final mes-

46

Table 3.9: Message sequence conversation rules
ID Conversation Rule

MSR1
∀t ∈ {2, ..., n− 1},∀mi ∈ {Sync,Ack,Recover},
∃mj ∈ {Success, Fail, P ing, Fault, Syncreq,Delay},mi(t)⇒ mj(t+ 1)

MSR2 ∀t ∈ {2, ..., n− 1},∃mj ∈ {Success, Fail, Syncreq, Fault}, Delay(t)⇒ mj(t+ 1)

MSR3 ∀t ∈ [2, ..., n− 2], Syncreq(t)⇒ Sync(t+ 1)

MSR4 ∀t ∈ {2, ..., n− 2}, Fault(t)⇒ Recover(t+ 1)

MSR5 ∀t ∈ {2, ..., n− 2},∃mj ∈ {Ack, Sync,Recover}, P ing(t)⇒ mj(t+ 1)

MSR6 ∀t ∈ {2, ..., n− 1}, Success(t)⇒ Recover(t+ 1)

MSR7 ∀t ∈ {2, ..., n− 1},∃mj ∈ {Sync, Success,Delay, Syncreq, P ing,Ack, Fault, Recover},mi(t)

sage of a conversation session in the event that a service or resource is not responsive, and i) retrial

is not possible, and ii) no alternative operations are specified. Similarly, Syncreq can be a terminat-

ing message if the request for Sync is unable to be fulfilled, leading to the process being aborted.

Fault is not considered valid, as it indicates a state that requires recovery operations before the pro-

cess can resume or abort. Ack, Delay, and Recover are also invalid for termination as they leave the

control behavior model in the Activated, Suspended, or Rollback state until an outcome message is

received.

3.3.2 Message Sequence Rules

Our set of message sequence rules specify what sequences of messages are required to avoid dead-

locks and ensure all requests lead to a valid response. The rule set is shown in Table 3.9.

MSR1 defines the valid message types to follow Sync, Ack, and Recover. After these initiation

messages are sent, the process is either executing or recovering, and the only valid messages to

interrupt these states are the outcome messages Success, Fail, Fault, and Syncreq. Ping and Delay

are also valid in the event that the liveness of a service or resource needs to be confirmed, or the

process is taking an unacceptable time to respond.

The valid responses to a Delay message are specified in rule MSR2. These include Success and

Fail, to respond that the process has completed, Syncreq to retry or trigger alternative operations,

and Fault to indicate that recovery is necessary.

MSR3 specifies that only a Sync message may follow Syncreq. Similarly, MSR4 specifies that

Recover is required to recover the process following a Fault message. MSR5 defines that following

47

Ping the process may only respond with Ack, otherwise Sync and Recover are used to retry, execute

alternatives, or recover the process state. The timeline for these rules is restricted to {2, ..., n− 2}

as Sync, Ack, and Recover are not valid termination messages, as specified in CSR2.

MSR6 specifies that whenever Success is used within {2, ..., n − 1} (i.e. not as a termination

message), then it must be followed by Recover. Since Success indicates that the process has

committed successfully, the only valid behavior that may follow is compensation, initiated by

Recover.

Finally, MSR7 is used to specify that Fail may only be used as a termination message, as it

indicates that the process is to be aborted. The rule expresses this by specifying that during the

timeline {2, ..., n− 1}, every message except Fail may be used.

3.4 Enabling Formal Verification Through Model Checking

We plan to apply model checking [43] to ensure that all possible conversation sessions between the

control and operational behaviors satisfy our conversation rule set. The inputs to a model checking

tool include:

• A set of properties formalizing ideal system behavior, such as our conversation rule set

• A model representing a system, which in our approach is a service-oriented process

Model checking will exhaustively verify the system against the property set, in order to identify

any violations. Therefore, before it is applied, our concerns are i) formalizing our conversation rule

set in a property language enabling model checking, and ii) addressing the state space explosion

problem [8] inherent in model checking. Then, these may be used as input for a model checking

tool verify the control and operational behavior models against our conversation rule set.

3.4.1 Temporal Logic Transformations

A range of model checking tools support properties specified in ways including temporal logic

properties [41], assertions [45], and modal logic properties [46]. For our conversation rule set,

48

Table 3.10: Conversation rules formalized using LTL and CTL

Rule Language Temporal Logic Transformation
CSR1 LTL initial ∪ Sync

CSR2
CTL AG(∃F (final))
LTL G((Sync ∨Ack ∨Recover ∨ Fault)→ X(¬final))

MSR1 LTL G((Sync ∨Ack ∨Recover)→X(Success ∨ Fail ∨ Ping ∨ Fault ∨ Syncreq ∨Delay))
MSR2 LTL G(Delay → X(Success ∨ Fail ∨ Syncreq ∨ Fault))
MSR3 LTL G(Syncreq → X(Sync ∨ final))
MSR4 LTL G(Fault→ XRecover)
MSR5 LTL G(Ping → X(Ack ∨ Sync ∨Recover ∨ final))
MSR6 LTL G(Success→ X(final ∨Recover))
MSR7 LTL G(Fail→ Xfinal)

we use temporal logic [56], as it is a language for formally expressing system behavior over time.

This makes it appropriate for specifying if-then conditions over the exchange of messages during

execution.

We use two temporal logic languages to represent our rules; Linear Temporal Logic (LTL) and

Computational Tree Logic (CTL). While similar, these languages have different timeline represen-

tations (linear and branching timelines respectively), and are non-equivalent in the properties they

are able to specify [56]. Both languages are necessary to represent our rules set completely, as we

will show.

Temporal logic allows complex properties to be constructed from boolean variables using a

set of temporal operators. We will briefly outline those used in our work, rather than provide a

comprehensive guide. Both LTL and CTL support basic propositional logic operators for AND (∧),

XOR (∨), not (¬), and implication (→). Supported temporal operators include next (X) to indicate

a property of the next state, until (∪) to indicate that one property should hold until another is

satisfied, global (G) for properties that are true for all states, and future (F) for properties that will

become true at least once in the future. We also use past operators supported by LTL, which include

once (O) to indicate a property that has held during at least one previous state, and historically (H)

to indicate a property that has held for all previous states. Furthermore, the branching timeline used

by CTL allows for the specification of path quantifiers, such as ’for all paths’ (A), meaning for all

possible future execution paths, and ’for some path’ (∃), for properties that will be true during at

least one execution path.

49

The temporal logic transformations of our conversation rule set is shown in Table 3.10. Most

transformations use LTL with G and X operators to specify that all messages of certain types must

always be followed by other specific types. For example, MS1 formalizes the behavior that all

states with Sync, Ack, or Recover, implicate the next state to contain either Success, Fail, Ping,

Fault, Syncreq, or Delay. CSR2 requires a CTL and LTL property to formalize. A CTL properties

specifies that the final state is reachable for all executions, while the LTL property ensures all

invalid termination messages never transition to the final state.

3.4.2 State Space Reduction

As model checking is an exhaustive technique, it is subject to the state space explosion problem,

in which the state space of the system under verification increases exponentially in relation to

the number of processes and variables. This greatly impacts verification time and feasibility for

complex models. Therefore, as part of our transformation of the control and operational behavior

models for model checking, we aim to reduce the state space as much as possible.

For our state-space reduction measures, we transform the control and operational behavior

models into a Kripke structure [89], as it is a concise representation of events occurring within

a system, and commonly used for formal verification [132]. A Kripke structure is a finite-state

system model with a directed graph structure, where each node represents a system state where

one or more properties are satisfied. We formally define a Kripke structure as K = 〈Sk, T k,L〉,

where:

• Sk is a finite set of states

• s0 ⊆ Sk is the initial state

• sfin ⊆ Sk is the final state

• T k ⊆ Sk × Sk is the transition function

• L is the labelling function that assigns atomic propositions to each state

Atomic propositions are a set properties that hold at a given state. Mapping atomic propositions
50

Table 3.11: A set of inter-behavior messages defined over the online payment design
Message Source Target Condition

Sync
Activated GET Customer Data no message
Activated PUT Card Data Resale SYNCREQ
Activated PUT Account Data Resale SYNCREQ

Syncreq Resale Activated -
Delay Activated MultiSale Card -

Fault
MultiSale Card Activated -
Check Sales Activated -

Success
Sale OK Activated -
Request Processed Rollback -

Fail
Decline Sale Rollback -
Create Report Rollback -

Recover
Rollback GET Sale Result Sale OK SUCCESS
Rollback High Fault Score MultiSale Card FAULT
Rollback Decline Sale FAULT

to each state enables the Kripke structure to store the temporal dependencies between events in a

system.As we aim to verify the inter-behavior conversation in the model, the atomic propositions in

the Kripke structure we generate will be the inter-behavior messages as they are sent in the model.

In order to reduce the state space, we use an algorithm to generate a Kripke structure that cap-

tures the inter-behavior messages sent between the control and operational berhavior models. The

algorithm works by traversing the operational behavior model and constructing Kripke structure

states and transitions as inter-behavior messages are encountered. To enable this traversal, we first

transform the inter-behavior messages and operational behavior to a single model.

3.4.2.1 Flattened Behavior Model

The flattened behavior model Bf = 〈Sf ,Lf , T f ,Ff〉 enables the operational behavior model and

inter-behavior messages to be efficiently analyzed by combining them into a single statechart. The

traversal at the core of the state-space reduction algorithm can be simplified by using this single

model as input, rather than interacting control and operational berhavior models. This model

expands the operational behavior by replacing every inter-behavior message with a new state. For

example, in place of a Sync message targeting the state GET Customer Data, a state is created

named Sync GET Customer Data with an outgoing transition to GET Customer Data. Therefore,

the states of the flattened behavior model Sf = So ∪ Sm, where Sm are message states generated

51

from inter-behavior messages. Considering the control and operational behavior of Figure 3.4 and

the inter-behavior messages shown in Table 3.11, the resulting flattened behavior model is shown

in Figure 3.6.

Message states are systematically created with transitions to or from their relevant operational

behavior state. Sync and Recover message states transition to the operational behavior states they

target. Ack message states transition to their source operational behavior state, because as shown

in Table 3.7, operational behavior execution resumes from that state once they are sent. Message

states of all other types are created with an incoming transition from their operational behavior

state, as they are not exchanged before the state is entered, and they do not cause execution to

immediately resume.

Next, transitions must be created between message states, in order to capture all possible ex-

ecution paths through the control and operational behavior models. These transitions are created

depending on i) the active control behavior state after sending or receiving each message type, and

ii) the ECA labels on the inter-behavior messages that dictate when they can be sent. For example,

Syncreq Resale transitions to Sync PUT Card Data and Sync PUT Account Data because it satis-

fies their labeled condition, and because Sync can be sent as the control behavior transitions from

Suspended to Activated.

Finally, an initial and final state are added. The initial state transitions to all Sync message

states that contain a valid or empty condition label. Transitions to the final state are created from

all states with no outgoing transitions. All Success message states also transition to final, even

though they may already contain outgoing transitions for compensation, such as Success Sale OK

in Figure 3.6.

3.4.2.2 Reduced Kripke Structure Algorithm

Using our algorithm, Conversation Checking Kripke Structure Reduction (CKSR), we generate a

Kripke structure capturing the temporal dependencies between all inter-behavior behavior mes-

sages in the flattened behavior model. The result is a model containing the behavior we aim to

verify, with a reduction in state space for model checking. Each state in the resulting Kripke struc-

52

GET
Customer

Data

PUT Card
Data

PUT Account
Data

Resale

MultiSale
Card

MultiSale Direct
Deposit

Check Sales

Sale OK

High Fraud
Score

Create Report

Decline Sale

GET Sale
Result

Refund

Request
Processed

Non-
Refundable

Sync_GET
Customer

Data

Sync_PUT
Card Data

Sync_PUT
Account Data

Syncreq_
Resale

Delay_
MultiSale Card

Fault_
MultiSale Card

Fault_
Check Sales

Success_
Sale OK

Success_Request
Processed

Fail_
Decline Sale

Fail_
Create Report

Recover_GET
Sale Result

Recover_High
Fault Score

Recover_
Decline Sale

Operational
Behavior

Message
State

Legend

Figure 3.6: Flattened behavior model of the online payment composition

53

ture will contain an inter-behavior message type and related (target or source) operational behavior

state as atomic propositions. The model will be reduced such that only states that send an inter-

behavior message are included in the Kripke structure. This provides an ideal representation to

verify against our conversation rules set.

CKSR traverses the flattened behavior model in a depth-first order, and constructs Kripke states

and transitions as message states are encountered. We formalize CKSR in Algorithm 1, which

uses the recursive procedure Conversation Checking Depth-First Traversal (CDF) in Algorithm 2.

CKSR initializes the Kripke structure with initial and final states before invoking CDF on the initial

state of the flattened behavior model.

CDF requires three input parameters. Firstly, a state in the flattened behavior model sx is

required as the active state in the traversal. CDF will traverse the outgoing transitions from sx at

each invocation. Secondly, the previously visited message state, in terms of recursive hierarchy, is

passed as sm. This state is required as the source state when transitions are added to the Kripke

structure. Finally, a set of flattened behavior states visited since the last message state are passed

as Sv. This is required to detect iterative control flow patterns in the model and prevent infinite

recursion.

At each invocation, CDF visits all states in Sf that are targeted by a satisfiable transition from

the input state sx (lines 1, 2). The first check for each visited state is whether the final state has

been reached. If so, a transition to the final state in the Kripke structure is created (lines 3-5).

Next, if a message state is targeted, then the Kripke structure must be updated (line 6). If a state

corresponding to the message state exists in Skc, then a transition to it is created (lines 7, 8).

Otherwise, a new Kripke state is created and added to Skc as well as the new transition (lines 9-

11). CDF is then called recursively, as the flattenend behavior model has not yet been explored

beyond this new message state (line 12). If the targeted state is not a message state, then the

algorithm checks if it has been visited since the last Kripke state was added (line 15). If so, then a

loop has been detected and the algorithm does not continue. Otherwise, the targeted state is added

to the visited state set (line 16), and CDF recursively calls itself with updated parameters (line

17).

54

Algorithm 1 Conversation Checking Kripke Structure Reduction: CKSR
1: Kc ← 〈Skc, T kc,Lc〉
2: Add s0 and sfin to Skc

3: CDF(s0, s0, ∅)
4: return Kc

Algorithm 2 Conversation Checking Depth-First Traversal: CDF(sx, sm, Sv)
1: for s ∈ Sf where (sx, l, s) ∈ T f do
2: if l is satisfied then
3: if s = sfin then
4: Add (sm, sfin) to T kc

5: end if
6: if s ∈ Sm then
7: if s ∈ Skc then
8: Add (sm, s) to T kc

9: else
10: Add s to Skc

11: Add (sm, s) to T kc

12: CDF(s, s, ∅)
13: end if
14: else
15: if s /∈ Sv then
16: Add s to Sv

17: CDF(s, sm, Sv)
18: end if
19: end if
20: end if
21: end for
22: return

55

Operational State
Inter-Behavior Message

Atomic Propositions

Get Customer Data
Sync

Sale OK
Success

MultiSale Card
Delay

MultiSale Card
Fault

Check Sales
Fault

Resale
Syncreq

Get Sale Result
Recover

Request Processed
Success

High Fraud Score
Recover

Create Report
Fail

Decline Sale
Recover

Decline Sale
Fail

PUT Card Data
Sync

PUT Account Data
Sync

Figure 3.7: Reduced Kripke structure for verification against conversation rules

Figure 3.7 shows the Kripke structure generated by CKSR with the input of the flattened behav-

ior model shown in Figure 3.6. This reduces the original models from two statecharts with total 28

states and 14 inter-behaviour messages, to a structure containing 16 states.

The temporal logic representations of conversation rules in Table 3.10 assume, through the

use of X operators, that a new inter-behavior message is exchanged with every state. As shown

in Figure 3.7, the reduced Kripke structures produced by CKSR meet this criteria. However, in

order to use the temporal logic properties in for model checking a specific Kripke structure, the

properties must be implemented such that they apply to the states it contains. For example, in

place of Sync, the model checking input contains every state that contains Sync as an atomic

proposition, separated with ∨ operators. This pattern is used for every inter-behavior message in

the conversation rules. Table 3.12 contains the temporal logic properties for verifying the Kripke

structure of Figure 3.7. MS5 is omitted as the model does not contain any Ping messages, making

in unnecessary to include. We implement this in our prototype tool, and show how model checking

is applied to these temporal logic properties and Kripke structures in Chapter 6.

56

Table 3.12: Temporal logic conversation rules for verifying a Kripke structure
Rule Temporal Logic Property
CSR1 initial ∪ (Sync GetCustomerData ∨ Sync PUTCardData ∨ Sync PUTAccountData)

CSR2

AG(∃F (final))
G((Sync GetCustomerData ∨ Sync PUTCardData ∨ Sync PUTAccountData∨
Recover GETSaleResult ∨Recover HighFraudScore ∨Recover DeclineSale
∨Fault CheckSales ∨ Fault MultiSaleCard)→ X(¬final))

MS1

G((Sync GetCustomerData ∨ Sync PUTCardData ∨ Sync PUTAccountData∨
Recover GETSaleResult ∨Recover HighFraudScore ∨Recover DeclineSale)→
X(Success SaleOK ∨ Success RequestProcessed ∨ Fail CreateReport ∨ Fail DeclineSale∨
Fault CheckSales ∨ Fault MultiSaleCard ∨ Syncreq Resale ∨Delay MultiSaleCard))

MS2
G(Delay MultiSaleCard→ X(Success SaleOK ∨ Success RequestProcessed∨
Fail CreateReport ∨ Fail DeclineSale ∨ Syncreq Resale ∨ Fault CheckSales∨
Fault MultiSaleCard))

MS3
G(Syncreq Resale→ X(Sync GetCustomerData ∨ Sync PUTCardData∨
Sync PUTAccountData ∨ final))

MS4
G((Fault CheckSales ∨ Fault MultiSaleCard)→ X(Recover GETSaleResult∨
Recover HighFraudScore ∨Recover DeclineSale))

MS5 N/A

MS6
G((Success SaleOK ∨ Success RequestProcessed)→ X(final ∨Recover GETSaleResult∨
Recover HighFraudScore ∨Recover DeclineSale))

MS7 G((Fail CreateReport ∨ Fail DeclineSale)→ Xfinal)

3.5 Summary

In this chapter, we present our approach for modeling transactional service-oriented processes

at design-time, and a verification process for ensuring well-formed transactional behavior. This

enables reliability issues in the transactional behavior of the process to be identified and resolved

at design-time, to avoid costly redevelopment or runtime consequences.

Our modeling approach separates process behavior into two models, control and operational

behavior, which provide transactional and functional views of the process respectively. These

models exchange a set of inter-behavior messages to pass instructions and remain aware of each

other’s status. The transactional behavior of the process can be checked for reliability issues by

verifying the conversations between behavior models. We define a set of conversation rules, that

ensure inter-behavior conversations initiate and terminate in a valid way, while avoiding deadlock.

Model checking can be used to verify transactional service-oriented processes for reliability

issues with our conversation rule set. The conversation rules are formalized in LTL and CTL,

before model checking is applied to formally and exhaustively verify the process models against

57

them. Furthermore, we reduce the state space of the model prior to verification via a reduced

Kripke structure algorithm, to improve verification performance for large and complex models.

58

CHAPTER 4

Temporal Logic Templates for Application-Dependent

Transactional Requirements

In the previous chapter, we outlined an approach to verify service-oriented processes at design-time

against rules for well-formed transactional behavior. While this verification method can identify

violations of application-independent correctness criteria, the issue of ensuring transactional re-

quirements drawn from business logic remains. Such requirements include acceptable states for

process termination, specific fault-handling measures for certain component tasks, and components

considered critical for successful execution, among other possibilities. To address this, we apply

the transactional service-oriented process modeling approach introduced in the previous chapter

towards ensuring application-dependent requirements at design-time.

We first overview work in service-oriented processes and temporal logic patterns related to

our approach, and identify the open issues we aim to fill with our contribution. We apply the

same comparison criteria as the previous chapter, but also compare approaches according to the

specification methods they used for formalizing transactional requirements. Our survey found that

most approaches automatically conduct transactional behavior in a way that preserves requirements

specified by the user, rather than verifying manually specified transactional behavior. However, our

analysis of the requirement specification methods used identified that many are prone to scalability

issues with large or revised models, or are unable to formalize complex requirements.

In order to provide a specification method with strong scalability and expressibility, aur ap-

proach uses temporal logic templates to elicit and formalize transactional requirements from de-

velopers. These templates enable developers to manually specify and verify transactional service-

oriented processes according to their own business logic. Our temporal logic template set is divided

59

into sets, for specifying both component-level and process-level transactional requirements. The

developer can formalize transactional requirements in temporal logic by assigning variables from

a template that suits the requirement. Our approach enables complex and varied transactional

requirements to be formalized without requiring expertise in formal methods.

Model checking is used to ensure these requirements are satisfied by the design. We show

how we address state-space explosion prior to model checking, in order to improve verification

performance with large and complex models and requirement sets. An algorithm is applied that

generates a reduced Kripke structure from the service-oriented process, modeled as control and

operational behaviors.

4.1 Related Work

Our work follows recent efforts in ensuring that application-dependent transactional requirements

are satisfied in service-oriented processes. Furthermore, our approach uses temporal logic tem-

plates, which builds on research in temporal logic patterns. We provide an overview of both areas

and clarify the contribution of our work below.

4.1.1 Ensuring Transactional Requirements in Service-Oriented Processes

For providing an overview of the research in this area, we first define the criteria used to compare

each approach. Next, we apply our criteria to our surveyed approaches in order to identify the

issues to address with our work.

4.1.1.1 Comparison Criteria

We apply the same set of comparison criteria defined in the previous chapter (Table 3.1) for ap-

proaches to ensure application-independent requirements. However, as this section addresses trans-

actional requirements drawn from business logic, each approach requires a method to elicit and

formalize such requirements from the developer. Therefore, we include an additional criterion in

the Method category called Specification Method. We identify four properties to consider during

60

our comparison of specification methods:

• Expressiveness refers to the complexity of requirements that the method is able to spec-

ify. For example, a highly expressive method may be able to specify requirements over the

transactional behavior of both the components and the process, and may consider numerous

fault types, or a wide range of fault-handling behavior. A less expressive method would be

restricted to much simpler requirements.

• Flexibility indicates how well the specification method can support cases of simple and com-

plex requirement sets. A flexible specification method can support transactional requirement

sets varying in complexity, making it applicable to a wider range of business scenarios.

• Scalability considers how laborious the process of requirements specification becomes, or

how feasible the necessary verification or assurance method remains, as the size and com-

plexity of the process model increases.

• Usability refers to the ease of requirements specification for the developer. For example,

a method with poor usability may require expert knowledge in a formal language, while a

method with high usability may only require a set of variables to be assigned.

4.1.1.2 Survey

We first give an overview of design-time verification approaches, followed by service provisioning

strategies, development and execution frameworks, as well as others that do not fit into these

categories.

Kokash and Arbab [85] developed a tool that uses model checking to verify the design of

long-running transactions against temporal logic properties. The design is specified using the

coordination language Reo, which comprises of components and services connected with different

types of communication channels. The model also makes use of constraint automata to specify

data constraints over node input and output. Temporal logic properties are specified manually

by the developer using LTL and Alternating-time Stream Logic (ASL) [84], which is a variant

61

Table 4.1: Overview criteria of application-dependent requirements approaches.

Approach Lifecycle Phase Implementation
Kokash and Arbab [85] Design Verification tool
WebTransact [122, 123] Design, development Composition framework
Vidyasankar and Vossen [149] Design, development Web Service composition model
Bhiri et al. [18] Design, development Static service provisioning strategy
Montagut et al. [111] Design, development Static service provisioning strategy
El Haddad et al. [53] Design, development Static service provisioning strategy
Johny [81] Design, development Static service provisioning strategy, WS-BPEL generator
FACTS [100] Design, development Composition framework
Zheng and Lyu [161] Design, development Fault tolerance strategy selection
Kovács et al. [87] Development WS-BPEL process formal modeling for model checking
eFlow [34] All Composition and execution framework
FENECIA [12] All Composition and execution framework

Montagut et al. [112] All Distributed workflow composition and execution
framework

MASC [57] Runtime Service management middleware
TRAP/BPEL [58] Runtime Execution framework
Baresi and Guinea [10] Runtime Execution framework
Simmonds et al. [135] Runtime Execution framework

of Computational Tree Logic (CTL) that is able to express conditions on data flow with regular

expressions.

We identified several approaches that apply a service selection and provisioning strategy fo-

cused on ensuring transactional requirements. Bhiri et al. [18] use a workflow skeleton of tasks

for representing the process with no provisioned Web services. The developer is required to to

implement an Accepted Termination States (ATS) model [83] to exhaustively define the valid ter-

mination states. To satisfy the ATS model, Web services are selected to fit the workflow skeleton

from candidate sets of functionally-equivalent services according to their transactional properties

and a set of transactional composition rules. As in the authors’ related work [17], transactional

dependencies between component services, inferred from the transactional properties of services

and the workflow patterns used, determine the fault-handling behavior of the composition. This

work has been followed by other service-provisioning strategies. In the approach by Montagut et

al. [111], the ATS model is specified using a top-down method, by reducing a larger set of valid

termination states, determined from execution dependencies in the workflow. El Haddad et al.

[53] use an algorithm to select Web services according to QoS properties as well as transactional

62

Table 4.2: Support criteria of application-independent requirements approaches.

