Functional analysis of repeat regions in the eukaryotic genomes

Functional analysis of repetitive DNA derived from transposable elements in the human genome

Lu Zeng

A thesis submitted for the degree of Master of Philosophy

Discipline of Genetics

School of Molecular and Biomedical Science

The University of Adelaide

July 2013

Table of Contents

Abstract II
Declaration III
Acknowledgements IV
STATEMENT OF AUTHORSHIP V
Chapter 1 1
Introduction 2
1.1 Background 2
1.2 Research questions 3
1.3 Aims and objectives 3
1.4 Significance 4
1.4.1 Definition and classification of TEs 4
1.4.2 Functions of TEs 5
1.4.3 Association between RNAs and TEs 7
1.4.4 Conclusions 8
2 Methods 8
2.1 Theoretical framework and methods 8
2.1.1 The pipeline for the identification and distribution of functional repetitive elements from human genome 8
2.2 Functional analysis of human/bovine repeats 11
2.2.1 Repetitive element expression in different human tissues 12
2.3 Relationship between lincRNAs and TEs 12
3 Results 13
3.1 The distribution of chromatin state associated transposable elements (CSTEs) from six different cell lines 13
3.2 The proportions of different repeat classes in active chromatin from six distinct cell lines 15
3.3 Repeat sequence distribution in the human genome 15
3.4 Functional representation of repeat consensus sequence in the human genome 16
3.5 The effect of Alu, L1 and LTR on gene expression in 6 human tissues 17
3.6 Are specific repeat sequences present in lincRNAs? 18
Discussion 20
Future Directions 23
Abbreviations List: 24
Figures and table legends: 24
Supplementary Materials 47
Reference 85

Abstract

Nearly half of the human genome is made up of transposable elements (TEs). With the rapid progress of sequencing technologies, we are now much better able to systematically analyze these TEs. We have used multiple types of omics data, including the genomic sequences, epigenetic data and transcriptomic data, to investigate the potential functions of TEs across the entire human genome. Comparative analysis revealed that a large proportion of potentially functional transposable elements were located in introns, and they were mainly associated with gene repression. Functional classification from GO enrichment showed that different functions were enriched in protein coding regions containing TEs compared to non-protein coding regions. For example, protein coding genes with Alus in non-coding regions are enriched with respect to intracellular membrane-bounded organelles, while protein coding genes with Alus in coding regions are more enriched at intracellular non-membrane-bounded organelles. Significantly, transcriptome data showed that the genes with TEs had lower expression levels compared with genes without TEs, revealing a novel aspect of the impact of TEs on the human genome. In addition, genome wide analysis of repeats with regulatory elements showed that MIR and L2 repeats were more probable to be active regulators while L1 repeats were less probable to be regulators. In conclusion, the role of TEs is significant across the genome. Repeats reduce or repress the expression of related gene, either through the proximal promoter, 5^{\prime} UTR or 3^{\prime} UTR or perhaps as components of lincRNA exons.

Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university of other tertiary institution to Lu Zeng, and to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright holder(s) of these works contained within this thesis (as listed below) resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed
Date

Acknowledgements

I would like to express my sincere gratitude to the following people: Dr. Dave Adelson, gave me the opportunity and support to join the Master by Research program in the University of Adelaide. I am so lucky to have such a great supervisor. Dave, the knowledge that I learned from you is not just valuable for my Master, but will support me for my whole academic career.

Dr. Chaochun Wei, my supervisor in SHANGHAI JIAOTONG University, introduced me to a completely new field of bioinformatics. Over the year I stayed in Adelaide, he was always in contact with Dave and me to co-advise my research. Furthermore, he gave me this opportunity to do the Master in Adelaide.

Dan Kortschak, my co-supervisor in the University of Adelaide, helped me do research and always provide valuable suggestions.

Joy Raison, helped me generate nice figures. Sim Lim Lin, helped me sort out the tough problems I encountered in my research, and kept encouraging me. Zhipeng Qu, made both my life and research easier and fluent. Reuben Buckley, helped me practice English and providing me valuable advices. All other members of the Adelson lab, past and present, made it such a supportive and enjoyable place to work.

I would like to also specially thank SHANGHAI JIAOTONG University and The University of Adelaide, who provided me this opportunity to come here for my research.

STATEMENT OF AUTHORSHIP

Functional analysis of repeat regions in the human genome

Submitted, July 2013

Lu Zeng (Candidate)

Designed and performed experiments, analyzed results and wrote the manuscript.

I hereby certify that the statement of contribution is accurate

Signed
Date \qquad

David L. Adelson \& Chaochun Wei

Supervised development of work and assisted in analyzing results and writing the manuscript.

Abstract

I hereby certify that the statement of contribution is accurate and I give permission for inclusion of the paper in the thesis.

Signed
Date

Functional analysis of repeat regions in the human genome

Lu Zeng
School of Molecular and Biomedical Science
The University of Adelaide
Adelaide, SA
Australia

School of Life Sciences and Biotechnology
SHANGHAI JIAOTONG University
Shanghai
P.R.China

Chapter 1

Functional analysis of repeat regions in the human genome

Lu Zeng and David L. Adelson and Chaochun Wei

School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, Australia

School of Life Sciences and Biotechnology, SHANGHAI JIAOTONG
University,
P.R.China

Introduction

1.1 Background

Eukaryotic genomes contain vast amounts of repetitive DNAs derived from TEs that contribute significantly to biological activity and genome evolution. Furthermore, TEs are mutagens; they may damage their host cells through various mechanisms [1]. For example, a transposon or a retrotransposon that inserts itself into a functional gene may disrupt or alter it, disrupting gene function. Similarly, a DNA transposon that excises from a genome may result in a deletion that cannot be repaired. Due to the presence of multiple copies of repetitive elements, such as Alu sequences, precise chromosomal pairing during meiosis may be deleted, causing unequal crossovers and deletion or insertion of genetic materials. Through these mutagenic mechanisms, repeats are known to cause a variety of human genetic disorders [2].

A number of recent studies have shown that TEs can influence host genes by providing novel promoters, splice sites or post-transcriptional modification to re-wire different developmental regulatory and transcriptional networks [3-5]. TEs tend to regulate gene expression through several mechanisms [5-7]. For example, the expression levels of protein coding genes containing repeats are significantly associated to the number of repeats in rodent genomes [6]. Moreover, TEs have been shown to influence gene expression through non-coding RNAs, resulting in the reduction or silencing of gene expression [8]. Past studies have also found that TEs have contributed to nearly half of the active regulatory elements to the human genome [9], such as altering gene promoters, creating alternative promoters and enhancers to regulate gene activity [10-12]. According to previous research, 60% of TEs in both human and mouse were located in intronic regions and all TE families in human and mouse can exonize [13], supporting the view that TEs may create new genes and exons by promoting the formation of
novel or alternative transcripts [14, 15]. The association between repeats and RNAs has also been investigated, some findings showed that tRNA can use TinT events to drive the formation of novel SINE [16]. Telomeric repeats may be transcribed as telomeric RNAs or telomeric repeat-containing RNAs [14, 15] and the insertion of TEs may also drive the evolution of lincRNAs and alter their biological functions [17].

1.2 Research questions

In order to uncover the hidden information of TEs, my research will focus on these following questions:

1) What is the distribution of TEs in functional regions in the human genome? Functional regions here include protein coding genes, ncRNAs and regulatory elements like TFBS, promoters and enhancers.
2) What is the association between repetitive elements and functional elements in the human genome?
3) Do repetitive elements impact on gene expression?

1.3 Aims and objectives

1) To analyze the distribution of repeat-associated functional elements in human genes.
2) To classify and analyze repeats in different cell lines
3) To build the consensus sequences for some important classes of repeats and use these sequences to identify full-length repeats and their function and distribution in the human genome.
4) To analyze the relationship between repeats and lincRNAs.
5) To conduct analysis of the expression level of specific repeats in the human genome.

1.4 Significance

1.4.1 Definition and classification of TEs

TEs are DNA sequences that can change their position within the genome, potentially giving rise to mutations or altering genome size and structure [18]. These characteristics of TEs can affect biological activities and thus may contribute to genome evolution. Moreover, TEs are able to insert at new locations without having a sequence relationship with the target locus. TEs make up about 50 percent of the human genome.

Transposons fall two major classes: RNA (retrotransposons) and DNA (DNA transposons), according to whether their replication is via RNA or DNA [19] intermediates. DNA transposons use a cut-and-paste transposition mechanism instead of involving the RNA intermediate.

Retrotransposons include two classes of elements, autonomous and non-autonomous. Autonomous transposons contain open reading frames (ORFs), which encode proteins essential for transposition and are thus able to autonomously transpose. Non-autonomous transposons do not encode these functions and so rely on replication machinery provided by autonomous transposons.

Retrotransposons can also be separated into two groups with respect to different characteristics: Long terminal repeat (LTR), and Non-LTR. LTR retrotransposons have transcription control sequences and open reading frames encoding retrotranspositional activities [19]. They range in size from $\sim 100 \mathrm{bp}$ to over 5 kb . About 8% of the human genome and approximately 10% of the mouse genome are composed of LTR transposons [20].

Non-LTR retrotransposons include two sub-types; long interspersed elements (LINEs) and short interspersed elements (SINEs) respectively, both of which are widespread in eukaryotic genomes. Furthermore, LINEs are autonomous retrotransposons, while SINEs are nonautonomous retrotransposons.

LINEs [21] are genetic elements that contribute significantly to eukaryotic genomes, they are transcribed into RNA using an RNA polymerase II promoter. LINEs account for 17% of the human genome.

SINEs [21] are short DNA sequences, usually less than 500 bases long [22] originally transcribed by RNA polymerase III into tRNA, 5s ribosomal RNA and other small nuclear RNAs. The most common SINEs are Alu sequences, which account for 10.6% of the human genome.

According to previous research, SINEs and LINEs have similar nucleotide sequences at the 3'end, and SINEs usually dependent on LINE RT/EN function for transposition [21]. This finding was the starting point for the concept of LINE machinery involved in the retrotransposition of SINEs [23, 24]. Moreover, from the most recent human genome sequence, I found that there are 1500000 SINEs and 850,000 LINEs that account for 34% of the human genome in total. 70% of SINEs are Alu elements.

1.4.2 Functions of TEs

Retrotransposons can impact on human genome structure, which can dramatically affect genome evolution.

Figure1: Richard et al [25] showed that how retrotransposons have an impact on human genome structure through 7 mechanisms.

Retrotransposons can affect the human gene expression.

Figure2: Retrotransposons impact on human gene expression from Richard et al [25]

1.4.2.1 SINEs/Alu elements are primate-specific repeats and influence gene expression

Alu insertion is ongoing in modern human genomes, including somatic insertion events, generating genetic diversity and causing disease through insertional mutagenesis as well as causing copy number variation. Many Alu elements affect polyadenylation [26, 27], splicing [28-30], and double-stranded RNA-specific adenosine deaminase (ADAR) editing [31, 32].

1.4.2.2 LINE/L1 insertions have a high frequency of retrotransposition

L1 elements can cause human disease by inserting into human genes. After transcription to RNA, they can be reverse-transcribed into cDNA and integrated into other genomic locations. LINE/L1 has two open reading frames, ORF1 encodes a nucleic acid binding protein [33, 34], and ORF2 encodes a protein with endonuclease activity [35], reverse transcriptase activity [36] and a C-terminal cysteine-rich motif [37]. The 5'UTR of LINEs contains an internal promoter sequence, while the 3^{\prime} UTR has a polyadenylation signal and a poly-A tail.

1.4.3 Association between RNAs and TEs

SINEs are derived from RNA [38], for example, Alu elements come from the ubiquitous 7SL RNA [39]. A functional sequence within Alu RNA transcripts has revealed a modular structure analogous to the organization of domains in protein transcription factors. According to recent studies, telomeric repeats may be transcribed as telomeric RNAs or telomeric repeatcontaining RNAs [14, 15]. Furthermore, ncRNAs can modulate the function of transcription factors, and as far as I know, retrotransposons also contain transcription factor binding sites, which can combine with transcription factors to alter gene expression.

1.4.4 Conclusions

The recent explosion of retrotransposon studies has brought about a great improvement in understanding of TEs. It is clear that gene-regulatory networks are complicated, but this is not just the realm of genes and proteins, but also repeats. It appears that genome structure, especially for complex organisms, is very complicated as well. Genomes possess a high proportion of repeat regions, which may represent a hidden level of gene regulation. TEs impact the transcriptome through both transcriptional and post-transcriptional [5], as well as some disease-related mechanisms. Although evidence suggests that TEs are highly expressed from different regions of genomes, and possess a wide range of functionality in gene regulation, these discoveries still constitute just a glimpse of the hidden repeats.

In general, most studies of TEs are constrained to several model organisms, such as human, mouse and cow. There are few, and sometimes no studies focusing on other well-known organisms, such as chicken, pigs and so on.

2 Methods

2.1 Theoretical framework and methods

The main framework of this project was to build a pipeline to analyze the distribution, function and expression of repeats from both human genes and bovine genes.

2.1.1 The pipeline for the identification and distribution of functional repetitive elements from human genome

The identification and classification of TEs from the human and bovine genome was conducted by developing a pipeline based on free software, Perl, R and The UCSC Genome

Browser (University of California, Santa Cruz) database. Perl is a programming language that can be used for a large variety of tasks. One of the most powerful functions of Perl is for extracting information from a text file and printing out a report or for converting a text file into another form. This feature makes Perl popular in bioinformatics. In this project, Perl was used as a glue language to conduct result parsing and program linking. R is a free software programming language and a software environment for statistical computing and graphics. The R language is widely used among statisticians and data miners for developing statistical software [40, 41]. In this project, R was used to build graphs in order to illustrate the distribution, classification and function of TEs. The UCSC Genome Browser is an on-line genome browser $[42,43]$ that offers access to genome sequence data from a variety of vertebrate and invertebrate species and major model organisms. In this project, I have used this service to retrieve the repeat data and RefGene annotation data for my experiment.

2.1.1.1 Identification and distribution of functional TEs

In order to study the distribution of repetitive elements in human genes as well as the classes of various classes of TEs that exists in the human genome, I collected the datasets that applied to my experiment. First, NCBI's human Reference Gene Collection (RefSeq hg19) [44] and the associated annotation table were downloaded from the UCSC genome browser [42, 45]. In order to analyze the function of repeat regions, I have downloaded the regulatory elements data of nine human cell lines from UCSC. These regulatory element annotations, including active promoters, weak promoters, strong enhancers, weak enhancers, insulators and polycomb repressed regions, which were derived from different chromatin states that have been marked by histone methylation, acetylation as well as histone variant H2AZ, PolIII, and CTCF [45]. I also chosen six human cell types from those nine cell lines that are useful for studying human disease, they are GM12878, HepG2, HMEC, HUVEC, K562, NHLF, Table2
shows the resource and information of these human tissues. I also have downloaded these datasets from group regulation track Broad ChromHMM and divided them into six parts according to their functional roles: active-promoter, weak-promoter, strong-enhancer, weakenhancer, insulator and polycomb-repressed regions. Then, I retrieved the most recent human RefGene (hg19) from UCSC [46], separating it into different sections according to the human genome regions, which include 5^{\prime} 'UTR, start codon, CDS exon, CDS intron, and stop codon and 3' UTR. Next, BED intersection was applied to get the overlap between RepeatMasker and Human regulatory elements, and then rerun overlap between the union data and Human RefGene respectively. From this operation I determined the distribution of repeat-associated regulatory elements with respect to human gene sections. I normalized my results with respect to the number of base pairs in each gene region.

2.1.1.2 Analyze the classes of regulatory repetitive elements

In this part, I have used BED intersection to get the overlap between regulatory elements in human cell lines and human RepeatMasker annotation. As I have already described, I have acquired the various classes of regulatory repetitive elements in different cell lines with respect to various regulators. According to the results I obtained in this part, in the next step, I built six consensus sequences in order to study specific TEs.

2.1.1.3 Building consensus sequences

I have identified thousands of short fragments of repetitive elements. Using consensus sequences from RepeatMasker database I can identify the $5^{\prime} / 3^{\prime}$ UTRs only, often annotating repeats as having $5^{\prime} / 3^{\prime}$ 'ends from different repeats. Thus, in order to study the impact of fulllength specific retrotransposons on human gene structure and function; I have built complete consensus sequences of specific TEs.

Multiple sequence alignments of full-length sequences were performed using MUSCLE software with default parameters [47], these alignments were then used to run fastree [48] to generate full-length repetitive elements respectively and used the tool archaeopteryx to generates the classification (See Supplementary Material S1) [49]. Next, I reran the multiple alignment tool MUSCLE to get the alignment sequences between different classes of each TEs, in the last step, I used Gblocks [50] to pile up these alignment results to acquire complete consensus sequences (See Supplementary S2).

Next, I used BED intersection to obtain the distribution of these consensus sequences in different human genes' sections; I only kept the first intron when I encountered alternative splicing. I normalized my data with respect to the length of relevant repetitive elements.

2.2 Functional analysis of human/bovine repeats

To demonstrate the functional significance of repetitive elements, I used DAVID (The Database for Annotation, Visualization and Integrated Discovery) to perform the GO (Gene Ontology) classification, which represents gene product properties. First, I extracted the gene-IDs from the results that were overlapped with repeat consensus sequences in the human genome; I then submitted these gene-IDs to the DAVID Gene Functional Classification Tool [51]. From the results I chose the third level of GO terms to acquire the over-represented function terms of genes that contained repetitive elements. According to the GO term hierarchy; the third level of GO terms contains annotation categories for my analysis. Then I visualized the functional over-representation of genes overlapped with those six specific repeat consensus sequences in the human genome. The thresholds for overrepresented GO terms were set as gene count >5 and p -value (EASE score) <0.05. The web
server REVIGO was used to reduce redundancy and visualize the overrepresented GO terms based on semantic similarity.

2.2.1 Repetitive element expression in different human tissues

In order to analyze the expression level of TEs, I have taken advantage of the Human RNAseqdata Illumina bodyMap2 transcriptome (http://www.ebi.ac.uk/ena/data/view/ERP000546) datasets. These RNA-seq data represent 16 different human tissues. Then, the normalized expression for each transcript dataset is based on my colleague ($\mathrm{Z} . \mathrm{Qu}$, unpublished) previous work in our lab. In order to conduct my work, I obtained the proximal promoters that belong to the gene upstream 1000bp. First, I obtained the overlap between repeat and human genes; I then intersected this data with proximal promoter dataset, 3^{\prime} UTR and 5^{\prime} UTR of the human genome. Next, I divided the data into repeats in proximal promoter and repeats not in proximal promoter. In the last step, I applied the intersection between the data I have already obtained and the transcriptome datasets, and obtained the expressed genes' interacting repeats in 16 human tissues. I found liver, kidney, testes, brain, skeletal muscle and adipose had relatively higher expression levels in my datasets. Therefore, I extracted these six tissues to analyze the expression level with respect to those three specific repetitive elements. To make the results more clear and significant in my graphs, I used log transformation to better separate the visualize differences in my expression data.