Approach Process Model
AND XOR IOR Itr TP Notes

Kokash and Arbab [85]
√ √

Abstract data domain
WebTransact [122, 123]

√ √
Data dependency links between components

Vidyasankar and Vossen [149]
√ √ √

Bhiri et al. [18]
√ √ √

Montagut et al. [111]
√ √ √

El Haddad et al. [53]
√ √ √

Johny [81]
√ √

FACTS [100]
√ √ √

Zheng and Lyu [161]
√ √ √

Kovács et al. [87]
√ √ √ √ WS-BPEL equivalent, process variables with

transactional states
eFlow [34]

√ √

FENECIA [12]
√ √ √ √ Also supports selection and exclusive merge,

and rendezvous patterns
Montagut et al. [112]

√ √ √

MASC [57]
√ √ √ √ Microsoft Windows Workflow Foundation [5]

equivalent
TRAP/BPEL [58]

√ √ √ √
WS-BPEL equivalent

Baresi and Guinea [10]
√ √ √ √

WS-BPEL equivalent
Simmonds et al. [135]

√ √ √ √
WS-BPEL equivalent

properties. Instead of an ATS model for transactional requirements, the developer specifies a bi-

nary variable signifying whether the resulting composition should be compensatable or not. This

general approach is adapted in a broker-based framework proposed by Johny [81].

Several development and execution frameworks have been proposed for Web service com-

positions. A prominent example is the Failure Endurable Nested-Transaction Based Execution

of Composite Web Services (FENECIA) framework [12]. FENECIA is a combination of three

components: the WS-SAGAS transactional model for Web service composition specification, the

THROWS execution architecture, and a QoS estimation and analysis model. The WS-SAGAS

transaction model supports a large set of workflow patterns [147]. Dynamic provisoning, reprovi-

sioning, and rollback of component services is enabled according to their transactional properties.

FENECIA uses mandatory tasks as a means for developers to specify transactional requirements.

During execution, if a fault occurs at a mandatory task, and the service cannot be replaced, then

the composition must be aborted.

The eFlow framework [34] enables composition, deployment, and execution of Web services

63

Table 4.3: Method criteria of application-dependent requirements approaches.
Approach Transactional Requirements Specification Method Verification or Assurance

Kokash and Arbab
[85]

Temporal logic over rollback-
enabled data-aware processes LTL and ASL properties Model Checking

WebTransact [122,
123]

Atomic termination,
mandatory and desirable
services for commit

A set of mandatory
tasks for commit Service provisioning

Vidyasankar and
Vossen [149]

Atomic termination,
preference ordering of
alternatives

Set of acceptable pivot
operations Composition rules

Bhiri et al. [18] Relaxed atomicity conditions ATS model Service provisioning
Montagut et al.
[111] Relaxed atomicity conditions ATS model Service provisioning

El Haddad et al.
[53] Composition compensatability Binary parameter Service provisioning

Johny [81] Composition compensatability Binary parameter Service provisioning

FACTS [100] Fault-tolerance, mandatory
tasks for commit

Mandatory tasks for
commit Verification algorithm

Zheng and Lyu
[161] Fault tolerance Optimization problem

constraints
Optimization problem with
heuristic algorithm

Kovács et al. [87] LTL properties over process
behavior and variable states

Manually specified LTL
properties Model checking

eFlow [34]
Configurable atomicity and
isolation levels in process
regions

Atomic regions and
required rollback tasks

ACID transactions and
rollback

FENECIA [12] Fault-tolerance, mandatory
tasks for commit

Mandatory tasks for
commit

Runtime reprovisioning and
rollback

Montagut et al.
[112] Relaxed atomicity conditions ATS model of critical

regions Dynamic partner allocation

MASC [57] Component-service level
fault-tolerance requirements

XML-based fault-
handling policies

Policies attached to
component services

TRAP/BPEL [58] Component-service level
fault-tolerance requirements XML-based policy file Dynamic adaptation via

generic proxy

Baresi and Guinea
[10]

Pre and post-conditions for
integrity, reliability, and
availability

WSCoL assertion
language

Monitoring interactions and
invoking user-defined
recovery strategies

Simmonds et al.
[135]

Application-dependent safety
and liveness requirements

Colored labeled
transition systems

Dynamic generation and
ranking of recovery strategies

64

Table 4.4: Transactional behavior criteria of application-dependent requirements approaches.
Approach Faults Fault-handling Specification

Kokash and Arbab [85] Behavioral, timeout,
communication

Rollback, compensation,
cancellation Manual

WebTransact [122, 123] Behavioral Retrial, rollback, 2PC Automated
Vidyasankar and Vossen
[149] Behavioral Retrial, rollback, compensation,

alternative Automated

Bhiri et al. [18] Behavioral Retrial, rollback, cancellation Automated
Montagut et al. [111] Behavioral Retrial, rollback, cancellation Automated
El Haddad et al. [53] Behavioral Retrial, rollback Automated
Johny [81] Behavioral Retrial, rollback Automated

FACTS [100] Behavioral, contract violations,
availability, logical

Retrial, rollback, waiting,
cancellation, alternative,
redundancy, ignore, log, skip

Semi-
automated

Zheng and Lyu [161] Behavioral, availability,
communication, logical

Retrial, alternative, redundancy,
n-version strategy Automated

Kovács et al. [87] Behavioral, communication Rollback, compensation,
unspecified forward recovery Manual

eFlow [34] Behavioral Rollback, cancellation Manual

FENECIA [12] Behavioral, communication Rollback, cancellation,
reprovisioning Automated

Montagut et al. [112] Behavioral Retrial, rollback, cancellation,
reprovisioning Automated

MASC [57] Behavioral, contract violations,
communication

Retrial, reprovisioning,
redundancy, restructuring Manual

TRAP/BPEL [58] Behavioral, timeout Retrial, rollback, reprovisioning Manual

Baresi and Guinea [10] Behavioral, communication,
availability

Retrial, rollback, reprovisioning,
log

Semi-
automated

Simmonds et al. [135] Behavioral, requirement
violations

Retrial, rollback, user
intervention, reprovisioning,
restructuring

Semi-
automated

65

using ACID transactions for component service invocation and applies rollback in response to

faults. Another publication by Montagut et al. [112] presents a system for transactional support of

long-running distributed workflow execution, which uses an ATS model defined for critical zones

of the workflow, where transactional requirements must be satisfied. The Framework for Fault-

Tolerant Composition of Web Services (FACTS) [100] enables specification and Web service com-

positions with transactional behavior, and verification that faults occurring at services specified as

mandatory are validly handled. WebTransact [122, 123] is a Web service composition framework

that aggregates functionally equivalent candidate services for each operation. These aggregations

form mediator services, and can be composed by the developer according to interaction patterns.

The remaining approaches to discuss in this section are outside the above categories. Vidyasankar

and Vossen [149] present a Web service composition model that constructs a tree structure from

the pivot operations in the process, such that the leaves of each node are the alternative operations

ordered by developer preference. Users of the process can specify their own execution require-

ments in the form of acceptable pivot operations. This prunes invalid alternatives from the pivot

the tree as necessary. Kovács et al. [87] propose a method to formally model WS-BPEL processes,

with fault-handling and process variables, to enable verification through model checking. Man-

ageable and Adaptable Service Composition (MASC) [57] is a service management middleware

to enable the specification and enforcement of extensive fault recovery policies of component ser-

vices. Lastly, Simmonds et al. [135] present an execution framework for user-guided recovery

for violation of safety and liveness behavioral properties in WS-BPEL processes. This approach

computes recovery plans in response to violations, which are a sequence of backward and forward

recovery actions to meet the goal specified by the property.

4.1.2 Temporal Logic Patterns

The approach we employ to elicit transactional requirements from the developer adapts existing

work in temporal logic patterns. These patterns are empty structures of temporal logic taken from

common or useful properties [52]. They were developed to aide the use of temporal logic for

formal verification, by reducing human error and effort for specifying common properties. We

66

provide a brief overview of the state-of-the-art in temporal logic patterns before clarifying our

research direction.

Dwyer et al. [52] defined a set of configurable patterns based on common LTL and CTL

property structures found in surveyed specifications. This enabled formal verification tools such as

model checkers to be used more broadly by reducing the need for expertise in temporal logic. These

patterns are abstract temporal logic structures for expressing behavior such as absence, existence,

and precedence of states or events. Furthermore, scope values can be applied to limit states of the

system where the patterns must hold.

The temporal logic patterns proposed by Dwyer et al. have been adapted and extended in sub-

sequent research. Cardinality between variables and other configuration options were introduced

into patterns by Smith et al. [136]. Other approaches include Elgammal et al. [54], who pro-

pose a framework to compose atomic patterns to specify more complex properties, and Yu et al.

[158], who apply temporal logic patterns to business rule compliance in WS-BPEL schemas. Our

work draws on contributions from these approaches, such as allowing properties to be adjusted

according to scope and cardinality values. However, our focus is on transactional requirements for

service-oriented processes, so our proposed template set is specialized and more applicable to this

domain.

The most comparable approach to our work is the Web service composition verification frame-

work proposed by Fantechi et al. [59]. Their approach uses model checking to verify service-

oriented systems against properties implemented from temporal logic templates. The templates are

constructed in Service-oriented computing Language (SocL), a branching-time logic. Unlike our

work, the focus of these templates is to formalize interaction requirements of component services,

such as specifying that a service may only accept one request between responses. Our approach

focuses on the transactional requirements that apply to such components, but also extend the focus

on requirements applicable to the scope of the process.

67

4.1.3 Research Direction

As with the approaches limited to application-independent transactional requirements, these application-

dependent approaches mostly utilize automated transactional behavior (52.94% automated and a

further 17.65% semi-automated). Furthermore, the Implementation field of Table 4.1 and the Veri-

fication or Assurance field of Table 4.3 indicate that verification is not commonly used in this area

(in 11.76% of approaches). As our aim is to ensure prior to development that the transactional

requirements of the process are satisfied, our approach uses manually defined transactional behav-

ior. Verifying manually specified transactional behavior allows developers to maintain complete

control of how their process behaves in response to faults, and identify major issues early in the

process lifecycle. For example, determining if a set of transactional requirements are unrealizable

in their current form, or identifying conflicts between their own transactional requirements and

pre-established requirements for interacting with a business partner involved in the process.

Table 4.3 indicates that the transactional requirement specification methods used in the state-

of-the-art are often either highly expressive or easy to use. For example, ATS models allow an

exhaustive definition of valid process termination states, but it is laborious to define for large

models, and requires non-trivial revisions if the structure of the process is modified. Similarly,

manually specified temporal logic properties are highly expressive, but require language expertise

and can be error-prone to define. In contrast, binary variables or mandatory tasks for commit

are simple methods that are flexible to changes or scaling in the process model, but are unable

to express more complex transactional requirements. We aim to address this with a requirement

specification method that is usable, expressive, and scalable to large process models.

The body of work in temporal logic patterns is, to the best of our knowledge, is yet to be adapted

towards the specification of transactional requirements in service-oriented processes. These would

provide a benefit over many of the specification methods proposed in related work, as they allow

complex temporal logic properties to be formalized without expertise. The initial set of patterns

provided by Dwyer et al. [52] support high-level properties that are broadly applicable to many

systems. In contrast, we aim to enable verification of a specific model. Therefore, we plan to

adapt the concept of temporal logic patterns (as temporal logic templates), while proposing our

68

own set of properties that are specialized towards transactional requirements for service-oriented

processes. The transsactional requirements that our template set will be able to specify will be

gathered from common and useful requirements in existing work.

Our approach to address these issues is to verify service-oriented processes at design-time

against transactional requirements elicited from the developer using a specification method that

is both expressive and easy to use. We plan to build on the contribution presented Chapter 3, by

applying the same modeling approach of control and operational behaviors with manually defined

transactional behavior. This is appropriate as it provides a view of the functional and transactional

states of the process, and allows developers to specify detailed transactional behavior through

messages.

4.2 Formalizing Transactional Requirements

A developer must have confidence that a potentially long-running process of distributed and het-

erogeneous services will conform to a set of transactional requirements for containing and handling

faults. These requirements could apply to failures of individual components, e.g., required recov-

ery operations to undo the component’s effect, or to the scope of the process, such as components

critical for success, or relaxed atomicity conditions for failure. Violating such requirements could

compromise internal business policies, leading to issues with consistency of distributed data, con-

sumer relations, or legal obligations. Therefore, it is crucial to identify and resolve any compliance

issues prior to development, which requires a formal specification method.

To make formalizing complex and diverse transactional requirements feasible for non-experts,

we propose the use of temporal logic templates. This approach adapts previous work in temporal

logic patterns [52], which simplify property specification by identifying common temporal logic

property structures and presenting them for use in an implementable form. Similarly, our work

identifies common transactional requirements for service-oriented processes and provides tempo-

ral logic properties in a template form, which can be implemented by developers by assigning

variables. This leverages the expressive power of temporal logic without requiring users to have

expert knowledge in the language. It also reduces the effort and the capacity for human error during

69

requirement formalization.

As transactional requirements can vary in scope, we propose two sets of templates. Component-

level templates can be used to formalise requirements specific to certain component services in the

process, such as defining acceptable alternatives or recovery operations following failure. In con-

trast, process-level templates implement transactional requirements that apply to the scope of the

whole process, e.g., to specify pre-conditions for valid committing or cancellation of the process.

Both template sets can be used to formalize transactional requirements for a process modeled as

interacting control and operational behavior models, as introduced in Section 3.2. Both LTL and

CTL is used, in order to increase the range of transactional requirements that our templates are

able to specify.

We overview each set of templates below, and provide a full specification of one from each set.

Full specifications of all templates are omitted from this chapter for readability, but can be found in

Appendix A. We do not claim that our template set is complete, but rather provide a foundational

set that is simple to extend. Further templates could be added by defining further specifications for

requirements not already supported. Alternatively, the templates could be added to expand the set

into other types of requirements, such as more general business rules [54].

4.2.1 Component-Level Templates

Component-level templates specify requirements for handling the failures of individual component

services in the process. For example, considering the online payment process in Figure 3.4, after

the failure of the Resale operation, either PUT Card Data or PUT Account Data can be attempted

as alternative operations to continue the sale. From analyzing the common transactional proper-

ties applied to component services in related work (Table 4.2), we identify six component-level

templates. We list and briefly describe each below.

• CompensateFailure specifies that the failure of a certain component must be recovered with

further operations. The developer specifies a component and a condition, such that the failure

of the component requires the condition to be satisfied in the future.

70

• CompensateSuccess is used when the effect of a component must be undone after it has

previously completed. This is required if a process, following the successful completion of

that component, must be aborted or compensated. A component and condition is specified

by the developer, such that the condition is required to be satisfied prior to abortion or during

compensation, if the component has completed earlier.

• Alternative specifies that following the failure of a component, one or several alternative

operations, are considered acceptable replacements. Potential alternatives are expressed as a

condition variable.

• NonRetriable defines a component that should not be retried following failure in the same

process instance.

• RetriablePivot specifies a component that may be retried, but its effect once completed

cannot be undone. Following successful completion of the component, the process must

commit.

• NonRetriablePivot specifies that a component may not be retried after failure or undone

once completed. The process must therefore commit or abort depending on the success of

the execution of the component.

Table 4.5 shows the complete specification of the CompensateFailure template. A full

specification of a template contains several fields to enable developers to fully understand and uti-

lize the template. The variables field lists the variables that must be assigned by the developer in

order to implement the template. These can be single components, as in Component, a basic propo-

sitional logic condition, as in Recovery, or a selection from a discrete set of options, such as Card

and Scope. The Card value (short for cardinality) is used to specify the relationship between two

variables, while Scope restricts when the requirement is applicable. These two variables increase

the flexibility of the template and remove ambiguity from the formalization.

The Description field provides information on what requirements the template can be used to

implement. Prerequisite identifies any basic features that the model must include before the trans-

actional requirement can be verified. For example, in order to specify a CompensateFailure
71

Table 4.5: Template specification for CompensateFailure

Name CompensateFailure <Component,Recovery,Card,Scope>
Type Component-level

Variables

Component An operational behavior state that requires recovery upon failure.

Recovery
A condition that undoes the effect of the failure. This can be a single
component or a set of components structured with ∨ operators.

Card One of the cardinality options below.
Scope One of the scope options below.

Description The failure of Component leaves an impact an effect, which must be compensated by Recovery
becoming true in the future.

Prerequisites A Fault message originating from Component in the operational behavior is necessary for
this requirement to be verified.

Cardinality 1:1 Recovery undoes one failure of Component.
Many:1 Recovery can undo many failures of Component.

Scope

G The template applies in all executions.
P Applies during the satisfaction of a condition P .
¬P Applies during the negation of a condition P .
Before P Recover must precede the satisfaction of P .

LTL

1:1

G
G(Component.FAULT → ((¬(Activated ∧ Component)∪

Recovery) ∧ F (Recovery))

P
F (P)→ G(Component.FAULT → ((¬(Activated∧

Component) ∪Recovery) ∧ F (Recovery))

¬P G(¬P)→ G(Component.FAULT → ((¬(Activated∧
Component) ∪Recovery) ∧ F (Recovery))

Before P
G(Component.FAULT → (((¬(Activated ∧ Component) ∧ ¬P)
∪Recovery) ∧ F (Recovery))

Many:1

G G(Component.FAULT → F (Recovery))
P F (P)→ G(Component.FAULT → F (Recovery))
¬P G(¬P)→ G(Component.FAULT → F (Recovery))
Before P G(Component.FAULT → ((¬P ∪Recovery) ∧ F (Recovery)))

requirement for a component in the model, a Fault message originating from that component must

be included, to indicate the presence of potential failures that require recovery operations.

Finally, the specification provides the temporal logic forms that the requirement can take ac-

cording to the selections of Card and Scope variables. Card is used to state the precise relationship

between other variables. In Table 4.5, it specifies whether the Recovery condition is needed for

every failure of Component, or if one instance can recover from all failures preceding it. Scope

is used to limit when the requirement is applicable, such as only during execution that satisfy or

violate a certain property.

The properties for this template are formulated in LTL. Depending on how the Card and Scope

variables are set, there are 8 basic structures that the property may take. The properties of this

72

template, and several others in Appendix A, can become non-trivial to manually and interpret. Our

template set avoids this capacity for human error and effort.

Specifying a CompensateFailure requirement using our template instead of manual tem-

poral logic removes a lot of burden from the developer, while maintaining sufficient options and

expressibility. For example, this template can be used to formalize the requirement that if Check

Sales has a fault, then Decline Sale must be used to recover the process, by assigning those

components to Component and Recovery respectively, setting Card to 1:1, and Scope to Global.

The LTL property expressing this requirement takes the form:

G(CheckSales.FAULT → ((¬(Activated ∧ CheckSales) ∪DeclineSale) ∧ F (DeclineSale))

This property formulates a condition that must be satisfied after every instance of a Fault mes-

sage originating from the Check Sales activity. Firstly, that Check Sales must not be exe-

cuted again until the Recovery condition (as Card is set to 1:1), and finally that Recovery must be

satisfied at some point in the future.

4.2.2 Process-Level Templates

Process-level templates are able to specify requirements over the entire process, such as precondi-

tions, triggers, or reachability conditions for entering control behavior states. An example process-

level requirement taken from the online payment composition is that in cases where a high fraud

score is detected, Create Report must be executed before the Aborted state is reached. Our pro-

posed set of process-level templates are listed below.

• ControlStateCritical specifies a condition that is critical to satisfy before entering a certain

control behavior state. This template requires a condition, control behavior state, and scope

set by the developer.

• ControlStateTrigger specifies a condition that once satisfied, must trigger the activation of

a control behavior state at some point in the future.

73

Table 4.6: Template specification for ControlStateCritical

Name ControlStateCritical<ControlState,Condition,Scope>
Type Process-level

Variables

ControlState The control behavior state this critical condition applies to.

Condition
The precondition for entering this control behavior state. This can be a single
component or a set structured with ∧ and ∨ operators.

Scope One of the scope options below.

Description Condition denotes the precondition for entering ControlState. When ControlState is entered,
Condition must have been met previously on the execution path.

Prerequisites N/A
Cardinality N/A

Scope

G The template applies in all executions.
P Applies during the satisfaction of a condition P .
¬P Applies during the negation of a condition P .
Before P ControlState is entered before P is met.

LTL

G G(ControlState→ O(Condition))
P F (P)→ G(ControlState→ O(Condition))
¬P G(¬P)→ G(ControlState→ O(Condition))
Before P G(ControlState→ (O(Condition) ∧ H(¬P)))

• ControlStateReachable specifies that a control behavior state must be reachable when a

condition provided by the developer is satisfied.

• ControlStateUnreachable specifies a condition that once satisfied, indicates that a control

state should not be reachable in the future.

• Compensation specifies a condition that must be met during compensation. Compensation

is a service or sub-process to undo the effect of a committed process instance.

• ConditionalCompensation specifies a condition for compensation and a condition for exe-

cution, such that the compensation condition is only necessary when the execution condition

has been satisfied earlier in the execution.

The full specification of the ControlStateCritical template is shown in Table 4.6. The

variables include a control behavior state that the requirement applies to, and a vital pre-condition

for entering that state. Like the CompensateFailure template in Table 4.5, the applicability of

the requirement can be restricted using a scope variable. For example, the template could formalize

the requirement that before entering the Aborted state, if a High Fraud Score was detected

74

(assigned as P in Scope), then Create Report must have been previously executed. The LTL

property to formalize this requirements takes the form:

F (HighFraudScore)→ G(Aborted→ O(CreateReport))

This property uses the F operator to only apply to executions of the model contains the

HighFraudScore activity at any point. In these execution, every instance of the Aborted

control behavior state must be preceded at some point by the Create Report activity.

4.3 Enabling Formal Verification Through Model Checking

The process for enabling verification against transactional requirements specified using our tem-

plate set is similar to the one defined in Chapter 3.4 for conversation rules. We apply model

checking to ensure that a service-oriented process design satisfies the temporal logic forms of im-

plemented transactional requirement templates. In order to improve verification performance and

feasibility for large and complex processes, we also use an algorithm to reduce the state space of

the model prior to model checking.

4.3.1 Transactional Requirement Formalization

As shown in Tables 4.5 and 4.6, each template comes with temporal logic property structures

that formalize the intended requirement. As an example, we define 3 transactional requirements

applying to the online payment composition that can be implemented using our templates, as shown

in Table 4.7. The client can set the template variables as shown, and they will be mapped to

concrete temporal logic properties.

Table 4.8 shows the temporal logic forms of these 3 requirements after mapping the values

set to the LTL structures in their specifications. Generating properties this complex automatically

removes a lot of potential for human error in requirement specification.

75

Table 4.7: Transactional requirements for the online payment process
ID Template Variables Values

CLR1 Alternative

Component Resale
Recovery PUTAccountData ∨ PUTCardData
Cardinality 1:1
Scope G

CLR2 RetriablePivot
Component CheckSales
Scope G

PLR1
ControlState

Control State Aborted

Critical
Condition CreateReport
Scope HighFraudScore

Table 4.8: Online payment process transactional requirements implemented using our template set
ID Temporal Logic

CLR1
G((Resale.SY NCREQ)→ ((¬(Activated∧Resale) ∪ (Activated∧ PUTAccountData)∨
(Activated ∧ PUTCardData))) ∧ F ((Activated ∧ PUTAccountData)∨
(Activated ∧ PUTCardData))))

CLR2 G((CheckSales ∧X(¬DeclineSale.FAIL))→ F (Done))
PLR1 F (HighFraudScore)→ G((Aborted)→ O(CreateReport))

4.3.2 State Space Reduction

For reducing the model state space prior to verification against transactional requirements, we

propose a second algorithm called Transactional Requirement Kripke Structure Reduction (TSKR),

shown in Algorithm 3, to produce a Kripke structure Kt. Since the model is verified against a set

of application-dependent transactional requirements, the Kripke structure must capture the states

related to those requirements. Therefore, a different algorithm than Algorithm 1 for conversation

rule checking is required.

The temporal logic forms of specified requirements can include operational behavior states,

control behavior states, and inter-behavior messages. Therefore, the atomic propositions at each

state of the Kripke structure Kt will be the active value of each of these three features. The input

to this algorithm is the flattened behavior model Bf , the control behavior model Bc, and a set of all

operational and control behavior states defined as template variables TV . TKSR uses a recursive

procedure Transactional Requirements Depth-First Traversal (TDF), shown in Algorithm 4, to

traverse Bf in a depth-first order.

First, TKSR creates the Kt with initial and final states, before invoking the TDF procedure

76

Algorithm 3 Transactional Requirements Kripke Structure Reduction: TKSR
1: Kt ← 〈Skt, T kt,Lt〉
2: Add s0 and sfin to Skt

3: TDF(NotActivated, s0, s0, ∅)
4: return Kt

Algorithm 4 Transactional Requirements Depth-First Traversal: TDF(sc, sx, sk, APv)
1: if sx = sfin then
2: Add (sk, sfin) to T kt

3: return
4: end if
5: if sx 6= s0 then
6: if sx ∈ Sm then
7: Update sc
8: end if
9: if (sc,sx)∈ APv then

10: return
11: end if
12: if sc ∈ TV ∨ sx ∈ TV then
13: if s ∈ Skt with atomic propositions (sc,sx) then
14: Add (sk, s) to T kt

15: return
16: else
17: Add s with atomic propositions (sc,sx) to Skt

18: Add (sk, s) to T kt

19: APv ← ∅
20: sk ← s
21: end if
22: end if
23: Add (sc,sx) to APv

24: end if
25: for s ∈ Sf where (sx, l, s) ∈ T f do
26: if l is satisfied then
27: TDF(sc, s, sk, APv)
28: end if
29: end for
30: return

77

to traverse that states of Bf . TDF requires as input the current control behavior states sc, active

flattened behavior model states sx, and the most recent Kripke state added at this point in the

traversal sk. The fourth input parameter is the set of visited control and flattened behavior model

states since sk was added, represented as a set of atomic propositions APv, such that APv ⊆

Sc × Sf .

Firstly, if the traversal has reached the final state, TDF creates a Kripke transition to the final

state and returns (lines 1-4). Next, TDF determines whether states or transitions need to be added

to Kt at this point in the traversal (lines 5-24). The steps in this process include transitioning the

control behavior state if a message state is encountered (lines 6-8), and backtracking if a cycle

has occurred in the traversal (lines 9-11). If either of the current atomic propositions (sc, sx) are

in the template variable set TV (line 12), a Kripke transition is created to either an existing state

(lines 13-15) or new state (lines 16-21) in Skt. If an existing state is linked to the procedure

can return, as the outgoing transitions in Bf from that state have already been explored (line

15). Following any updates to the Kripke structure, the visited atomic propositions set APv is

also updated with (sc, sx) (line 23). Finally, TDF recursively calls itself on every state targeted

by satisfied transitions outgoing from sx (lines 25-29). The procedure returns once the initial

invocation with s0 terminates.

The control and operational behavior states specified by the user as template variables are

input for the template Kripke reduction algorithm, as specified in Algorithm 3. We implement

two requirements with component-level templates (CLR1 and CLR2), and one requirement with a

process-level template (PLR1), as shown in Table 4.7. Given the input from these requirements,

the control and flattened behavior model is reduced to the Kripke structure of Figure 4.1. This

Kripke structure contains only the states required for verifying the transactional requirement set,

and their temporal dependencies. The algorithm has reduced the initial behavior models totalling

28 states with 14 inter-behavior messages to a Kripke structure of 12 states.

This Kripke structure and the temporal logic forms of implemented templates can be used as

input for a model checking tool. However, the temporal logic properties have to apply to the

states of the Kripke structure they are verifying. In place of control states, operational states, or

inter-behavior messages in the temporal logic properties, all Kripke states that contain that atomic

78

Activated
PUT Card Data

nil

Activated
PUT Account Data

nil

Suspended
Resale

Syncreq

Aborted
Decline Sale

Fail

Activated
Check Sales

nil

Rollback
High Fraud Score

nil

Rollback
Create Report

nil

Aborted
Create Report

Fail

Done
Sale OK
Success

Activated
Resale

nil

Control State
Operational State

Inter-Behavior Message

Legend

Figure 4.1: Reduced Kripke structure for transactional requirement verification

Table 4.9: Temporal logic formalizations of the online payment process transactional requirements

ID Temporal Logic

CLR1
G((Suspended Resale Syncreq) → ((¬(Activated Resale) ∪ (Activated PUTAccountData ∨
Activated PUTCardData)) ∧ F (Activated PUTAccountData ∨Activated PUTCardData)))

CLR2 G((Activated CheckSales ∧X(¬Aborted DeclineSale Fail))→ F (Done SaleOK))

PLR1
F (Rollback HighFraudScore)→ G((Aborted DeclineSale ∨Aborted CreateReport)→
O(Rollback CreateReport))

proposition must be included. If more than one such state exists in the Kripke structure, they are

separated with ∨ operators.

Table 4.9 contains the temporal logic formalizations of the requirements specified in Table 4.7,

for verifying the Kripke structure in Figure 4.1. Chapter 6 provides more details on how our

prototype tool uses model checking to verify the Kripke structure and against these properties.

4.4 Summary

Formalizing transactional requirements for service-oriented processes at design-time allows de-

velopers to verify that their model behaves in an acceptable manner in the presence of faults. It

79

provides assurance to the developers that the transactional behavior of the process avoids undesir-

able consequences, such as business rule violations or mismanagement of funds and resources.

From conducting an analytical survey of research in ensuring application-dependent transac-

tional requirements in service-oriented processes, we identify several issues to address. Firstly,

the majority of approaches conduct automatically defined transactional behavior, and do not at-

tempt to ensure requirements provided by the developer until later stages in the process lifecycle.

Furthermore, the specification methods for transactional requirements used in these approaches

often unable to express diverse and complex requirements, require expertise in formal methods, or

become laborious to use for large and complex processes.

In our approach, we adopt temporal logic patterns towards this issue to develop a design-

time verification method for service-oriented processes against application-dependent transactional

requirements. We provide a set of templates for specifying component-level and process-level

transactional requirements for service-oriented processes. These templates can be implemented

by developers by assigning variables, which are then automatically mapped into LTL or CTL

properties. This allows developers to formalize transactional requirements drawn from business

logic in a way that does not require expertise in formal methods, while reducing human error and

effort.

Model checking is used to verify service-oriented processes modeled as control and operational

behaviors against a set of requirements implemented using our template set. We use an algorithm to

reduce the impact of state-space explosion during model checking, by producing a minimal Kripke

structure from the control and operational behaviors. By enabling this verification at design-time,

we allow developers to ensure their requirements early in the process lifecycle and avoid costly

redevelopment or requirement violations at later stages.

80

CHAPTER 5

Transactional Behavior Verification in Business Process as a

Service Configuration

In this chapter, we extend our approach for verifying application-dependent transactional require-

ments towards Business Process as a Service (BPaaS) configuration. BPaaS is an emerging type of

cloud service that offers configurable and executable business processes to clients over the Inter-

net. Our design-time verification approach detailed in Chapters 3 and 4 can be adapted towards the

configuration of BPaaS, to ensure that provisioned service satisfies the transactional requirements

of clients.

As BPaaS is still in early years of research, many open issues remain, as shown by our com-

parison of related work. Managing the configuration of BPaaS builds on such areas as software

product lines and configurable business processes. The problem has concerns to consider from

several perspectives, such as the different types of variable features, constraints between config-

uration options, and satisfying the requirements provided by the client. In our approach, we use

our temporal logic templates set to elicit transactional requirements from clients that the config-

ured service must adhere to. As a configurable BPaaS model, we extend the separated behaviors

presented in previous chapters by defining operational behavior with BPMN. This allows for con-

trol flow connectors that not supported by statecharts, and enables configurable resources and data

objects to be mapped to activities. For formalizing constraints over configuration, feature models

are used. These allow for many types of relations between configuration choices to be expressed,

in a way that allows relations to cross perspectives. For example, the selection of an activity may

require a certain resource.

To manage all these concerns during BPaaS configuration, we develop a structured process

81

that applies several formal methods towards identifying a configuration solution. This process

directs the client through specifying transactional requirements and selecting configurable features.

Firstly, our temporal logic templates capture the transactional requirements the client wishes for the

configured BPaaS to conform to. Then, Binary Decision Diagram (BDD) analysis is used to verify

that the selected configurable features do not violate any constraints. Finally, model checking is

applied to verify the configured service against the transactional requirement set. We expand on

the algorithm proposed in the previous section and further reduce the model state space by dividing

the model checking problem into two phases.

5.1 Related Work

Our work in verifying and managing configurable BPaaS follows increasing research interest in

related areas such as configurable cloud service applications [110, 129], and configurable or adap-

tive business process models [71, 94, 146]. Our survey compares 23 approaches from these areas

according to criteria including their support for business process characteristics, configuration con-

straints, correctness criteria, and client requirements they ensure. From this analysis, we determine

that configuration of expressive BPaaS models, including resource and data object configurability,

that ensures configuration constraints and complex client transactional requirements is an open

issue for our work to address.

5.1.1 Comparison Criteria

We compare works according to two sets of criteria, namely, Support and Correctness criteria.

Table 5.1 shows our criteria set with example values. The support criteria is related to the busi-

ness process expressiveness enabled by the approach. The Process Formalism criterion identifies

how the approach expresses business processes. If business process structures are not explicitly

incorporated in the approach, the value is left blank. The next criterions specify whether it is ca-

pable of modeling resource and data and configurability. Finally, the means of expressing domain

constraints are identified for comparison.

82

Table 5.1: Comparison criteria overview
Category Criteria Values

Support

Process Formalism Petri-nets, BPMN, statecharts
Resources

√
or -

Data
√

or -
Domain Constraints Feature model, OVM, hierarchy model

Correctness Criteria
Process Model Syntax, Soundness
Configurability Circular dependency-free, contradiction-free
Client Requirements Feature selections, business rules, QoS parameters

Correctness criteria identifies the requirements that are ensured during the configuration or

adaptation approach. Process model criteria refers to structural or behavioral correctness of the

process model, such as soundness [148] or syntactical correctness [109]. Some approaches may

also analyze the configurability of the model to identify issues such as contradictions, dead fea-

tures, or circular dependencies [71, 95]. The final criterion identifies the client requirements that

are input into the process, such as selections of features [92, 102], or more complex behavioral

requirements [91].

5.1.2 Survey

Tables 5.2 and 5.3 show the results of applying our comparison criteria to the work related to

BPaaS configuration. Below, we provide a brief summary of these approaches, before analyzing

the comparison results for identifying a research direction.

5.1.2.1 Configurable Cloud Services

Configurability has been identified as a key property to increase the potential market of cloud

services, by allowing clients to adjust the service behavior or QoS guarantee to meet their re-

quirements [9, 49, 129]. Configuring SaaS shares many challenges with BPaaS, such as enforcing

domain constraints, and has received increasing research attention in recent years [92, 102, 110].

Nitu [114] analyzes the different aspects of SaaS that may be configurable, such as user in-

terface, program structure, data, and access control, and proposes an enabling architecture. One

module of the architecture contains a set of template data, relating to the various features that can

83

Table 5.2: Support criteria for comparing work related to BPaaS configuration
Approach Process Formalism Resources Data Domain Constraints
Nitu [114] -

√ √
Configuration templates

Mietzner et al. [110] -
√ √

OVM
Lizhen et al. [102] -

√ √
Metagraph relationships

Schoreter et al. [128] -
√ √

QCL Contracts
Banerjee [9] -

√ √
Variation pre and post-conditions

Kumara et al. [92] -
√ √

Feature model
Schroeter et al. [129] -

√ √
Extended feature model

Mendling et al. [109] C-EPC - - XPath Statements
van der Aalst et al. [144] Workflow nets - - -
van der Aalst et al. [145] Workflow nets, C-EPC - - -
Kumar and Yao [91] WS-BPEL

√ √
If-then statements

La Rosa et al. [93, 94] C-iEPC
√ √

Hierarchy model
La Rosa et al. [95] - - - Configuration Model
Wang et al. [152] WS-BPEL

√ √
-

van der Aalst [142] C-nets - - C-net bindings
Tsai and Sun [141] Customizable workflow

√ √
OVM

Liu et al. [101] Petri-nets - - -
van Dongen et al. [148] EPC, Petri-nets - - -
Gröner et al. [71] BPMN

√ √
Feature Model

van der Aalst et al. [146] Petri-nets - - -
Jiang et al. [79] Dependency structures - - -
Hallerbach et al. [73] Workflow model - - Basic logic
Gottschalk et al. [68] LTS, C-EPC - - -

be integrated into the service, such as UI or data elements. Configuration is handled by developers

and pre-defined for each type of client using these templates and a module holding configuration

data. While this framework allows service providers to maintain control over the configuration of

their product, other work in this area has aims to enable the clients themselves to drive configura-

tion.

Mietzner et al. [110] apply techniques from Software Product Lines (SPL) [124] to support

configurable SaaS. The authors adapt the Orthogonal Variability Model (OVM) [19] for modeling

SaaS configurability. An OVM captures mandatory and optional variation points, as well as the

concrete choices for each point, with dependencies between. OVMs can capture any type of SaaS

feature as abstract variation points, such as workflows, GUI elements, or security allowances. The

variability information can be used to generate a customization flow, which is a workflow procedure

to guide clients through configuration choices.

Lizhen et al. [102] adapt metagraphs [11] for modeling and support of configurable SaaS

84

Table 5.3: Correctness Criteria for comparing work related to BPaaS configuration
Approach Process Model Configurability Client Requirements
Nitu [114] - - -
Mietzner et al. [110] - - Feature selections
Lizhen et al. [102] - - Feature selections
Schoreter et al. [128] - - Feature selections
Banerjee [9] - - Required services
Kumara et al. [92] - - Feature selections
Schroeter et al. [129] - - Feature selections

Mendling et al. [109] Syntax - Function and connector
variants

van der Aalst et al. [144] Syntax and Soundness - Blocked and hidden activities
van der Aalst et al. [145] Syntax and Soundness - Blocked and hidden activities
Kumar and Yao [91] Syntax - Business rules

La Rosa et al. [93, 94] Syntax -
Blocked and optional

functions, resources, data
objects, connectors

La Rosa et al. [95] -
No circular

dependencies or
contradictions

Boolean questionnaire
answers

Wang et al. [152] - - Set of business policy types
van der Aalst [142] - - Blocked activities

Tsai and Sun [141] - - Structure, GUI, resources,
data, QoS

Liu et al. [101]
Fairness, deadlock-free,

reachability - Adding, deleting, modifying
elements

van Dongen et al. [148] Relaxed soundness - Termination states

Gröner et al. [71] - Control flow and domain
constraint conflicts Feature selections

van der Aalst et al. [146] Weak-termination - Blocked and hidden activities
Jiang et al. [79] Deadlock-free - Blocked activities

Hallerbach et al. [73] Soundness - Security, maintenance, and
workload context variables

Gottschalk et al. [68] - - Blocked, hidden, and
optional activities

85

applications. Metagraphs model variants of GUI, data schemas and business process elements as

abstract customization points. At each configuration decision, an algorithm is applied to check

consistency with dependencies modeled in the metagraph.

Schoreter et al. [128] propose a runtime architecture for configurable SaaS that negotiates

the configuration concerns of providers, clients, and users. The authors propose to enable this by

extending MQuAT [69], an architecture for dynamically adaptive systems in order to meet tenant-

based requirements and shared resource support. This framework would be able to configure cloud

services dynamically according to all stakeholder concerns.

Several approaches have addressed the problem of evolving multi-tenant SaaS at runtime to

handle either new clients or changed requirements, while still supporting the existing clients.

Banerjee [9] proposes a formal SaaS framework to manage configuration and customization of

services to handle new clients. The SaaS contains a set of base and auxiliary features, which are

applicable to all and some clients respectively. Additionally, a set of invariants must be preserved

over all configurations of the SaaS. Min-max multi-objective optimization can be applied to deter-

mine how to support new clients with minimal changes and cost to the provider. The SPL-based

framework proposed by Kumara et al. [92] categorizes the different types of changes that can

be necessary to a SaaS, and the general impacts each potentially create. The changes and their

propagated impacts are realized by code updates by developers. Schroeter et al. [129] propose a

dynamic SaaS configuration method that responds to stakeholders being added or removed from

the service. SPL techniques are applied to model service configurability, and the roles and access

control of stakeholders. A formal configuration process is proposed that utilizes a CSP solver to

ensure consistency with configuration constraints.

5.1.2.2 Configurable Business Processes

While configurable BPaaS is still a new area of research, work in related domains such as con-

figurable business processes [91, 94, 146] and reference models [71, 145] has been ongoing for

several years. Below, we provide an overview of how common configuration and verification

problems in these domains have been addressed. Most approaches are enabled during the configu-

86

ration of business processes, while others verify configurable business processes for properties, or

obtain a set of all valid configurations for potential clients to provision from.

Mendling et al. [109] propose an algorithm for generating semantically correct business pro-

cess configurations from Configurable Event-driven Process Chain (C-EPC) models. Clients are

able to remove configurable functions and connectors, or set them to optional to defer the decision

to runtime, as long as they are in line with attached XPath constraints. The configuration algo-

rithm manages all client decisions at once rather than incrementally. Configurable connectors and

functions are managed in individual steps, with reduction rules to exclude unnecessary paths.

An alternate configuration method proposed by Van der Aalst et al. [144, 145] preserves sound-

ness in business processes. Domain constraints are captured in propositional logic and reduced by

a Binary Decision Diagram (BDD) solver to efficiently handle large and complex systems. As the

client makes configuration choices, the framework incrementally recalculates and discards incor-

rect options.

Kumar and Yao [91] manage configuration and customization of business process variants

given a rule set provided by the client and an algorithm for applying mutations. Client rules can be

defined using an English-like syntax, and the algorithm ensures mutations to the business process

activity structure, resource allocation, or related data objects, are applied in a valid sequence.

Business process variants are generated as WS-BPEL schemas.

La Rosa et al. [93, 94] extend C-EPCs to include resource and data object configurability,

as C-iEPC. The relationships between options for resources and data objects are represented as

hierarchy models, which show the alternate specializations of resources to fill a general role. The

authors propose an algorithm to generate syntactically correct configured models by focusing on

different types of business process elements individually.

For managing adaptive distributed business processes at runtime, Wang et al. [152] propose

an aspect-oriented programming approach. Three kinds of policies can be specified for runtime

governance, such as safety constraints and how the process should react if they are violated. Run-

time governance is enabled by dynamically weaving aspects into WS-BPEL execution according

to these policies.

87

Van der Aalst [142] develops a novel formalism called Casual Nets (C-nets) to support and

analyze configurable business processes. Each activity in a C-net has a series of potential input

and output bindings to act as domain constraints. Configurations are considered valid when all

predecessor and successor activities agree on bindings, and no pending obligations remain.

Tsai and Sun [141] propose an approach to manage the configuration, customization, and re-

structuring of workflow-structured SaaS in a semi-automated way. Client requirements in this

approach can apply to features such as workflow structure, GUI, services used, data, and QoS. An

OVM is used to express variation points and constraints in the workflow. During configuration,

tenant mining is used on the choices made by existing tenants to guide clients towards a valid

configuration.

Liu et al. [101] address the evolution of cloud services that have a business process struc-

ture. The service is modeled as a reflective Petri-net [31], enabling simulation and verification of

changes such as adding, modifying, or deleting functions, business rules, or the process structure.

Guard checking is applied to new evolutions of the service before reification to check reachability

of activities, fairness, and deadlock-freedom.

Several approaches verify configurable business process models to ensure certain properties

are met. Van Dongen et al. [148] verify reference models according to relaxed soundness and

client-specified acceptable termination states. Process models adapted from reference models are

expressed as an Event-driven Process Chain (EPC), to which reduction measures can be applied to

the state space for analysis and verification. By translating the reduced EPC into a Petri-net, and

receiving client input on the possible initial events, the various termination states of the process

can be deduced. A coloring algorithm verifies the process model with respect to valid termination

states specified by the client. Gröner et al. [71] use Business Process Model and Notation (BPMN)

to model the control flow constraints of reference models, and feature models [82] to specify the

configuration constraints. Mappings between these models connect configurable features to their

related business process activities. Validation is applied to ensure that adapted business processes

respect the constraints of the original reference model, by identifying strong and potential incon-

sistencies between control flow and configuration constraints.

88

Another general approach is to obtain all valid configurations from a configurable business

process, through exhaustive verification or other means. Van der Aalst et al. [146] apply partner

synthesis [157] to obtain all correct configurations of a process at design-time. This can then be

used as a configuration guideline to check future configurations for correctness. Instead of sound-

ness, the relaxed weak-termination criteria is used for configurations, meaning that processes may

contain dead parts if the client wishes. Similarly, Jiang et al. [79] incorporates configuration with

verification at design-time to obtain all deadlock-free process models. Using dependencies struc-

tures (formerly protocol structures [80]) as business process models, all valid configurations can

be obtained by first separating the structure into a set of deadlock-free atomic models, and apply-

ing an algorithm to determine all deadlock-free merges. Hallerbach et al. [73] take the approach

of verifying all possible configurations for correctness given basic context information provided

by the client. Context is specified according to discrete variables for security level, workload, and

maintenance, and is used in conjunction with domain constraints to limit the configuration space.

This reduced set of configurations is then verified to ensure process soundness.

Other approaches use generic models to accelerate or ease business process integration. For

example, Gottschalk et al. [68] propose an approach whereby generic business process solutions

are kept in a repository to be configured and integrated in client systems as needed. Analysis

and configuration of these reference models is discussed using both Labelled Transition Systems

(LTS) and C-EPC. In the cloud service domain, Petcu and Stankovski [121] envision a BPaaS

marketplace where services are deployed and enabled using business process patterns. Services

are published with patterns that provide clients with information on the behavior of the service,

and rules for integrating the service with larger systems.

5.1.3 Research Direction

Table 5.2 shows that among the 23 approaches we identified, only 65% apply themselves to busi-

ness process structures. Furthermore, only one third of those approaches support resource and data

configuration. As indicated by the configurable cloud service approaches in our survey, resource

and data configurability is an important feature for allowing clients to tailor services towards their

89

requirements. Allowing clients to configure resources can have an impact on the running costs of

the service, in addition to increasing the potential market with greater configurability. Data ob-

ject configuration allows clients to make the service more similar to existing or expected business

practises. Therefore, we consider it important for research into BPaaS configuration to consider

configuration from these perspectives.

Also, as the Client Requirements field in Table 5.3 indicates, most approaches only support

simple requirements such as selecting and removing features. Feature selections are all the client

provides in 26% percent of our surveyed approaches, while other basic binary selections, such as

blocking or hiding activities, make up a further 39%. Other approaches provide some business rule

support [91, 152], such as basic if-then conditions. To the best of our knowledge, transactional re-

quirements important to clients, such as those supported by our template set, are not yet supported

by any business process configuration method.

Another issue identified by our survey is that very little research so far has addressed BPaaS

explicitly. Approaches such as Liu et al. [101] target their configuration method towards SaaS that

has a business process structure of activities, while some configurable business process methods

consider variability of resources and data associated with activities. However, BPaaS has their own

unique concerns such as configurable use of third-party services, and the transactional concerns

inherent in such service-oriented processes.

In our approach, we aim to manage BPaaS configuration in a way that addresses the issues

identified above. Firstly, our BPaaS model will enable configuration from numerous perspectives

important to BPaaS clients, namely, activities, resources, and data objects. Our configuration

method will aim to elicit and ensure complex transactional requirements from clients, by adapting

the temporal logic template set from our existing work.

5.2 Transactional Business Process as a Service Modeling

In this section, we present our methods for expressing BPaaS configurability, domain constraints,

and client transactional requirements. The formalisms proposed in this section aim to enable clients

to configure a BPaaS, while also providing a transactional perspective that allows for verification

90

against requirements. The goal of these formalisms is to enable BPaaS configuration, and verifica-

tion against domain constraints and client transactional requirements.

Our BPaaS model aims to capture configurability of the various business process perspectives

managed by the provider. These include activities and control flow, resources, and data objects.

We define a configurable business process as containing constant and optional activities, resources,

and data objects. To reduce verbosity, we model constant and optional activities, but only model

optional resources and data objects. We justify our modeling formalism below with a motivating

scenario.

5.2.1 Motivating Example

We consider the scenario of a configurable Web store checkout BPaaS. The clients of this process

will be small and medium sized Web stores, while the users will be customers. This BPaaS targets

businesses selling physical or digital goods, as standard orders or pre-orders. The process places

shipping orders for physical goods and retrieves download links for digital goods. Specific tasks

included in the process include validating customers, obtaining payment details, updating inventory

and accounting systems, and processing customer payment amongst others.

Clients can configure the structure of this process to suit their business requirements. For

example, stores only selling digital goods can remove all tasks related to product shipping, while

stores who do not store customer details can restrict the process to handling unregistered guest

customers.

This process provisions both constant and configurable external resources. Examples of con-

figurable resources include the optional payment services used by the BPaaS, such as Paypal1,

or Epoch2 and eWay3 credit card transactional managers. Similarly, the data objects used by the

process can be configured as appropriate, such as including or excluding fields in customer and

product details.

1https://developer.paypal.com/
2https://www.epoch.com/en/index.html
3http://www.eway.com.au/developers/api/overview

91

5.2.2 BPaaS Model

We use BPMN for modeling activities and control flow, as it formalizes the BPaaS structure in

a format that is easily readable for clients. Furthermore, BPMN is a widely supported and used

notation for formalizing and executing business processes, which increases the potential client and

provider base of our approach. Configuring BPMN is also a less complex activity than alternatives

such as C-EPC, as the correctness criteria of alternating events and functions do not need to be

maintained [94].

Figure 5.1 shows the BPMN model of the configurable Web store checkout BPaaS. Config-

urable activities are shown in a lighter shade. For readability, tasks related to preparing orders,

delivering products, and validating customers have been organized into sub-processes.

Numerous activities in the checkout BPaaS utilize configurable resources and data objects,

which are shown in Tables 5.4 and 5.5 respectively. For example, the Process Payment ac-

tivity can be implemented using Paypal, Epoch, or eWay transactional managers, according to the

client’s requirements. Figure 5.2 shows the four configurable resources and the data object mapped

to the Place Shipping Order activity. These show the difference postage options for imple-

menting shipping orders, as well as the necessary data object for Shipping Address, which is not

applicable to all configurations. Other optional resources include Microguru4 for inventory man-

agement, SaaSu5 for accounting, and FTP or FTPS for digital product file transfer. Cloud storage

is offered by the provider for a customer repository and digital product hosting. Data object con-

figurability includes physical and digital product details, enabling product quantities, and payment

and shipping details.