2.3 Relationship between lincRNAs and TEs

Considering the previous study, we have known that TEs are a source of endogenous small RNAs in animals and plants, and they are considered as functionally significant from generegulating small RNAs [52]. Furthermore, according to past research, it was found that there are many Alu elements inserted into RNAs. Thus, I planned to study the association between lincRNAs and different classes of TEs.

I have acquired a dataset that contains 8196 putative human lincRNAs (Long intergenic noncoding RNA) [53], then I extracted the sequences of these lincRNAs from whole human sequences, and used BLASTN [54] to align these lincRNAs sequences against the previously constructed repeat consensus sequences I had built. In the next step, I extracted the aligned sequences from the BLAT result in order to analyse their coverage characteristic within lincRNAs.

3 Results

3.1 The distribution of chromatin state associated transposable elements (CSTEs) from six different cell lines

I used the pipeline I have built to study the distribution of transposable elements (TEs) in the human and cow genomes (Figure 3). The large numbers of TEs overlapping with genome intervals from the human and cow RefGene datasets showed that TEs was enriched in different gene sections.

I found that TEs have a similar distribution between the human and cow genome; in total, they are mainly located on 5' UTR intron, CDS intron, 3^{\prime} UTR intron and intergenic regions. Comparing the TE locations between these two species, I found there were more TEs in each section of the human genome. Intergenic regions in particular have a higher number of TEs in the human compared to cow. The exception is for 5 'UTR introns, where there are more TEs in the cow genome (Figure 3).

When I examined to chromatin state functional transposable elements (CSTEs), which represent the TEs that overlap with chromatin state segmentation [45] for each of six human
cell types, I chose six states that have predicted functional elements. Considering the CSTE distribution in the human genome, I divided my results into two parts, the first part is based on CSTE association with regulators in these functional cell lines, the second part is the relationship between CSTEs and different types of those chromatin human cell lines (Figure 4A, B), the human cell lines based on the tissues karyotype (Table 2). My aim was to look at how these two datasets are distributed in the human genome. When we are looked at the CSTEs that overlap with regulatory region distributions in the human genome, I found that the TEs that overlap with active promoters are the most highly represented in the gene start region. However, CSTEs that overlap with weak enhancers and polycomb-repressed regions are enriched in other regions of the human genome (Figure 4A). Among them, I discovered that most of CSTEs' that overlap with regulatory elements are located within the intergenic regions, followed by 5^{\prime} UTR introns and CDS introns, which may indicate that TEs affect gene transcription through alteration of intron length. Moreover, the CSTEs that may down regulate the gene transcription were always located within the intergenic region, while regulators that can up regulate gene expression were usually located in the 5'UTRs and CDS introns.

In the analysis of the distribution of histone modification that overlapped with TEs in the six human cell lines (Figure 4B), I found that blood cancer cells had CSTEs that were highly enriched in every gene section, while in other cell types, CSTEs were less enriched in various gene features, except for intergenic regions, all of the six cell lines that contained CSTEs were highly enriched in this part, especially blood cancer, lung normal and blood vessel normal. To the contrary, breast normal had CSTEs were always located on the lowest enrichment in those gene sections, which may indicates that the chromatin state breast normal is less active when it contains TEs.

3.2 The proportions of different repeat classes in active chromatin from six distinct cell lines

In this section I set out to study the distribution of specific classes of TEs that overlap with active chromatin from functional regions of the human genome (Figure 5A, B).

Active chromatin from blood cancer cells contained the highest percentage of repeats from virtually all repeat classes, but active chromatin from liver cancer cells ranked either in the mid-range or towards the bottom of repeat percentage (Figure 5B). Over-represented repeats in active chromatin include SINE Mir, LINE L2 and DNA transposons, which are normally represent as much lower percentages of the genome as a whole. LINE L1 elements were present at a surprisingly low level in active chromatin from all cell lines.

When I looked at the overlap of functional regulators (extracted from active chromatin regions) with TEs, I found a similar pattern in each repeat type, with repressed region containing the highest proportion of repeat sequence and active promoters the smallest proportion of repeat sequence (Figure 5A). I also found that MIR and L2 elements overlapped more with regulators compared to other TEs, while L1 had the lowest coverage percentage for all regulators. Because MIR and L2 are molecular fossils, while L1 is a currently active repeat type, this may indicate that ancient TEs may have been exapted during the course of evolution. From this graph I also can conclude that while the single biggest association of repeat coverage is with repressor activity, there is also a strong association with up-regulators of gene expression.

3.3 Repeat sequence distribution in the human genome

I have generated six repeat consensus sequences that represent the principal classes of TEs in the human genome; they are MIR, Alu, L1, LTR, SVA and ERV. These classes of retrotransposons cannot only affect the human genome structure, but also gene transcription activity. I have determined the distribution of these six specific TE classes with respect to different gene features (Figure 6). I found that a large proportion of these TEs are located in 5'UTR, cds-intron and intergenic regions, with L1 and Alu the most common repeats represented.

3.4 Functional representation of repeat consensus sequence in the human genome

I have mapped six primary repeat consensus sequences to the human genome, including gene models. I have used Gene Ontology (GO) annotation of the genes that overlapped with repeats to assess the functional contribution of repeats. By comparing the P -value as my standard index to acquire the definite functions of these repeat consensus sequences.

GO category results fall into three categories: cellular component, molecular function and biological process, with respect to their gene product properties (Table 1). I discovered that most of TEs' are associated with specific functional products that execute biological processes. Figure.7A illustrates that L1 and MIR are significant associated with genes that have many functions in the human genome. L1 in particular is associated with genes that have many functions in biological processes, such as establishment of localization in cell, cell-cell adhesion and cellular component morphogenesis. Moreover, gene associated with MIR participates in cell development processes, protein transport and neuron projection development. ERV associated genes are significantly over-represented with respect to cellcell adhesion. Furthermore, Mir and L1 have similar clustering with respect to their functions if the genes they are associated with in terms of biological processes.

The second most annotated gene product property is cellular components (Figure 7B). Genes containing L1 and MIR have a number of associated functions. For example, MIR containing genes act as a part of plasma membrane. L1 containing genes are apparently enriched in the functions extrinsic to membrane, dendritic spine, dendritic shaft, extracellular matrix and protein serine/threonine. ERV containing genes have several functions as well, for example, endomembrane system and constitution of the membrane.

The third gene product property is molecular functions (Figure 7C). L1 containing genes functions include: purine nucleotide binding, substrate-specific transmembrane transporter activity and calmodulin binding. Genes containing ERV have functions including cell adhesion molecular binding and GTPase activator activity and enzyme binding. MIR containing genes have functions such as passive transmembrane transporter activity, while genes containing LTR participate in cell adhesion molecular binding.

3.5 The effect of Alu, L1 and LTR on gene expression in 6 human tissues

I analyzed the effect of different TEs on human gene expression by comparing the expression of genes with TEs in either the proximal promoter region, the 5 'UTR or the 3 'UTR to genes without TEs in those regions. I selected six human tissue transcriptome sets (kidney, liver, brain, testes, skeletal muscle and adipose tissue) from the Illumina BodyMap2 dataset for this analysis.

In order to carry out the analysis, I compared the genomic intervals for TEs to the genomic intervals for gene models to identify genes with and without TEs in the proximal promoter, 5'UTR and 3'UTR. I then plotted log normalized gene expression levels (determined by

TopHat/Cufflinks) of genes from the different TE categories (Figure 8, 9 and 10) to see if overall gene expression levels were correlated with the presence or absence of TEs.

I found that Alus, L1s and LTRs appeared to be associated with lower levels of gene expression in all tissues if they were present in the proximal promoter regions. The exception to this was for testes expressed (Figure 8), where the presence of L1 in the proximal promoter made no different to gene expression and where the effects of other TEs were also less obvious. I did not see changes in gene expression associated with repeats in the 5^{\prime} 'UTR, but in the 3 'UTR the presence of LTR was associated with decreased gene expression in all six tissues. These 2 suggest that TEs in proximal promoters and 3'UTR could possibly act as repressors of gene expression.

3.6 Are specific repeat sequences present in lincRNAs?

In order to determine if TEs contribute specific sequences to Long Intergenic Non-Coding RNAs (lincRNAs), I aligned lincRNAs [53] and my TE sequences with BLASTN [54]. I found that many lincRNA sequences contained almost full length Alu, but that the alignments showed a greater contribution of left and right monomer sequences from Alu elements (Figure 11A). In particular, the left monomer sequence peak (Figure 11A) might correspond with the internal Alu promoter region. This result suggests a potential regulatory role for Alu sequences in lincRNAs expression.

Mir elements contributed the sequences between position 50 and 200 of their consensus sequence to lincRNAs (Figure 11B). When I extracted this subsequence and scanned it for regulatory motifs (http://asp. ii.uib.no: 8090/cgi-bin/CONSITE/consite), I found this 150bp
subsequence contained low complexity sequence with motifs for Myf and Snail binding snail, CREB and bZIP910.

L1 elements are generally about 7kbp long and L1 alignments to lincRNAs showed a preponderance of sequences from the 3 'end of L1, consistent with known 5 'truncation of inserted L1 sequences (Figure 11C).

LTR sequences were generally found at low levels in lincRNAs except for a sharp 17bp peak in the middle of the LTR sequence (Figure 11D). When this sequence was extracted from the LTR it was found to be a low complexity tetranucleotide repeat sequence. This 17 bp sequence has been annotated as containing regulatory motifs (See Supplementary Material S3).

ERV sequences were also found a generally low level in lincRNAs, but also showed some sharp spikes (Figure 11E). I extracted the subsequences for the two tallest spikes, 21bp at about 3 kpb and 17 bp at about 7 kbp within the ERV consensus. The 21 bp subsequence contains a binding site for the Pbx transcription factor and the 17 bp subsequence contains low complexity sequence with motifs for Myf and Snail binding (See Supplementary Material S3).

Initial alignment of SVA sequences to lincRNAs showed that the Alu domain of SVA was probably aligning to the Alu regions of lincRNAs (Figure 11F). The VNTR domain of SVA showed large numbers of hits in lincRNAs and the 100bp subsequence from this region contained binding motifs for 8 transcription factors (See Supplementary Material S3).

The fact that alignment peaks in lincRNAs contained transcription factor binding motifs contributed from 4 TEs in suggestive of a role for these motifs in lincRNAs regulation or function.

Discussion

In this work, I have analyzed the function, distribution and expression of various classes of TEs in the human genome. I have found that TE distribution is similar in human and cow that TEs appear to be able to alter gene expression, based on their distribution in functional regions and their correlation with gene expression. Furthermore, I found that genes containing TEs were over-represented in terms of their GO annotations in all three categories. Finally, I found that TEs are present in ncRNAs, specifically lincRNAs, and that some repeat classes appeared to contribute specific subsequences that contain functions to the lincRNAs.

TEs had similar distributions in human and cow (Figure 3), with a greater proportion of sequence originating from TEs in the 5^{\prime} and 3^{\prime} 'UTRs compared to coding exons or start and stop codons. This is not surprising considering the potential adverse effect of TE insertion in a protein coding sequence, but it is also relevant with respect to the known regulatory functions within the UTRs [55, 56]. The repeat content for 5'UTR introns was comparable to remaining introns, but this may be significant in the context of transcriptional repression, where genes with shorter 5^{\prime} UTR introns were expressed at higher levels [57, 58]. It would appear that in some genes the exaptation of repeats into UTRs is neutral or functional (see below).

The distribution of TEs in genomic regions epigenetically modified to regulate transcription (active chromatin) was consistent with a potential role as regulators of gene expression. From my results (Figure 4A, B), I found that some functional regions of active chromatin contained
higher levels of TE, specifically polycomb-repressed regions and weak enhancers. This was most striking for the polycomb-repressed regions, which was consistent with epigenetic silencing of TEs. This was also consistent with the higher level of repeat content seen in 5'UTR, which are also known to regulate gene [59]. Furthermore, it has been shown that TEs in 3'UTR are associated with lower transcript abundance [60]. This suggests that exaptation of repeat into regulatory regions is most often associated with repression of gene expression. In fact, older repeat, such as fossil L2 and MIR, are more prevalent in active chromatin than recently inserted repeats, such as L1 or Alu, supporting the argument for exaptation.

Different repeat classes were clearly present at different levels in active chromatin or specific regulatory regions, such as polycomb-repressed (Figure 5), implying an association with gene expression. My analysis of gene expression as a function of regulatory region repeats content indicated that there was a general association between repeat content and lower gene expression (Figures 8, 9 and 10). These results are consistent with previous reports showing TEs such as Alus can be exapted as regulators of alternative splicing, as transcription factor binding sites and as sense and antisense promoters [32,61]. Furthermore, the presence of Alu pairs in opposite orientations in gene transcripts can lead to adenosine to inosine editing, resulting in suppression of expression through nuclear retention of edited RNA transcripts [25]. My results are consistent with TEs mainly down regulating gene expression if they were present in the proximal promoter or 3'UTR region. This association was weakest or nonexistent for L1 elements (Figures 8, 9 and 10). Furthermore, L1 elements were less prevalent in regulatory regions or active chromatin, compared to other repeat classes (Figure 5). This makes sense because most L1 elements in the human genome are 5^{\prime} truncated [60], lacking promoters and other regulatory sequences. LTR repeat were similarly distributed, compared to non-LTR repeats, and associated with repression of gene expression. This is in contrast to
previous work that implicates LTRs as alternative promoters [62]. However, an LTR in the first intron of the equine TRPM gene suppresses gene expression by acting as an alternative poly-A site (Bellone et al, unpublished), and the insertion of LTRs in introns has been associated with premature termination of transcription [63].

In addition to regulating gene expression, TEs may also be associated with specific functional characteristics of expressed protein coding genes. When I examined the functional annotation of repeat containing genes, I found that some functions were over-represented (Figure 7). This might occur because exaptation of TEs into coding sequences is associated with particular functions or that particular functional classes of genes are co-regulated and that repeats are involved in this co-regulation.

Non-coding genes also included exapted TEs or functionally important TE subsequences. Specifically I found that lincRNAs, which are known to regulate gene expression through epigenetic mechanisms and competition for transcription factors [64-66], contained TE sequences. Not all TEs contributed sequences equally, most of the Alu consensus was found in lincRNAs, but for L1s, 3' truncated sequences were dominant and for MIRs, the central 150bp was most often found in lincRNAs. This was in contrast to LTR, SVA and ERV TEs, which contributed much more defined, shorter sequences that were shown to contain transcription factor binding motifs. This result is consistent with a role for lincRNAs as competitors for transcription factors that bind to promoter regions.

In conclusion I can say that TEs are most strongly associated with repression of gene expression, either through the proximal promoter or 3'UTR or by contributing sequences to lincRNAs. These results extend previous published work in a novel and more comprehensive
fashion. Finally, I speculate that TEs may influence gene expression by co-regulating functionally similar genes, and I believe this to be a novel hypothesis.

Future Directions

I have analyzed the repeats distribution, association with different gene sections and functional elements as well as expression of various classes of repeats in the human genome. However, my research target was limited to Homo sapiens. Thus, applying these methods and pipelines to other species is my next work, which may include chimpanzee, cow and elephant. Furthermore, in my analysis of transposable elements influences on human gene expression, I only focused on Alu, L1 and LTR in six human tissues. In next step, I may explore other classes of TEs impact on human gene transcript level, and also study the association between different types of TEs and tissues, to find out whether the influence of TEs in genes has any tissue specific. In this paper, I have studied the association between repeats and various regulatory elements, which were only based on active chromatin states. Therefore, I may transfer to the association between repeats and heterochromatin in our next work, giving us better understanding of the association between TEs and epigenetic regulation.

According to recent studies, piRNAs from RNA-protein complexes through interactions with piwi proteins, and these piRNA complexes have been linked to both epigenetic and posttranscriptional gene silencing of retrotransposons and other genetic elements in germ line [67]. This finding can help me to further explore the mechanism about how retrotranspsons interact with piwi interacting RNA to impact the gene expression.

Abbreviations List:

TEs: transposable elements
ORFs: open reading frames
LTR: long terminal repeats
LINEs: long interspersed elements
SINEs: short interspersed elements
ADAR: double-stranded RNA-specific adenosine deaminase
GO: Gene ontology
lincRNAs: long intergenic non-coding RNA
CSTE: chromatin states transposable elements

Figures and table legends:

Figure 3. Gene feature distributions of repetitive elements in human and cow
The y-axis has been normalized by the equation

$$
\text { percentage }=\frac{\text { repeats in specific genome section }(b p)}{\text { genome specific section }(b p)} \times 100
$$

Figure 4. Gene feature distributions of biologically activity of repetitive elements
The biological activity of repetitive elements was measured as the percentage of bases that overlapped repetitive elements and genomic areas of a particular chromatin state. Areas of genome that have been named biologically active are those that do not overlap heterochromatic areas. Shown are the specific biological activities of repetitive elements, averaged over six different cell lines (A), and the total biological activity of repetitive elements for each cell line (B). Percentages in A and B were normalized by the proportions of
genome occupying a particular gene feature. The method of normalization is same with the figure 3.

Figure 5. Biological activity of different repeat classes
The biological activity of a repeat class was measured as the percentage of bases that overlapped with particular repeat class and genomic areas of a particular chromatin state. Areas of genome that have been named biologically active are those that do not overlap heterochromatic areas. Shown are the specific activities of repeat classes, averaged over six different cell lines (A), and the total activity of repeat classes for each cell line (B). Percentages in A and B have been normalized by the proportions of genome occupied by a particular repeat class. Normalization equation:

$$
\text { Percentage }=\frac{\text { Specific chromatin state TEs }(b p)}{\text { Specific TEs }(b p)} \times 100
$$

Figure 6. Gene feature distributions of repeat classes

Percentages of genome that overlap a certain repeat class and gene feature. Percentages are normalized by the proportion of genome occupied by a particular gene feature. The method of normalization is same with the figure 3 .

Figure 7. Enrichment of GO terms of various repeat classes in the human genome Enrichment is based on a \log (p-value) transformation, which is shown over three GO domains, biological process (A), cellular compartment (B), and molecular function (C).

Figure 8. Expression level of three repeats in kidney (A), liver (B), brain (C), testes (D), skeletal muscle (\mathbf{E}) and adipose (\mathbf{F}) in the part of proximal promoter of human genes. I have used \log transformation to acquire these violin plots. The white dot in the middle
represents the medium value of each sub graphs; the width of each subplot shows the gene number that enriched with respect to the y-axis.

Figure 9. Expression level of three repeats in kidney (A), liver (B), brain (C), testes (D), skeletal muscle (E) and adipose (\mathbf{F}) in 5'UTR region of human genes. I have used log transformation to obtain these violin plots. The white dot in the middle represents the medium value of each sub graphs; the width of each subplot shows the gene number that enriched with respect to the y-axis.