While BPMN provides lifecycle statecharts that represent the transactional state of individual

activities, a view of the transactional state of the entire process is necessary for verification against

process-level transactional requirements. Such requirements include activities critical for success-

ful execution, necessary activities to execute prior to aborting, or requirements for valid process

compensation. To provide this view, we adapt the separated behavior model detailed in Chapters 3

and 4, and use the control behavior model to represent the global transactional state of the process.

4http://www.microguru.com/
5http://www.saasu.com/

92

Figure 5.1: BPMN model of the configurable checkout BPaaS

93

Figure 5.2: Configurable resources and data objects mapped to a BPMN activity

Table 5.4: Configurable resources for the checkout BPaaS
Resources Associated Activities

Private Inventory System, Microguru Update Inventory, Hold Order, Hold Product,
Release Order, Release Product

International Shipping, Toll Priority, AusPost,
Client Notification Place Shipping Order

Provider Storage, Private Customer Repository
Store Payment Details, Validate Login, Confirm
Shipping Details, Register User, Store Shipping
Details

Private Accounting System, SaaSu Update Accounts
External Cloud Storage, Provider Storage,
External Server Retrieve Download Link

FTP, FTPS Transfer File

Figure 5.3 shows an example of how the control behavior model can direct and communicate with

the checkout BPMN using the inter-behavior messages defined in Section 3.2.3. In this conversa-

tion session, the process becomes suspended after processing payment fails, but the process is able

to commit successfully after the user is asked to reconfirm their payment information.

Table 5.5: Configurable data objects for the checkout BPaaS
Data Objects Associated Activities
Physical Product Details, Digital Product Details,
Quantity Initiate Order, Initiate Pre-Order

Shipping Address
Store Shipping Details, Place Shipping Order,
Obtain User Details, Retrieve User Data, Obtain
Shipping Details

Payment Details Process Payment, Retrieve User Data, Obtain
User Details, Reconfirm Payment Information

94

Activated Suspended

Prepare
Order

Process
Payment

Not
Activated

Sync Syncreq

Control Behavior

Checkout BPMN

Reconfirm
Payment

Information

Activated Done

Confirm
Order

Sync Success

... ...

Figure 5.3: Inter-behavior messages used to enable communication between the checkout BPMN
and the control behavior model

5.3 Configuration Domain Constraints

Domain constraints allow providers to restrict BPaaS configuration to valid choices, such as ensur-

ing at least one payment resource is selected. We adapt feature models from software product line

engineering [82] to express domain constraints formally and visually. Feature models are typically

used to express variability in a configurable system, by modeling the constraints between optional

features. In our approach, they define constraints between the selection of configurable activities,

resources, and data objects. By using one feature model, we are able to define constraints that

cross these configuration perspectives.

We apply six feature model relationship structures, shown in Figure 5.4, to model domain

constraints. The first four relationships applies to one or more leaf features if the head feature is

selected. For example, the Mandatory and Optional structures define that if feature A is selected,

then feature B is essential or optional respectively. Implication and Exclusion can be defined be-

tween any two features in the model, regardless of their level in the tree structure.

A feature model capturing the domain constraints for the configuration of the checkout BPaaS

is shown in Figure 5.5. The root Checkout Service feature contains all other features as

children, and allows constraints to cross between activity, resource, and data object perspec-

tives. For example, Validate Login is an optional feature, but it requires Register User,

Retrieve User Details, either Private Customer Repository or Provider

Storage, and enables Store Payment Details to be selected. A selection of features

95

A

B

A

B

A

B1 B2

A

B1 B2 A B A B

Mandatory Optional OR XOR Implication Exlcusion

Figure 5.4: Feature model constraints used in our approach

that satisfy all constraints in this model, therefore conforming to all configuration requirements of

the provider, is a valid configuration of the BPaaS.

Feature models have been used extensively in SPL research and other similar fields since the

early 1990s [13]. By adapting them for formalizing domain constraints, we also enable our ap-

proach to be extended with several types of feature model reasoning, such as detecting satisfiability,

unreachable features, contradictions, false optionals, and other properties.

5.4 Business Process as a Service Configuration and Verification

In this section, we propose a BPaaS configuration process that applies formal methods to ensure

that i) the configuration is valid with respect to provider domain constraints, and ii) the process

satisfies transactional requirements drawn from the business rules of the client. First, we provide

an overview of the process which guides clients through BPaaS configuration, then we provide

details on how BDD analysis and model checking is used at certain steps.

5.4.1 BPaaS Configuration Process

The aim of our BPaaS configuration process is to produce a configuration solution that satis-

fies transactional requirements provided by the client while respecting domain constraints. The

provider inputs of this process include the BPMN model and the feature model. The client inputs

are their transactional requirements formalized using templates, and additional features that they

require. Our configuration process applies formal methods and simple client interaction to identify

a configuration that i) is valid with respect to domain constraints, and ii) conforms to the client

96

Record
Fraud

 Report

Initiate
Order

Initiate
Pre-Order

Release
Product

Hold
Product

Release
Order

Hold
Order

Microguru
Private

Inventory
System

SaaSu
Private

Accounting
System

eWay Epoch Paypal Validate
Login

Digital
Product
Details

Physical
Product
Details

Retrieve
User

Details

Store
Payment
Details

Register
User

Private
Customer
Repository

Provider
Storage

Customer
Repository

Payment
Details

Physical
Product
Details

Shipping
Address

Obtain
Shipping
Details

Place
Shipping

Order

Quantity
Confirm
Shipping
Details

AusPost
Toll

Priority
International

Shipping
Client

Notification
Store

Shipping
Details

Digital
Product
Details

Retrieve
Download

Link

Transfer
File

External
Cloud

Storage

External
Server

Provider
Storage

Checkout Service

Figure 5.5: A feature model representing configuration constraints of the checkout BPaaS

transactional requirements set. This increases client trust that the service is going to behave in

a manner consistent with internal business policies and requirements, without having to perform

their own analysis of the service behavior.

The structure of our configuration and verification process is shown in Figure 5.6. The first

step is for the client to formalize transactional requirements into temporal logic using our template

set. Then, Binary Decision Diagram (BDD) analysis is used to ensure that all configurable features

included in the client transactional requirement set can be selected in a valid configuration. If this

is successful, the client may select other configurable features that they require for the service,

which can be verified using BDD analysis again. If the domain constraints are found to be violated

at any stage, the client must revised the selected features.

The model checking phases are used in order to ensure the transactional requirements of the

client are satisfied. We divide the task into two phases in order to reduce the state space of the

model and complexity of the temporal logic properties, in order to make our approach more time

97

1. BDD Analysis
2. Model Checking
Activity Selection

3. Model Checking
Resource and
Data Objects

Feature Selection
Transactional
Requirement
Templates

Implemented
Templates

Implemented
Templates

Implemented
Templates

ReconfigureReconfigure

BPaaS Provider

Client

Configuration and Verification Process

Transactional
Requirements

Transactional
Requirements

Transactional
Requirements

BPMN ModelFeature Model
Configuration
Solution

Desired Features

Configure

Figure 5.6: Overview of the BPaaS configuration and verification process

efficient for large and complex services. If model checking is successful, then a configuration solu-

tion has been identified. Feature selection is used by the client in order to add desired functionality

or reconfigure the service in the event that model checking determines the current configuration to

be invalid. Below, we describe in detail how BDD analysis and model checking is implemented in

our configuration process.

5.4.2 BDD Analysis for Ensuring Domain Constraints

The first verification step in our approach is to identify all features required for the transactional re-

quirements specified by the client, and determine whether they can all be selected while satisfying

the feature model constraints. Therefore, we must determine that at least one valid configuration

exists using the activities, resources, and data objects specified in the requirements set, or extra

features required by the client.

To this end, we use BDD based analysis, which has been proven as an effective method for de-

98

Retrieve
Download

Link

Transfer
File

External
Cloud
Storage

External
Server

Provider
Storage

(a)

(b)

(c)

Figure 5.7: A selection of the feature model (a) transformed into propositional logic (b) and a BDD
(c)

termining feature model satisfiability [13]. A BDD is an acyclic graph visualization of a proposi-

tional logic formula. Variables of the formula are represented as nodes with two outgoing branches,

indicating their true or false assignment. The graph is constructed in such a way that each com-

plete path from head node to terminal node represents the assignment of boolean variables. All

paths terminate at a final true or false node, which determine whether the variable assignments of

that path satisfy the propositional logic formula. Example BDDs are shown in Figure 5.7(c), and

Appendix C.

Our analysis transforms the feature model with selections into a propositional logic formula,

then into a BDD which can be checked for satisfiability. Figure 5.7 shows an example of these

two transformation steps using a part of the checkout feature model. The BDD in Figure 5.7(c)

uses acronyms of feature names for space considerations, and 0 and 1 nodes for the false and true

respectively. A solid line from a node indicates true assignment, while a dashed line indicates

false. By traversing solid lines from selected features, and dashed lines from unselected features,

the 1 and 0 nodes indicate whether the preceding path was a valid or invalid selection.

A feature model can be transformed into a propositional logic formula according to the con-

straint conversions in Table 5.6. Figure 5.7(b) shows a propositional logic formula expressing both

the mandatory and XOR relations between the features in Figure 5.7(a). To determine the satisfia-

99

Table 5.6: Propositional logic representations of the feature model constraints of Figure 5.4
Constraint Propositional Logic
Mandatory A↔ B
Optional B → A

OR A↔ (B1 ∨B2)
XOR (B1↔ (¬B2 ∧A)) ∧ (B2↔ (¬B1 ∧A))

Implication A→ B
Exclusion ¬(A ∧B)

Table 5.7: A selection of features from the checkout BPaaS
Feature Type Selections

Activities
Obtain Shipping Details, Register User, Place Shipping Order, Initiate Order,
Release Product, Hold Product, Validate Login, Retrieve User Details, Confirm
Shipping Details

Resources AusPost, International Shipping, eWay, Paypal, Private Customer Repository,
Microguru, SaaSu

Data Objects Physical Product Details, Quantity, Shipping Address

bility of all features specified in the client’s transactional requirements, they are added to the end

of the formula separated by ∧ operators. We use the JDD library6 to automatically construct BDDs

from these propositional logic formulas to check their satisfiability. The feature selection satisfies

the formula if the BDD contains at least one transition to the final true node. If so, at least one

valid configuration using the selected features exists. Otherwise, the client is faced with the choice

of revising their transactional requirement set, or accepting that this BPaaS is unable to provide the

necessary transactional integrity necessary for their operations.

BDD analysis is able to efficiently solve satisfiability problems, but the size of the BDD depen-

dent on variable ordering in the underlying propositional logic property. While finding the most

efficient ordering is an NP-complete problem [13], ordering variables from a depth-first traversal of

the feature model has been shown as an effective strategy [160]. Therefore, we adopt this approach

in our work when transforming the feature model to propositional logic.

For example, to check the validity of the feature selections shown in Table 5.7, the propositional

logic formula in Figure 5.9 would be generated. Lines 1-20 of the property are a propositional logic

representation of the checkout process feature model, constructed by a depth-first traversal of the

constraints as they are ordered in the feature model. The selection of features from Table 5.7 are

6http://javaddlib.sourceforge.net/jdd/index.html

100

Figure 5.8: Binary Decision Diagram form of the feature model in Figure 5.7 with four feature
selections

added to the end of the property using ∧ operators, as shown in Line 21.

Due to its size and complexity, the BDD constructed from this property is displayed in Ap-

pendix C. However, as this BDD contained at least one path to the final true node, this selection of

features is shown to be valid. For a smaller BDD example, we consider the section of the feature

model shown in Figure 5.7(a), and select the features Retrieve Download Link, Transfer File, Ex-

ternal Server, and Provider Storage. The BDD generate to confirm the validity of these selections

is shown in Figure 5.8. The selection of External Cloud Storage is no longer relevant

to the satisfaction of the constraints, as the OR relation containing it has already been satisfied.

Therefore, JDD omits it from the updated BDD. What this BDD shows is that at least one solution

is possible with these four features selected. The Java code for using JDD to construct the BDDs

in Figure 5.7(c) and Figure 5.8 can be found in Appendix B.

5.4.3 Model Checking Against Transactional Requirements

In order to verify the process against a set of transactional requirements, we adapt the verification

of our temporal logic templates from Chapter 4. Clients can use our temporal logic template set

to formalize their transactional requirements for the configured process to conform to. Model

101

1. (RecordFraudReport→ CheckoutService)∧
2. ((InventorySaaS ↔ (¬PrivateInventorySystem ∧ CheckoutService))∧

(PrivateInventorySystem↔ (¬InventorySaaS ∧ CheckoutService)))∧
3. (CheckoutService↔ (Epoch ∨ Eway ∨ Paypal))∧
4. (InitiateOrder ↔ (ReleaseProduct ∧HoldProduct))∧
5. (InitiatePreOrder ↔ (ReleaseOrder ∧HoldOrder))∧
6. ((AccountingSaaS ↔ (¬PrivateAccountingSystem ∧ CheckoutService))∧

(PrivateAccountingSystem↔ (¬AccountingSaaS ∧ CheckoutService)))∧
7. (TransferF ile↔ (FTP ∨ FTPS))∧
8. (TransferF ile↔ RetrieveDownloadLink)∧
9. (RetrieveDownloadLink ↔ (ExternalCloudStorage ∨ ExternalServer∨

ProviderStorage))∧
10. (DigitalProductDetails↔ RetrieveDownloadLink)∧
11. (RetrieveShippingDetails→ ObtainShippingDetails)∧
12. (PhyscialProductDetails↔ (Quantity ∧ObtainShippingDetails ∧ PlaceShippingOrder∧

ShippingAddress))∧
13. (PhyscialProductDetails↔ (AusPost ∨ TollPriority ∨ InternationalShipping∨

ClientShippingNotification))∧
14. (CheckoutService↔ (DigitalProductDetails ∨ PhyscialProductDetails))∧
15. (StorePaymentDetails→ V alidateLogin)∧
16. ((PrivateCustomerRepository ↔ (¬ProviderStorageCustomerRepository∧

V alidateLogin)) ∧ (ProviderStorageCustomerRepository ↔
(¬PrivateCustomerRepository ∧ V alidateLogin)))∧

17. (V alidateLogin↔ (RetrieveUserData ∧ PaymentDetails ∧RegisterUser))∧
18. (V alidateLogin→ CheckoutService)∧
19. (RetrieveShippingDetails→ V alidateLogin)∧
20. CheckoutService∧
21. ObtainShippingDetails ∧ RegisterUser ∧ PlaceShippingOrder ∧ InitiateOrder ∧

ReleaseProduct ∧ HoldProduct ∧ V alidateLogin ∧ RetrieveUserDetails ∧
ConfirmShippingDetails ∧ AusPost ∧ InternationalShipping ∧ eWay ∧ Paypal ∧
PrivateCustomerRepository∧Microguru∧SaaSu∧PhysicalProductDetails∧Quantity∧
ShippingAddress

Figure 5.9: Propositional logic form of the checkout process feature model with the feature selec-
tions of Table 5.7

102

checking can then be applied to formally verify that the process meets the expected behavior.

The verification approach for our template set applies a state space reduction algorithm, shown

in Algorithm 3, to reduce the impact of the state space explosion problem inherent in model

checking. This algorithm identified the properties (control or operational behavior states and inter-

behavior messages) that were required by the requirements, and reduced the model to a minimal

Kripke structure containing the temporal dependencies between those properties. As the inclusion

of resource and data objects in BPaaS increases the model state space even further, we also address

state space explosion by dividing the model checking problem between two phases: activity selec-

tion and resource and data object selection. Each phase aims to verify a different configuration

perspective, and allows the state space of the model to be reduced further. Furthermore, some

temporal logic properties may not be necessary to include in both phases, thereby simplifying the

model checking problem. For example, if a requirement has no specification of resources and data

objects, it will be verified during the activity selection phase and does not need to be included in

the next.

In each model checking phase, a configuration is generated from the current feature selections,

and verified against the transactional requirement set. Applying model checking in phases allows

the client to focus on configuration perspectives separately. This simplifies the configuration and

verification process for the client, in particular with services containing many configurable features.

The two model checking phases are described below.

5.4.3.1 Activity Selection

In this phase, if a requirement specifies the inclusion of resources or data objects for an activity,

only the presence of the activity in the configured process is verified. This reduces the state space

of the process model verified by the model checker, simplifies the properties, and allows the client

to focus primarily on activity configuration. Further state space reduction is enabled by using our

TKSR algorithm (Algorithm 3) for generating reduced Kripke structures.

To verify activity selection against transactional requirements, the atomic propositions of inter-

est include configurable activities selected from the feature model, and other activities or control

103

Initiate Order
Activated

Hold Product
Activated

Validate Login
Activated

Register User
Activated

Release Product
Rollback

Retrieve User Data
Activated

Store Payment Details
Activated

Retrieve Download Link
Activated

Transfer File
Activated

Commit Order
DoneBPMN Activity

Transactional State

Atomic Propositions

Figure 5.10: Kripke structure example for verifying the checkout activity selection

behavior states used by the temporal logic templates. For example, considering the checkout ser-

vice, Figure 5.10 shows the Kripke structure generated to verify this requirement:

Retrieve User Data or Register User is necessary before entering the Done

transactional state.

The template ControlStateCritical in Table 4.6 can be used to formalize this require-

ment. The Kripke structure contains the activities and transactional state necessary for verifying

the requirement. In addition, the structure captures the control flow relation between other config-

urable activities selected by the client. These are included so that violating stack traces produced

by the NuSMV model checker can indicate the configurable activities that led to the violation.

Model checking verifies the Kripke structure against the temporal logic forms of the client’s

transactional requirements. If a violation is found, the client must reconfigure the service by in-

terpreting the model checking output. If the verification of the activity selection is successful, the

second model checking phase can be undertaken.

5.4.3.2 Resource and Data Object Selection

In this model checking phase, only transactional requirements with resources or data objects in

their specification need to be verified. All other requirements have been ensured in the activity

selection phase. This phase is necessary because an activity can have more than one resource

provisioned, in order to defer the selection to the user at runtime. For example, a configuration

104

Figure 5.11: An example of how activities with multiple resources are traversed for the second
model checking phase

may include several resources for the Process Payment activity. When verifying the activity

selection, Process Payment will be treated as a single state. However, when considering

resources, it becomes several states in an XOR structure. Figure 5.11 shows an example of this with

Process Payment with both PayPal and eWay provisioned as resources. During this verification

phase, the activity (Figure 5.11(a)) is replaced with the XOR structure in Figure 5.11(b), as both

resources are not used simultaneously. Unlike resources, selected data objects are assumed to

apply to every runtime instance and do not require process restructuring during verification.

A second Kripke structure must be generated for this phase. We again employ the TKSR al-

gorithm for state space reduction of the BPaaS model. This time, the atomic propositions of this

Kripke structure must be expanded to include resources and data objects used by the activities, in

order to verify their selection against the requirements. For example, given the following require-

ment:

Process Payment with Paypal or eWay may be retried if failed, but the process must

commit if it is successful.

The RetriablePivot template (Table A.6 of Appendix A) can be used to formalize this

as two requirements: one with Process Payment.Paypal as the Component variable and

the other with Process Payment.eWay. Figure 5.12 shows a Kripke structure generated by

TKSR to verify these requirements.

If both model checking phases are successful, then a configuration solution has been found.

For example, Figure 5.13 shows the BPMN of the configuration solution identified following ver-
105

Initiate Order
Activated

-
Digital Product Details

Hold Product
Activated
Microguru

-

Process Payment
Activated

eWay
Payment Details

Process Payment
Activated
PayPal

Payment Details

Release Product
Rollback

Microguru
-

Retrieve Download Link
Activated

Provider Storage
-

Transfer File
Activated

FTP
-

Commit Order
Done

-
-

Process Payment.Fault
Suspended

-
-

BPMN Activity
Transactional State

Resource
Data Objects

Atomic Propositions

Figure 5.12: Kripke structure example for verifying resource and data object selection

ification of the Kripke structures in Figures 5.10 and 5.12, and the feature selections in Table 5.7.

We aim to implement these model checking phases, as well as BDD analysis for checking config-

uration validity, into a structured configuration process for BPaaS clients.

5.4.3.3 Feature Selection

Feature selection is a task that is used potentially numerous times during configuration. Firstly,

after conducting BDD analysis on all features in the transactional requirements set, but prior to

model checking, further features must be selected by the client until the configuration is valid and

complete with respect to the feature model. For example, all OR groups in the feature model must

have at least one feature selected. Invalid configurations violate the provider’s domain constraints,

and can create incorrect process structures, such as omitting mandatory tasks. Therefore, our

configuration process does not undertake the model checking phases until the client has selected

enough desired features to satisfy all constraints.

To reduce the client burden for selecting from a potentially large number of features, once

a feature is selected, all mandatory and implied child features are also selected automatically.

Therefore, before a configuration is complete, the client must simply select at least one feature

from every OR constraint, and one from every XOR constraint, which has a selected parent. Once

the client has finished selecting desired features, BDD analysis must be performed once more to

106

Figure 5.13: BPMN of a configuration solution of the Checkout BPaaS

107

ensure the configuration is valid (e.g. checking that exclusionary features have not been selected).

Feature selection is also used in order to revise the configuration if either model checking

phase fails. This enables the client to change the behavior of the process, in order to satisfy

violated transactional requirements. Following reconfiguration, BDD analysis is applied once more

to ensure that the new feature selection does not violate the domain constraints, before model

checking is re-attempted.

5.5 Summary

The increase in cloud computing adaptations in recent years has produced the concept of Business

Process as a Service (BPaaS), whereby service providers are able to offer common or proven

business processes to clients looking to automate and outsource parts of their operations. In order

to increase the potential client base and exploit economies of scale, services may be configurable

to individual client’s requirements, such as including or excluding specific activities, resources,

and data objects used in the business process.

In this chapter, we address the problem of managing BPaaS configuration in a way to ensure

that the resulting service i) is valid with respect to configuration constraints of the provider, and ii)

satisfies transactional requirements drawn from the business rules of the client. Our approach uti-

lizes several modelling techniques, including BPMN for business process structure, statecharts for

transactional state, feature models for configuration constraints. Using these models, we develop a

process that applies formal methods to configure BPaaS.

Firstly, our temporal logic templates for transactional requirements can be adapted to help

clients specify required application-dependent transactional behavior. Further configurable fea-

tures (activities, resources, and data objects) can also be selected as configuration requirements by

the client. To ensure that the features selected do not violate the domain constraints of the service

provider, we employ Binary Decision Diagram (BDD) analysis. Following this, model checking

is applied to verify the configured BPaaS against the transactional requirements provided by the

client. To reduce the impact of state-space explosion, we employ the state-space reduction algo-

rithm defined in Algorithm 3, and split the model checking into two phases. These phases verify

108

different configuration perspectives separately, and allow for the state space and temporal logic

properties to be reduced further.

109

CHAPTER 6

Prototype Implementation and Experimental Analysis

In order to evaluate the contributions we present in Chapters 3-5, we implement them in a proto-

type tool. This tool, named TL-VIEWS, enables developers to model and verify service-oriented

processes at design time according to conversation rules and transactional requirements they pro-

vide. Furthermore, it also provides an interface to manage BPaaS configuration from the client

perspective.

First, we give an overview of the implementation of the architecture of TL-VIEWS, which con-

tains five primary modules. Two interfaces provide the means for either modeling and veriftying

service-oriented processes at design-time, or configuring BPaaS in accordance with the process

described in Chapter 5. A verification module handles model checking by using the NuSMV tool,

while also managing temporal logic transformations and state space reduction. BPaaS configura-

tion is enabled through a controller module, while a BDD analysis module utilizes the JDD library

for verifying feature selections against domain constraints.

We also provide a comprehensive experimental analysis of the verification and configuration

approaches implemented in TL-VIEWS. Firstly, we perform two service-oriented process vali-

dation scenarios in order to demonstrate the effectiveness of our design-time conversation rule

checking and temporal logic template verification approaches. Then, we use two BPaaS config-

uration scenarios to show how our configuration process can detect and domain constraint and

transactional requirement violations. Finally, we perform a series of performance tests to verify

the effectiveness of our state space reduction measures when applying model checking to large and

complex models.

110

Requirement
Specification

Verification
Results

Process Design Interface

Temporal Logic
Mapping

Kripke Structure
Transformation

Conversation Rule
Controller

Kripke Structure
Transformation

Temporal Logic
Templates

Temporal Logic
Template Controller

SMV Writer NuSMV Interface NuSMV

Model Checking

Behavior
Interpreter

Behavior
Modeling

Temporal Logic
Mapping

Defined
Templates

Conversation
Rules

BDD Analysis

JDDJDDJDD Interface

Configuration
Controller

Feature
Selection

Verification
Results

BPaaS Configuration Interface

Requirement
Specification

Verification

BPMN Model Feature Model

Configuration
Process

Domain
Constraint
Manager

BPMN
Configuration

Figure 6.1: TL-VIEWS architecture

6.1 Implementation Architecture

The name of our prototype is TL-VIEWS (Temporal Logic VerIfication of transactional bEhavior

of Web Services) [24]. TL-VIEWS is developed in Java and utilizes existing modeling and ver-

ification tools. Figure 6.1 shows the TL-VIEWS architecture, containing five primary modules:

Process Design Interface, Verification, BPaaS Configuration Interface, Configuration Controller,

and BDD Analysis. Below, we outline the role of each module in implementing model verification

against conversation rules, transactional requirements specified using templates, and configuring

BPaaS.