Figure 10. Expression level of three repeats in kidney (A), liver (B), brain (C), testes (D), skeletal muscle (\mathbf{E}) and adipose (\mathbf{F}) in 3'UTR section of human genes. I have used log transformation to get these violin plots. The white dot in the middle represents the medium value of each sub graphs; the width of each subplot shows the gene number that enriched with respect to the y-axis.

Figure 11. Coverage plot showing the length distribution of aligned sequence between lincRNA and different types of repetitive elements. The plot shows Alu, Mir, LTR, SVA, L1 and ERV these six repeat consensus sequences association with lincRNAs. X-axis shows the whole length of each relevant repeat consensus sequence, y-axis signifies the number of the alignment length that covered in that region.

Figure 3:

Repeat distribution in human and cow

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure 10:

Figure 11:

Table 1. GO terms with high enrichment in the human genome within six different classes of TEs

Category	Term	P-value	Repeats
Biological Process	GO:0048468~cell development	0.002433068	Alu
Biological Process	GO:0031175~neuron projection development	0.010950207	Alu
Biological Process	GO:0048731~system development	0.014218732	Alu
Biological Process	GO:0000902~cell morphogenesis	0.045430207	Alu
Biological Process	GO:0016337~cell-cell adhesion	$6.76 \mathrm{E}-04$	ERV
Biological Process	GO:0008610~lipid biosynthetic process	0.004836686	ERV
Biological Process	GO:0007565~female pregnancy	0.007958811	ERV
Biological Process	GO:0010942~positive regulation of cell death	0.021215202	ERV
Biological Process	GO:0030036~actin cytoskeleton organization	0.022252018	ERV
Biological Process	GO:0006629~lipid metabolic process	0.029784268	ERV
Biological Process	GO:0006811~ion transport	0.030293183	ERV
Biological Process	GO:0048489~synaptic vesicle transport	0.033240211	ERV
Biological Process	GO:0048858~cell projection morphogenesis	0.041187851	ERV
Biological Process	GO:0032989~cellular component morphogenesis	0.04121194	ERV
Biological Process	GO:0008038~neuron recognition	0.0416136	ERV
Biological Process	GO:0000902~cell morphogenesis	0.0448662	ERV
Biological Process	GO:0006793~phosphorus metabolic process	$1.26 \mathrm{E}-07$	L1
Biological Process	GO:0006811~ion transport	$5.44 \mathrm{E}-06$	L1
Biological Process	GO:0048858~cell projection morphogenesis	$6.02 \mathrm{E}-06$	L1
Biological Process	GO:0032990~cell part morphogenesis	$1.54 \mathrm{E}-05$	L1
Biological Process	GO:0031175~neuron projection development	$1.54 \mathrm{E}-05$	L1
Biological Process	GO:0006810~transport	$1.83 \mathrm{E}-05$	L1
Biological Process	GO:0051649~establishment of localization in cell	$1.13 \mathrm{E}-04$	L1

Biological Process	GO:0000902~cell morphogenesis	$2.82 \mathrm{E}-04$	L1
Biological Process	GO:0007411~axon guidance	$7.57 \mathrm{E}-04$	L1
Biological Process	GO:0046907~intracellular transport	0.001803868	L1
Biological Process	GO:0032835~glomerulus development		

	groups		
Molecular Function	GO:0000155~two-component sensor activity	0.012793986	ERV
Molecular Function	GO:0008092~cytoskeletal protein binding	0.015298604	ERV
Molecular Function	GO:0022803~passive transmembrane transporter activity	0.021237808	ERV
Molecular Function	GO:0008656~caspase activator activity	0.022962103	ERV
Molecular Function	GO:0022891~substrate-specific transmembrane transporter activity	0.035814672	ERV
Molecular Function	GO:0022803~passive transmembrane transporter activity	$2.97 \mathrm{E}-06$	L1
Molecular Function	GO:0043169~cation binding	$2.99 \mathrm{E}-06$	L1
Molecular Function	GO:0016772~ transferase activity, transferring phosphorus-containing groups	$1.20 \mathrm{E}-05$	L1
Molecular Function	GO:0001883~purine nucleoside binding	$1.37 \mathrm{E}-04$	L1
Molecular Function	GO:0032553~ribonucleotide binding	$7.33 \mathrm{E}-04$	L1
Molecular Function	GO:0017076~purine nucleotide binding	0.001280726	L1
Molecular Function	GO:0022891~substrate-specific transmembrane transporter activity	0.002093544	L1
Molecular Function	GO:0005516~calmodulin binding	0.003082402	L1
Molecular Function	GO:0030695~GTPase regulator activity	0.005323101	L1
Molecular Function	GO:0008092~cytoskeletal protein binding	0.007427365	L1
Molecular Function	GO:0005096~GTPase activator activity	0.011907	L1
Molecular Function	GO:0019899~enzyme binding	0.013789565	L1
Molecular Function	GO:0005543~phospholipid binding	0.016279339	L1
Molecular Function	GO:0019887~protein kinase regulator activity	0.030812232	L1
Molecular Function	GO:0050839~cell adhesion molecule binding	0.0379135388	L1
Molecular Function	GO:0008093~cytoskeletal adaptor activity	0.044567764	L1
Molecular Function	GO:0050839~cell adhesion molecule binding	$6.11 \mathrm{E-04}$	LTR
Molecular Function	GO:0016772~transferase activity, transferring phosphorus-containing groups	0.00807089	LTR
Molecular Function	GO:0043169~cation binding		
Molecular Function	GO:0005496~steroid binding	LTR	

Molecular Function	GO:0000155~two-component sensor activity	0.012243649	LTR
Molecular Function	GO:0022803~passive transmembrane transporter activity	0.020931795	LTR
Molecular Function	GO:0001883~purine nucleoside binding	0.046141345	LTR
Molecular Function	GO:0030695~GTPase regulator activity	$9.81 \mathrm{E}-11$	MIR
Molecular Function	GO:0005096~GTPase activator activity	$5.53 \mathrm{E}-07$	MIR
Molecular Function	GO:0008092~cytoskeletal protein binding	$3.32 \mathrm{E}-04$	MIR
Molecular Function	GO:0022803~passive transmembrane transporter activity	$6.24 \mathrm{E}-04$	MIR
Molecular Function	GO:0043169~ cation binding	0.00144037	MIR
Molecular Function	GO:0022891~substrate-specific transmembrane transporter activity	0.008004068	MIR
Molecular Function	GO:0005516~calmodulin binding	0.008041464	MIR
Molecular Function	GO:0046983~protein dimerization activity	0.015808567	MIR
Molecular Function	GO:0001883~purine nucleoside binding	0.023661931	MIR
Molecular Function	GO:0019992~diacylglycerol binding	0.026389336	MIR
Molecular Function	GO:0032553~ribonucleotide binding	0.028150117	MIR
Molecular Function	GO:0016772~transferase activity, transferring phosphorus-containing groups	0.035853993	MIR
Molecular Function	GO:0008013~beta-catenin binding	0.037247081	MIR
Molecular Function	GO:0050839~cell adhesion molecule binding	0.037247081	MIR
Molecular Function	GO:0017076~purine nucleotide binding	0.042483365	MIR
Molecular Function	GO:0008092~cytoskeletal protein binding	0.002789855	SVA
Molecular Function	GO:0050839~cell adhesion molecule binding	0.011650127	SVA
Molecular Function	GO:0030695~GTPase regulator activity	0.012213165	SVA
Molecular Function	GO:0005543~phospholipid binding	0.022869129	SVA
Molecular Function	GO:0016879~ligase activity, forming carbon-nitrogen bonds	0.031038513	SVA
Cellular Component	GO:0005626~insoluble fraction	0.002754261	Alu
Cellular Component	GO:0014069~postsynaptic density	0.01455023	Alu
Cellular Component	GO:0045211~postsynaptic membrane	0.016366668	Alu

Cellular Component	GO:0000267~cell fraction	0.023283704	Alu
Cellular Component	GO:0043005~neuron projection	0.037089783	Alu
Cellular Component	GO:0016020~membrane	0.038961333	Alu
Cellular Component	GO:0044459~plasma membrane part	0.039979154	Alu
Cellular Component	GO:0016020~membrane	$1.03 \mathrm{E}-04$	ERV
Cellular Component	GO:0030027~lamellipodium	$2.77 \mathrm{E}-04$	ERV
Cellular Component	GO:0044425~membrane part	$4.90 \mathrm{E}-04$	ERV
Cellular Component	GO:0012505~endomembrane system	0.003112417	ERV
Cellular Component	GO:0031252~cell leading edge	0.005978395	ERV
Cellular Component	GO:0042995~cell projection	0.008750212	ERV
Cellular Component	GO:0043005~neuron projection	0.010567625	ERV
Cellular Component	GO:0005886~plasma membrane	0.015943166	ERV
Cellular Component	GO:0014069~postsynaptic density	0.017268836	ERV
Cellular Component	GO:0031224~intrinsic to membrane	0.018157998	ERV
Cellular Component	GO:0044459~plasma membrane part	0.019160607	ERV
Cellular Component	GO:0031965~nuclear membrane	0.019851813	ERV
Cellular Component	GO:0031300~intrinsic to organelle membrane	0.022330112	ERV
Cellular Component	GO:0045211~postsynaptic membrane	0.031613444	ERV
Cellular Component	GO:0019898~extrinsic to membrane	0.034741239	ERV
Cellular Component	GO:0005737~cytoplasm	0.039586133	ERV
Cellular Component	GO:0044459~plasma membrane part	$1.28 \mathrm{E}-10$	L1
Cellular Component	GO:0044425~membrane part	$6.73 \mathrm{E}-09$	L1
Cellular Component	GO:0016020~membrane	3.08E-08	L1
Cellular Component	GO:0043005~neuron projection	$1.73 \mathrm{E}-06$	L1
Cellular Component	GO:0005886~plasma membrane	6.19E-06	L1
Cellular Component	GO:0042995~cell projection	$1.89 \mathrm{E}-05$	L1
Cellular Component	GO:0045211~postsynaptic membrane	$5.98 \mathrm{E}-05$	L1

Cellular Component	GO:0014069~postsynaptic density	$7.58 \mathrm{E}-05$	L1
Cellular Component	GO:0044463~cell projection part	$8.04 \mathrm{E}-05$	L1
Cellular Component	GO:0005578~proteinaceous extracellular matrix	0.00100319	L1
Cellular Component	GO:0019898~extrinsic to membrane	0.001395374	L1
Cellular Component	GO:0042734~presynaptic membrane	0.001400923	L1
Cellular Component	GO:0043197~dendritic spine	0.001680735	L1
Cellular Component	GO:0031012~extracellular matrix	0.001904228	L1
Cellular Component	GO:0005875~microtubule associated complex	0.003288719	L1
Cellular Component	GO:0044431~Golgi apparatus part	0.003519217	L1
Cellular Component	GO:0012505~endomembrane system	0.003851358	L1
Cellular Component	GO:0043198~dendritic shaft	0.008184011	L1
Cellular Component	GO:0000267~cell fraction	0.0254723	L1
Cellular Component	GO:0009986~cell surface	0.032262217	L1
Cellular Component	GO:0012506~vesicle membrane	0.040162796	L1
Cellular Component	GO:0044441~cilium part	0.04790736	L1
Cellular Component	GO:0044420~extracellular matrix part	0.050716684	L1
Cellular Component	GO:0009897~external side of plasma membrane	0.052729331	L1
Cellular Component	GO:0005581~collagen	0.057803073	L1
Cellular Component	GO:0035085~cilium axoneme	LTR	
Cellular Component	GO:0044430~cytoskeletal part	0.061178965	L1
Cellular Component	GO:0008287~protein serine/threonine phosphatase complex	0.091900824	L1
Cellular Component	GO:0005604~basement membrane	0.09873182	L1
Cellular Component	GO:0005626~insoluble fraction	0.047082603	LTR
Cellular Component	GO:0030027~lamellipodium	LTR	
Cellular Component	GO:0043005~neuron projection	0.063143676	LTR
Cellular Component	GO:0005929~ilium		
Cellular Component	GO:0045211~postsynaptic membrane	0.09988863	LTR

Cellular Component	GO:0019898~ extrinsic to membrane	$6.70 \mathrm{E}-05$	MIR
Cellular Component	GO:0043005~neuron projection	$8.70 \mathrm{E}-05$	MIR
Cellular Component	GO:0042995~cell projection	$1.68 \mathrm{E}-04$	MIR
Cellular Component	GO:0044459~plasma membrane part	$6.25 \mathrm{E}-04$	MIR
Cellular Component	GO:0005886~plasma membrane	0.001138769	MIR
Cellular Component	GO:0034702~ion channel complex	0.001420407	MIR
Cellular Component	GO:0030027~lamellipodium	0.00671882	MIR
Cellular Component	GO:0044425~membrane part	0.009441945	MIR
Cellular Component	GO:0031012~extracellular matrix	0.00961077	MIR
Cellular Component	GO:0005578~proteinaceous extracellular matrix	0.010895064	MIR
Cellular Component	GO:0016020~membrane	0.015034447	MIR
Cellular Component	GO:0031252~cell leading edge	0.018580787	MIR
Cellular Component	GO:0016459~myosin complex	0.020015626	MIR
Cellular Component	GO:0005737~cytoplasm	0.02689117	MIR
Cellular Component	GO:0042734~presynaptic membrane	0.031856375	MIR
Cellular Component	GO:0030426~growth cone	0.040758303	MIR
Cellular Component	GO:0030427~site of polarized growth	0.043152743	MIR
Cellular Component	GO:0043198~dendritic shaft	0.043472116	MIR
Cellular Component	GO:0045211~postsynaptic membrane	0.044889397	MIR
Cellular Component	GO:0002142~stereocilia ankle link complex	0.047579822	MIR
Cellular Component	GO:0002139~stereocilia coupling link	0.047579822	MIR
Cellular Component	GO:0002141~stereocilia ankle link	0.047579822	MIR
Cellular Component	GO:0032420~stereocilium	GO:0043229~intracellular organelle	0.001696152
Cellular Component	GO:0005622~intracellular	SVA	
Cellular Component	GO:0044424~intracellular part	GO:0043231~intracellular membrane-	
Cellular Component	0.003537599	SVA	
Cellular Component	bounded organelle		

Cellular Component	GO:0005737~cytoplasm	0.009380962	SVA
Cellular Component	GO:0000776~kinetochore	0.033366997	SVA
Cellular Component	GO:0044431~Golgi apparatus part	0.043688535	SVA
Cellular Component	GO:00444444~cytoplasmic part	0.044648231	SVA

Table 2. Cell lines source and kinds that used to analyze the function of retrotransposons in the human genome

Cell	Tier	Description	Lineage	Tissue	Karyotype	Sex	Documents	Vendor ID	Term ID	Label
GM12878	1	B- lymphocyte,lymphoblastoid,i nternational HapMap Project- CEPH/Utah-European Caucasion,Epstein-Barr VIrus	mesoderm	blood	normal	F	ENCODE	Coriell GM12878	BTO: 0002062	$\begin{aligned} & \text { GM } \\ & 12878 \end{aligned}$
HepG2	2	Hepatocellular carcinoma	endoderm	liver	cancer	M	ENCODE	ATCC HB-8065	BTO: 0000599	HepG2
HMEC	3	Mammary epithelial cells	ectoderm	breast	normal	U	Bernstein Crawford stam	Lonza CC-2551	BTO: 0002178	HMEC
HUVEC	2	Umbilical vein endothelial cells	mesoderm	blood vessel	normal	U	Encode	Lonza CC-2517	BTO: 0001949	HUVEC
NHLF	3	Lung fibroblasts	endoderm	lung	normal	U	Bernstein stam	Lonza CC-2512	BTO: 0000161	NHLF
K562	1	leukemia, "the continuous cell line K-562 was established by Lozzio and Lozzio from the pleural effusion of a 53-year-old female with chronic myelogenous leukemia in terminal blast crises." - ATCC	mesoderm	blood	cancer	F	ENCODE	ATCC CCL-243	BTO: 0000664	K562

Supplementary Materials

Supplementary Material S3:
Figure 12: The tree we used to build the Alu consensus sequences

Figure 13: The tree we used to built the Mir consensus sequence

Figure 14: The tree we used to built the L1 consensus sequence

Figure 15: The tree we used to built the LTR consensus sequence

Figure 16: The tree we used to built the ERV consensus sequence

Figure 17: The tree we used to built the SVA consensus sequence

Supplementary Material S2:
Alu consensus sequences:

```
>1 cons
GGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGCGGA
TCACCTGAGGTCAGGAGTTCGAGACCAGCCTGGCCAACATGGTGAAACCCCGTCTCTACT
AAAAATACAAAAAATTAGCCGGGCGTGGTGGCGCGCGCCTGTAATCCCAGCTACTCGGGA
GGCTGAGGCAGGAGAATCGCTTGAACCCGGGAGGCGGAGGTTGCAGTGAGCCGAGATCGC
GCCACTGCACTCCAGCCTGGGCGACAAGAGCGAGACTCCGTCTCAAA
```

```
>2 cons
GGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGCGGA
TCACGAGGTCAGGAGATCGAGACCATCCTGGCTAACACGGTGAAACCCCGTCTCTACTAA
AAATACAAAAAAATTAGCCGGGCGTGGTGGCGGGCGCCTGTAGTCCCAGCTACTCGGGAG
GCTGAGGCAGGAGAATGGCGTGAACCCGGGAGGCGGAGCTTGCAGTGAGCCGAGATTGCG
CCACTGCAGTCCGCAGTCCAGCCTGGGCGACAGAGCGAGACTCCGTCTCA
```

>3_cons
GGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGCGGA
TCACGAGGTCAGGAGATCGAGACCATCCTGGCTAACACGGTGAAACCCCGTCTCTACTAA
AAAATACAAAAAAATTAGCCGGGCGTGGTGGCGGGCGCCTGTAGTCCCAGCTACTCGGAG
AGGCTGAGGCAGGAGAATGGCGTGAACCCCGGGAGGCGGAGCTTGCAGTGAGCCGAGATC
GCGCCACTGCACTCCAGCCTGGGCGACAGAGCGAGACTCCGTCTCA

MIR consensus sequences:

```
>1 cons
```

CAGAGGGACAGCATAGCACAGTGGTAAAGAGCACGGACTCTGGAGCCAGACAGACCTGGG TTCGAATCCCGGCTCTGCCACTTACTAGCTGTGTGACCTTGGGCAAGTCACTTAACCTCT CTGAGCCTCAGTTTCCTCATCTGTAAAATGGGGATAATAATAGTACCTACCTCACAGGGT TGTTGTGAGGATTAAATGAGATAATACATGTAAAGCGCTTAGAACAGTGCCTGGCACACA GTAAGCGCTCAATAAATGGTAGCTCTATTATT
>2_cons
TTCTCGAAGCAGTATGGTACAGTGGAAAGAACAACTGGACTAGGAGTCAGGAAGACCTGG GTTCGAGTCCTAGCTCTGCCACTAACTAGCTGTGTGACCTTGGGCAAGTCACTTAACCTC TCTGAGCCTCAGTTTTCCTCATCTGTAAAATGAGGATAATAATACCTGCCCTGCCTACCT CACAGGGTTGTTGTGAGGATCAAACGAGATAATCTATGTGAAAGCGCCCTGCAAACTCTA AAATGCTATACAAATGTAAGGGGATACTATGATTCTAAAAAAA