6.1.1 Verification Against Conversation Rules and Templates

To implement our conversation rule and transactional requirement template verification processes,

TL-VIEWS contains modules for modeling control and operational behaviors, managing the veri-

fication process, and handling model checking.

111

Figure 6.2: TL-VIEWS process design interface

6.1.1.1 Process Design Interface

The purpose of this interface is to enable developers to design service oriented processes as in-

teracting control and operational behavior models. The interface also allows verification of both

inter-behavior conversations and specified transactional requirements, as detailed in Chapters 3

and 4.

We leverage the open source UML diagramming application ArgoUML1 for this interface.

Figure 6.2 shows the interface in use for modeling control and operational behaviors, with inter-

behavior messages. An extension to the ArgoUML GUI allows developers to formalise transac-

tional requirements using the template set (Figure 6.3). Verification results are presented as shown

in Figure 6.4.

1http://argouml.tigris.org/

112

Figure 6.3: TL-VIEWS requirement specification window

6.1.1.2 Verification

This module handles control and operational behavior verification against the conversation rule

set and transactional requirements specified by the process developer or BPaaS client. Due to its

complexity, we split this into four sub-modules.

Behavior Interpreter

The Behavior Interpreter serves as an interface between the control and operational behavior mod-

els and the various verification modules that analyze them. This module generates and maintains

the flattened behavior model. The flattened behavior model is stored internally and invisible to the

user, it only exists as a transformation step in the verification process. Transforming the control

113

and operational behavior models into a flattened behavior model is a trivial process (described in

Chapter 3), but it simplifies the generation of Kripke structures for model checking.

Conversation Rule Controller

This controller serves two main purposes. Firstly, it applies CKSR (Algorithm 1) to produce a

Kripke structure from the flattened behavior model of the Behavior Interpreter. Secondly, it for-

malizes the conversation rules according to the temporal logic transformations defined in Chap-

ter 3.4.1. Only the rules necessary for the model are formalized. For example, if the model contains

no Ping messages, then conversation rule MS5 is unnecessary and omitted.

Temporal Logic Template Controller

Like the Conversation Rule Controller, the Temporal Logic Template Controller manages Kripke

transformation and temporal logic mapping. TKSR (Algorithm 3) transforms the flattened behavior

model into a reduced Kripke structure as described in Chapter 4.The templates the developer uses

to formalize transactional requirements contain a temporal logic field, which is used to map the

requirement to concrete LTL or CTL properties.

Model Checking

Model checking [43] is a formal method that exhaustively verifies that the behavior of a given

model conforms to a set of properties. We use the NuSMV2 model checker to verify Kripke struc-

tures against the temporal logic forms of conversation rules and transactional requirements. Our

verification uses the symbolic BDD-based model checking feature of NuSMV. This constructs

BDDs from the input model to apply several verification techniques, including fair CTL model

checking and LTL model checking (by an algorithm that reduces the problem to CTL model check-

ing [44]). We employ NuSMV instead of alternatives such as SPIN [76] and UPPAAL [14], as it

provides support for properties formulated in both LTL and CTL. Further technical details on

NuSMV can be found in publications [41, 42] by members of the development team.

2http://nusmv.fbk.eu/

114

The model checking module contains the interface for invoking NuSMV and interpreting out-

put. The Kripke structures and concrete temporal logic properties are written in to SMV files, the

input language for NuSMV. Appendixes D and E contain example SMV files for both conversation

rule checking and verification against temporal logic templates.

The results from the verification process are then presented to the developer in a results win-

dow. Interpreting conversation rule or transactional requirement violating stacktraces identified by

NuSMV can the help developer refine an erroneous model by highlighting the invalid behavior.

6.1.2 BPaaS Configuration

Managing BPaaS configuration requires three additional modules to those defined above. These

handle tasks such as enabling client interaction, managing BDD analysis, and modifying config-

urable BPMN models.

6.1.2.1 BPaaS Configuration Interface

This interface allows clients to configure a BPaaS using the process outlined in Chapter 5. Clients

may use this interface to specify requirements in the same manner as in the process design interface

(Figure 6.3). The interface also allows clients to select additional desired features and view the

verification results from BDD analysis and model checking phases.

6.1.2.2 Configuration Controller

The configuration controller manages the steps in the configuration process proposed in Chap-

ter 5.4.1. A BPMN file of the complete BPaaS is used, with a feature model to indicate config-

urable activities, resources, and data objects. The feature selections and domain constraints are

interpreted and managed by a Domain Constraint Manager, while BPMN Configuration manages

the construction of configured BPMN models. By default, all configurable activities are included

in the BPMN model, and it is configured by removing unselected activities and redirecting their

incoming branch to the target of their outcoming branch. If the removal of an activity leaves a

115

branch joining two connectors (such as an XOR split and join), then the branch is also removed.

The Configuration Process manages the use of these tools, and invokes the verification and

BDD analysis modules as necessary. Figure 5.6 shows how the formal methods are used for con-

figuration..

6.1.2.3 BDD Analysis

This module uses the JDD library3 for BDD creation and analysis. JDD is a Java library that en-

ables construction and manipulation of BDDs and Zero-suppressed Decision Diagrams (Z-BDDs).

In TL-VIEWS, it is used to encode propositional logic properties into a BDD, which can be

checked for satisfiability. This is done using the BDD class provided by JDD, and adding proper-

ties according to a depth-first traversal of the feature model. After the feature model is represented

as a BDD, the feature selections are appended. An example of BDD generated by JDD is shown

in Figure 5.9 in the previous chapter.

The configuration process uses this functionality to verify that a selection of features satisfies

the domain constraints of the provider, as described in Chapter 5.4.2. This is done to ensure the

satisfiability of i) all feature specified in the transactional requirement set provided by the client,

and ii) all subsequent feature selections and revisions during the configuration process. This BDD

analysis must be performed any time features are added or removed from the configuration in

verify that the domain constraints remain satisfied.

6.2 Experimental Analysis

The experimental analysis of our contributions comprises of i) a series of validation scenarios, and

ii) a performance evaluation using test suites of increasingly large and complex models. With these

tests we aim to show how the effectiveness of our approaches, as well as their feasibility with large

models and requirement sets.

3http://javaddlib.sourceforge.net/jdd/index.html

116

6.2.1 Validation Scenarios

We apply two validation scenarios to each contribution of our work in order to demonstrate their

use and effectiveness. Two Web service composition designs are verified according to conversation

rules and transactional requirement sets. We also propose two scenarios for configuring a BPaaS

according to client transactional requirements.

6.2.1.1 Online Payment Service-Oriented Process

The online payment Web service composition, shown in Figure 3.4, enables payments to be pro-

cessed using either credit card or direct debit. This example scenario has important requirements

for transactional integrity. The process usees real-world services, and carries consequences for

faulty transactional behavior such as mismanaged funds, loss of consumer confidence, and inter-

ruption of business operations.

Conversation Rule Checking

For conversation rule verification, we use two example scenarios of service-oriented processes

which have important requirements for transactional integrity. These processes use real-world

services, and carry consequences for faulty transactional behavior such as mismanaged funds, loss

of consumer confidence, data inconsistency across sites, and interruption of business operations.

We firstly employ the online payment process that appears in Chapters 3 and 4, followed by a

process for enrolling in educational courses.

In Chapter 3, we demonstrated our CKSR algorithm to reduce this model to a Kripke structure

for verification (Figure 3.7). This Kripke structure is formalized in SMV, and the conversation

rules are translated to LTL and CTL. These are included in a single input file for the NuSMV

model checker. Appendix D contains this input file in full.

TL-VIEWS uses NuSMV to confirm that our current model satisfies the conversation rule set.

To demonstrate the ability of TL-VIEWS to detect violations, we insert a manual error. In our

erroneous model, the task Refund indicates successful compensation with a Success message,

117

Figure 6.4: TL-VIEWS results window following unsuccessful conversation rule verification

but Non-Refundable does not.

After running conversation rule checking following this change, TL-VIEWS detects a violation

shown in Figure 6.4. The stack trace shows a sequence of inter-behavior messages that violate the

rule CSR2. Recover is the final message in this conversation session, but as shown in the CSR2

definition in Table 3.8, it is not a valid terminating message type. This stack trace can be used to

identify the design problem that the compensation activities beginning with GET Sale Result

do not always complete and respond with a valid message.

Verification Against Transactional Requirements

We identify six critical transactional requirements that apply to the online payment design, which

can be implemented using our template set:

118

OP1: The sale of refundable items require Refund to be undone.

OP2: When Resale fails, the sale can be retried by the user re-entering card or account data.

OP3: Once a direct deposit sale has been confirmed as successful, the transaction must commit.

OP4: When a high fraud score has been returned, Create Report must be executed before the

sale aborts.

OP5: Even if Resale is not successful, the sale should be able to complete using alternative

services.

OP6: Commit should be reachable even if the outcome of MultiSale Card is delayed.

Table 6.1 shows how each requirement can be implemented using one of our templates. An in-

put file was generated for NuSMV containing the temporal logic forms of the transactional require-

ments together with the reduced Kripke structure generated by TKSR. This input file is included

in full in Appendix D.

NuSMV verified the reduced Kripke structure against these requirements and determined that

the design conforms to all of them except OP6. Interpreting the stack trace shows that the Done

control behavior state is unreachable following a Delay message to MultiSale Card. All

Kripke states containing a Delay message to MultiSale Card only have transitions leading

to Abort.

To satisfy OP6, the design must be refined to enable MultiSale Card to be retried or

replaced with another operation following a delay. The following changes were made to the model:

• A Syncreq message originating from MultiSale Card to Activated was added to

indicate that retrial is needed.

• The responding Sync message is sent back to MultiSale Card with a guard condition

that prevents it from being used in other scenarios.

The model checking in TL-VIEWS confirmed that these changes satisfied OP6. It also deter-

mined that the changes did not violate the other requirements or conversation rule set.
119

Table 6.1: Transactional requirements for the online payment model
ID Template Variables Values

OP1
Compensate

Component Sale OK

Success
Recovery Refund ∨ Non-Refundable
Card 1:1
Scope Global

OP2 Alternative

Component Resale
Recovery PUT Account Data ∨ PUT Card Data
Card 1:1
Scope Global

OP3
Retriable Activity Check Sales
Pivot Scope Global

OP4
ControlState

Control State Aborted

Critical
Condition Create Report
Scope High Fraud Score

OP5
ControlState

Control State Done

Reachable
Condition Resale.Syncreq
Scope Global

OP6
ControlState

Control State Done

Reachable
Condition MultiSale Card.Delay
Scope Global

6.2.1.2 Course Enrolment Service-Oriented Process

This process is owned by an educational institution that is offering courses for mature-age students

on a variety of subjects. Registered students may enrol in these courses through a web form

interface that utilizes several third party Web services. The process is invoked once a student

selects a specific course they wish to enrol in.

The enrolment process must first retrieve the details of the student, or make a temporary profile

to be verified by administrators afterwards. Registration for courses must consider several factors,

such as if registration is open, the courses and lessons the student has already enrolled in, the

lessons that are part of the course, and the current academic calendar of the student. To enrol in

a course, a student must enrol in one or more individual lessons, while ensuring that no unresolv-

able clashes occur with their existing calendar. Once that is completed, the course registration is

confirmed, and the invoice attached to the student’s account is updated.

The management of courses and students is done using the GlobalTeach Web service API 4.

4http://www.programmableweb.com/api/globalteach-lms

120

Request User
Register

Get User

Email
Verification

Re-enter
Email

Is Registration
Allowed

Get My
Virtual Courses

Get My
Registered
Lessons

Get Calendar
View Entries

Register
Course User

Get Lesson

Register
Lesson User

Store
Calendar Entry

Confirm User
Registration

Zoho
Invoice

Create an
Invoice

Update an
Invoice

Delete
Calendar Entries

Logout

Log
Invoice

Cancel
Registration

End
Enrolment

Operational Behavior

[Ack]

[Ack]

Figure 6.5: Operational behavior model of the lesson enrolment composition

The Zoho Invoice API 5 is used to manage billing of new registrations by creating and updating

invoices. A Verify Email 6 Web service ensures that the email address provided by the user really

exists.

Using these services, we model the operational behavior model of this composition as shown in

Figure 6.5. Two transitions in the model contain a guard condition for Ack, because the invoicing

services should not be invoked if the Zoho servers cannot acknowledge their liveness. The inter-

behavior messages defined for this model are listed in Table 6.2. These messages enable behavior

such as an automatic user logout following a long delay between inputs, and logging invoices for

future processing if the Zoho services are experiencing an outage.

Conversation Rule Checking

After modeling this design in the TL-VIEWS interface, conversation rule checking was triggered,

producing the output shown in Figure 6.6. The rule MSR2, as shown in Table 3.9, specifies that

the valid responses to a Delay message are Syncreq, Fault, Success, and Fail. From the output, we

can determine that following the Delay message to the Register Course User activity, the control

5http://www.zoho.com/invoice/api/v3/
6https://www.mashape.com/fetch/verify-email

121

Table 6.2: The inter-behavior messages used in the lesson enrolment composition
Message Source Target Condition

Sync
Activated Get User nil
Activated Request User Register Get User.Syncreq
Activated Re-enter Email Email Verification.Syncreq

Syncreq
Get User Activated -
Email Verification Activated -

Delay Activated Register Course User -

Fault

Is Registration
Allowed

Activated -

Get Lesson Activated -
Create an Invoice Activated -
Update an Invoice Activated -

Success Update an Invoice Activated -
Fail End Enrolment Rollback -

Recover

Rollback
Delete Calendar
Entries

Get Lesson.Fault

Rollback Logout Register Course User.Fault

Rollback Log Invoice
Create an Invoice.Fault ∨
Update an Invoice.Fault ∨
Zoho Invoice.Ping

Rollback End Enrolment Is Registration Allowed.Fault
Ping Activated Zoho Invoice -
Ack Zoho Invoice Activated -

behavior is able to Ping Zoho Invoice. This not only violates MSR2, but skips several essential

activities between Register Course User and invoicing. It indicates that the ping sent to the Zoho

Invoice servers lacks sufficient specification on when it should be used.

The simplest way to resolve this design issue is to attach a guard condition to the Ping message

to ensures it is only sent once the invoicing activities are reached. Attaching the condition [Sync]

to the Ping message will prevent it from being sent by the control behavior while waiting for a

response to Delay. After this update, TL-VIEWS confirms that the model satisfies all conversation

rules.

Verification Against Temporal Logic Templates

The course enrolment process has a set of 9 transactional requirements provided by the developer:

CE1: If an invoice is unable to updated using the Zoho Invoice services, then the changes must be

logged locally to be entered later.

122

Figure 6.6: Conversation rule checking output for the online enrolment model

CE2: If an invoice is unable to created using the Zoho Invoice services, then the changes must be

logged locally to be entered later.

CE3: Cancel Registration is required to undo the effect of Register Course User

when the process needs to be aborted.

CE4: If user data cannot be found, then a temporary account may be created to be verified later.

CE5: If Email Verification fails, the user can re-enter a new address to be verified.

CE6: If registration for this course in not permitted, the process must terminate.

CE7: If a new invoice must be created, then it also needs to be updated before the process commits.

CE8: Once invoicing is reached, the process must briefly suspend while the liveness of Zoho

Invoice servers is confirmed.

123

Table 6.3: Transactional requirements for the course enrolment model
ID Template Variables Values

CE1
Compensate

Component Update Invoice

Failure
Recovery Log Invoice
Card 1:1
Scope Global

CE2
Compensate

Component Create an Invoice

Failure
Recovery Log Invoice
Card 1:1
Scope Global

CE3
Compensate

Component Register Course User

Success
Recovery Cancel Registration
Card 1:1
Scope Global

CE4 Alternative

Component Get User
Recovery Request User Registration
Card 1:1
Scope Global

CE5 Alternative

Component Email Verification
Recovery Re-enter Email
Card 1:1
Scope Global

CE6
NonRetriable Activity Is Registration Allowed
Pivot Scope Global

CE7
ControlState

Control State Done

Critical
Condition Update Invoice
Scope Create an Invoice

CE8
ControlState

Control State Suspended

Trigger
Condition Zoho Invoice
Scope Global

CE9
ControlState

Control State Aborted

Unreachable
Condition Confirm User Registration
Scope Global

CE9: Once registration has been confirmed, the process can no longer be aborted.

Table 6.3 shows how the requirements can be implemented using our template set. The com-

plete SMV input file with temporal logic properties and reduced Kripke structure can be found

in Appendix E. The temporal logic properties and Kripke structure were input to NuSMV as the

shown in the file in Figures E.3 and E.3 respectively.

NuSMV was able to confirm that the course enrolment process as specified in Figure 6.5 and

Table 6.2 satisfies all requirements except CE4 and CE9. The stack trace violating CE4 (Fig-

ure 6.7(a)) showed that faults during invoicing allows the process to abort, therefore violating the

requirement that it must commit after Is Registration Allowed successfully completes.
124

(a) (b)

Figure 6.7: Transactional requirement verification output for the course enrolment model

A second stack trace that violated CE9 (Figure 6.7(b)) exhibited similar behavior. CE9 requires the

Aborted control behavior state to be unreachable after Confirm User Registration, but

the stack trace showed that if the Zoho Invoice services fail after Confirm User Registration

has completed, the process is able to abort.

To satisfy CE4 and CE9, the process must be revised in a way that allows execution to continue

after recovering from faults during invoicing. Therefore, the following changes to the process are

proposed:

• The outgoing transition from Log Invoice to End Enrolment is removed, and re-

placed with a Syncreq message to Rollback.

• An activity called Invoicing Complete is added, with an incoming transition from

Update Invoice.

• The origin of the Success message sent from Update Invoice is changed to Invoicing

Complete.

• A Sync message is sent from Activated to Invoicing Complete, with a guard con-

125

dition Log Invoice.Syncreq, ensuring it can only be triggered after the Log Invoice

recovery completes.

These changes mean that once an invoice is logged as a recovery action, the process briefly

resumes to record that invoicing has been completed before committing successfully. TL-VIEWS

confirms that the revised process satisfies CE4 and CE9, and that the conversation rules and re-

maining requirements were not compromised by the changes.

6.2.1.3 Web Store Checkout BPaaS Configuration

Our validation scenarios for BPaaS configuration aim to show how our configuration process can

handle diverse clients of the same service, while correctly enforcing domain constraints and client

transactional requirements. To validate our BPaaS configuration approach, we demonstrate two

scenarios using the Web store checkout service as it is presented in Section 5.2. These scenarios

show two clients with quite different transactional and configuration requirements, to demonstrate

how our configuration process is suitable for highly configurable BPaaS.

Web Store Checkout: Scenario A

The first client is a medium-sized business looking to expand into online sales with a Web store.

The business offers physical products only, and does not do pre-orders. Inventory and accounting

are to be managed with SaaS, but the client has an existing customer repository that will be used.

Payment may be made with Paypal and eWay services.

This client has provided 8 transactional requirements that the checkout service must satisfy to

provide the necessary trust to outsource their business operations:

SA1: Release Product is necessary prior to Aborted after Initiate Orderwith Physical

Product Details.

SA2: Place Shipping Order should always lead to Done.

SA3: Update Accounts using SaaSu is necessary prior to Done.

126

Table 6.4: Transactional requirements for BPaaS Scenario A

ID Template Variables Values

SA1
ControlState

Control State Aborted

Critical
Condition Release Product
Scope Initiate Order.Physical Product Details

SA2
ControlState

Control State Done

Trigger
Condition Place Shipping Order
Scope Global

SA3
ControlState

Control State Done

Critical
Condition Update Accounts.SaaSu
Scope Global

SA4

Control State Aborted
ControlState
Unreachable

Condition
Update Accounts.SaaSu ∨ Place Shipping Order ∨
Update Inventory.Microguru

Scope Global

SA5
ControlState

Control State Done

Critical
Condition Obtain Shipping Details
Scope Global

SA6
Compensate

Activity Process Payment

Failure
Recovery Reconfirm Payment Information ∨ Cancel Order
Scope Global

SA7
Retriable Activity Process Payment. Paypal
Pivot Scope Global

SA8
Retriable Activity Process Payment. eWay
Pivot Scope Global

SA4: Once Update Accounts, Place Shipping Order, or Update Inventory have

completed, the process cannot abort.

SA5: Obtain Shipping Details is necessary prior to Done.

SA6: Reconfirm Payment Information or Cancel Order must be executed follow-

ing the failure of Process Payment.

SA7: Process Payment using Paypal cannot be undone.

SA8: Process Payment using eWay cannot be undone.

The template implementations of these requirements are in Table 6.4. The BDD generated from

the domain constraints of Figure 5.5 and the configurable activities, resources, and data objects in

Table 6.4 indicates that these features can be selected in a valid configuration.

127

Figure 6.8: Violating stack trace produced by NuSMV

In addition to the features specified in these requirements, the client also selects the addi-

tional features AusPost, International Shipping for handling shipping orders, and the

Confirm Shipping Details activity to streamline the process for recurring customers.

BDD analysis confirms that these selections satisfy the domain constraints. The BDD generated at

this step is shown in Figure 5.9.

During the activity selection model checking phase, NuSMV identified a Kripke stack trace

violating SA5, shown in Figure 6.8. From analyzing the stack trace and the BPMN structure

in Figure 5.1, it can be determined that the inclusion of Confirm Shipping Details is

enabling Obtain Shipping Details to be bypassed, thereby violating the requirement that

it is critical for successful execution. In order to complete this verification step successfully, the

client can i) remove Confirm Shipping Details from the configuration, or ii) revise the

violating requirement to include it. Following either of these revisions, both model checking phases

are successful and a configuration solution is identified.

Web Store Checkout: Scenario B

An online music store with a local focus wishes to use the BPaaS to handle the checkout of sales

done through their website. The store offers digital downloads, CDs, and merchandise of lo-

128

cal artists, with shipping currently restricted to domestic customers. Furthermore, the checkout

process must be able to handle pre-order sales of upcoming releases. Payment must be handled

through the owner’s Paypal account, who also maintains customer details, accounting, and inven-

tory.

This client provides the following transactional requirements for the BPaaS:

SB1: For sales that are not pre-orders, Transfer File or Place Shipping Order must

be successful before the process commits.

SB2: A receipt must be sent to customers following every successful sale.

SB3: Customers must be able to re-enter their Paypal details and retry if payment is initially

unsuccessful.

SB4: If Process Payment is unsuccessful, either it is retried with new details, or the hold on

the product or pre-order is released before cancelling the sale.

SB5: Process Payment using Paypal cannot be undone.

Table 6.5 shows these transactional requirements formalized with templates. BDD analysis con-

ducted of the configurable features included in this requirement set confirm that they are valid

with respect to the domain constraints of the service provider. In addition, the client selects the

configurable activities, resources, and data objects shown in Table 6.6.

Once these features are added, the constructed BDD is not satisfiable. JDD automatically

removes redundant paths from BDDs, so the output produced is an empty BDD only consisting

of a transition to the 0 node. Therefore, this specific selection of features violates the domain

constraints.

From analyzing the feature model in Figure 5.5, we can see that the client has omitted Validate

Login, but has selected several features that are directly dependent on it. The client plans to han-

dle all customer details management internally, but the BPaaS requires the security of a login

procedure in order to conduct sales. In order to satisfy this constraint, the client removes in-

tegration with a Private Customer Repository and the Store Payment Details

129

Table 6.5: Transactional requirements for BPaaS Scenario B
ID Template Variables Values

SB1
ControlState

Control State Done

Critical
Condition Transfer File ∨ Place Shipping Order
Scope Initiate Order

SB2
ControlState

Control State Done

Critical
Condition Email Receipt
Scope Global

SB3
ControlState

Control State Done

Reachable
Condition Reconfirm Payment Information
Scope Global

SB4
Compensate

Activity Process Payment.Paypal

Failure
Recovery

Release Order ∨ Release Product
∨ Reconfirm Payment Information

Scope Global

SB5
Retriable Activity Process Payment.Paypal
Pivot Scope Global

Table 6.6: Additional feature selections for BPaaS Scenario B
Activities Initiate Pre-Order, Store Payment Details

Resources Private Inventory System, Private Accounting System,
Private Customer Repository, Provider Storage, AusPost

Data Objects Digital Product Details, Physical Product Details

activity from the configuration. This activity and resource will be managed completely internally,

due to a manageable level of anticipated customers. BPaaS running and provisioning costs may

also be reduced if a smaller number of features are included.

After removing those two features from the configuration, BDD analysis passed successfully.

Next, the configuration was verified against the transactional requirements formalized in Table 6.5

across our two model checking phases. Both phases were successful, confirming that the config-

ured BPaaS model satisfies the domain constraints and transactional requirement set.

6.2.2 Performance Analysis

For each use of model checking in the TL-VIEWS architecture, a series of experiments were

conducted to verify the feasibility of verification with large and complex models. We evaluate the

effectiveness of the state space reduction algorithms employed in each verification approach by

comparing model checking time with and without their use.

130

All experiments were run on an Intel Core i7 3.40GHz 4GB RAM system. The execution times

are recorded in seconds, and are mean average values taken from 10 executions.

6.2.2.1 Conversation Rule Checking

To evaluate the effectiveness of CKSR, we employ a test model suite of six designs of increasing

size and complexity, containing 100 to 1,000 operational behavior states So. These were created

from an initial model of 100 operational behavior states, by adding a further 100 states with iden-

tical transitions and inter-behavior messages for each increasingly complex model.

Table 6.7 shows a comparison between the conversation rule verification time of our model

suite, with and without Kripke structure reduction. For the unreduced tests, the complete control

and operational behavior models were transformed into the input language of NuSMV with no re-

ductions to the state space. Our results show that even while considering the additional overhead of

our algorithm, a net verification performance benefit is created in our approach. The performance

benefit of our approach increases as the model under testing becomes larger, from a 76.01% re-

duction in verification time (100 So states), to a 98.79% reduction (1000 So states). These results

indicate that our approach enables conversation rule checking at a speed that does not impair or in-

convenience the design process, even for very large models. This is especially vital when multiple

design revisions and model checking executions are required.

Table 6.7: Verification time (in seconds) of conversation rules with and without Kripke structure
reduction

With Kripke Reduction
UnreducedSo States CKSR NuSMV Total

100 0.003 0.062 0.065 0.271
200 0.004 0.093 0.097 0.816
300 0.006 0.140 0.146 1.860
400 0.006 0.192 0.198 3.017
500 0.007 0.227 0.234 6.124

1,000 0.015 0.468 0.483 39.865

131

Table 6.8: NuSMV execution times for individual templates
Template Cardinality NuSMV (ms)

CompensateFailure
1:1 7.3

Many:1 7.0

CompensateSuccess
1:1 7.8

Many:1 7.6

Alternative
1:1 7.4

Many:1 7.4
NonRetriable - 7.1
RetriablePivot - 7.2
NonRetriablePivot - 7.5
ControlStateCritical - 7.1
ControlStateTrigger - 7.1
ControlStateReachable - 6.5
ControlStateUnreachable - 6.4
Compensation - 7.4
ConditionalCompensation - 7.3

6.2.2.2 Verification Against Temporal Logic Templates

To evaluate our approach for verification against transactional requirements formalized using our

templates, we first evaluate the performance of each temporal logic template individually. Table 6.8

shows the verification time for minimal Kripke structures, as generated by TKSR, against one

requirement specified by each template. The Scope variable of every template that requires it was

set to Global, in each test in order to obtain an even comparison. These results indicate that the

templates with the greatest model checking performance demand are CompensateSuccess,

Alternative, NonRetriablePivot, and Compensation. Therefore, our evaluation will

utilize these templates in an even ratio.

We employ the same test suite of service-oriented process models used for conversation rule

verification, but use each model in several tests with requirement sets of increasing size. The aim

of this is to test the impact of our state space reduction measures when models and transactional

requirement sets become large and complex.

The results of our test suite evaluation against transactional requirement sets are shown in Ta-

ble 6.9. Our approach was able to reduce verification time, in a range from 79.90% (100 So states

with 100 requirements), to 98.63% (1,000 So states with 500 requirements). These results also

show that verification time for complex models against large sets of requirements can reach un-

132

Table 6.9: Verification time (in seconds) of temporal logic templates with and without Kripke
structure reduction

With Kripke Reduction
UnreducedSo States Requirements TKSR NuSMV Total

100
25 0.005 0.230 0.235 1.334
50 0.006 0.542 0.548 2.771
100 0.007 1.137 1.144 5.692

200
100 0.010 1.401 1.411 11.755
150 0.012 2.175 2.187 17.802
200 0.013 3.036 3.049 23.951

300
200 0.020 3.598 3.618 42.249
250 0.020 4.635 4.655 52.633
300 0.021 5.739 5.760 63.071

400
300 0.026 6.697 6.723 94.326
350 0.026 7.982 8.008 110.721
400 0.027 9.504 9.531 126.530

500
400 0.035 10.524 10.559 222.406
450 0.036 12.123 12.159 249.973
500 0.036 13.755 13.791 278.924

1,000
500 0.066 24.780 24.846 1,807.452
750 0.068 39.848 39.916 2,743.530

1,000 0.068 56.893 56.961 3,620.442

reasonable lengths without our reduction measures. For example, our tests verifying an unreduced

model with 1,000 operational behavior states against 500, 750, and 1,000 requirements took over

30 minutes, 45 minutes, and one hour respectively to complete. In contrast, our approach reduced

the total verification time to under one minute for all three requirement sets.

6.2.2.3 Configuration Business Process as a Service Verification

We perform two series of performance verification tests for our BPaaS configuration process. The

first set of tests aims to validate the performance benefit on our approach using a straightforward

model with smaller requirements sets. The configured BPaaS model contains a total of 100 activ-

ities (30 configurable), and a combined total of 30 configurable resources and data objects. This

model is a BPaaS that has already been configured through feature selection, rather than a config-

urable BPaaS with 100 total possible activities. We developed this model by extending the BPaaS

of Figure 5.1 with pseudo-states. Using this model, we compare our multi-step model checking

approach against a single step model checking approach that does not apply any state space reduc-

tion measures. For the verifying without state space reduction, the NuSMV input was manually

133

Figure 6.9: Verification times during configuration with and without reduction for 10 to 100 re-
quirements

written based on a complete implementation of the model.

We performed 10 tests, verifying the configured BPaaS model given sets of requirements from

sizes 10 to 100. The requirements used the same four templates that were used in the previous

section. Figure 6.9 plots the verification times of both the reduced and unreduced models. In

the case of unreduced, the verification time is determined from the sum of both model checking

phases, and the applications of the TKSR algorithm before each phase. These results indicate that

our approach provides a significant performance benefit in verification time, and that the benefit

becomes greater as the requirements sets become larger.

The second set of tests verifies the model checking performance of our BPaaS configuration

approach with large and complex models. This suite contains the model from the first set of

performance test, but extends it to create a further 3 models that are 200, 300, and 500 activities in

size. Like the model used in our first test, these descriptions apply to a configured BPaaS. These

models are too large to display in a readable manner, but to provide an indication of their size

134

Table 6.10: Details of the configurable BPaaS test suite for performance analysis
Total Configurable Resources &

Model ID Activities Activities Data Objects
B1 100 30 30
B2 200 60 60
B3 300 90 90
B4 500 150 150

Table 6.11: Verification time (in seconds) of increasingly complex configuration scenarios
NuSMV with reduction NuSMV

Model Reqs Act. TKSR Act. NuSMV RDO TKSR RDO NuSMV Total unreduced

B1
25 0.007 0.141 0.006 0.107 0.261 1.520
50 0.007 0.308 0.008 0.280 0.603 2.963

100 0.008 0.725 0.008 0.599 1.340 6.264

B2
100 0.015 0.835 0.015 0.715 1.580 13.512
150 0.022 1.324 0.017 0.963 2.326 20.164
200 0.023 1.921 0.021 1.591 3.556 28.365

B3
200 0.027 2.116 0.022 1.782 3.947 46.538
250 0.027 2.775 0.022 2.290 5.114 60.972
300 0.030 3.468 0.026 2.788 6.312 73.553

B4
300 0.053 4.246 0.042 3.391 7.732 191.103
400 0.053 5.861 0.045 4.636 10.595 256.413
500 0.057 7.643 0.047 5.963 13.710 323.896

and complexity, Table 6.10 shows the total number of activities, selected configurable activities,

resources, and data objects of each model.

For each configuration, three tests were conducted with requirement sets of increasing size

(from 25 to 500), to compare our approach against a model checking implementation with no re-

duction measures. Unreduced configurations were achieved by manually translating the BPaaS

configuration model, complete with BPMN, control behavior model, and inter-behavior messages,

into the input language of NuSMV. These tests aim to demonstrate the effectiveness of our ap-

proach as both the model complexity and transactional requirements increase.

The performance of our approach is determined from the sum of the Kripke structure reduction

algorithm (TKSR) and NuSMV execution time from both the Activity Selection (Act. NuSMV)

and Resources and data Objects Selection (RDO NuSMV) phases. The unreduced model checking

was performed by verifying all transactional requirements in one phase against a complete repre-

sentation of the configured BPaaS in the input language of NuSMV. All requirements in our tests

135

are successful.

The results of our experiments shown in Table 6.11 indicate that the model checking time of

unreduced representations of the configured BPaaS can reach infeasible lengths for large mod-

els. This is a greater concern considering that our configuration approach applies model checking

iteratively against reconfigured process models until a solution is reached. Furthermore, when ver-

ifying a large BPaaS configuration, such as the last few models in Table 6.11, clients may wish to

verify against a large requirement set incrementally. Considering that the verification times for this

model reaches several minutes in length for large requirement sets, this creates an explosion in the

total time of the configuration process. In contrast, our approach is shown to provide a substantial

performance benefit for large BPaaS configurations, and enable manageable model checking time.

The reduction in model checking time shown in our experiments ranges from 78.61%, when ver-

ifying our 100 activity configuration against 100 requirements, to 95.95%, from our 500 activity

configuration against 300 requirements.

6.3 Summary

The contributions proposed in Chapters 3-5 have been implemented in a prototype tool called TL-

VIEWS. This tool enables developers to model service-oriented process at design-time, perform

verification against conversation rules, and verify against their own transactional requirements

using our template set. TL-VIEWS also contains the functionality to configure BPaaS models to

satisfy domain constraint and transactional requirements, as described in Chapter 5. We utilize the

ArgoUML modelling tool and NuSMV model checker to implement our proposed configuration

and verification approaches.

To validate our contributions, we demonstrate four verification scenarios for service-oriented

processes at design-time, and two configuration scenarios for BPaaS. These cases use real-world

services, and demonstrate the ability of our approach to identify violations of transactional re-

quirements or domain constraints. Our validation scenarios showed how design-time verification

against conversation rules and transactional requirements can identify transactional behavior is-

sues that developers need to address. The BPaaS configuration scenarios we employed showed

136

the effectiveness of our configuration process in handling diverse clients of the same configurable

service, while also ensuring domain constraints and transactional requirements.

Finally, we perform an extensive performance evaluation for each of these main features of TL-

VIEWS, as they use model checking, an exhaustive verification method susceptible to state-space

explosion. These tests were performed using two test suites of models up to 1,000 activities in size,

with sets of up to 1,000 temporal logic properties. For each use of model checking, our state-space

reduction measures were shown to have a substantial impact on verification time, reducing it by

78.61% to 98.63%. Therefore, our state space reduction measures are able to make exhaustive

verification and configuration of even highly complex models feasible.

137

CHAPTER 7

Conclusion

With the increased use of Web services and cloud services over the last decade, service-oriented

processes have become an attractive means for fast and low-risk implementation of business oper-

ations. We propose three major contributions in this area: two for verification of transactional

behavior at design-time, and one for managing configuration of BPaaS. Firstly, we propose a

design-time method for verifying service-oriented processes against a set of conversation rules,

which can identify application-independent transactional issues such as invalid termination and

deadlocking scenarios. Then, we enable verification against complex and varied transactional re-

quirements drawn from business logic, through temporal logic templates. Finally, we develop a

BPaaS configuration approach that enables activity, resource, and data object configuration while

preserving domain constraints and transactional requirements drawn from the service client.

All three of these approaches employ state space reduction measures to improve the feasibility

and performance of verification when considering large and complex models and property sets.

Our validation scenarios and performance tests show that are methods are effective in identifying

design or requirement conformance issues, and capable of handling very large verification prob-

lems in reasonable time.

Papers of each of these contributions - conversation rule checking [22], temporal logic tem-

plates [23], and BPaaS configuration [25] - have been published in high quality conference pro-

ceedings. Our prototype tool TL-VIEWS was also accepted as a formal demonstration [24] at

ICSOC 2014. We also currently have two articles under review for top quality journals. To con-

clude, we provide a short summary of each of our main contributions, and discuss future directions

to take.

138

7.1 Summary

To summarize, we revisit the three goals stated in Chapter 1.2 and discuss how our work accom-

plished each.

7.1.1 Conversation Rule Checking for Well-Formed Transactional Behavior

The goal behind this work was to uncover and resolve issues in the transactional behavior of

service-oriented processes at design-time. To do this, we developed a verification approach us-

ing a statechart-based model that separates process behavior into control and operational behavior

models. The benefit of this model is that it provides separate views of the functional and transac-

tional behavior of the process, allowing each to be designed and refined individually by relevant

domain experts.

Expressive transactional behavior can be defined on this model as inter-behavior messages.

These allow the behavior models to pass instructions or notifications, and remain aware of each

other’s status. These inter-behavior conversations can be analyzed for transactional issues in the

process design, such as deadlock or inconsistency between the behavior models. We defined a set

of conversation rules to identify the transactional behavior design issues that lead to these events.

To verify service-oriented processes against our conversation rule set, we employ temporal

logic and model checking. However, as model checking is sensitive to state-space explosion,

we advance an algorithm called CKSR to reduce the model state space before verification. This

algorithm produces a minimal Kripke structure for verifying inter-behavior conversations, which

can be used as model checking input along with temporal logic representations of our conversation

rule set.

Our prototype tool TL-VIEWS enables users to model service-oriented processes as interacting

control and operational behaviors, and verify them against the conversation rules using with model

checking. TL-VIEWS has a graphical user interface that extends the UML modeling tool Ar-

goUML, while enabling model checking with the NuSMV model checker. Two validation scenar-

ios were used to demonstrate the effectiveness of our approach in detecting transactional behavior

139

issues. We also performed an extensive performance evaluation of our verification approach with

large and complex models. The largest model in our test suit contains 1,000 operational behav-

ior states, and our state-space reduction algorithm was able to reduce verification time by 98.79%

when compared to an unreduced model.

7.1.2 Application-Dependent Transactional Requirement Verification

Our second goal was to enable complex application-dependent transactional requirements to be for-

malized for verification in an expressive but easy-to-use manner. We adapt temporal logic patterns

for transactional requirement specification, and propose a set of temporal logic templates. These

templates are skeleton structures of temporal logic properties expressing various transactional re-

quirements, that can be implemented and adjusted by assigning simple variables. By assigning

variables, these templates allow developers to formalize complex and varied transactional require-

ments in temporal logic, without requiring expertise in the language. Our set of templates were

developed to verify service-oriented processes expressed using the control and operational model,

which allows for modelling complex transactional behavior.

We identify common or useful transactional requirements from the service-oriented process lit-

erature, and use them as the basis of our template set. Two categories of templates are produced: for

component-level and process-level transactional requirements. Component-level templates spec-

ify requirements for the transactional management of specific components in the process, such as

necessary recovery operations, alternatives, and whether retrial is safe upon failure. In contrast,

requirements implemented by process-level templates apply to the transactional behavior of the en-

tire process, such as compensating completed process executions, or valid conditions for aborting

or committing the process.

Given a set of variables, such as applicable components, scope, or recovery conditions, these

templates automatically map the transactional requirement to formal temporal logic properties.

The use of templates greatly reduces human error and effort when compared with manual specifi-

cation, while still allowing complex and diverse requirements to be formalized. Model checking

can again be applied to ensure the requirements are satisfied at design-time. We advance a second

140

algorithm for state-space reduction. Unlike the algorithm used during conversation checking, this

reduction removes all states unnecessary for verifying an implemented set of requirements, without

compromising the behavior of the model under verification.

TL-VIEWS contains an interface for specifying transactional requirements using templates,

and automatically employs our state space reduction and verification. Our validation scenarios

demonstrate how the templates can be used to formalize complex application-dependent require-

ments and identify violating behavior in the design. We perform a series of tests to verify the

performance of our verification approach with large and complex models and transactional re-

quirement sets. The results show verification time reductions between 79.90% and 98.63%.

7.1.3 Configuration of Transactional Business Process as a Service

Our third goal was to contribute a BPaaS configuration method that enables clients to provide trans-

actional requirements that the service must satisfy, while also considering domain constraints over

valid configuration. This configuration approach extends work related to BPaaS configuration by

enabling complex requirements from the client to be verified, while also considering BPaaS config-

uration from multiple perspectives. We aim to enable BPaaS configuration of activities, resources,

and data objects to provide greater flexibility for clients. We employ BPMN with as an expressive

BPaaS model that includes configurable activities, resources, and data objects. Combined with

our separation of behaviors modelling approach, we also include detailed transactional behaviour

in the model. Feature models are used to model domain constraints over configurable features

in the BPaaS. Our temporal logic templates are employed for formalizing application-dependent

transactional requirements.

These models can be combined into a configuration approach that satisfies our goal using for-

mal methods, as they can be used to verify large models against complex properties. BDD analysis

is used to ensure that the configurable features included in the transactional requirements and the

client’s selections do not violate the constraints expressed in the feature model. As in our design-

time verification approach, model checking is used to ensure transactional requirements expressed

in temporal logic are satisfied. However, due to the impact that resource and data object configu-

141

ration has on the model state-space, we divide the model checking problem into two phases. The

first phase focuses verifies the BPaaS configuration according to selected activities, while the sec-

ond only verifies requirements that include specific resources and data objects. This two-phase

approach allows for both the model and transactional requirement set to be reduced in complexity

in each phase.

Several modules in TL-VIEWS are dedicated to implementing this configuration approach.

Using a Web store checkout BPaaS, we demonstrate how our configuration process can be used to

handle diverse requirements for features and transactional behavior with two validation scenarios.

We also perform an series of performance analysis tests to determine the effectiveness of our state-

space reduction methods, and the feasibility of our approach with large and complex BPaaS. Our

analysis uses four models of increasing size with several large requirement sets for each to be

verified against. The results indicate a verification time reduction between 78.61% and 95.95%.

With our largest model (500 activities with 300 configurable features) verified against our largest

transactional requirements set (500 requirements), each model checking phase was still able to

complete in under 10 seconds.

7.2 Future Directions

The contributions behind these three goals have each received publication in high quality confer-

ences in recent years [22, 23, 24, 25], as well as submissions to high quality journals. However,

at the current stage of this project, some limitations remain that provide an opportunity for future

work. Below, we highlight three avenues for future work and discuss how they could create further

contributions to the field.

7.2.1 Diagnosing Conversation Rule and Transactional Requirement Violations

Currently, in all three main functions of TL-VIEWS that use model checking, the output of vi-

olations presented to the user i) the property violated, and ii) a violating stack-trace generated

by NuSMV. This is helpful to the user as it demonstrates the behavior that needs to be revised.

142

However, there are limitations to this approach that could be improved:

• The stack trace contains states from the Kripke structure used as model checking input,

which the user does not have access to. While the Kripke structure states have states from

the model as atomic propositions, this requires extra manual interpretation from the user.

• For some CTL properties, NuSMV is unable to produce stack trace violations. For example,

when a requirement using the Control State Reachable template is not satisfied, it

is because no reachable state satisfies the property. In these cases, since there is not violating

stack trace, the user has to determine manually how the property is not satisfied.

• The stack trace violations are still completely up to the user to interpret. Given the com-

plexity of some temporal logic properties in our approach, it can be a non-trivial task to

determine exactly what revisions need to be made to the model.

Other approaches using temporal logic templates or patterns use the knowledge of property

structures to help diagnose model checking violations. For example, Elgammal et al. [54] con-

struct Current Reality Trees (CRTs) [48] to diagnose violations of properties constructed from a

set of temporal logic patterns. As the structures of temporal logic properties are pre-defined in

our approach, mechanisms for explaining why violations occured could be explored. Futhermore,

common factors across all models, such as control behavior states, could be used to automatically

diagnose violations in high detail (such as indicating when an inter-behavior message is missing).

This information could be represented to the user as suggestions, or even in a visual manner on the

model itself.

Pursuing this research direction would greatly increase the usability of our verification and

configuration approaches. Users will not need any experience with model checking and formal

methods to use our tool as all complexities will be hidden and interpreted automatically. It would

also increase the feasibility of our approach for large models, where cause of the violations of

complex temporal logic properties can be difficult to manually determine.

143

7.2.2 Preserving Transactional Requirements During Dynamic Configuration

At present, our BPaaS configuration approach is a static process that is conducted before the client

provisions the service for use. As cloud services aim to respond dynamically to changes in work-

load and environment [7, 16], another goal for BPaaS could be to adapt to these events. Further-

more, existing work in SaaS management has addressed services that evolve over time, in order

to handle new clients or environmental changes [92, 101, 131]. Changes to third party services

utilized by the BPaaS may also need to be addressed dynamically, such as outages, QoS variations,

or updates to the service interface or behaviour [3, 118].

As future work, methods could be explored to make dynamic changes to the BPaaS in a way

that does not violate requirements. This presents two immediate challenges:

• The method to ensure transactional requirements remain satisfied must be very time efficient

in order to be used dynamically at runtime. As we have shown, transactional requirements

can be very complex when formalized, but through appropriate reduction measures, can be

verified in a reasonable time frame.

• Changes to the BPaaS structure or resources, such as replacing resources that are not respon-

sive, may impact one or many clients [92]. The requirements of all clients, rather than single

clients, may need to be addressed.

Addressing all these challenges would change our configuration process to a comprehensive

BPaaS management framework capable of responding to changes in the environment and manag-

ing client transactional requirements. This added functionality would also reduce the number of

unpredicted faults of component services and prevent suspensions or failures of the BPaaS exe-

cution. Existing approaches that manage cloud service evolution focus on requirements such as

process structure fairness [101], and preserving elasticity [118] and multi-tenancy [110]. To the

best of our knowledge, complex application-dependent properties such as transactional require-

ments are yet to received attention in this area.

144

7.2.3 Business Process as a Service Configuration Framework

The implementation of our BPaaS configuration process in TL-VIEWS validates that BDD analysis

and model checking can be applied as formal methods during configuration. Currently, TL-VIEWS

applies these formal methods to configure basic workflow skeletons. Our validation scenarios and

performance tests have shown the feasibility of our approach as a configuration method for BPaaS.

The next step is to develop an appropriate interface for clients that hides the details and com-

plexity of the service aside from the transactional requirement specification and feature selection.

The modules of the architecture for managing configuration would need to be expanded in order

to configure implemented business processes in an executable language, while preserving basic

syntactical correctness. After a configuration solution has been found, the framework would need

to apply the necessary configurations to an implemented service-oriented process, such as a WS-

BPEL implementation.

As BPaaS is still an emerging technology, a framework such as this, especially one that enables

clients to ensure complex transactional requirements, would be a significant contribution to the

field. The work presented in this thesis, in addition to the future directions discussed in this section,

will hopefully provide avenues for addressing a host of the opportunities present in the early stages

of BPaaS research.

145

REFERENCES

[1] R. Accorsi. Business Process as a Service: Chances for Remote Auditing. In The 35th
Annual Computer Software and Applications Conference Workshop, pages 398–403. IEEE,
2011.

[2] E. Al-Masri and Q. H. Mahmoud. Investigating Web Services on the World Wide Web.
In Proceedings of the 17th International Conference on World Wide Web, pages 795–804.
ACM, 2008.

[3] A. Alhosban, K. Hashmi, Z. Malik, B. Medjahed, and S. Benbernou. Bottom-Up Fault Man-
agement in Service-Based Systems. Transactions on Internet Technology, 15(2):7, 2015.

[4] G. Alonso, D. Agrawal, M. Kamath, R. Günthör, and C. Mohan. Advanced Transaction
Models in Workflow Contexts. In Proceedings of the 12th International Conference on
Data Engineering, pages 574–581. IEEE, 1996.

[5] P. Andrew, J. Conard, and S. Woodgate. Presenting Windows Workflow Foundation. Sams,
Indianapolis, IN, USA, 2005.

[6] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, and S. Thatte. Business Process Execution Language for Web Services. Packt
Publishing, 2003.

[7] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, and I. Stoica. A View of Cloud Computing. Communications of the ACM,
53(4):50–58, 2010.

[8] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT press, 2008.

[9] A. Banerjee. A Formal Model for Multi-Tenant Software-as-a-Service in Cloud Comput-
ing. In Proceedings of the 5th ACM COMPUTE Conference: Intelligent & Scalable System
Technologies, page 18. ACM, 2012.

[10] L. Baresi and S. Guinea. Self-Supervising BPEL Processes. IEEE Transactions on Software
Engineering, 37(2):247–263, 2011.

[11] A. Basu and R. W. Blanning. A Formal Approach to Workflow Analysis. Information
Systems Research, 11(1):17–36, 2000.

[12] N. Ben Lakhal, T. Kobayashi, and H. Yokota. FENECIA: Failure Endurable Nested-
transaction Based Execution of Composite Web Services with Incorporated State Analysis.
The International Journal on Very Large Databases, 18(1):1–56, 2009.

[13] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated Analysis of Feature Models 20
Years Later: A Literature Review. Information Systems, 35(6):615–636, 2010.

[14] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi. UPPAAL A Tool Suite for
Automatic Verification of Real-Time Systems. Springer, 1996.

146

[15] P. A. Bernstein, D. W. Shipman, and W. S. Wong. Formal Aspects of Serializability in
Database Concurrency Control. IEEE Transactions on Software Engineering, (3):203–216,
1979.

[16] C. Bezemer and A. Zaidman. Multi-Tenant SaaS Applications: Maintenance Dream or
Nightmare? In Proceedings of the Joint ERCIM Workshop on Software Evolution and
International Workshop on Principles of Software Evolution, pages 88–92. ACM, 2010.

[17] S. Bhiri, C. Godart, and O. Perrin. Transactional Patterns for Reliable Web Services Com-
positions. In Proceedings of the 6th International Conference on Web Engineering, pages
137–144. ACM, 2006.

[18] S. Bhiri, O. Perrin, and C. Godart. Ensuring Required Failure Atomicity of Composite
Web Services. In Proceedings of the 14th International World Wide Web Conference, pages
138–147. ACM, 2005.

[19] G. Böckle, F. J. van der Linden, and K. Pohl. Software Product Line Engineering: Founda-
tions, Principles and Techniques. Springer Science & Business Media, 2005.