L1 consensus sequences:

>1 cons
GGGGGGAGGAGCCAAGATGGCCGAATAGAAACAGCACCGGTCTACAGCTCCCAGCGTGAG CGACCACAGAAGACGGGTGATTCCTGCATCGCCAACTGAGGTACCAGGTTCATCTCACTA GGAAGTGCCAGACAGCGGGCGCACCCACAGACCCTCTGAAGGAAGCGGACTGCTCCTGCA GGACCCGGGAGACACCCCAAATACTGTGAGTGCCCAAACTGCGGAAGTGGGAAAGGGAGA TCСТССGСTCCCGAACACACACCCCCACTGGGGAAACTGAAGGTCTAGTTTGCGGGAGAA GTTTCCGACCTTACCTGGAGCTGAGTCAATTTAGAGAGCCGAGCGAAATACAGGGGTAGA GGAAGCAGCGAGGAAAGGCCCTGGGAGCTCGCTGGGTCCCCAAGCAGGCCATTCCTGCCT GGCACCACAGGGATCCTTCGGGAGGGCGGACAGAGGAGCGAGCGCACCGAGCGCAAGCCG AAGCAGGGCGAGGCAGCGCCTCACCTGAGAAGCGCAAGGGGTCAGGGAATCCCCTTTCCC AGTCAAAGAAAGGGGGGACGGACGCCACCTGCAAAATCGGGTCACTCCCGCCCTAACAAT

GCGCTTTTCCGACCCACTTAAGAAACGGCGCACCACGAGAATATACCCCACAGGGGCCTA GGGTCCCAACCCTGGAGCCGCGCAGATTCTCAACAGCCTCTCAGCTGGAATCTGCTTAAG CCTGCCGAGCTCCTGGCTCGGAGGGTCCTACGCACACGGACTCTCGCTGATTGCTAGCAC AGCAGTCTGAGATCAAACTGCAAGGGGCAGCAGCCAGCACTGGGACTCATAACTGCCTAA CACACTAAGCTCCCGGCAACGAGGCTGGGCGAGGGGCGCCCGCCAATGCCCAGGCTTCCC TAGGTAAACAAAGCAGCCGGGAAGCTCGAACGGGGTGGACCCCACCACAGCTCAAGCACA CCTCCATGCACCTGTAGGCTCCACCTCTGGCCGCAGCGCACAGACAAACAAAAACACAGC AGTAACCTCCGCAGACTTAAGTGTCCCTGTCCGACAGCTTCGAAAAGAGCAGTCGTTCTC CCAGCACGCAGCTGCAGATCTGACTGGGCCTGAGCCCCTAGAGGGAGGGGTGGCCGCAGT CTCTGCGGACCAGCAGACTTAGCCTTTCCTCCTGGTAGTTCTGAGGAATCCGGGCAGCCC AGATGAGTGGGTTTCCCCCCAGCGAAGCACACCCCCTGAACGAGCAGACTGCCACCTCAA GTGGGTAAATGACCCCTGACCCCCGAGCAGCCTAACTGGGAGGCACCCCCCAGCAGGGGC GGACTGACACCCCACACGGCAGCGATCCTACTGGCATCAGGTTGGTACACCTCGAAGACA AAAATACCAGAAGAACGACCAGGCAACAAACTCTGCCGTTCTCCAATATCCACCACTGAC ACCACCCAACGCGGAAGAGAACCAGAAAAACAGGGTCTGAAGTGAACCCCCAGCAAACTC CAACAGACCTGCAGCAGAGGGTCCTGACTATTAGAAGGAAAACTAACAAACAGAAAGGAC ATCCACACCCAAAACCCATATAAACATCACTGCAGCTCGGCTCACAGGAAGCCACATCCA TAGGAAAAGGGGGAGAGTACTACATCAAGGGAACACCCCGTGGGAAAAAAAAACCCAAAC AACAGCCAGCAGCATCAAAGACCAAAACTAGATAAAACCACAAAGATGAGAAAAAAACAG AAAAGAAAAACTGGAAACTCTAAAAAACAGAGCGCCTCTCCTCCTCCAAAGGAACGCAGC TCCTCACCAGCAACGGAACAAAACTGGACGGAGAATGACTTTGACGAGTTGACAGAAGAA GGCTTCAGAAGATGAGTAATAAAAAACTACTCTGAGCTACGGGAGGAAATTCAAACCAAA GGCAAAGAAGTTAAAAACTTTGAAAAAAAATTAGAGGAATGGATAACTAAGGGAATAACC AATACAGAGAAGAACTTAAAGGACCTGATGGAGCTGAAAAACAAAGCACGAGAACTACGT GAAGAATGCAGAAGCCTCAGTAGCCGAAGCGATCAACTGGAAGAAAGGATATCAGAGATG GAAGATCAAATCAATGAAATAAAACAAGAAGAGAAGATTAGAGAAAAAAGAATAAAAAGA AATGAACAAAGCCTCCAAGAAATATGGGACTATGTAAAAAGACCAAATCTACGACTGATT GGTGTACCTGAAAGAGACGGGGAGAATGGAACCAAGTTGGAAAACACACTGCAGGATATT ATCCAGGAGAACTTCCCCAACCTAGCAAGACAGGCCAACATTCAAATTCAGGAAATACAG AGAACACCACAAAGATACTCCTCGAGAAGATCAACTCCAAGACACATAATTGTCAGATTC ACCAAAGTTGAAATGAAGGAAAAAATCTTAAGGGCAGCCAGAGAGAAAGGCCGGGTAACC TACAAAGGAAAGCCCATCAGACTAACAGCAGATCTCTCAGCAGAAACCCTACAAGCCAGA AGAGAGTGGGGGCCAATATTCAACATTCTCAAAGAAAAGAATTTTCAACCCAGAATTTCA TATCCAGCCAAACTAAGCTTCATAAGTGAAGGAGAAATAAAATACTTTACAGACAAGCAA ATGCTGAGAGATTTTGTCACCACCAGGCCTGCCCTAAAAGAGCTCCTGAAAGAAGCGCTA AACATGGAAAGGAACAACCGGTACCAGCCACTGCAAAAACACGCCAAAATATAAAGACCA TCGAGACTAGGAAGAAACTGCATCAACTAATGAGCAAAATAACCAGCTAACATCATAATG ACAGGATCAAATTCACACATAACAATATTAACCGAATAGTACCTCACATCTCAATACTAA AATTAAATGTAAATGGACTAAATGCTCCAATTAAAAGACACAGACTGGCAAAGTGGATAA AAAGTCAACAACCAACAGTGTACTGTACTCAGGAGACCCACCTCACATATAAAGACACAC ATAAGCTCAAAATAACTGAAATATAAAAGGATGGAGAAAGATCTAGCCAAGCAAATGGAA ACCCAAAAAAAAGCAGGAGTTGCAATCCTAGTCTCAGACAAAACAGACTTTAAACCAACA AAGATCAAAAAAGACAAAGAAGGCCATTACATAATGATAAAAGGATCAATTCAACAAGAA GAGCTAACTATCCTAAATATATATGCACCCAATACAGGAGCACCCAAATTCATAAAGCAA ATACTGAGAGACCTACAAAGAGACTTAGACACCCACACAATAATAGTGGGAGACTTTAAC ACCCCACTGTCAACATTAGACAGATCAACGAGACAGAAAGTCAACAAGGATACACAGGAA TTGAACTCAGCTCTGCACCAAGTGGACCTAATAGACATACTACAGAACTCTCCACCCCAA ATCAACAGAATATACATTCTACTCACCAGCACACCACACATATTCCAAAATAGACCACAT AATTGGAAACAAAACTCGCCTCAGCAAATGTAAAAGAACAGAAATCATAACAAACAATCT CTCAGACCACAGTGCAATAAAACTAGAACTCAGGAATAAAGAAATTCCCTCAAAACCGCA CAACTACATGGAAATTGAACAACCTGCTCCTGAATGACTACTGGGTAGAGGGGCCCTCTC TGCTCCACGCCCAGGCAGATCTCCAGGCATCTGGAGCACCCACTCTCCTGAATAACGAAA TCAAGGCGCCCCACCCTTCCCGTGCAGAGAACTTGAAATTAAGAAGTTCTTTGAAACCAA CGAGAACAAAGACACAACATACCAAAAATCTCTGGGACACAGCTAAAGCAGTGTGTAGAG GGAAATTTATAGCACTAAATGCCCACATGAAAAAGCAGGAAAGATCTCAAATCGACACCC TAACATCACAACTAAAAGAACTAGAAAAACAAGAGCAAACAAATCCAAAAGCTAGCAGAA GACAAGAAATAACTAAAATCAGAGCAGAACTGAAGGAAATAGAGACAAAAAAAACACTAC

AAAAAATCAATGAAACCAAGAGCTGGTTTTTTGAAAAGATCAACAAAATTGATAGACCAC TAGCAAGACTAACAAAGAAAAAAAGAGAGAAAAATCAAATAGACTAAATAAAAAAAGATA AAGGAGATATCACCACAGATCCCACAGAAATACAAACTACCATCAGAGAATACTATAAAC ACCTCTATGCAAATAAACTAGAAAATCTAGAAGAAATGGATAAATTCCTCGACACATACA СССТСССAAGACTAAACCAGGAAGAAGTAGAATCTCTGAATAGACCAATAACAAGCTCTG AAATTGAGGCAGTAATTAATAGCTTACCAACCAAAAAAAGTCCAGGACCAGATGGATTCA CAGCCGAATTCTACCAGAGGTACAAAGAGGAACTGGTACCATTCCTTCTGAAACTATTCC AAAAAATAGAAAAAGAGGGAATCCTCCCTAACTCATTTTATGAAGCCAGCATCACCCTGA TACCAAAACCAGGCAAAAGACACAACAAAAAAAGAAAACTTCAGACCAATATCCCTGATG AACATAGATGCAAAAATCAGCTTTTTAGTGCCTCACTCAATAATAAATACTGGCAAACCA AATCCAACAGCACATCAAAAAGATTATCCACCATGATCAAGTGGGCTTAATCCAAGGGAT GCAAGGCTGGTTTAACATACGAGAAGAATATGCAAATCAAGAAAAGAAATTCATAAAATA ATACAAGAAACAAAGTCAAAGACAAAAACCATATGATTATATCAATAGATGCAGAACTGA AAGCATTAGACAAAATTCAACAACAATTCATGATAAAAACTCTCAATAAAATAGGTATAG AAGGGACATATCTAAAAATAATAAGAGCTATTTATGACAAACCTACAGAAAACATCAAAC TGAAAGGGCAAAAAATGAAAGCATTCCCAATAAAAACAGGAACAAGACAAGGATGCCCTC TCTCACCACTCCTATTCAACATAGTATTGGAAGTACTGGCCAGGGCAATAAGGCAAAAGA AAGAAATAATGGGTATTCAAGAAGGAAAAGAAGAAGTCAAATTGTCACTGTTTGCAGATG ACATGATTGTATATCTAGAAAACCCCATCGTCTCAGCCCAAAAACTCCTTAAGCTGATAA GCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTACAAAAATCACAAGCATTCCTAT AСACCAACAACAGACAAGCAGAGAGCCAAATCATGAATGAACTCCCATTCACAATAGCTA CAAAGAGAATAAAATACCTAGGAATACAACTTACAAGGGATGTGAAGGACCTCTTCAAGG AGAACTACAAACCACTGCTCAAGGAAATAAAAGAGGACACAAACAAATGGAAAAACATTC CATGCTCATGGATAGGAAGAATCAATATCGTGAAAATGGCCATACTGCCCAAAGTAATTT ACAGATTCAATGCAATTCCCATCAAACTACCAATGACATTCTTCACAGAATTAGAAAAAA CTACTTTAAAATTCATATGGAACCAAAAAAGAGCCCGCATAGCCAAGACAATCCTAAGCA AAAAGAACAAAGCTGGAGGCATCACACTACCTGACTTCAAACTATACTACAAGGCTACAG TAACCAAAACAGCATGGTACTGGTACCAAAACAGACATATAGACCAATGGAACAGAACAG AGACCTCAGAAATAAAACCACATATCTACAACCATCTGATCTTCGACAAACCTGACAAAA ACAAGCAATGGGGAAAGGATACCCTATTCAATAAATGGTGCTGGGAAAACTGGCTAGCCA TATGTAGAAAACTGAAACTGGATCCCTTCCTTACACCTTATACAAAAATCAACTCAAGAT GGATTAAAGACTTAAATGTAAGACCTAAAACCATAAAAACCCTAGAAGAAAACCTAGGCA ATACCATTCAGGACATAGGCATGGGCAAGGACTTCATGACCAAAACACCAAAAGCAATTG CAACAAAAGCCAAAATTGACAAATGGGATCTAATTAAACTAAAGAGCTTCTGCACAGCAA AAGAAACTATCATCAGAGTGAACAGGCAACCTACAGAATGGGAGAAAATTTTCGCAATCT ACACATCTGACAAAGGACTAATATCCAGATCTTGGTTTCTAAATACCAATCTCCATTAGC AGACAAGGAACTTACAGAACAACTCCTTGGAGAAATGGCTGATTCCAGGACTCTTACAAG AAAAAGACATGAACCAACAAAATGAACCTGGACAACCCCATCGTGCCACAAGCTAAAAAA GTGGGCAAAGGACATGAACACCAAGACACTGTCTGATACACCAGTCAAACTATAGAAAAA AAAAAAAAAACTTCAAAGATAAAGAAGACATAAGCCAACCTGAACATGCGGCCAACAAAC AATATGAAAAAATGCTTTAAAAAGCAACATCACTAAGAAGATCATCAGACTTCTCAACAG CGACAATGCCAATAGTTTGAAATCAAAACATCCAAGGGGGCACAATAGAAGTGAGAAAAA GTACCATCTTCAAAATTCTCACGGAAAAAAACTAACCAACCAGTCATTCTATACCCAGCC AAACTATCCTTCAAGAATGAAGGAGAAAGAATGGCTATTATTAGACAAGAAAAAAGTCAA TAAAAAAAATTTACAAGCCTTTCCCAGATGAACCCTCTGTACAAAAGAGCCCCCTCTGAA GAAACAAACATGGATACGCGAGGATGATACCTGCTACCACAAAAACACACTTAAGTACAT AGCCCACAGACCCTATAAAGCTGCTCCACCAAAAAAACAACAGAGAAATAGTCCTAGGAA AAGAACACAGGATTGAAAGGAACACACTTTTACAAAAGAAAGAAGGAATGAAGACCAAAA CTGTTGGTGGTCTAAATGCCCCACTTAAAAGACACAGAGTGGCAAATTGGATAAAAAAAA AAAAAACAAGACCCATCCATCTGCTGTCTTCAAGAGACCCATCTCGAATGTAATTAGAAT TAGTGGATCAACCATTGTGGAGAAGCAGGATATTTGCCTAGACAAAAAGCAACCACCCAA AAAGAAAAAAAAAACAGTGTGGCGATAACTAATCTAGACAAAAATATAACTGACATTTCT CCCTCAAAGAACTAGAACATTAAAGAAGCTAGAAACCTGTACCATAAAAGTGGAATTGAC CCAGAGAGGCCAAAAAAATCCCATTAAACTGGGTATATACAAAACCAACATCCGAGCACC CAGAGGGAGGAATATAAATGGAGGAATCATTCTAATTCCAAGAAAAGACTTAGACAGCCA AACAATAGACAGCCTGTCAATATAAAATAAGACACATTGCACACGTATGGCCTTTAAACA AGTAAACAAGCCACTTGCACAATTGGCACAGAAATAGAGTATAGAAAAGTCACAATAGCA