[20] M. L. Bote-Lorenzo, Y. A. Dimitriadis, and E. Gómez-Sánchez. Grid Characteristics and
Uses: a Grid Definition. In Grid Computing, pages 291–298. Springer, 2004.

[21] S. Bouchenak, G. Chockler, H. Chockler, G. Gheorghe, N. Santos, and A. Shraer. Verifying
cloud services: present and future. SIGOPS Operating Systems Review, 47(2):6–19, 2013.

[22] S. Bourne, C. Szabo, and Q.Z. Sheng. Ensuring Well-Formed Conversations Between Con-
trol and Operational Behaviors of Web Services. In Proceedings of the 10th International
Conference on Service-Oriented Computing, pages 507–515. Springer, 2012.

[23] S. Bourne, C. Szabo, and Q.Z. Sheng. Verifying Transactional Requirements of Web Ser-
vice Compositions using Temporal Logic Templates. In Proceedings of the 14th Interna-
tional Conference on Web Information System Engineering, pages 243–256. Springer, 2013.

[24] S. Bourne, C. Szabo, and Q.Z. Sheng. TL-VIEWS: A Tool for Temporal Logic Verifica-
tion of Transactional Behavior of Web Service Compositions. In Proceedings of the 12th
International Conference on Service-Oriented Computing, pages 418–422. Springer, 2014.

[25] S. Bourne, C. Szabo, and Q.Z. Sheng. Managing Configurable Business Process as a Service
to Satisfy Client Transactional Requirements. In Proceedings of the 11th International
Conference on Services Computing, pages 154–161. IEEE, 2015.

[26] M. Bozkurt, M. Harman, and Y. Hassoun. Testing and Verification in Service-Oriented
Architecture: a Survey. Software Testing, Verification and Reliability, 23(4):261–313, 2013.

[27] F. Cabrera, G. Copeland, M. Feingold, R. W. Freund, T. Freund, S. Joyce, J. Klein, D. Lang-
worthy, M. Little, and F. Leymann. Web Services Business Activity Framework (WS-
BusinessActivity). IBM Web Service Transactions Specifications, 2005.

147

[28] F. Cabrera, G. Copeland, M. Feingold, T. Freund, J. Johnson, S. Joyce, C. Kaler, J. Klein,
and D. Langworthy. Web Services Atomic Transaction (WS-AtomicTransaction). MSDN
Library, 2005.

[29] J. Cao, J. Luo, S. Zhang, X. Zheng, B. Liu, G. Zhu, and B. Zhang. A Context-Aware
Recovery Mechanism for Web Services Business Transaction. In Proceedings of the 9th
International Conference on Services Computing, pages 352–359, 2012.

[30] Z. Cao, X. Zhang, W. Zhang, X. Xie, J. Shi, and H. Xu. A Context-Aware Adaptive Web
Service Composition Framework. In Proceedings of the International Conference on Com-
putational Intelligence & Communication Technology, pages 62–66. IEEE, 2015.

[31] L. Capra and W. Cazzola. Self-Evolving Petri Nets. Journal of Universal Computer Sci-
ence, 13(13):2002–2034, 2007.

[32] Y. Cardinale, J. El Haddad, M. Manouvrier, and M. Rukoz. Transactional-aware Web Ser-
vice Composition: A Survey. IGI Global-Advances in Knowledge Management Book Se-
ries, 2011.

[33] Y. Cardinale and M. Rukoz. A Framework for Reliable Execution of Transactional Com-
posite Web Services. In Proceedings of the International Conference on Management of
Emergent Digital Ecosystems, pages 129–136. ACM, 2011.

[34] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M. Shan. Adaptive and Dynamic Service
Composition in eFlow. In Proceedings of the 12th International Conference on Advanced
Information Systems Engineering, pages 13–31. Springer, 2000.

[35] A. Ceponkus, P. Furniss, A. Green, S. Dalal, and M. Little. Business Transaction Protocol.
Change, 2002.

[36] L. Chen and A. Avizienis. N-version Programming: A Fault-tolerance Approach to Relia-
bility of Software Operation. In Proceedings of the 8th IEEE International Symposium on
Fault-Tolerant Computing, pages 3–9, 1978.

[37] F. Chong and G. Carraro. Architecture Atrategies for Catching the Long Tail. MSDN
Library, pages 9–10, 2006.

[38] H. Chong, J. S. Wong, and X. Wang. An Explanatory Case Study on Cloud Computing
Applications in the Built Environment. Automation in Construction, 44:152–162, 2014.

[39] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description
Language (WSDL) 1.1, 2001.

[40] P. K Chrysanthis and K. Ramamritham. ACTA: A Framework for Specifying and Reasoning
about Transaction Structure and Behavior. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, volume 19, pages 194–203. ACM, 1990.

[41] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,
and A. Tacchella. NuSMV 2: An Opensource Tool for Symbolic Model Checking. In
Computer Aided Verification, pages 241–268. Springer, 2002.

148

[42] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a New Symbolic Model
Checker. International Journal on Software Tools for Technology Transfer, 2(4):410–425,
2000.

[43] E. Clarke. Model Checking. In Foundations of Software Technology and Theoretical Com-
puter Science, pages 54–56. Springer, 1997.

[44] E. Clarke, O. Grumberg, and K. Hamaguchi. Another Look at LTL Model Checking. In
Computer Aided Verification, pages 415–427. Springer, 1994.

[45] E. Clarke, D. Kroening, and F. Lerda. A Tool for Checking ANSI-C Programs. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 168–176. Springer, 2004.

[46] S. Cranen, J. F. Groote, J. J. A. Keiren, F. P. M. Stappers, E. P. de Vink, W. Wesselink, and
T. A. C. Willemse. An Overview of the mCRL2 Toolset and its Recent Advances. In Tools
and Algorithms for the Construction and Analysis of Systems, pages 199–213. Springer,
2013.

[47] U. Dayal, M. Hsu, and R. Ladin. Business Process Coordination: State of the Art, Trends,
and Open Issues. In Proceedings of the 27th Very Large Databases Conference, volume 1,
pages 3–13, 2001.

[48] H. W. Dettmer. Goldratt’s Theory of Constraints: a Systems Approach to Continuous Im-
provement. ASQ Quality Press, 1997.

[49] T. Dillon, C. Wu, and E. Chang. Cloud Computing: Issues and Challenges. In The 24th
IEEE International Conference on Advanced Information Networking and Applications,
pages 27–33, 2010.

[50] D. Dranidis, E. Ramollari, and D. Kourtesis. Run-Time Verification of Behavioural Confor-
mance for Conversational Web Services. In Proceedings of the 7th European Conference
on Web Services, pages 139–147. IEEE, 2009.

[51] E. Duipmans and L. F. Pires. Business Process Management in the Cloud: Business Process
as a Service (BPaaS). Technical report, University of Twente, 2012.

[52] Matthew B Dwyer, George S Avrunin, and James C Corbett. Patterns in Property Specifica-
tions for Finite-State Verification. In Software Engineering, 1999. Proceedings of the 1999
International Conference on, pages 411–420. IEEE, 1999.

[53] J. El Hadad, M. Manouvrier, and M. Rukoz. TQoS: Transactional and QoS-Aware Selec-
tion Algorithm for Automatic Web Service Composition. IEEE Transactions on Services
Computing, 3(1):73–85, 2010.

[54] Amal Elgammal, Oktay Turetken, Willem-Jan van den Heuvel, and Mike Papazoglou. Root-
Cause Analysis of Design-Time Compliance Violations on the Basis of Property Patterns.
In Proceedings of the 8th International Conference on Service-Oriented Computing, pages
17–31. Springer, 2010.

149

[55] A. Elmagarmid. Transaction Models for Advanced Database Applications. Morgan Kauf-
mann Publishers Inc., 1991.

[56] E. A. Emerson. Temporal and Modal Logic. Handbook of Theoretical Computer Science,
2:995–1072, 1990.

[57] A. Erradi, P. Maheshwari, and V. Tosic. Recovery Policies for Enhancing Web Services
Reliability. In Proceedings of the International Conference on Web Services, pages 189–
196. IEEE, 2006.

[58] O. Ezenwoye and S. M. Sadjadi. TRAP/BPEL-A Framework for Dynamic Adaptation of
Composite Services. In WEBIST, volume 1, pages 216–221, 2007.

[59] A. Fantechi, S. Gnesi, A. Lapadula, F. Mazzanti, R. Pugliese, and F. Tiezzi. A Logical
Verification Methodology for Service-Oriented Computing. ACM Transactions on Software
Engineering and Methodology, 21(3):16, 2012.

[60] R. T. Fielding. Architectural Styles and the Design of Network-Based Software Architec-
tures. PhD thesis, University of California, Irvine, 2000.

[61] J. P. Friese, T.and Müller and B. Freisleben. Self-healing Execution of Business Processes
Based on a Peer-to-Peer Service Architecture. In Systems Aspects in Organic and Pervasive
Computing, pages 108–123. Springer, 2005.

[62] W. Gaaloul, S. Bhiri, and M. Rouached. Event-based Design and Runtime Verification
of Composite Service Transactional Behavior. IEEE Transactions on Services Computing,
3(1):32–45, 2010.

[63] V. Gabrel, M. Manouvrier, and C. Murat. Optimal and Automatic Transactional Web
Service Composition with Dependency Graph and 0-1 Linear Programming. In Proceed-
ings of the 12th International Conference on Service-Oriented Computing, pages 108–122.
Springer, 2014.

[64] M. Gagnaire, F. Diaz, C. Coti, C. Cerin, K. Shiozaki, Y. Xu, P. Delort, J. Smets, J. Le Lous,
and S. Lubiarz. Downtime Statistics of Current Cloud Solutions. Technical report, 2012.

[65] M. Gajewski, M. Momotko, H. Meyer, H. Schuschel, and M. Weske. Dynamic Failure
Recovery of Generated Workflows. In Proceedings of the 16th International Workshop on
Database and Expert Systems Applications, pages 982–986. IEEE, 2005.

[66] L. Gao, S. D. Urban, and J. Ramachandran. A survey of Transactional Issues for Web Ser-
vice Composition and Recovery. International Journal of Web and Grid Services, 7(4):331–
356, 2011.

[67] H. Garcia-Molina and K. Salem. SAGAS. In Proceedings of the SIGMOD International
Conference on Management of Data, volume 16. ACM, 1987.

[68] F. Gottschalk, W. M. P. van der Aalst, and M. H. Jansen-Vullers. Configurable Process
Models A Foundational Approach. In Reference Modeling, pages 59–77. Springer, 2007.

150

[69] S. Götz, C. Wilke, S. Richly, and U. Assmann. Approximating Quality Contracts for Energy
Auto-Tuning Software. In Proceedings of the First International Workshop on Green and
Sustainable Software, pages 8–14. IEEE Press, 2012.

[70] J. Gray. The Transaction Concept: Virtues and Limitations. In Proceedings of the Very
Large Database Conference, pages 144–154, 1981.

[71] G. Gröner, M. Bošković, F. S. Parreiras, and D. Gašević. Modeling and Validation of Busi-
ness Process Families. Information Systems, 38(5):709–726, 2013.

[72] C. Hagen and G. Alonso. Exception Handling in Workflow Management Systems. IEEE
Transactions on Software Engineering, 26(10):943–958, 2000.

[73] A. Hallerbach, T. Bauer, and M. Reichert. Guaranteeing Soundness of Configurable Process
Variants in Provop. In IEEE Conference on Commerce and Enterprise Computing, pages
98–105. IEEE, 2009.

[74] D. Harel and A. Naamad. The STATEMATE Semantics of Statecharts. ACM Transactions
on Software Engineering and Methodology, 5(4):293–333, 1996.

[75] A. Höing, G. Scherp, S. Gudenkauf, D. Meister, and A. Brinkmann. An Orchestration
as a Service Infrastructure Using Grid Technologies and WS-BPEL. In Service-Oriented
Computing, pages 301–315. Springer, 2009.

[76] G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual, volume 1003.
Addison-Wesley Reading, 2004.

[77] S. Hwang, E. Lim, C. Lee, and C. Chen. Dynamic Web Service Selection for Reliable Web
Service Composition. IEEE Transactions on Services Computing, 1(2):104–116, 2008.

[78] K. Jensen. Coloured Petri Nets. In Petri Nets: Central Models and Their Properties, pages
248–299. Springer, 1987.

[79] J. M. Jiang, S. Zhang, P. Gong, and Z. Hong. Configuring Business Process Models. SIG-
SOFT Software Engineering Notes, 38(4):1–10, 2013.

[80] J. M. Jiang, S. Zhang, P. Gong, Z. Hong, and H. Yue. Modeling and Analyzing Mixed
Communications in Service-Oriented Trustworthy Software. Science China Information
Sciences, 55(12):2738–2756, 2012.

[81] K. Johny. A New Broker-Based Architecture for TQoS Driven Web Services Composition.
In Proceedings of the 2nd International Conference on Advances in Computer Engineering,
pages 159–161, 2011.

[82] K. C. Kang, J. Lee, and P. Donohoe. Feature-Oriented Product Line Engineering. IEEE
Software, 19(4):58–65, 2002.

[83] W. Kim. Modern Database Systems: The Object Model, Interoperability, and Beyond.
ACM Press/Addison-Wesley Publishing Co., 1995.

151

[84] S. Klüppelholz and C. Baier. Alternating-Time Stream Logic for Multi-Agent Systems.
Science of Computer Programming, 75(6):398–425, June 2010.

[85] N. Kokash and F. Arbab. Formal Design and Verification of Long-Running Transactionsl
with Extensible Coordination Tools. IEEE Transactions on Services Computing, 6:186–
200, 2013.

[86] J. Korhonen, L. Pajunen, and J. Puustjarvi. Automatic Composition of Web Service Work-
flows Using a Semantic Agent. In Proceedings of the International Conference on Web
Intelligence, pages 566–569. IEEE, 2003.

[87] M. Kovács, D. Varró, and L. Gönczy. Formal Modeling of BPEL Workflows Including
Fault and Compensation Handling. In Proceedings of the Workshop on Engineering Fault
Tolerant Systems. ACM, 2007.

[88] R. Kowalski and M. Sergot. A Logic-based Calculus of Events. In Foundations of Knowl-
edge Base Management, pages 23–55. Springer, 1989.

[89] Saul Kripke. Semantical Considerations on Modal Logic. Acta Philosophica Fennica,
16(1963):83–94, 1963.

[90] A. Kumar, A. K. Sen, M. H. Sundari, and A. Bagchi. Semantic Notions of Weakly Correct
AND/XOR Business Workflows Based on Partial Synchronization. In Proceedings of the
International Conference on Services Computing, pages 128–135. IEEE, 2011.

[91] A. Kumar and W.Z Yao. Design and Management of Flexible Process Variants using Tem-
plates and Rules. Computers in Industry, 63(2):112–130, 2012.

[92] I. Kumara, J. Han, A. Colman, and M. Kapuruge. Runtime Evolution of Service-Based
Multi-Tenant SaaS Applications. In Service-Oriented Computing, pages 192–206. Springer,
2013.

[93] M. La Rosa, M. Dumas, A. H. M. ter Hofstede, and J. Mendling. Configurable Multi-
Perspective Business Process Models. Information Systems, 36(2):313–340, 2011.

[94] M. La Rosa, M. Dumas, A. H. M. ter Hofstede, J. Mendling, and F. Gottschalk. Beyond
Control-Flow: Extending Business Process Configuration to Roles and Objects. In Pro-
ceedings of the 27th International Conference on Conceptual Modeling (ER 2008), pages
199–215.

[95] M. La Rosa, W. M. P. van der Aalst, M. Dumas, and A. H. M. ter Hofstede. Questionnaire-
Based Variability Modeling for System Configuration. Software & Systems Modeling,
8(2):251–274, 2009.

[96] N. Laranjeiro and M. Vieira. Towards Fault Tolerance in Web Services Compositions. In
Proceedings of the Workshop on Engineering Fault Tolerant Systems. ACM, 2007.

[97] G. Li, L. Liao, D. Song, and Z. Zheng. A Fault-Tolerant Framework for QoS-Aware Web
Service Composition via Case-Based Reasoning. International Journal of Web and Grid
Services, 10(1):80–99, 2014.

152

[98] Y. Li, Y. Liu, L. Zhang, G. Li, B. Xie, and J. Sun. An Exploratory Study of Web Services
on the Internet. In Proceedings of the International Conference on Web Services, pages
380–387. IEEE, 2007.

[99] M. Little. Transactions and Web Services. Communications of the ACM, 46(10):49–54,
2003.

[100] A. Liu, Q. Li, L. Huang, and M. Xiao. FACTS: A Framework for Fault-tolerant Composition
of Transactional Web Services. IEEE Transactions on Services Computing, 3(1):46–59,
2010.

[101] Y. Liu, B. Zhang, G. Liu, M. Zhang, and J. Na. Evolving SaaS Based on Reflective Petri
Nets. In Proceedings of the 7th Workshop on Reflection, AOP and Meta-Data for Software
Evolution, pages 7:1–7:4. ACM, 2010.

[102] C. Lizhen, W. Haiyang, J. Lin, and H. Pu. Customization Modeling Based on Metagraph for
Multi-Tenant Applications. In The 5th International Conference on Pervasive Computing
and Applications, pages 255–260. IEEE, 2010.

[103] N. Looker, M. Munro, and J. Xu. Increasing Web Service Dependability Through Con-
sensus Voting. In Proceedings of the 29th Annual International of Computer Software and
Applications Conference, volume 2, pages 66–69. IEEE, 2005.

[104] T. Lynn, J. Mooney, M. Helfert, D. Corcoran, G. Hunt, L. Van Der Werff, J. Morrison,
and P. Healy. Towards a Framework for Defining and Categorising Business Process-As-
A-Service (BPaaS). In 21st International Product Development Management Conference,
2014.

[105] H. E. Mansour and T. Dillon. Dependability and Rollback Recovery for Composite Web
Services. IEEE Transactions on Services Computing, 4(4):328–339, 2011.

[106] S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, and A. Ghalsasi. Cloud Computing The
Business Perspective. Decision Support Systems, 51(1):176–189, 2011.

[107] S. Mehrotra, R. Rastogi, A. Silberschatz, and H. F. Korth. A Transaction Model for Mul-
tidatabase Systems. In Proceedings of the 12th International Conference on Distributed
Computing Systems, pages 56–63. IEEE, 1992.

[108] X. Mei, A. Jiang, F. Zheng, and S. Li. Execution Semantics Analysis Based Composition
Compensation Mechanism in Web Services Composition. In Proceedings of the WRI World
Congress on Computer Science and Information Engineering, volume 7, pages 820–824.
IEEE, 2009.

[109] J. Mendling, J. Recker, M. Rosemann, and W. M. P. van der Aalst. Generating Correct EPCs
from Configured C-EPCs. In Proceedings of the Symposium on Applied Computing, pages
1505–1510. ACM, 2006.

153

[110] R. Mietzner, A. Metzger, F. Leymann, and K. Pohl. Variability Modeling to Support Cus-
tomization and Deployment of Multi-Tenant-Aware Software as a Service Applications. In
Proceedings of the ICSE Workshop on Principles of Engineering Service Oriented Systems,
pages 18–25. IEEE, 2009.

[111] F. Montagut, R. Molva, and S.T. Golega. Automating the Composition of Transactional
Web Services. International Journal of Web Services Research, 5(1):24–41, 2008.

[112] F. Montagut, R. Molva, and S. Tecumseh Golega. The Pervasive Workflow: A Decentralized
Workflow System Supporting Long-Running Transactions. IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews, pages 319–333, 2008.

[113] J. E. B. Moss. Nested Transactions: An Approach to Reliable Distributed Computing.
Technical report, 1985.

[114] M. Nitu. Configurability in saas (software as a service) applications. In Proceedings of the
2nd Annual Conference on India Software Engineering, pages 19–26, 2009.

[115] J. Ouyang, A. Sahai, and V. Machiraju. An Approach to Optimistic Commit and Trans-
parent Compensation for E-Service Transactions. In Proceedings of the 14th International
Conference on Parallel and Distributed Computing Systems, pages 142–149, 2001.

[116] M. P. Papazoglou. Service-Oriented Computing: Concepts, Characteristics and Directions.
In Proceedings of the 4th International Conference on Web Information Systems Engineer-
ing, pages 3–12. IEEE, 2003.

[117] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-Oriented Computing:
State of the Art and Research Challenges. IEEE Computer, 40(11):38–45, 2007.

[118] M. P. Papazoglou and W. van den Heuvel. Blueprinting the Cloud. IEEE Internet Comput-
ing, 15(6):74–79, 2011.

[119] M. Pathirage, S. Perera, I. Kumara, and S. Weerawarana. A Multi-Tenant Architecture for
Business Process Executions. In Proceedings of the 9th International Conference on Web
Services, pages 121–128. IEEE, 2011.

[120] C. Peltz. Web Services Orchestration and Choreography. IEEE Computer, 36(10):46–52,
2003.

[121] D. Petcu and V. Stankovski. Towards Cloud-Enabled Business Process Management based
on Patterns, Rules and Multiple Models. In Proceedings of the 10th International Sym-
posium on Parallel and Distributed Processing with Applications, pages 454–459. IEEE,
2012.

[122] P. F. Pires, M. Benevides, and M. Mattoso. WebTransact: A Framework for Specifying and
Coordinating Reliable Web Services Compositions. Technical report, Federal University of
Rio De Janeiro, 2002.

[123] P. F Pires, M. R. F. Benevides, and M. Mattoso. Building Reliable Web Services Composi-
tions. In Web, Web-Services, and Database Systems, pages 59–72. Springer, 2003.

154

[124] K. Pohl, G. Böckle, and F. J. van der Linden. Software Product Line Engineering: Founda-
tions, Principles and Techniques. Springer Science & Business Media, 2005.

[125] B. Randell and J. Xu. The Evolution of the Recovery Block Concept. Software Fault
Tolerance, 3:1–22, 1995.

[126] J. Rao and X. Su. A Survey of Automated Web Service Composition Methods. In Pro-
ceedings of the 1st International Conference on Semantic Web Services and Web Process
Composition, pages 43–54. Springer-Verlag, 2005.

[127] F. Rosenberg, P. Leitner, A. Michlmayr, P. Celikovic, and S. Dustdar. Towards Composition
as a Service - a Quality of Service Driven Approach. In Proceedings of the 25th Interna-
tional Conference on Data Engineering, pages 1733–1740. IEEE, 2009.

[128] J. Schroeter, S. Cech, S. Götz, C. Wilke, and U. Aßmann. Towards Modeling a Variable
Architecture for Multi-Tenant SaaS-Applications. In Proceedings of the 6th International
Workshop on Variability Modeling of Software-Intensive Systems, pages 111–120. ACM,
2012.

[129] J. Schroeter, P. Mucha, M. Muth, K. Jugel, and M. Lochau. Dynamic Configuration Man-
agement of Cloud-based Applications. In Proceedings of the 16th International Software
Product Line Conference (SPLC 2012), pages 171–178.

[130] H. Schuldt, G. Alonso, C. Beeri, and H. Schek. Atomicity and Isolation for Transactional
Processes. ACM Transactions on Database Systems, 27(1):63–116, 2002.

[131] B. Sengupta and A. Roychoudhury. Engineering Multi-Tenant Software-as-a-Service Sys-
tems. In Proceedings of the 3rd International Workshop on Principles of Engineering
Service-Oriented Systems, pages 15–21. ACM, 2011.

[132] Q. Z. Sheng, Z. Maamar, L. Yao, C. Szabo, and S. Bourne. Behavior Modeling and Auto-
mated Verification of Web Services. Information Sciences, 258:416–433, 2014.

[133] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and X. Xu. Web Services
Composition: A Decades Overview. Information Sciences, 280:218–238, 2014.

[134] Q.Z. Sheng, Z. Maamar, H. Yahyaoui, J. Bentahar, and K. Boukadi. Separating Opera-
tional and Control Behaviors: A New Approach to Web Services Modeling. IEEE Internet
Computing, (3):68–76, 2010.

[135] J. Simmonds, S. Ben-David, and M. Chechik. Guided Recovery for Web Service Applica-
tions. In Proceedings of the 18th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pages 247–256, 2010.

[136] Rachel L Smith, George S Avrunin, Lori A Clarke, and Leon J Osterweil. PROPEL: an
Approach Supporting Property Elucidation. In Proceedings of the 24th International Con-
ference on Software Engineering, pages 11–21. ACM, 2002.

[137] S. Stein, T. R. Payne, and N. R. Jennings. Flexible Provisioning of Web Service Workflows.
ACM Transactions on Internet Technology, 9(1):2, 2009.

155

[138] F. Tartanoglu, V. Issarny, A. Romanovsky, and N. Levy. Dependability in the Web Services
Architecture. In Architecting Dependable Systems, pages 90–109. Springer, 2003.

[139] A. H. M. Ter Hofstede, W. M. P. van der Aalst, M. Adams, and N. Russell. Modern Business
Process Automation: YAWL and its Support Environment. Springer Science & Business
Media, 2009.

[140] P. Townend, P. Groth, N. Looker, and J. Xu. FT-Grid: A Fault-tolerance System for e-
Science. Concurrency and Computation:Practice and Experience, 20(3):297–309, 2005.

[141] W. Tsai and X. Sun. SaaS Multi-Tenant Application Customization. In The 7th Interna-
tional Symposium on Service Oriented System Engineering, pages 1–12. IEEE, 2013.