TAATACAAGACATAAACCAATGGAACGCAAAAAACAAACTCACCCAAATGGTATTCATAC CAAAGAACCATAACCTCAACCCATCAATAAAACCACATATATACAACTAACCAATATTTG ATAGATACTCTAAGATTGACCACATGCTTGGCCATAAAGCAAGTCTCAATGGATAAAGAA AAAAAATAACGTGGTACAATTCTATACATGCTTCCATATGCTCAGTGCTCATCGGAATAA AACTATGCAGCCATAAAAAAGAGATCTCTCAAAACCACACAAGATAAGACAGATGAGATC ATGTCCTAACCAAAAACATGAGAGAAAAAAATAAACAATATGCAGGGACTAAAAAAACAT TTGAAATGGATGAAACACTTAAATGTAAAGCTGGAAACTGAACATAAAAACCCTAGAAGA TATTCTAGAACAGCAAACTAACGCAGGACATTGGCATAGGCAAAGATTATTTGGATAAAA CAGGAAAACCAATAACAACCGCCTGGAGATTAGATAATGTTATTGAATCAATGCTCACTT ATAAGTATGTTGGGAGATGTAAAATTAAACAATGAGAGAATCCCCATCTTTTAAAGAAAC ACACAAAAACCTTGGACACAGGAAGGGGAAAGCAACACACACTGGGGACTTACTGTCGGA GGGTGGAGGGAAAAAAAAATAAATAAAATGGGAGGAGGGTGAGGATAGCATTAGGATAAA AAATACCTAATGGGAATTACAAAGCTTAATACCTGGGTATAAAAAGAACTCAGATGGGTT AATGGGAATACAGCAAACCACCATGGCACATAGTATACATATGTAACAAACCTGCACGTT CTGCAAGAAGATATACATGTACCCACCAAAACTTTTTATAATATAAAAATAAAATTTAAA AAAAAAAAAAAAGAAAAGAAAATAAAAA
>2_cons
AATGTATTAAAAAATTAAAAAAAAAAAAAAGAAGAGAGTTCCGGTTAGAGGGAGGCCGGC AATGGCGGCCGAGTAAGAGGCACCTGCAGCCCGCCTCTCCCACTAAAAGGAACACCAAAT TGAACAACTAAAAAAACTAGAAAAAATCTGCACCTATAAAACAACAATTTGAGAGAAGAT CACAGTACCTGGTTTTAACTTCATATCACTGAAAGAGGCACTGAAGAGGGTAGGAAAGAC AGTCTTGAATCGCCGACGCCACCCCTCCCCCATCCCCCGGCAGCGGCCGTGTGGCGCGGA GAGAGAATCTGTGCACTTGGGGGAGGGAGAGCGCAGCGATTGTGGGACTTTGCATTGGAA CTCAGTGCTGCTCTGTCACAGCGGAAATTAACAAAGAGAAGGAACCAACCGCCACAAACG GAGAGAAAATTCCAGGAAACACCAGAAACATGGAAAGAAACCGTCCCAGCGGTCGGAACC TGAGTTCCGGCAAGCCTCGCCACCGCGGGCTAAAGTGCTCTGGGGTCCTAAATAAGAAAA ACAGCCAGCCCAGCCAAGAGCGGCCGAGATCCAGGAGAGAGTCCAAAATCTGTGCATGCC CAAAAGCCGGGAAAAGCAAAGAGGACGCGACCTAGTGAGACACCAGCCTGAGTTCCCCAG CGGTCCACCGCGCAACACACTTTCTCACCACGTACCCCCCAGCTCTGAGCCACGGGAGAG CCACCCAACCCGCACGCGACCTGAGACTAGCATAGGGAGCAGAGGACTTTGTCCTGGAAG CCGGGAAGCCGCACTGCTACAGAGAGATAGGGCACCGAGCAACTTCATGAGGCACCCCAC GCACCGCCAAAACCCCAAGCAGAGCTTGCAGCCTCCAGCTTGAGCAGAGGGAACCCAGCT CCCACCATAGCACACAAGACTGCATCCTGCCCTGGGGCCCCCTTCCTCCACCCAGCCCCC ACTCATAGAACCCAGGCACGACCCAAGCCCCGGCAGCCCGAGAATCCTGGGGCCCTGATT GCTCTCCCCCAGAACCAACCAAGAACGCGCCAGGGGCACAAGACCAGCTGGACCCAGCAG TGCAGCAGGGTCCCCAGCACTCTAGCCCACACAGTGTCCCCGCTCACAGGCGTGCTGGCT TCAAGAATGAACCATCCAGTTCACCACTGTGGTAACTATGGCACCACACGCATCCACCCC GACAAAAGGAGGGGGCACAAAAAGGGAACCAAAGCGGCTACACCTCCCAGCCTGGGAGCT GCCTCTAAGGCAGGGGCGTCACCCACAGAGAGGACCCCTGCAGCCCCCAGCTGCAGGGCT GCCACACACCTGCACGCACCCTGAGGACAGGCTCTCCCTACCTACTGCTGCTGCCAGTGC AAAGTGTATGCTCCCCAGAGCCTGAGGACCACCTGCCTGGGGCTGCGCCCACGGACAGCA ACCCTGCCCCGACCCTGGCCCCAACAACAGCGCACGGCCGTGAAGGCGGGGCAAAAGGCC AGGACTCTCAAAAGCTCCCCCCCTGCCTACTAATGAGACTCGAGGCATAGAGTGGACAAC CCCAAGAGCCTGACAGCACCCGCCCTGGGCCGCGGCCACTGGTAGCAACACTGCCCCCCC CCCCAGCAGCAGGGCAGCTGAGCAACGGCTGGCACCCCGAGGACAGACTGCCCTTCCCAC CACTGCTGCTGCCACCCAGACACTAAGGCCTTCCTCCAGCGGCCTGGGGATCAGCCCGGC CCCACCAACAAAGGCCACCGGAAACACCCTGAGAGCACCACCCTGGAGGCCTGAGAACCG GACCCCCCGGCCCGACTCCAGCAACACCACTCCCTATCCGTGCCGGCTTGGGGCCAGAGC AAGCCTAACCCTGCCCCGATCGGATGGTCTTTCTCTACCAACCCTGGTAGCAGAAGACAA AAGACATAATCTCTTGGGAGCTCCCCAGCCCAGCCCACCACCACTGGAACCTAAGCACTC ATCCCGCGAGCCTGAGGGCAAGGCCACAAAACCCACCACCACAAAGCGGCAAGAAACCAC CACAACTGGCCCCCTCCTGAACGTGCCACCCAGGGGCCTGGGGACTGGCCCGCCCAGCCC ACCACAGACAAAGAAGAGAGCAGTAAGGAACCACTCGGGCGCCAGAGGAGGGGCCCACAA CTGCTAATGCCACTGCCCACGCCATGCCTGCTACCCAGGGGCCCGAGAACCTGCCCACCC AGCAGGCCCACTGCTACCACTGCTCCAACCCGAGAAAGCCCACCGCAGGCCTAGGGACCC CGTTTGTTTGGGGCCAGCCAAAAGAAGAGAAAACCAGTGCCAGCCTAGGAATCCCGAGAG

CCCCAGCACAGACCAACCAAGCCCACCGCTGCCGCCCCCAGACCAGTCCCCAAGAGCCAC AGCTGAGAGACCCATAGATGGTTCACATCTACAACCAAGGACCCTCACAGAGTCCACTTC ACTCCCCTGCTACCTCCACCGGCCCAAGAACTGGCATACCTGGCTTCCAAATCCACAGAA AAACAACATCACAGAAATCCTACAACACACCCCCCAAATAACTACCAAAGCCTAGAAACT CCACTGGGTGGCTAGAGCCACTGAGGAAATCACAGACACCACTGATACTGTTTAAAGACG AAAAAAACCTAAAGGAACGGGGAGAGCACCACATCAAGGGAGCAACCCCCACAATGCAAG AAGGCAAAAACCAGATCCAGAGTCTCCTATCCTCCCTACAACATAGGTACACCTAAAGGA AAAATGTCCTCCCCTACGAAAGCAAATTCAAAAAATTGGAAGAAGCAACTGTTACACCAG ATGCACAGATTTCAATAAAAAGAAACAAAAAATTACAAGAAATACGGAGGAAAGAAACAG GAAAAAGGACTACTATGACCCCTCCAAAGAAGCAGAAGAAAATCAATCACCAGAAACAGA CCCCGAGGAGACACAGAATCGTTAGTATTTGAATTACCAGACAAAGAAACTTTAAAATAA CTATTATAAAAGATGCTCAATGAAATAAAAGAGAAACATGGATAAAAAAAAAAAAGGAAGA CAGAAAAACAATAAAGGATAAGATCAGAGAAATTCAACAAAGAGATAAGAAATTATAAAA AAGAACCAAACAAACAAGAAATTCTAAGGAACTGAAAAATAAAACAATAACTGAAATGAA AAAACATATACACTGGAGGGGCTCAAAACAGCAGAATTGATACAATTGCAGAAGAAAAGA ATCAGTGAACTTGAAGACAGGTCAATAGAAATTATCCAATCTGAAGAACAGAAAGAAAAA AAAATTTAAAAAATTAAAATGAACAGAGCCTCAGAGACATGTGGGACACCATCAAGAGAT CCAACATATACATACATGGACAGACAAAAAACATATGAATTATTGGAGTCCCAGAAGGAG AGGAGAAGAGAGAGAAAGGGGCAGAAAAAATATTTGAAGAAATAATGGCTGAAAACTTCC CAAATTTGACCCTGAAAAGACAATAATATTAATATACAGATAGATTCAAGAAGCTCAACG AACCCCAAGCACACCTGGGAGAATAAACCCAAAGAGATCCACACCAAGGCACATCATAGT CAAACTGCTGAAAACCAAAGACAAAGAAAAAAAAAGAATCTTAAAAGCAGCCAGAGAAAA AAAGACACATTACCTACAAGGGAAAAAACAACAATAAGACTAACAGCAGATTTCTCAGCA GAAACCTTACAGGCCAGAAGACAGTGGAACGACAATTCTTCAAAGTGCTGAAAGAAAAAA AAAAAAAAAAAAAAACAAAAAAACACAGAATTCTACAAATAAAAAAAAAACTGTCAACCA AGTAAATTCTATATCGAAGCAGCAAAAATAATCCTTCAAAAATGAAGGAGAAATAAAGAC ATTCTCAGATAACGACAAAAGCTGAGAGAATTCATCACCAGCAGACCTGCAAACCTACAA GAAATGCTAAAGGAAGAGTTCTTCAGGCTGAAACGAAAGGAACACAACAAACAAAATCAA AACAAAAGAAAAAAAAAAACACACACACACAAAAAAAACACAAAAACAAAAGAAAAAAAC GCAGAAAGACAAGAAAGGAATTATGAAAGAAATCAACAGAAAAAAAAAAAAAAGAAAAAA AACAGAAGAAAGCCTACGGCACTTAACACACCAAAAAAGAAATAAAAAAAAACAATATAG AAATAACAGAAGGAAAAGACATAGAAAAAAGAAAAAGAAAACATATTTAACAAAAAAAGA ACAAAAAACGTCCCAAGGAGCAAAACAGAAATGAACATCCAGATCAGGAAGCTCAAAGAT CCCCAATTAGATTCAACCCAAAAAGATCCTCTCTGAGGCACATTATAATCAAACTGTCAA AAGTCAAAGACAAAGAGAGAATTCTAAAAGCTGCAAGAGAAAAGCATCAAGTCACATATA AGGGAATCCCCATTAGACTATCAGCAGATTTCTCAGCAGAAACTTTGCAGGCCAGGAGAG AATGGGATGATATATTCAAAGTGCTGAAAGAAAAAAAAAATAAAAAAAAAAAAACTGTCA GCCAAGAATACTATATCCAGCAAAGCTATCCTTCAGAAATGAAGGAGAAATAAAGACCTT CCCAGACAAGCAAAAGCTGAGGGAATTCATCACCACTAGAACTGGCCTTACAAGAAATGC TTAAGGGAGTGCTACAACTGGAAAGGAAATGATACACAGATAGAAACATGAAACCACAGG AATCATGGAATAAAAGACTGGCAGTGATCACCGGAAACAGGTAAATACATGGGTAAATAT AAAAAAATAATAATACTGTAATTATGGTATGTAATTCTTTTTTTTCTTTCTTAAATTCTC TAAAAGACAAATGAATGTTTAAAGATAAAATGTACAAAAACAAAAATAACTATAACAAGT GTCTGTAACTCCACATTTTGTTTTCTACATAATTTAAGAGACTAATGCATTTAAAAAAAT TATTAGATAAGGATGTGGGGCATATAATATACAAAAATGTAGATATAATAAGACTGTAAA ATGTATGACAACAATAACACAAAAATGGAAGTAGGGGGGGGGAAATTAGAAAGGAGAGTT TTTTATAGTGTTGTAAGGTTTTTACATTTTATACAACTGGAAGTAAGATAATATCAATTC AAAGTAGACTGTGATAATTAGAGAAATATAGGGTTAAGGATGTATATTGTAATCCCTAGA GTAACCACTAAAAAAATTATAAAAAAAAAAGATATACAAAAAAAAACAATTAAAGAAATT AAAAACGTAACAATAAAAAAAACATTCAAATAAACCAAAAGAAAGCCAGAAAAAAAGAAA AAAAGGAACAAAAAACAGATAAGACAAAAGACAAACAGAAAACAAATAACAAAATGACAG AAATAAGTCCAAACATATCAATATAACATTAAATGTGATTATGGATTAAAAAAAATGGCA AAAGCTGTCAGACTAGAGATTTAATATATATAAATCCAAATAAATAGTTAAAATGATAAG ACAGATAATACAAATATCAATAATAGGCTACATTAAATGTAAATGGACTAAACTCTCCAA TTAAAAGACAAAGAGATTGTCAGAATGGATAATTAAAAAAAATAAAAAACAAGACCCAAC TATATGCTGTCTACAAGAGACACACTTCAAATATAAAGACACAAATAGATTGAAAGTAAA AGGATGGAAAAAGATATATCATGCAAACGGAAACCAAAAGAAAGCAGGAGTAGCTATACT

AATATCAGATAAAATAGACTCTTCAAAACAAAAAATATAACAAGAGACAAAGAAGGTCAT TATATAATATAATGATAAAAGGGATAAAGGGGTCAATCCAACAAGAAGATATAACAATTA TAAACATATATGCATAAATATATATGCACCAAACAACAGAGCCCCAAAAATACATGAAGC AAAAACTGACAGAAATGAAAGGAGAAATAGACAAATCAACAATAATAGTTGGAGACTTCA ACAACCCACTCTCAACAATGGATAGAACAACTAGACAGAAAATAAGAAAAGAAACAAAAA AACACAACAATACAACAAAACAATAAACCAACTAGACCTAACAGACATCTAAAGAACATT TATAGAACACTCCACCCAACAACAGCAGAATACACATTCTTCTCAAGTACACATGGAACA TACACCAAGATAGACCATATCCTAGGCCATAAAACAAACCTCAACAAATTTAAAAAAAGG AAAAAAATAAAAAAAAGGATCTCCTACCACAACAAAAGAAAAAAAGAAAAAAACAACAAA AAAAAAACAGGAAAATCTACAAACACGTGGAAACTAAACAACACACTCCTAAAAAACCAA GGGGCAAAAAAAAAAACCAAAAGAAAAATAAGAAAATACTTTGAGATGAATGAAAATGAA GACACAACATACCAAAATTTATGGGATGCAGCTAAAGCAGTGATTAGAGGAAAATTTATA GCTGTAAATGCCTATATTAAAAAAGAAGAAAGATCTCAAATCAATAACCTAACCTTCTAC CTTAAGACACTAAAAAAAGAAGAGCAAACTAAACCTAAAGCAAGCAGAAGGAAGGAAATA ATAAAGATTAGAGCAGAAATTAATGAAATAGAAGAAAAACAATAGAGAAAATCAATGAAA CCAAAAGCTGGTTCTTTGAAAAGATCAACAAAATTGACAAACCTTTAGCTAGACTGACCA AGAAAAAGAGAAGACTCAAATTACTAAAATCAGAAATGAAAGAGGGAACATTACTACTAA CCTTACAGAAATAAAAAGGATTATAAAGGAATACTATGAACAATTGTATGCCAATAAATT AAGATAACTTAGATGAAATGGACAAATTCCTAGAAAAAAAGACACACAAACTACAAAAAC TGACTCAAGAAGAAATAGAAAATCTGAATAGACCTATAAAAATAAAGAGATTGAATTAGT AATATAAAAACTACCAACAAAAAAAGCCCAGACCCAGATGGCTTCACTGGTGAATTCTCC AAAAATTTAAAAAAGAATTAATACCAATTATTCACCTATTCCAAAAAATAGAAGAGGAGG AAAAACTACCAAACTAATTCTATGAGGCCAGTATTATCCTGATACCAAAACCAGACAAAG ACATAACAAAAGAAAAGAAAA
>3_cons
CTTGGCACTTAATTCACCAACTCTGGGAGCAGAGGGGATTGGACATATGAAAAGAGAGTG ACGTCAGCAAAAAGGTAGTCTTTTAGCCAAGATGGCGGACTGGAGGAGCAGCCAGGGTCC GCCCCCCCCAGGAGCAGCACAGAGAAAAACCAAAAAAATCGAGTTCCCTGTTTCTCCCTG GAAGGGGTTTATGAAACATTCACACTGCGAACACTTGCCAACAAAATCATCTAAGTGAGA GCACTGGGGATTCAGCAAAGAGGCGACGGCAACCAGGTGGAGCACCAGAGACTGGAAAAG ACCCAATGAAAGAGGAAGGAAGAACTGGATTACATTACCCACGGCACСССТСССССАССС GGGAACAGCACGAGAGCCAGGGGACACTCTCCCGGCCCCCAATGGCTCCTGCACGGGAAA GGGTGAGGGACTGTGCCATGAGGGAGCCCCAGCGCGGGGCCAGAGACCCCACTTCCCCCA CGGACCTAGCTGCAATCCTGGCCACAGGAGACCCCCCCAGCCCCCCCGACCACCAGGGTA CCCACGCACAGAGCCGAAACAGACCCCAAAGACAAAGCCTCTGGCCTGACACAGGGAGCA CAAGGTGTGCACTCCCCACCCCCAGTGACTCAAGCTGCTGCAGCACAGCCACCCGCTGCC CGGGAATGCTGCAGACTCCCTAGACCACAGGCAGAGCCAGAGCTCCAGCAGGCGGAGAGG AACATGCGCACCAGCCAAACCCCACAGGCCACACGGCTACTGCGCTACGCCACCTCGGAA CTGCCCCTTGACCCCGGGGGAGCCTCAGCATCCCGGCAAAAAGACATGCAACCCCGCCAA AACCGAAGCTAAGACGCCCCTGAACCACCCCAGCCAGCGAGCCTAGCCCCCGGAGCACGG CAAGCAACGCCCATCCCCGCACTTCCCCCCAAGGCGCGACAGCCGAGAACCCGCACCACC TACAACTTCCAGTCAAGCTACACAAACAGCGGCATACCCCCCCAGGACAGAGCTAAAGGG GGCTCTGGCCCCCGCCAGCTGCCGCACCACGGGCACCCAGGCTGGCCCCTGTGGAATCTT GCCTGCGGCACACGGAAGATCAAACCTGACCTTGTGGGGAAGGGATCCCCCAGCACAGCA CAGCTGCTCTACCAAAACGTGGCCAGACTGCTTCTTTAAGCGGGTCCCAGACTCAGCACC CCCCCCCCGGGCAAGACCACCTCCCCTGGGGCCAGAGCCTACCCCGCCCAGCCCCCACCG CAGCCTCGGAGTTGAAACCTCCCTGGGACGGAGCGCCCGGCCGGGGGGAGGCGCTGCACC TGCCCСTTTTCCCGGGAAGTACACGAACCGCCCATCCCCATGTCGGGGGCCTGAGCACAC CGGCCGCAAGCAACCCCCCACCCACCCGGGCGGCAAAACTCTGGGCCAGTGGCCCAGCCA ACCCCGTACCCGTATCACAGCCACAGCGCCCACCCAAGGGGCCCGCCCTCCAGGCCGAGG CCCAGACCCCCTCCCCCCAGAGTTCGACCACACACACAAAGGGTAAACAGCCCAGAGCCG GGGCCCCAGAAGAACCGGGGAAAGAGCCTCCCCCAGTTCCCTGCACAGCCAGCACACCCC CCCCCACCCCCCCGGGCAGGCCGGTGCCAGTGGCCTGGGGGCGCAGCACAGCCCCCACGC CCCCACAGCTGCGATCAAGCCAGGGCCCCAGACCCCTTTTCTGGGAAGGCCACAGGCCCC TCCCCACCCGGAACTCCCCTCCCCTGCCCAGAGAGGCCCCACACGCGGGGACTCTCCCGC CGGCCCGTGACCCAGCACTGAGCCCAGTTGCAGCTGCACCACCCTCTGGGGCCGCACCCA

CAGAGAGGGGCCCGAAACTCCAGCGGCCCTATCCCTGCCCCAGGCCAGCTGAAGGCTCCA GGTACTGGAAAATCCGAGGCGACTAGGGACTGGAGCGGGCCCCCAGCATACCGCAGCAGC CCTACGGAAAAGTGGCCAGACTGTTACGTGGGTGCCCGTTCCCATATCTCCTCACCGGGC AGGTCCTCCAGGCCTGGGCCTCCAGCCACCCCCCGCCAGAGCTATCGAGCCAGTAGCAAC TCGGCAACTCCCTGGACAGAGCCTCCAGGGGCAACTGGAATGCCCTCTGCCCCCACCCCA CAGCCGTCTGCCAGACAAAAAACCACGCCACCCAAGCAGCACACCAGCTATACACACCCA CGAACTACCCCCCGACCAACGATCCAACGACAGTCACCCACCCCCCCACCAAACCCCACT CACACCAAGGCCACCACGAGCCACCGTTCCGCCCGCCCCGGACAACCTCCGTGCACCCCG GCCCCAGAGAGGCACCCGCTGGCCCGAGCCTCAGGCAGGAGCACCACTAAGGAAGGGGGG AGTGCAAACAGCCCTGCACCCCCTGGCTGCCGGCCACAGGCGATAGCGGTCCCACCTATC GGAGGAGCACCCAGATGCCACGCCAGGCGACCCCCAGCACCCCTACCTCTAACAACAAAA GAAAACACACCGGCCAGAGTAACAGGCCCAGAGCGGGCCCCATTGCCCGGCCCGCCTCCC CGGCTGCCACCAACAGGCCCAACCAAAATAAACACTGAGATCGCCCCAGAGCTGCAGTGG GCAGCCCAGGAGTGCCAAGCCACGATCTGCTGCCAGCAGACAGGCAACAAAGTAAACCCC CCCCCAAAAAAATAAAGAGCAAAGCTGACCCCCACATTAGACAAAAAATGGAACAAGCAT CTGACAGCCCTGACTCTTCCCACAAGCGGCCGCTCAGGACAAAGACCCCAAACTTCAACT CTGCCACCCAAGCACACACCAGAGCACCAAGGCCAAGAAACCTGTGCTGACCCAGCCCCC CCTGAAACCAAGGACAGGAAATTAGCCACAAATAAAGATCCTGCACAGAGCCTTGGCCCT CTGAAAGCACCCAGAAAAGAAGCCAACAAACTCAACCCAACTTACACAGCCTTCCAAAAT CAAAGAAACCCCCAAGGAGATCCAAGAATACAGCACAAACAAACAGGAAAGCGAGAAAAA AACTCCACCAAAAGAACACACACTGCCTAAAAAAGACTGAAATGCTGAGCCCCTGAGTAC CTGATGTTAAAACCCTCAAATGGCCCACCACTCCCACTACTAGCTTCTAAGCAAACATCC ATAATGAGAAGAAACCAATCAGCAAAAGGGGCTCACACAAGGAATACAAAAAAAGCAGGA GAGAGGAAACATGACACCTACCAAAGGAACACAATAAATCTCCAGAAACGGCACAAAACC CTAAGGAAATTGAGATGTCTGGCTGAGTAAGAGCCTAATTGACAGACAAAGAATTCAAAA ATAACGATCATAAACAGAAGCTCAATGAGATACAGGACAAAAGCTATAGAAAACCAATTC AAGGAAACCAGGAAAACAATCCATGAAATAAATGAGAATTTCAACAAAACAGAAATAGAA ATTATAAAAAAGAACCACAAACAGAAAAATTCTAAGAGCTGAAAAATATACAATAACTGA ACCCAAAAAAAACCATTAAAAATTCAATAGAAAGTATCAACAGCGCGCGCAGAATAGATC AAGCAGAAGAAAGAATTCCCACTGAACTTGAAGACAGGTCATTTGAAATTATCCAGTCAG ACGAACAAATCCACAAGAAAAAAGAATGAAAAAAAATTGAAGAAAGCCTCAGAGACATAT GGGACAACATCAAACAAGAGAACCAACATATGCATAATGGGAATCCCAGAAGGAGAAGAG AAAAAAGAGAAAAGGCTCAGAAAGCATATTTAAAGAAATAATGGCTGAAAACTTCCCAAA TCTGGCGAAAGAGATGGTATATAAATCAAAAGCCAATAACATCCAGATACAAGAAGCACA AAGAACCCCAAATAGATTCAACACAAACAAAATAATCAACATATACACACAAAAAAACCA AATAAAAAAAAGTCAACAAGAAAAAAAAAATCTTAAAGGCAGCAAGAGAGAAAAGAAAGA TCACATACAAAGGAATCCCAATAAGACTAACAGCAGACTTCTCAGCAGAAACCTTACAAG CCAGAAGAGAGTGGGATGATATATTCAAAGTGCTGAAAGAAAAAAAATCTGTAGCCAAGA ATATTATACCCAGCAAAGCTATCCTTAGAAATGAAGAAATAAAATCATCCACATACCAAC CAAGAATAATATATCCAGCAAAACTAACCTTCATAAATGAAGGAGAAATAAAAACCTTCC CAGACAAACAAAAACTAAAGGAATTCATATCAACTAGACCTGCATTACAAGAAAACCCAA AGGGAAGTCTATAAACAGAAAAGAAAGAAAAAGAAATCAAACCACATAAAAACAATAAAA CACAAAACCACAAAGATATAAAAAAAAAATAGACAAAAAAATATACATAACAACCAGAAA ACAACAAAATGACAGAAATAAAATCTCACATATCAATAATAACCCTGAATGTAAATAGAA TAAACTCCCCATAAAAAAAAAAAATAATGGATAGATAAAAAAAAAAGAAACAACTAAACA САТССТАAAAAAAAAACACCCAACCCAAAAAGAAAAACATAGACGGAAACAAAAAAAATG AAAAAAGAAACACCATAAAAAAACAAACCAAAAGGAGAAGAAGTAGCAAGAAAGACACAA GACAAAAAAAAAGCAAAAACAAAAACTAGAAAAACAAAAAAAAAAGACAAAAGAAAAAAA AAAAACGACCAATTCAGCAAGAGATATAATTGTAATATGTGTACAATTGTAAATATATAT GCACCCAAACACTAGAGCACCCAGATATATAAAGCAAATATTATTAGATCTAAAGGGAGA GATAGACCCCAATACAATAATAGTTGAGGACTTCAACCCCACTCTCAGCATTGGACAGAT CATCTAGACAGAAAATCAACAAAGAAACATGATTTAAACTGCACCATAGACCAAATGGAC CTAAATAACAGACATTTACAGAACATTTCACCCAACAGCTGCAGAATACACATTCTTTTC ATCAGCACATGGAACATTCTCCAGGATTGACCATATGTTAGGACACAAAACAAGTCTCAA CAAATTTTATCAAGTATCTTATCTGACCACAATAGAATAAAACTAGAAATCAATAACAAG AGGAACATTCAAAACTATACAAATATATGGAAATTAAACAACATGCTCCTGAATGACAAT GAGTGAAGAAGAAATTAAGAATGAAATTTAAAAATTCCTTGAAACAAATGAAAATAGAAA
>4_cons
GAAGGCGGAACAAGATGGCCGAATAGAAGACTCCACCGATCATCCTCCCTGCAGGAACAC CAAATTGAACAACTATCCACACAAAAAAATACCTTCATAAGAACCAAAAATCAGGTGAGC GATCACAGTACCTGGTTTTAACTTCATATCACTGAAAGAGGCACTGAAGAGGGTAGGAAA GACAGTCTTGAATTGCCGATGCCACCACTCCACCATACCCGGGCAGTGGCAGAGTGGTGT GGAGAGAGAATCTGTGCGCTTGGGGGAGGGAGAGTGCAGAGATTGTGAGACTTTGCATTG GAACTCAGTGCTGCCCTGTCACAGTAGAAAGCAAAACCAGGCAGAACTCAGCTGGTGCCC ACGGAGGGAACATTTAGACCAGCCCTAGCCAGAGGGGAATCGCCTATCCCAGTGGTCGGA ACCTGAGTTCCGGCAAGCCTTGCCACCGCGGGCTAAAGTGCTCTGGGGATCTAAATAAAC TTGAAAGGCAGTCTAGGCCAAAAGGACTGCAAATCCTAGGCAAGTCCTAGTGCTGAACTG GGCTCAGAGACAGTGGACTTGGGGGACACATGACCTAAGGAGACACCAGCTGGGGCAGCA AAGGGAGTGCTTGCACCACCCCTCACTAAACTCCAGGCAGCACAGCTCACGGCTCCGAAA GAGACTCCTTCCTTCTGCTTGAGGAGAGGAGAGGGAAGAGTAAAGAGGACTTTGTCTTGC AACTTGGATACCAGCTCAGCCACAGTAGGATAGGGCACCAAACAGAGTCATGAGGCCCCC ATTCCAGGCCCTGGCTCCCGGACAACATTTCTAGACACACCCTGGGCCAGAAGAGAACCC GCTGCCTTGAAGGGAAGGACCCAGTCCTGGCAGGATACATCACCTGCTGACTAAAGAGCG CTTGGGCCCTGAATGATCAACAGCGATACCCAGGCAATACTCAATGTGGGCCTTGGGTGA GACTCAGAGACTTGCTGGCTTCAGGTGTGACTCAGCACATTCCCAGCTGTGGTGGCTATG GGGAGAGACTCCTTATGCTTGAGAAAAGAAGAGGGAAAAGTAAAGGGGACTTTGTCTTGC ACCTTAGGTACCAGCTCGGCCACAGTGGGATAGAGCACCAAGTAGGCTCTTGGGGTCCCC GATTCCAGGACTTGGCTCTTGGATGGCATTTCTGGACCTGCCCTGGGCCAGAGGAGAGCC CACTGTCCTGAAGAGAGAGTCCCAGGCCTGGCAGCATTCACCACAAGCTGACTGAAGAGC CCTTGGGCCTTGAGAGAACATTGGCGGTAGCCAGGCAGTACTCTCCATGGGCCTGGGATG GTGGTGGCCACAGGGAGCGACTCCTTTGCCTGTGGAAAGGGGAGGGAAGAGTGGGAAGGA CTTTGTCTCGTGGTTTGGGTGCCAGCTCAGCCACGGTAGAATAGAGCACCAGGTAGATTT CTAAGGTTTCTGACTCCAGGCCCTGGCTCCCGGATGACATCTCTGGACCTGCCTGAGGCC AGGGGGAACTTACCACCCTGAAGGGAAGGACACAAGCCTGGCTAGCTTTTACAACTGCTG ATTGTAGAGCCCTAGGGCCTTGAGCGAACATAGGCGGTAGCCAGGAAGTGGTTACAGCAG GCCTTGGGTGAGACCCAGTGCTATGCTGGCTTCAGGTCTGACCCAGCACAGTCCCAGTGG TGGTGGCCACAGGGGTGCTTGTGTCACCACTCCCAGCTTCAGGCAGCTCAGAACAGAGAG AGAGACTCCATTTGTTTGGGGGAAAGTAAGGGAAGAGAACAAGAGTCTCTGCCTGGTAAT CCAGAGAATTCTTCCGGATCTTATCCAAGACCACCAAGGCAGTACCTCTATGAGTCTGCA AGAACCACAGTGTTAATGGGCTTGGGGTGCCCCCTAAAGCAGATATGGCTACATGACCAA AAACTTAGATCAAAACACCCAAGTCCATTCAAATACCTGGAAAGCCTTCCCAAGAAGAAT GGGTACAAACAAGCCCAGACTGTGAAGACTACAATAAATACCTAACTCTTCAATGCCCAG ACACTGACGAACATCCACAAGCATCAAGACCTTCCAGGAAAACATGACCTCACCAAACGA ACTAAATAAGGCACCAGTGACCAATCCTGGAGAAACAGAGAGATATGTGAACTTTCAGAC AGAGAATTCAAAATAGCTGTTTTGAGGAAACTCAAAGAAATTCAAGATAACACAGAGAAG GAATTCAGAATTCTATCAGATAAATCTAACAAAGAGAATGAAATAATTAAAAAGAATCAA GCAGAAATTCTGGAGCTGAAAAATGCAATTGGCATACTGAAGAATGCATCAGAGTCTATT AACAGCAGAATTGATCAAACAGAAAAAAGAATTAGTGAGCTTGAAGACAGGCTATTTGAA AATACACAGTCAGAGGAGACAAAAGAAAAAAGAATAAAAAACAATGAAGCATGCCTACAA GATCTAGAAAATAGCCTCAAAAGGGCAAATCTAAGAGTTATTGGCCTTAAAGAGGAGGTA GAAAGAGAGATAGGGGTAGAAAGATTAATTCAAAGGATAATAACAGAGAACTTCCCAAAC CTAAAGAAAGATATCAATATTCAAGTACAAGAAGGTTATAGAACACCAAGCAGATTTAAC CCAAAGAAGACTACCTCAAGGCATTTAATAATCAAACTCCCAAAGGTCAAGGATAAAGAA AGGATCCTAAAAGCAGCAAGAGAAAAGAAATAACATGCAATAAAGCTCCAATACGTATGG CAGCAGACTTTTCAGTGGAAACCTTACAGGCCAGGAGAGAGTGGCATGACATATTTAAAG TGCTGAAGGAAAAAACTTTTACCCTAGAATAGTATATCCAGTGAAAATATCCTTCAAACA TGAAAGAGAAATAAAGACTTTCCCAGACAAACAAAAGCTGAGGGATTTCATCAACACCAG ACCTGTCCTGCAAGAAATGCTAAAGGGAGTTCTTCAATCTGAAAGAAAAGGACGTTAATG AGCAATAAGAAATCATCTGAAGGTACAAAACTCACTGGTAATAGTAAGTACACAGAAAAA CACAGAATATCGTAACACTGTAATTGTGGTATGTAAACTACTCATATCTTAAATAGAAAG ACTAAAAAATGAAACAATCAAAAATAATAACTACAACAATTTTCAAGACATAGACAGTAC AATAAGATATAAATAGAAACAACAAAAAGTTAAAAAGAGAGGGGATGAAGTTAAAGTGTA

GAGTTTTTATTAGTTTTCGATTGTTTGCTTGTTTGTTTATGCAAACGGTGTTGTTATCAG CTTAAAATAATGGGTTATAAGATAATATTTGCAAGCCTCATGGTAACCTCAAATCAAAAA ACATACAACAGATACACAAAAAATAAAAAGCAAGAAATTAAATCATACCACCAGAGAAAA TCACCTTCACTAAAAGAAAGACAGGAAGGAAGGAAAGAAGGAAGAGAAGACCACAAAACA ACCAGAAAACAAATAACAAAATGGCAGGAGTAAATCCTTACTTATCAATAATAACATTGG AATGTAAATGGACTAAACTCTAATCAAAAGACATAGAGTGGCTGAATGGATAAAAAAAAC AAAACCCAATGATCTGATGCCTACAAGAAACACACTTCACCTATAAAGACACACATAGAC TGAAAATAAAGGGATGGAAAAAGATATTCCATGCAAATAGAAACCAAAAAAGAGCAGGAG TAGCTATACTTATATCAGACAAAATAGAATTAAAGACAAAAACTATAAGAAGAGACAAAG AATGTCATTTAATGATAAAGGGGTCAATTCAGCAAGAGGATATAACAATTTTATATATAT GCACCCAACACTGGAGCACCCAGATATATAAAGCAAATATTATTAGAGCTAAGAGAGAGA TAGACCCCAATACAATAATAGCTGGAGACTTCAACACCTGTCTTTTAGCATTAGAAAAAT CATCCAGACAGAAAATCAACAAAGAAACATTGAACTTAATCTGCACTATAGACCAAATGA ACCTAATAGAAATTTACAGAACATTTAATCCAACAGCTGCAGAATACACATTCTTCTCCT CAGCACATGAATCATTCTCAAGGATAGACCATATATAAGGTCACAAAACAAATCTTAAAA CATTCAAAAAATTGAAATTATATCAAGAATCTTCTCTGACCACAATGGAATAAAACTAGA AATCAATAACAAGAGAAATTTTGGAAACTATACAAACACACGGAAATTAAACAAAATGCT ACTGAATGACCAGTGAGTCAATGAAGAAATTAAGAAGGAAATTAAAAAATTTCTTGAAAC AAATGATAATGGAAACACAATATAACAAAACCTATGAGATACGGTAAAAGCAGTACTAAG AGGGAAAGTTTATAGCTGTAAGTGCCTACATCAAAAAAGAAGAAAAACTTCGAATAAACA ACCTAATGATGCATCTTAAAGAACTAGAAAAGCAAGAGCAAACCAAACCCAAAATTAGTA GAAGAAAATAAATAATAAAGATCAGAGCAGAAATAAATGAAATTGAAATAAAGAAAACAA TACAAAAGATAAATGAAACAAAAAGTTGGTTTTTTGAAAAGATAAACAAAATTGACAAAC CTTTAGCCAGAATAAGAAAAAAAGAGAAGACCCAAATAAATAAAATCAGAGATGAAAAAG GAGACATTACAACTGATACCACAGAAATTCAAATGATCATTAGAGGCTACTATGAGCAAC TATATACCAATAAATCGGAAAACCTAGAAGAAATGGATAAATTCCTAGACACATACAACC TACAAAGATTGAACCATGAAGAAATCCAAAACCTGAACAGACCAATAACAAGTAACGAGA TCGAAGCCGTAATAAAAAGTCTCCCAGCAAAGAAAAGCCCGGGACCTGATGGCTTCACTG CTGAATTTTACCAAACATTTAAAGAATTAATACCAATCCTACTCAAACTATTCTGAAAAA AGAGGAGGAAGGAATACTTACAAACTCATTCTATGAGGCCAGTATAACCCTGATACCAAA ACCAGACAAAGACACATCAAAAAAAAAAAACTACAGGCCAATATTCCTGATGAATATTGA TGCAAAAATCCTAAACAAAATACTAGCAAACCAAATTCAACAACACATTAAAAAAATCAT TCATCATGACCAAGTGGGATTTATCCCAGGGATGCAAGGATGGTTCAACATATGCAAATC AATCACAATCGATATGATACATCATATCAACAGAATGAAGGACAAAAACCATATGATAAT TTCAATTGATGCTGAAAAAGCATTTGATAAAATTCAACATCCCTTCATGATAAAAACCCT CAAAAACTGGGTATAGAAGAACATAACTCACGACACAATAAAAGCCATATACGACAGACA CACAGCTAGTATCAAACTGAATGGGGAAAAACTGAAAGCCTTTCCATTAAGATCTGAAAC ATGACAAGGATGCCCACTTTCACCACTGTTATTCAACATAGTACTGGAAGTCCTAGTTAG AGCAATCAGACAAGAGAAAGAAATAAAGGGCATCCAAATTGGAAAGGAAGAAGTCAAATT ATCCTTGTTTGCAGATGATATGATCTTATATTTGGAAAAACCTAAAGACTCCACCAAAAA ACTATTAGAACTGATAAACAAATTCAGTAAAGTTGCAGGATACAAAATTAACATACAAAA ATCAGTAGCATTTCTATATGCCAACAGTGAACAATCTGAAAAAGAAATCAAGAAAGTAAT CCCATTTACAATAGCTACAAATAAAATTAAATACCTAGGAATTAATATAAAAAAAAAAAAT GAAAGATATCTAAAATGAAAACTATAAAACACTGATGAAAGAAATTGAAGAGGACACAAA AAAATGGAAAGATATTCCATGTTTATGGATTGGAAGAATCAATATTGTTAAAATGACCAT ACTACCCAAAGCAATCTACAGATTCAATGCAATCCCTATCAAAATACAAATGACATTTTT CACAGAAATAGAAAAAACAATCCTAAAATTTATATGGAACCACAAAAGACCCAGAATAGC CAAAGCTATCCTAAGCAAAAAGAACAAAACTGGAGGAATAACATTACCTGACTTCAAATT ATACTACAGAGATATAGTAACCAAAACGGCATGGTACTGGCATAAAAACAGACACATAGA CCAATGGAACAGAATAGAGAACCCAGAAACAAATCCATACATATACAGCGAACTCATTTT CGACAAAGGTGCCAAGAACATACACTGAGGAAAAGACAATCTCTTCAATAAATGGTGCTG GGAAAACTGGATATCCATATGCAGAAGAATGAAACTAGACCCCATCTCTCGCCATATACA AAAATCAAATCAAAATAGATTAAAGACTTAAATATAAGACCTCAAACTATGAAACTACTA AAAGAAAACATTGGGGAAACTCTCCAGGACATTGGATTTGGGCAAAGATTTCTTGAGTAA TACCCCACAAGCACAGGCAACCAAAGCAAAAATGGACAAATGGGATCAAATCAAGTTAAA AAGCTTCTGCACAGCAAAGGAAACAATCAACAAAGTGAAGAGACAATACACAGAATGGGA GAAAATATTTGCAAACTACCCATCTGACAAGGGACTAGTATCCAGAATATATAAAGAACT