[142] W. M. P. van der Aalst. Business Process Configuration in the Cloud: How to Support and
Analyze Multi-tenant Processes? In Proceedings of the 9th European Conference on Web
Services (ECOWS 2011), pages 3–10.

[143] W. M. P. Van Der Aalst. Configurable Services in the Cloud: Supporting Variability While
Enabling Cross-Organizational Process Mining. In On the Move to Meaningful Internet
Systems, pages 8–25. Springer, 2010.

[144] W. M. P. Van Der Aalst, M. Dumas, F. Gottschalk, A. H. M. ter Hofstede, M. La Rosa,
and J. Mendling. Correctness-Preserving Configuration of Business Process Models. In
Fundamental Approaches to Software Engineering, pages 46–61. Springer, 2008.

[145] W. M. P. van der Aalst, M. Dumas, F. Gottschalk, A. H. M. ter Hofstede, M. La Rosa,
and J. Mendling. Preserving Correctness During Business Process Model Configuration.
Formal Aspects of Computing, 22(3-4):459–482, 2010.

[146] W. M. P. van der Aalst, N. Lohmann, M. Rosa, and J. Xu. Correctness Ensuring Process
Configuration: An Approach Based on Partner Synthesis. In Proceedings of the 8th Interna-
tional Conference on Business Process Management (BPM 2010), volume 6336 of Lecture
Notes in Computer Science, pages 95–111.

[147] W. M. P. van Der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski, and A. P. Barros. Work-
flow Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

[148] B. F. van Dongen, M. H. Jansen-Vullers, H. M. W. Verbeek, and W. M. P. van der Aalst.
Verification of the SAP Reference Models using EPC Reduction, State-Space Analysis, and
Invariants. Computers in Industry, 58(6):578–601, 2007.

[149] K. Vidyasankar and G. Vossen. A Multi-Level Model for Web Service Composition. In
Proceedings of the IEEE International Conference on Web Services, pages 462–469. IEEE,
2004.

[150] J. Vonk, W. Derks, P. Grefen, and M. Koetsier. Cross-organizational Transaction Support
for Virtual Enterprises. In Proceedings of the 7th International Conference on Cooperative
Information Systems, pages 323–334. Springer, 2000.

156

[151] F. Wagner, F. Ishikawa, and S. Honiden. Robust Service Compositions with Functional and
Location Diversity. IEEE Transactions on Service Computing, PP(99), 2013.

[152] M. X. Wang, K. Y. Bandara, and C. Pahl. Process as a Service Distributed Multi-Tenant
Policy-Based Process Runtime Governance. In The International Conference on Services
Computing, pages 578–585. IEEE, 2010.

[153] Y. Wang, Y. Fan, and A. Jiang. A Paired-net Based Compensation Mechanism for Veri-
fying Web Composition Transactions. In 4th International Conference on New Trends in
Information Science and Service Science, pages 1–6. IEEE, 2010.

[154] Y. Wei and M B. Blake. Service-Oriented Computing and Cloud Computing: Challenges
and Opportunities. Internet Computing, (6):72–75, 2010.

[155] G. Weikum and H. J. Schek. Database Transaction Models for Advanced Applications.
chapter Concepts and Applications of Multilevel Transactions and Open Nested Transac-
tions, pages 515–553. Morgan Kaufmann Publishers Inc., 1992.

[156] S. A. White. Introduction to BPMN. IBM Cooperation, 2, 2004.

[157] K. Wolf. Does My Service Have Partners? In Transactions on Petri Nets and Other Models
of Concurrency II, pages 152–171. Springer, 2009.

[158] J. Yu, T. Manh, J. Han, Y. Jin, Y. Han, and J. Wang. Pattern Based Property Specification
and Verification for Service Composition. In Proceedings of the International Conference
on Web Information Systems Engineering, pages 156–168, 2006.

[159] Q. Zhang, L. Cheng, and R. Boutaba. Cloud Computing: State-of-the-Art and Research
Challenges. Journal of Internet Services and Applications, 1(1):7–18, 2010.

[160] W. Zhang, H. Yan, H. Zhao, and Z. Jin. A BDD-Based Approach to Verifying Clone-
Enabled Feature Models Constraints and Customization. In High Confidence Software
Reuse in Large Systems, pages 186–199. Springer, 2008.

[161] Z. Zheng and M. R. Lyu. Selecting an Optimal Fault Tolerance Strategy for Reliable
Service-Oriented Systems with Local and Global Constraints. IEEE Transactions on Com-
puters, 64(1):219–232, 2015.

157

APPENDIX A

Temporal Logic Template Specifications

This appendix contains the complete specifications of our temporal logic template set for speci-
fying transactional requirements for service-oriented processes. Each specification provides de-
velopers or clients with enough information to use the template to formalize complex and diverse
requirements in temporal logic without any knowledge of the language required.

The component-level template specifications are shown in Tables A.1-A.7. Due to space con-
siderations, the temporal logic field of the CompensateSuccess template are split into their
own table: Table A.3. The process-level template specifications comprise of Tables A.8-A.13. An
overview of the purpose of each field in these specifications can be found in Chapter 4.2.

The component-level templates are for specifying transactional requirements related to the
fault-handling of individual components. CompensateFailure is used to specify necessary
recovery actions following the failure of a component, while CompensateSuccess specify the
actions to undo the effect of a completed component. For CompensateFailure, a Fault mes-
sage originating from the component in order to indicate its failure, while CompensateSuccess
requires a Recovery message to trigger backwards recovery operations. Alternative specifies
valid alternative actions upon the failure of a component, and requires either Fault or Syncreq
message from the component to indicate the failure. NonRetriable specifies components that
cannot or should not be retired after failing, while RetriablePivot can be used for compo-
nents that can be retried but not undone, and NonRetriablePivot components can be neither
retried or undone.

The first four process-level templates specify transactional requirements that apply conditions
related to the activity of a certain control behavior states. ControlStateCritical specifies
a condition that must be satisfied before entering the state, ControlStateTrigger specifies a
condition that must lead to the state once it has been satisfied, ControlStateReachable in-
dicates that the state is still possible to reach when the condition is satisfied, and ControlState
Unreachable states that the state is no longer reachable once the condition is satisfied. As
ControlState Reachable and ControlStateUnreachable use CTL for temporal logic,
the Scope variables used in other templates cannot be used due to language restrictions.

Finally, Compensation is used to specify a condition for the valid compensation of the
process after it has been committed. ConditionalCompensation also specifies valid com-
pensation, but only for compensating successful executions that have satisfied a certain condition
during their execution.

158

Table A.1: Template specification for CompensateFailure

Name CompensateFailure <Component,Recovery,Card,Scope>
Type Component-level

Variables

Component An operational behavior state that requires recovery upon failure.

Recovery
A condition that undoes the effect of the failure. This can be a single
component or a set of components structured with ∨ operators.

Card One of the cardinality options below.
Scope One of the scope options below.

Description The failure of Component leaves an impact an effect, which must be compensated by Recovery
becoming true in the future.

Prerequisites A Fault message originating from Component in the operational behavior is necessary for
this requirement to be verified.

Cardinality 1:1 Recovery undoes one failure of Component.
Many:1 Recovery can undo many failures of Component.

Scope

G The template applies in all executions.
P Applies during the satisfaction of a condition P .
¬P Applies during the negation of a condition P .
Before P Recover must precede the satisfaction of P .

LTL

1:1

G
G(Component.FAULT → ((¬(Activated ∧ Component)∪

Recovery) ∧ F (Recovery))

P
F (P)→ G(Component.FAULT → ((¬(Activated∧

Component) ∪Recovery) ∧ F (Recovery))

¬P G(¬P)→ G(Component.FAULT → ((¬(Activated∧
Component) ∪Recovery) ∧ F (Recovery))

Before P
G(Component.FAULT → (((¬(Activated ∧ Component) ∧ ¬P)
∪Recovery) ∧ F (Recovery))

Many:1

G G(Component.FAULT → F (Recovery))
P F (P)→ G(Component.FAULT → F (Recovery))
¬P G(¬P)→ G(Component.FAULT → F (Recovery))
Before P G(Component.FAULT → ((¬P ∪Recovery) ∧ F (Recovery)))

Table A.2: Template specification for CompensateSuccess, minus temporal logic
Name CompensateSuccess <Component,Recovery,Card,Scope>
Type Component-level

Variables

Component An operational behavior state that requires recovery upon failure.

Recovery
A condition that undoes the effect of the Component. This can be a
single component or a set of components structured with ∨ operators.

Card One of the cardinality options below.
Scope One of the scope options below.

Description Specifies Component and Recovery, such that when the composition must be undone,
Recovery must be satisfied to undo the effect of Component.

Prerequisites A Recover message able to trigger a compensation process must be present between the
behavior models.

Cardinality 1:1 Recovery undoes one failure of Component.
Many:1 Recovery can undo many failures of Component.

Scope

G The template applies in all executions.
P Applies during the satisfaction of a condition P .
¬P Applies during the negation of a condition P .
Before P Recover must precede the satisfaction of P .

159

Table A.3: LTL for the implementations of CompSuccess

1:1

G

G((¬(Activated ∧ Component) ∧ O((Activated ∧ Component) ∧
X(!Component.SY NCREQ ∧ ¬Component.FAULT))) → X(¬(Activated ∧
Component))∧

G(((Done ∧ O((Activated ∧ Component) ∧ X(¬Component.SY NCREQ ∧
¬Component.FAULT)) ∧ F (RECOV ER))→ F (Recovery))

P

F (P) → G((¬(Activated ∧ Component) ∧ O((Activated ∧ Component) ∧
X(!Component.SY NCREQ ∧ ¬Component.FAULT))) → X(¬(Activated ∧
Component))∧

G(((Done ∧ O((Activated ∧ Component) ∧ X(¬Component.SY NCREQ ∧
¬Component.FAULT)) ∧ F (RECOV ER))→ F (Recovery))

¬P

G(¬P) → G((¬(Activated ∧ Component) ∧ O((Activated ∧ Component) ∧
X(!Component.SY NCREQ ∧ ¬Component.FAULT))) → X(¬(Activated ∧
Component))∧

G(((Done ∧ O((Activated ∧ Component) ∧ X(¬Component.SY NCREQ ∧
¬Component.FAULT)) ∧ F (RECOV ER))→ F (Recovery))

Before P

G((¬(Activated ∧ Component) ∧ O((Activated ∧ Component) ∧
X(!Component.SY NCREQ ∧ ¬Component.FAULT))) → X(¬(Activated ∧
Component))∧

G(((Done ∧ O((Activated ∧ Component) ∧ X(¬Component.SY NCREQ ∧
¬Component.FAULT))∧ F (RECOV ER))→ ((¬P ∪Recovery)∧ F (Recovery))))

Many:1

G
G(((Done ∧ O((Activated ∧ Component) ∧ X(¬Component.SY NCREQ ∧
¬Component.FAULT)) ∧ F (RECOV ER))→ F (Recovery))

P
F (P)→ G(((Done∧O((Activated∧Component)∧X(¬Component.SY NCREQ∧
¬Component.FAULT)) ∧ F (RECOV ER))→ F (Recovery))

¬P G(¬P)→ G(((Done∧O((Activated∧Component)∧X(¬Component.SY NCREQ∧
¬Component.FAULT)) ∧ F (RECOV ER))→ F (Recovery))

Before P
G(((Done ∧ O((Activated ∧ Component) ∧ X(¬Component.SY NCREQ ∧
¬Component.FAULT)) ∧ F (RECOV ER))→ ((¬P ∪Recovery) ∧ F (Recovery)))

160

Table A.4: Template specification for Alternative

Name Alternative <Component,Alt,Card,Scope>
Type Component-level

Variables

Component The component that can be substituted with one or several others upon failure.

Alt
The component or components that can be used to replace the Component
variable, expressed as a Boolean condition.

Card One of the cardinality options below.
Scope One of the scope options below.

Description Following the failure of a component, one or several alternative operations, expressed as a
condition, are considered acceptable replacements.

Prerequisites A Syncreq or Fault message originating from Component in the operational behavior is
necessary for this requirement to be verified.

Cardinality 1:1 Recovery undoes one failure of Component.
Many:1 Recovery can undo many failures of Component.

Scope

G The template applies in all executions.
P Applies during the satisfaction of a condition P .
¬P Applies during the negation of a condition P .
Before P Recover must precede the satisfaction of P .

LTL

1:1

G
G((Component.FAULT ∨ Component.SY NCREQ) →
((¬(Activated∧Component)∪(Activated∧Alt))∧F (Activated∧
Alt)))

P
F (P)→ G((Component.FAULT ∨Component.SY NCREQ)→
((¬(Activated∧Component)∪(Activated∧Alt))∧F (Activated∧
Alt)))

¬P
G(¬P) → G((Component.FAULT ∨
Component.SY NCREQ) → ((¬(Activated ∧ Component) ∪
(Activated ∧Alt)) ∧ F (Activated ∧Alt)))

Before P
G((Component.FAULT ∨Component.SY NCREQ)→ (((¬P ∧
¬(Activated∧Component))∪ (Activated∧Alt))∧F (Activated∧
Alt)))

Many:1

G
G((Component.FAULT ∨ Component.SY NCREQ) →
F ((Activated ∧Alt) ∨ (Activated ∧ Component)))

P
F (P)→ G((Component.FAULT ∨Component.SY NCREQ)→
F ((Activated ∧Alt) ∨ (Activated ∧ Component)))

¬P
G¬P) → (G((Component.FAULT ∨
Component.SY NCREQ)→ F ((Activated∧Alt)∨ (Activated∧
Component)))

Before P
G((Component.FAULT ∨ Component.SY NCREQ) → ((¬P ∪
((Activated∧Alt)∨ (Activated∧Component)))∧F ((Activated∧
Alt) ∨ (Activated ∧ Component))))

161

Table A.5: Template specification for NonRetriable

Name NonRetriable<ControlState,Scope>
Type Component-level

Variables Component A component that cannot be retried following failure.
Scope One of the scope options below.

Description Following failure of Component, retrial is either not possible, or the user is not interested in it.
Prerequisites N/A
Cardinality N/A

Scope
G The template applies in all executions.
P Applies during the satisfaction of a condition P .
¬P Applies during the negation of a condition P .

LTL

G
G((¬(Activated ∧ Component) ∧ O(Component.SY NCREQ ∨
Component.FAULT))→ X(¬(Activated ∧ Component)))

P
F (P) → G((¬(Activated ∧ Component) ∧ O(Component.SY NCREQ ∨
Component.FAULT))→ X(¬(Activated ∧ Component)))

¬P G(¬P) → G((¬(Activated ∧ Component) ∧ O(Component.SY NCREQ ∨
Component.FAULT))→ X(¬(Activated ∧ Component)))

Table A.6: Template specification for RetriablePivot

Name RetriablePivot<ControlState,Scope>
Type Component-level

Variables Component The component that can be retried but not undone.
Scope One of the scope options below.

Description A component that may be retried, but not undone. Following its execution, the service must
commit.

Prerequisites N/A
Cardinality N/A

Scope
G The template applies in all executions.
P Applies during the satisfaction of a condition P .
¬P Applies during the negation of a condition P .

LTL

G
G(((Activated ∧ Component) ∧ X(¬Component.SY NCREQ ∧
¬Component.FAULT))→ F (Done))

P
F (P) → G(((Activated ∧ Component) ∧ X(¬Component.SY NCREQ ∧
¬Component.FAULT))→ F (Done))

¬P G(¬P)→ G(((Activated ∧ Component) ∧X(¬Component.SY NCREQ ∧
¬Component.FAULT))→ F (Done))

162

Table A.7: Template specification for NonRetriablePivot

Name NonRetriablePivot<ControlState,Scope>
Type Component-level

Variables Component The component that cannot be retried or undone.
Scope One of the scope options below.

Description A component that may not be retried upon failure, and cannot be undone following success.
The service must commit if this component executes successfully.

Prerequisites N/A
Cardinality N/A

Scope
G The template applies in all executions.
P Applies during the satisfaction of a condition P .
¬P Applies during the negation of a condition P .

LTL

G
G((((Activated ∧ Component) ∧ X(¬Component.SY NCREQ ∧
¬Component.FAULT)) → F (Done)) ∧ ((Component.SY NCREQ ∨
Component.Fault)− > F (Aborted)))

P
F (P) → G((((Activated ∧ Component) ∧ X(¬Component.SY NCREQ ∧
¬Component.FAULT)) → F (Done)) ∧ ((Component.SY NCREQ ∨
Component.Fault)− > F (Aborted)))

¬P
G(¬P)→ G((((Activated∧Component)∧X(¬Component.SY NCREQ∧
¬Component.FAULT)) → F (Done)) ∧ ((Component.SY NCREQ ∨
Component.Fault)− > F (Aborted)))

Table A.8: Template specification for ControlStateCritical

Name ControlStateCritical<ControlState,Condition,Scope>
Type Process-level

Variables

ControlState The control behavior state this critical condition applies to.

Condition
The precondition for entering this control behavior state. This can be a single
component or a set structured with ∧ and ∨ operators.

Scope One of the scope options below.

Description Condition denotes the precondition for entering ControlState. When ControlState is entered,
Condition must have been met previously on the execution path.

Prerequisites N/A
Cardinality N/A

Scope

G The template applies in all executions.
P Applies during the satisfaction of a condition P .
¬P Applies during the negation of a condition P .
Before P ControlState is entered before P is met.

LTL

G G(ControlState→ O(Condition))
P F (P)→ G(ControlState→ O(Condition))
¬P G(¬P)→ G(ControlState→ O(Condition))
Before P G(ControlState→ (O(Condition) ∧ H(¬P)))

163

Table A.9: Template specification for ControlStateTrigger

Name ControlStateTrigger<ControlState,Condition,Scope>
Type Composition-level

Variables

ControlState
The control behavior state that is triggered by this requirement condition applies
to.

Condition
The trigger for entering this control behavior state. This can be a single
component or a set structured with ∧ and ∨ operators.

Scope One of the scope options below.

Description Condition specifies a condition that must trigger the entering of ControlState at some point in
the future.

Prerequisites N/A
Cardinality N/A

Scope

G The template applies in all executions.
P Applies during the satisfaction of a condition P .
¬P Applies during the negation of a condition P .
Before P ControlState is entered before P is met.

LTL

G
G((Condition ∧ X(¬Condition.FAULT ∧ ¬Condition.SY NCREQ)) →
F (ControlState))

P
F (P) → G((Condition ∧ X(¬Condition.FAULT ∧
¬Condition.SY NCREQ))→ F (ControlState)→ F (ControlState))

¬P G(¬P) → G((Condition ∧ X(¬Condition.FAULT ∧
¬Condition.SY NCREQ))→ F (ControlState)→ F (ControlState))

Before P
G((Condition ∧ X(¬Condition.FAULT ∧ ¬Condition.SY NCREQ)) →
F (ControlState)→ (F (ControlState) ∧ (¬P ∪ ControlState))

Table A.10: Template specification for ControlStateReachable

Name ControlStateReachable<ControlState,Condition>
Type Composition-level

Variables ControlState The control behavior state that is reachable, given the satisfaction of Condition.
Condition The condition that, while true, indicates that ControlState is reachable.

Description Whenever Condition is met, ControlState should be reachable. However, this does not imply that
ControlState is unreachable when Condition is false.

Prerequisites N/A
Cardinality N/A
Scope N/A
CTL AG(Condition→ EF (ControlState))

164

Table A.11: Template specification for ControlStateUnreachable

Name ControlStateUnreachable<ControlState,Condition>
Type Composition-level

Variables ControlState The control behavior state that is unreachable, given the satisfaction of Condition.
Condition The condition that implies that ControlState should no longer be reachable.

Description The requirement specifies that when Condition is met, it is no longer possible to reach
ControlState.

Prerequisites N/A
Cardinality N/A
Scope N/A
CTL AG(Condition→ AG(¬ControlState))

Table A.12: Template specification for Compensation

Name Compensation<CompCondition>
Type Composition-level
Variables CompCondition A condition that must be met during the compensation of the service.
Description A requirement that must be met during any compensation of the

service.
Prerequisites N/A
Cardinality N/A
Scope N/A
LTL G((Done ∧ F (RECOV ER))→ F (CompCondition))

Table A.13: Template specification for ConditionalCompensation

Name ConditionalCompensation<ExecCondition,CompCondition>
Type Composition-level

Variables ExecCondition A condition that can be satisfied during successful execution.
CompCondition The compensatory process required following ExecCondition.

Description A requirement for satisfactory compensation of the service in
cases where a condition is met during execution.

Prerequisites N/A
Cardinality N/A
Scope N/A
CTL G((Done ∧ F (RECOV ER) ∧O(ExecCondition))→ F (CompCondition))

165

APPENDIX B

Using JDD for BDD Construction

Figure B.1 shows an example of a Java class using the JDD library to construct a BDD. In the
exampleBDD() method, a BDD is constructed from the small feature model and propositional
logic property in Figure 5.7 (lines 39-53). Next, four feature selections are made using the AND
relation (lines 60-63), before the updated BDD is produced. The updated BDD is shown in Fig-
ure 5.8.

A memory cache for BDD construction and manipulation is provisioned and released with
BDD constructor and cleanup()methods respectively. The printDot(string,int)meth-
ods are used to generate BDD images using Graphviz1, a software tool for visualizing graph struc-
tures.

1http://www.graphviz.org/

166

Figure B.1: A Java class for implementing a BDD using the JDD library

167

APPENDIX C

Checkout Configuration BDD

Figure C.1 shows a BDD generated generated by the JDD library during the BPaaS configuration
process. The final true and false nodes are labelled 1 and 0 respectively. Instead of labeling each
BDD node with the name of the boolean property in the property, JDD numbers them according
to their variable ordering. For example, the root node v1 corresponds to the root Checkout
Service in the feature model of Figure 5.5, as it is the first feature in the depth-first traversal
variable ordering. A node may appear many times, but always on the same level of the tree.
Furthermore, unnecessary nodes are removed automatically. For example, v2 (Microguru) is
not included as it is impossible to select along with the features already chosen.

This tree represents the propositional logic property shown in Figure 5.9, which corresponds
to the domain constraints of the checkout service feature model, and a set of feature selections. As
this BDD contains at least one branch to the final 1 node, this selection of features is satisfiable.

168

Figure C.1: Binary Decision Diagram form of the propositional logic property of Figure 5.9

169

APPENDIX D

Implementation of Online Payment Scenario

This service-oriented process implementing an online payment scenario was defined to demon-
strate our approaches for modeling and verification. The operational behavior model of the process
is shown in Figure 3.4, and the inter-behavior messages are defined in Table 3.11. The validation
scenario for conversation rule checking and transactional requirement verification is presented in
Chapter 6.2.1.1.

For conversation rule checking, the SMV input file shown in Figure D.1 is used. This input file
contains the Kripke states definition (lines 2-6), the temporal logic forms of the conversation rules
(lines 9-27), and the Kripke relation, which is defined using a case structure (lines 31-48).

The SMV file for verification against the transactional requirements of Table 6.1 is split be-
tween Figures D.2 and D.3. Figure D.2 shows the definition of Kripke structure states and tempo-
ral logic implementations of the transactional requirements, whereas Figure D.3 shows the Kripke
relation.

170

Figure D.1: Conversation rules and Kripke structure formulated in an SMV input file for verifying
the online payment process

171

Figure D.2: Kripke structure definition and transactional requirements of the online payment pro-
cess

172

Figure D.3: Kripke structure relation of the online payment process

173

APPENDIX E

Implementation of Course Enrolment Scenario

This course enrolment service-oriented process was defined in Chapter 6 as a validation scenario
for conversation rule checking and transactional requirement verification. The operational behav-
ior model and inter-behavior messages of this process can be found in Figure 6.5 and Table 6.2
respectively. Details of the validation scenario for this process are in Chapter 6.2.1.2.

The SMV input file for conversation checking is split between Figure E.1 and E.2. Figure E.1
contains the definition of Kripke states and temporal logic properties, while the Kripke relation is
shown in Figure E.2.

Figures E.3 and E.4 contain the SMV input file for transactional requirement verification. The
Kripke states definition and temporal logic properties of the transactional requirements are in Fig-
ures E.3. Figure E.4 contains the Kripke transition relation, which is defined using a case structure.

174

Figure E.1: NuSMV input file containing the temporal logic properties for verifying the course
enrolment process against conversation rules

175

Figure E.2: NuSMV input file containing the Kripke structure for verifying the course enrolment
process against conversation rules

176

Figure E.3: NuSMV input file containing the course enrolment transactional requirements

177

Figure E.4: NuSMV input file containing the course enrolment Kripke structure relation

178

	TITLE: Formal Verification of Transactional and Configurable Service-Oriented Processes
	ABSTRACT
	ORIGINALITY STATEMENT
	SELECTED PUBLICATIONS GENERATED FROM THIS THESIS
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS

	CHAPTER 1 Introduction
	CHAPTER 2 Background
	CHAPTER 3 Well-Formed Transactional Behavior in Service-Oriented Processes
	CHAPTER 4 Temporal Logic Templates for Application-Dependent Transactional Requirements
	CHAPTER 5 Transactional Behavior Verification in Business Process as a Service Configuration
	CHAPTER 6 Prototype Implementation and Experimental Analysis
	CHAPTER 7 Conclusion
	REFERENCES
	APPENDIX A Temporal Logic Template Specifications
	APPENDIX B Using JDD for BDD Construction
	APPENDIX C Checkout Configuration BDD
	APPENDIX D Implementation of Online Payment Scenario
	APPENDIX E Implementation of Course Enrolment Scenario