CCTACAACTCAACAATAAAAAAAACAAACAACCCAATTAAAAAATGGGCAAAAGACTTGA ATAGACATTTCACAAAAGAAGATATACAAATGGCCAATAAGCATATGAAAAGATGCTCAA CATCATTAGTCATCAGGGAAATGCAAATTAAAACCACAATGAGATACCACTTCACATCGC CCATTAGAATGGCTAAAATCAAAAAGACAGACAATAACAAGTGTTGGCGAGGATGTGGAG AAACGGGAACTCTCATACACTGCTGGTGGGAATGTAAAATGGTACAGCCACTTTGGAAAA CAGTTTGGCAGTTCCTCAAAAAAGCCTTAAACATACACTTACCATATGACCCAGCAATTC CACTCCTAGGTATATACCCAAAAGAAATGAAAACAAGATGTTCACAAAGATACCTGTACA CGAATGATTCATAGCAGCATTAGATTCATAATAGCCAAATAATTGGAAACAACCCAAATG TCCATCAACAGGTGAATGGATAAACAAAATGTGGTATATACATACAATGGAATACTATTC AGCCATAAAAAGGAATGAACTACTGATACATGCAACAACATGGATGAATCTCGAAAACAT TATGTTTAAGTGAAATAAGCCAGTCACAAGAAGGATACATACTGTATGATTCCATTTATT AAATATGAAGTATCTAAATATAATCAAAAAGACAAGCAGGCAAAACTAAAAAATATATTG TTTAGGGATACATACATATGTGGTAAAACTATAAAGAAAAGCAAGGGACTCATAGAGACA GAAAGTAGCACAGGAAAGATAAACAAGAAACTAATAATAGTGGTTACCAGGGGCTGGGAA GGGTAGTGGGGGGGAGGGGGAGAGGTGGGAGTGGATGGTTAATGGGAGTACTTTTCAAAA GGTTCATTTTGGGATGATGAAAATGTTCTATATAAACTATTCTGTATTTGATTGTGGTGG TGGTTGCACTGTAACAGTGTGAAATATACTTAATATAATATTGAAATTTGCCAAAACCCA CAGAACTTTACAGCATAAAGAGTGAACTTTAATGTATGAAAATTTTAAAAAAACAAACAA GAAAAAGGGAGATCACAAAATGAAATACAAACTGAAACAAAAGAACCTAACTGTATTACA AATGAATAACATAACCTCACTGAAGGGAATAAGGAAAAAAAGTACTAAACTAAATAACTT TAGAAATGAGTATTTTGACTACACACTCTAAGACTAAAGACAAAAAGAACTGTTAAAAAT AACTGAACCCTAATGAATAAGCTTATTTTCCACAGGGGCACAGGTTAACAATTCTGACAC TACTATATATATATATTAAAATTAAATAAAAAGGTAAATATATTGAAGATAATGGGAGCC AGGTTTCTCACTGTCGGAGTAGGGAGTTACAAATATGGAAAGGGAGAAGACTAGAATGAA CCCTGTGGTATTGGATTGGAATTGGAGGTATCAGTATGAACTCATGCCTTTTAATATAAA TAGATATACAGACAGACAGATATAGAAATAGATATAGATATATATGTGTATGTGTATATG TGTATGTATATACGTACATATATTTCCTAGCTCTGTCCACTGAGAGGGCCTAGAAGCAAT GACACCCCAGTAGCAATGAGCACACCTAGCACCATGATCTTGGTATGTAAATACCATTCT CCACTAAAAGGAACCAGGGCTCCTTGGAGAAATGGCTGATTCCAGGGCGCACAAAGAAAA GATACAAGATGAGCCTGGAACATCTTGCAGTGCCAGAAAATAAGGAAGTGCTCAAAAAAA CAAGGAGACAGGTATGCAAAAGGAAAAAAGAACCAAACTGAAAGAGCTCCCAATGGCCAA AGCTGGGACAATTTAAACAAAAAAAGAAAATGCTTGAGGTGATGGATACCCCATTTACCC TGATAACACAGGTGATTATTATACATTCTATGCCTGTAACAAAACATCACTATGTAAATA AAGAAAAAGAGAAAACTCTTCCTTACAGTAGAATGCCAACTAATAAATGTAGAAGGAATG ATGGAATTAGAAAATCACCATTTGAAAAAAATCACAGTAACAAAAGAATCACAAAAAAAT CATCAAGAGATCCTAAAACCAAGGAAGGAAAGCGTAACGACCAACACCATAAGTACAGAA TCGAAAAAGAGACCCCCACAAAAAAAGCATAAAATACAAAGGAAAAAAAAGTAAATTTAC AGTAGAGAAACCTGACAAACACCACCTTAACCAAGTAATCAAAGTTAACATCAACAATAA TAAGACAAATCGACAGCATATACCCCCTGAGATAAGACACGAAAAAAAACACAACACAAC TCCGGGGGCATCCCCCCAAAAAACCAAAAACCCAAACCAAACAATAAAAAAACATCAGAC AAACCCAAACTGAGGGACATTCTACAAAATAACTGACCAGTACTCCTCAAAACTGTCAAG GTCCTCAAAAACAAAGAAAGACTGAGAAACTGTCACAGACAAAAGGAGACTAAAGAGACA TGACAACTAAATGCAACGCGGGATCCTGGATGGGATCCTGGAACAGAATTTTTTTTGCTA TAAAAGAAAATAAGGGAAAAACTAACGAAATCTGAATAAAGTATGGACATTAGATAATAA TAATGTATCAATATTAATTTACTAATTGTGACAAATGGACAGATGTTAAGAAAGAGAATG TCСTTGTTTTTAGGAAATACACACTGAAGTATTTAGGGGTAAAGGGGCATCATGTCTGCA ACTTACTCTCAAATGGTTCAGAAAAAAAAATATGTATATGAAAACAGAGAATGATAAAGC AAATGTGGCAAAATGTAAACATTAAATATATACAGATGAAGGGTATACGGGAACTCTCTG TACTATTTCTTCAAATTTTCTGTAAATATAAAACTAAGCTTAAAAAAAAAAAAGTAAAAT TTAAAAATAAAAA

LTR consensus sequences:
>1_cons
GTTTTTGGCAACCAAGGAAGGGGGTCGAGGTAGAGAAAATGCTAGGCATTCAAAAATCTC СТТТТССТТТТТGСТАСАAACAGGAGATAACCTCACGCTCTAAGCTCAAAATACTTTTCA

ACCTCGGACCAATGGGGCAAAGCGCCGAAACATGGAAGCAACTCCAGGTTTCTGGCCGTG GCCAGTGAAACTAAGGAGTTTCCATGTAGAGAAAACCAACCACCACCCCCCATTTCACCC AGGGGTCAGGAGTCTTTTCCTGTACTATTCCTCTCTTTTTCGAGTTCAACCTGTTTCCAA CACAAGAGAGGCGGCTTCCTCCTACCTCCATGAAAATGGAAGGCAAGTAGCTGGGGTCAC TCCCCAGTACTGCCTGAAGGCCTAGGAATGAATGGGAATAATTGCCCTGCCCCGAAGGGG GAATGAAACTTTTATTTTTTTATCTTTTCCGAGTGTGGTCCCTGATCCCTACATGCGGCA CAGCTCAGAGCAAACTCACACGTGTTTCAGGAGACTTAAACCTTCTTTTCTTATGCTAAA TTCTTCCCTTATCGTACTCAACTGGCTAAGGAACAAAAAGGCCCACCCAGCATCCAGTTC CTATCATTACAGTTCATGGCTATAACTAATGGAATGGAAAGCACGGGAAAGCGTGGCGTT ATCAAATTATAAGAATGCTAAAAGATGAGGCCTCCATCCTGGAGCTAGAACACACCTCCA AAAGGGCACCAGAGGCATAGCACCCAAAGTGGCGATGGTAGCCACCTATCCTCAGAGTCA TCCCCAACCCTAGGAAAGGAACCCAATTGGGGTTTGTCTTGGAGATAATCCCTATCGGAT AAAAATTAAGCTTAACTCTCTAGAAAAGAAACCATTAGCACAAGAACTAAAGATTAATAC CCAGCCACTCTTAAAATCTTCTTTCGAAGTTGCAATACTGTGTGGACCCCATATTGTTTG GAATCTGAAGTTTACTGTTGAATGAGAAAGCGAAACAACCATATAAGTTGCGAGACCATT GGGCTGCCTTAACAACCAGGGGGCCTGGTGAACGTGTTAGATCTTCCTTTTGTACACCTT GCCACCAGTTTACTTTTGAGTCTGACCAACTTTATCCTATAAAAAAAGTATTGCCAGGGA AGAAAAACGGCCAGCAAAAGGAAAAAATTGAACTTGTTTACTTTGACTACTATACCCGAA AGAGTGTTACAAATCATATGTGAAATTGTCTGTGGAGTCGCGAAACACCCACAAAATGTA ACAGTTTGGAGGGCTCAGAAAGAGAAAGAAAATGTTATGTTAGATTTTAGCTATAGAGAC AAAGCTGTAAGAGCTTTGGCTATGAATGTATATACGGCTCGAAGCAAATTTATATGTAAG CACCCATATTGTTTTACGTTCTCACTGCCACAACCTGCATCCAAGTAAAAAAGCAAACAC AAATCAAGTAAATAAGTCAGAGCAATTTTCAAGTTCACATGACTATAAGTATAACTTTAC TAAACAAGCAGCTTTATAAATTATTGAGGAAATAAAAATAGAAATGCCTTCAGAATTGCT AGCATACGTTTTGATCTAAGTTTTAGTTTAGTCTCTGCTACTTATGAAGAAGGATCATGG TTTGGCATAGAAAGTTATAAAACTATAAACCCAGCCAAAACAAAATGATCTTGGTTTGCC TGCCCTTTTTTTTTTTTGACAAATAGTAGCAATTTAACATGAACAATAAAGTCTGAGCTG TTGGCCAAAATATCTATGTACTTAACTTTGAGGCTCTTACTTAGGTTTGGGTGAGCACCT GATGTTCACTGGCTATTAAAAATGTGGTTAAAAAGGAAAAAAAGAACTTAAAAGAATAGT GTAAAAGAGCTCAATGGACAAAAGTAAGCTAAATAAAAAGGCTAAAATCCAAAATGTAAG TACATATGAATGCGATAAATGTTTTAGGTAAACTTTTTGTGTAAATTAAAATCTTAAAAT TATATTTGATGCTCATTAAATATCTGGGTAATCTTCCATAAGGGAAGGGTTGCAATCTGG AGAAATACATGTTTGAATTTTGTCGAATGTTGATTCTCTTTAAGTCCCCGTAACGAATCG ACCAGAATTTCTCTCTAGACAGAGAAATTAATTCTAAGTTCTCAATAAAGTTTTAAGCCA CCAAGGACAAAATTCCAGTTAACACATAATGTACCAAACAAAACGAACCAGAAAAGGCTT CGATATTAATGAGAAAAAGAATAATTTTATCTAATTCAGAAGTTATATAAAAGTTAGTTC AAATTACAGAATTAAAAAGGTTATTTATGAAAAAATGTACTAAGAAAAAAAATAAGTAGGG GAGAAAAATGTGGAAAAAGTTTAAATAATAAAATATTCTTTAAAACCTGATAAAGAATTG GAGACATTTGACTAATTAACATTTTCATAGTTAAAGCTGTTAGTCTTGAATAATAAAATA AGAAGTATTATATAAGAACCCATAAACAACTCAGAAAATACTTCATACAAACACAGTTAA ACAATAAACTTAATTTAGTCCTGAGCCAAACTCAAAAGAAATAAATACACAGATTCCCCC CAGGTTTACTGTTTTGCGTGGATAGTGATAGAACTTGGCTGTTTGAGAGAGATGATTTAG GAAAACACCTTAATTGACTTTTTTGATTGAACAGGATGTATAATGATATTGGTAGACTTG AGGAAACAGAAAAGCGTACAAGGGGTGAAATGTGAGCCATGTGAGTTTTTTTGGGGGACC CTAGGTAACACTATAGTCTCCAAGGTAAATTGAGTAGGAAAATTTAGGGTTGGTATCCTG TTTAATTGTATTTGCTTCAAATTTTCATTCGTTTGCTGTTTATTTCTCCTCTGGCTTTAC TTGTGTGTGATCGTATATACATAAAACAATTGATTTTTTTGATAAGTTTTTTAGTTACTA GTGGAAGGCTTTTATTTGGTTCTGTGGATAGTTATTTTGTTTCCTATGCTATATCATTAC TAGCAAGTCATCATTTGTTCCATTTATCTGGAATGCAAAAGAGACCACTGTTAGGCCCGC AAGAAATAATGTAGTACACAAACTTTTCTATCCTATTATAAACTAACTTTTTGGAATTTA GGCTTCCTGATACTTTAAGGAACTTAAAAATATTTTCGTAAAAAGAATTAAGCTCAATAT TTCTCTTTCTCTGCCTAATTTCTCAAAAATGCATAAACTAGTTATGACTATTCTTAATTC ACCCTTATGTGATTCTTTGCATACACAGTCAAGCAGGGATGCTAGGGCAGCTCAGGGAGA GAGAACCCAAGGGCATTCAGGTTTGGAAGAGAAAGAGTGAAAATTTCTTTCTAAATAGAC TCAGTCСТСТTTCTCAATTTTATCATACCTCTCTAAATAAATTAATGAGAGAGTAGAAAT CACTGTTTAACTCATCTCTAAAACCACAAAACAATGAACCCCAGAAATTTAAGGCGGATA TTTAGCTATAAAAATTTTCATCTGCTACATGTATCCTTCTATATTAAACTGTAGAAAAAA

GGGGTACATTAGGATAAAATGCGTGCCTAGGACTCCATAGGCTTGCTGTTCAAGATGGCC CAGCAAACTGGACAGTCATGTCCTTGGGAGCTTGACCTCGTAACCATGTGGCCATGCTTT CATACCCCTAGGTCACTAAAACAGCTCAACAAAGAGTTCAATAACTAAATTAGGAAATTG GAAAACGAAATATCATAAAGCTACTGGGTCTTCTTCTATCTGTCTGTGTAATACGTCTAT GTATGTATGTGTTGTGTGTGTAATGTATCACTACTAAAAATACAAAAAAGAACCTAAATT GATCTGCATAATAAAAAAAAAAAAAATTTGAATCAAATATTTTATGAGGAGAGAAGAAAG AACGAGTCAAATGCTTTTTCAAGTTAATGAAGTACTTTATTAAGTTCATGTGACTTAAGT AATATTTAAGAGAAAGAGACAGCCTAAGGTTAATCCCCAAAGTATTAGAAAAAAGATATC AAAAATGTCTTAAAAAATGTAAAAATACATTTTGGTCTAAATTATACAGATCAAATACTT TCATACTTATCCCTGCCAAATACTATAAAGGTGTCAAAGGTTGGCTAAAATGTTTTAAGG TTATAAACCCAGCCCAAAACAGAATGATCTTTGCTTGTTTGATTTTTAAAAATTATTAAA TTGATATTGGAATAATGAAAAAAGCTACATCTTGAATTTAGTAAGATTACCATAACTTCT AACCTTGTGGCTTTAGGCGATATTTAAATGATGACTATCGCAGTTTTCATAAAGAATCTA GGTAAGCAATTAATAAAATAATTAGGTAAATGTAATGGGATAAATACCTGGAGACAAACT TGTCATAATTTAGAATATAAAGTTATATTAAATTAAATAATAGATAATTAATTATTTGAG TATTTTCCAATAAAAATATATTGTAGGAAAACATTCTTACTTAAAAAAAAAGTGTGTCCTT TTTAAAAAAATGGTGAATAAGTTTTGTCTAATTCAAAGCTTATTTAAAGGTTATATATAA AACAAGGTAAAAGGAACCAGGAAATAAAAAAAATGTAAAGAAAGTTATGAAAATAAACAC GTCACCTAGCTATGCAAAAAAGCTGAAAAAGAAAAAAAATCATATGAGAAAGAATCTTAT ATGGTAAATTCATAAGAAAGAATCTTATATGGTAAATTCTTGTCCTAAAATAAAATAACA GGTTGTTAAAAAAGAGAGATGTTTAGGACAAATCAGAAAGTCCAAGCATATTATAAATGG TCTGTGTAAATCATAAAAAAATTTACAAAAAAAGAAATTAAAAAAATTTATATGATTAAG TTGGCTATAATTAAAAGAAAATTATTTATAATAGTCTTTCTAGAGATTGAAGTTTGATAT TAAAAATACACTAATACACTAAAAATATGCAAGAAAAACAAAACAGTCTAAAAGTAATGA GGCATCCAAAAAACTACAAAAGATGTTAATGTGAATCCAAAAATTCAACATCTATTCAAC CTCACTGCTTTAAAGCTAGGTATACCCCGTAAGAACACATGAAATAACAACTCCCCCCCC AAACTCTACTGTCAGCTCCTGTAATTTTTTCCTCAGGTTCTAACTGATGTTGTGTACTGA TGCTGGAAAGGGTCAAACCTAAAGGTCTAAAAGAAATGTTTTCTTCCAATATAACATTCT GTACTCAACTTTTCTTGATGTGTCTGAACTGCTCCATGAAACCAAAAAACCACACCTAGA ACACTGGAAACACTCTTCCTTGTCTAATTAAAAAAACCACAACTTACCAAGGTTTACATT AAAGTTAAAAGTCGACAGCAGTTCCCATTATAACAGACAAAGGAACCTAGTGAAGAAAGA AAGCCTTGGAGAAAAGGCCCAGGGTCCCTGTGACGGAAGTGGCCAAAGAAAAAGATTTTA TGTTTTATCAAAAAAAGTTTGGTGTTTTTAGGAACAGGTTATTAAGAAGCAAAGGAAAAC TGAATTTTTAATTGTGCAAAAAAGGGTAAAAGCATCCATGTATCTTTCTGTATTGCTTTT AAAGTCCTTATTGTTTTAAGTTAGAGAACATAAAGCTAAAGGTTTAAACAGGTCGTGGAA GAATTGTAAACAATTAATCTTGAAAAAAATTAAAGCCACATCTTCAGGCCCGTAGAAGAT GCCAATCAAAATAAACTGCATTCCTGAGACACAGGAAATTAAAGCTATTCAACTCCTCAA GGCCCAGGGACTATCCAGAAGAGGTGGGTATGTGTGAACATGATGTCTAATATCCAAAGA TAAAGTTATTTTATGGTTTCTCTGTAAATTGAACATTGAAAGTTTCTCTATAAATTAATC ATTAAAATTAAAAGCACACTGATGCAAGACCAGCATATGGGCCCCTGTGTCAGATTAACA AGGTTTTCTTAAAGCACTAATCTGCTCTTTAATAAAAATTTATAAAGGGTTATAAAATGT TTACGAAAATCTCATCCTATGGTCAAACTGATTAAGATCGGAAAGATTAAAATATAAGAG ATTATTTAAAAAATATTTCTGAGATTGACATTAATAGTACACTAATGCAAGGGTGAAATG TGGCTTTCTCTCCTGAACAAGATTTTCAAACAAAATTAAAAGACACCAAAAGATTTTTAT TAGCCTTTTGAATAAACTACCAACAAAAAAAGAAGGGAAAGACAAGAGACAGATTGTTTG GAAAACTAAGTCTTCCCTCTCTCAAAGAATGAAGGTTTTTGCCCTTTAAAAAAGTTTTCC TGGAGCAATCATTTTGGCTAAATGAATGACTTATTTTAATGTAACCTGCAATTCTATTTC ATAATATCAAGTGTTTTAAACCTATAACATATCTCCTCAGTCTCCCCAAACCTTCAGTAC AGTCTATGTCTTTCTGACCAAAATTGTCTTTTCAGATATCAGGCTTCTTAGAAGCATCAG AAGGCCCCACGAAGAACCATCCAAAAGAGAGGTAAAAAGGATTATTTGACACATTTAGTT AСАТТТСТTСССТGCCAGAAAGCATTGACAAAAACGAAAAATGTTTAATCTTCTTTAGGT TATATTTTAATAAATAAGTTATTGATATATGTTCCAAAATTGTATGGGATTTCTAAAATT CTAAGATGTCTGAGTATATATTATCAATCATAATTAAGGTTATTATGTTAAATTATTGTA AACCACAGAAATAACAAAACCTTTTGATCTGTGTGAGTTGTGTTTTTAACTGTAACTATT CTAAGAATTTTCCACAGTTATTCACAGACAATTGTTGTATTGTTTGAAACCGTTTCAAAG ATAGTTTATAATAAGCTATGGTGTCTTTTAGGAAGTTGATTAAAGGATGGAAAGAACTCA AAAAAGGGGGCTGAGATCCCACACAAGGTCTCGGACAACGCGGTGGGAGATTGTAACATC

AGAAAAGAGAAAACACCTACAGGACCCCGAGAAGATCCAAGTGACTCAGAAAAATGCCTA AACCAAACTCCAGCAAAAGAAGCAGGAATTAAGAGCCAGCCCGTGAAGGTGACCAGGAGA GAACATGAAAAAATCTTTTTGACTTTTTGCTTAAAACATTGCTGATCCTTTGTTTTGTTT TTCAGAGTCAAGAAAACTTTTATTTTGAACTATTTACAGCCTTTAACAATTGAGTAAAGT ATACTCCTATGAACAAAATTTGGAGCATGTTTGTTTCTCTCTGCCTGGTTCCCTGAGAAT TCGCCCTGATTAATACTTTGTTACGTCATTAAAAAGAGCCAGTATTGGGGAGGGCACTGG GAACCCACTTCCTGCAATATAGTGACTTGCATAAAAGACAATAAGAATCTAATTTTCATT TGCCACAGGACGTGATATGAGGGATTGAAGATTTGACTGGCCAATTTTATTTAGACCTTA AAGGGAAGGGTTTGCTTTCCTGTAAGGAATCAATCTTGACATGTAGAGCCAATAAAAGCC CTATGGAAAAACTGGCCTCATAACCTTATATACACAGTCCCTGTACAAGCTTTCTGACCA GTAATCAGCAAAGAATGTCACTTTCTGACAGGCCCAGGAGCCCCAAGTTTATCTTGGGAC CTCAAGAGGAGAGGGAATTCACCCAACTCACAGGTATTTGAGGACACAAACCCATGGCTG GGCTCAGCTTTAAAAAAGTCTTATCTGAGATTCCTTCTATGGAAAAAAGTTCCATCAAAG CCAATCTAAAAAGACCATATATAAGAAATAATTATTCTTGCTGCACTTTATGCAAATAAT CAGGCCAAGTATAATAAGAATAAAACCTATTTTACAAACAAATCAGTCCTAACATGATTT TTTTTTACAAAAATCAGGAAACTGGAGAGAGAAAAATTATGTTTCAAAAACTATAATACA ACTGTCATTAGATTCTAAACCCAGAAGTTGTTTTTAAGTTTTTGCCTACATGTTAGACTA ACCCTGCTTGTTCCTGTGAACCAACCAGCAATCTCCGGCTGCAACAAAAAAAAAAAAAAA GGGATCGGTACTGCGGACATTTCGGTTACAATTTTAATTCTCAACAATTTTCGCGAACAC CCTACAAAGGGATAATCTTATACTCTGATAGATAAAAGATGAAGACCCAGAATAAATAAG AAACCCAAAACCTACAGACGTCCCCTCAGAAAAAGTAAGAAAAAGAAAACTAACCAAAGC CAAGTAACCTGAACACAAGTCTTAAAAAGAATAATTACAGCAACCAGTTATCTGGGTATG TCACAAGACATCCTCTTCACTCCCCTATAAGAGAAGGACATAATTTATCAGTTTTACCTT CCATTTTAGAGGATGAGAAAGAAAACATGCAACCACCAAAAAACAAACCCTCACAACAAA CTCAATACCAAACTCTACGGCAAAGCCCAAAGAAACAAAACAGAATCTAAATTATCCTGA GAAAGATACACTAAAAAATAGAACTGGCCAAAGAGAAAAGCCACAATGCAGATGAGCACA GCCAAGGCCTACCGAGGAAAACAAGAGGCCAGTATCATAGAGAAACAGCAGGAGAGGATC CACAACAAAAATAAGGTCTAGGGAATTCAAGGCTACTGACAGCAGGGGAGATAGGGCATA AGTGAGTAGACCGCATAACTACCACACCCTAGGACCCACTGCATCATAGGTGCAAGCCGC TTTGACACCCATGGTGGCACCTGCCAAGGTCACGGGGACCCTGGAAAACAAAAACACAAG AAGAAAATAGTACCATCCTCCTTATATACATAACAATAGTCTACCCGGGGCATCGGATAC GAACAAAAGGGAAACAGGCATGCATGCAGCCATCTTTATAATGACAAATAGCCTCTCTTC TAATGTATGGACAACAGACGAATGAAACCTGTAACCACAAGAACACTGTAAAAAAAGAAC GGCATGCTGACACCAGAAACCCAAAATCACGCTAAACGAAAAGGGAACTAAGGCTCCAAA CTATGGGAAAACCCCCACAGAAGCAACAACCAAACCAAAAAGAGGGAATTTTCCAAAACA AAAACGGGGTAGGCCATTGCTTAGGACTGAGCTCAGGCAAAAGACCTCATCAGATCAAAC CAAAACCAAAACAGACCGGCAAAAGCTAAAACTTTAAGGCAATACATATGGATCTTATTA GTTTATTTGTTTTTGTTTTTCTCCCAGAAAGCCCTATAACAAACATCCCCCAGAGCAAAA GGATAAAACGCCTGAAGATCCTTGAGCTGTCCTTACCCCTCCCATTGTTTCATCATAAGA CATGAAATCTAATAACCTGATTAATATCATCTTTCCTAAAGACCATCAAACTCCAAATGA TCATGCAACAAAAGCCCCAGACAATGCCACCTGAAGACACCAACCCTGGTCATTAAGGAG CTACCCTGTCTCCATTAGAGAGAGCACGCTAAGAGAGATGTGACCCACAATTCCAAGAAA CAACACCCCCAGCCAGCAGGAAGCAGTTAAAAAAGGAGGACAGCCAGACCCTTTTCCTTA TAAAAAGGTCAATAGAAATGACATCTGAAAAGGGGGGAA
>2_cons
AAATTGCAGCGGCGAGCAGGGTCCGGCCGGACAGAACCATGCCATAATGCCGAAGCCAGA AGGGCGATACCCCCCAGTACCCGGCCCACAGCTTGAGCCTAAGCTGCGCGCTCCATGGGA TTCAGACGTGTCTGGGCATGTCTGGAGAACCGGCCCGTCAGAAGTGGGGCGGGCCCGCCC CACCTCCCCCGCAGATGTGAGGGGTCTATTTGCATGAGCGAATGAGGAGAGAAAGGAATG TGGAAACAGGAGAGAGCAGCGCACGATCCCCTGGTTGTTGGCCTCCTAAGACAGAGCTGC AGACCCGGGCATCCTTGGGGAAGAGGGAGCCGGGAACAGCGAGCTCAGATAGACCCACAC GCATTGGTGCAGGAACAAGGGCCCAGGCGTCGGAGGGTCCCTGAGGCATCTGAGAGGGAA CCAACACGTACAATGCGGGCCTTCACAGAAAGGGCGATTCACGAGCTAAAGGACAGATAT GGAGAGAGGACAGCACGGTGTCTGTCACTCCACAGGATTGGTCTCCCGGTTTGATAAAGG GACATTGCAGATCCAAATGTCTCAGGCTGAATGGCGCAGTTAGGAATGGGGCCAAGGTCT CCCAGCCCCCACTGAAGCCCACCGCCCCTATACTCCTGTCAAGATAAAAGGAGAAAAGAA

AGGAATTCAGACTTTTCTGGGGTTCTTGGATACTGGAGCCCACATGACAACATGTCTGAG TCCCCTTAGGGGAAAAATTAAACTGATGACATCGGGAGGTTTGGGGACAAACATGGTGAC CCATGGTGCTTATTTGCTTATGGTGCTTATCTGCTTGTGGGTGGGGCCCTTTGGGCCATT TCGGGTGCCAGTGACCATGGTTCCCACCGCTGAGTGCATTATAGGCATTGACATTTTGGC TGCTTGTGGCACAGAACATCACCGCTGCCTGAGGGGGTATGCCCCCTCACAGCTAAGAAT TCGAGCCATAACAGCGCCGCAGACCCACAACTGCCTGCCCCCTCAGCCTGCCAACTCCCT ATGGGTTATTCAACAAAAGCAGGACTGCAATCAAAGCACAGGCAAAAACTAAAAGAGCTG ATTTCAGGACTTGCTACAGATAAAAATGTTACAAACCACCCTGTCACAATGTAACAGCCC AGCCCGGCCGGGCGAAAAACCCCGTGGGACATTGAGGACAACAATGGACTGTCGCAAGCA GCCTGCTGCTTTGGCCCCCTCCACACAAGCGGCGCCGACATCACCACAGTAATTGAACAC ATCATGGAGGCTTCCAACCAATAGTGTGACACAGTTATTGATCTGGCTAATGGATTCTTC TCAAGCCCAGGGGGGGAGAGGGGCAGAGATCAATTTGTATTCACATGGCAAAGTATACAA TATACATTTACAGTGCTGCCACAGGAGTATTTGAACTCACCTGCCATATGCCACCAGTGG GTAGGATGGGATTTCGCCACTGTGCTTTTGCCTAAAGTGGTCATGTGCATTCATTACATA GGTGACATCCTCAGCGCGGCCCTGCAGGAGCCCATCACAAAAAACACCCTGGACGCCATG AACACAAGCACGAGACAAACAGACTGGGAAGTTAACCCTAACAGTCCTGGGATCAGCCAA ACTGGTGACCTTTTTCCCCCCCACTTCGGCGCGGAGCCAAAGAGGCAGCGCAGCTTCGGT CAAGCAAAAATTGTTCGCCCCGGGGGCACCCACTAATAAAAAGGAGACCGGACAGCGGGT CGGCGCCCCGGGGGACTGCAGACAGCATATACCTCACCTGGGTGTTCTTTTGGCCCCCTT AGTCAAGGTGACCAACAAAGCCGCCAACTTTGAATGGGGCCCCTGGGAGCAGCAGGCCCC GGAACCCAGCCAACAGACAGCGGCCCAGCGACCAATCGGCACGGACTTCAGCGCCTTCGC GGACGGCAAAACCCATGGAATCACAGGTGTCCGCAACCTCCATGCATGCTGGCCGGCAGC AGTGGCAACGGAAAACTGCCACTGGGGTGCACCAGCCTCTCAGATTTTGGACACATAAGT TGCCTGAGGCAGCCACCAGATATACCTCTTTTGAATGGCAACTCCTTGCTTGCTATTGGG CACTGGTGGAGACTGAGCATCTTACGGCCGGAGCGCCACGTGTGACGCTGCAACCCGAAA CGCCCAGTCTCACAGCGGCGCTGCCCAACCCCACCAGCAAAACAGGACAGGCTCAACAGA GCTCAATTATCAAATGGAAATGGTACATTCAAGATCGGGCCCAGCCAGGACCCCAAGGGA CCAGCGGGCTCCATGAACAAATGGCTAGCTTACCAGAAGGGACCAAGCGACCCGTAGGGG ATGCTTTGGCTCCTCCTGTGGCTACCTGGGGCCCAAGATTCAGAGACATGCCTACCGACG GTATGGCATGGGGTTTACTGACGGCTCTGCGAAACAACAAGCAAGAGGCTCCACCGGGCT GTGGACATCAACCAGCCAGTGGATGGCCATCTTTTGACTGAGACTGGACATGGACGTTCT GCCCAATGGGCCAAACTACATGCAGTGGTGATGGCCATGCAGGCCGCCCCTACCACCATA TCTTGCTACATTTTCACTGACTCATGGGCCATTGCCAACAGCCTAGCCATCTGGTCAGGA GAATGGCAACTGAGTGACTGGACTATTAAAGGATCCCCTGTGTGGGGACAAGGACTATGG CAACAGCTTGCTGCCTGGAAGGGACAAATATATGTCACTCATGTGGATGCTGGGACTACC ATGGCCACCCTTGAGAGGAATTTATGTCATGTTTTTGGATACCCCATGGGACTTCACTCT GACCAAGGAACATCCTTCACTGCCCAAGCAACATGACAATGGGCACACTCTCATGGAACA CGATGGACTTTCCATGCACCCTGTCATCCACAGGCCAATGGAGCTATTGAGCGCCAGAGC GGCCGAGGAAGAGCGCAACTGAAGAAAGGACATCAAGACGACCTGCTAGCGGAGAGGAAC CACCAACTCAAGAGGCCAATATCGACACAAAACACTGCACTCCAATGCAAGGGAAACACG GCACTGCAGCACACGTCGAGAAACACTGACCGCGGAGAGGAGCGAGACACACCAGGCAGC CGCCGAACTAGGCTACCCCTCAAAAAACCCAATCTCAATCTTCCCAACCATCCACTTGCC TGTGTACCTCAACAGTCCACGACCCAGGACAAGAACGCGGGACAGGCCACCAAAGGACCC CACAAAAAGACCCCCAACACAAACAGGGAGGAAACACGCCCCCTGGGGACTCCCCTGCGA GCAGATCCCACAATAATTGGGGAAGAGACCAAGCCTTTGCAGGGGGCTGGGGTCCTGCGT GACGCAAGTGGGGGCAAGAACCACTGAAATTTGGGTTATTGCGGTTAATGTGACCCCATT TGTAAAGTTTGTACAGGACGCCACCGCCCTCCCCGGACCCGACCCCACAGGCTGAAAGCG TGAGGCCTGGGGAAACACCAAGGGCAATGGTGCCCACAGAGGTAGTAGCCTCAGGACAGG GACAGACAGACTGGGTCGCTACACCAACTCAGCCCAACCCCTATCTGATAGGTAGGGAAC ACCTGACACCCTGGAAGAGAGCCGGCACCGGTGCCGGCCTGTCAGGCTGCTCCACCCGCA GCAACATGCAAGCAGCCGACTGGAAACAGAACCCCGACCCCACGCTCGCCCAAACACCCC CCACCGCGCCGAACCTGACAAAACCCTGGATCAGCCATCCCAGACAGCACGCTAGCACAA ACCAAACGCACCCTCCCAGCCCGACAGGGCGAAACGACACCAGCAGGCCCAAGCAAAAAG CGGACAAAAACACAACCCGACACAGGGGTTACAGAGCAAAAAACCGACACCCCAAACATC CCAGGAAACCGGAGGTGCCCTGTTTTAACTTAACTGACTTAAGGTGGCAAAATGTCACGA CCACAACTAACAAAACCTTGGTGGGCTGGTACTTTGACGCACCACACTCCTTTGATTACA TGGACGAGAAGTGTCCCAGTGGCGACGACGAAAACAAGGACCGGACTATTGCTAGCCCTC

TGTGTAGGGGCTTCATGAACAATATTGTATGGGGAAAACTGAGCTCATGCAACTATGCCA TCAATGAGACTTGGCTGGTGAATGCCAATGCCTCCATACCCATGAATGGGTCACTGAACA ATAAAATGGGAAAGGGTGTGCTGTGTGCACCCGAGGGCTACATCTTTCTCTGTGGGCGGT CCGGGAGTGACCCAAATACGGGATGGGCAATGTCATGCCTGGAAAGCTGGCGGATGGTGG GATCCTGCACGTTGGGCGTGCTGGGGGTGCCCCTGGATATCACCCCTGGGAATGAGATGC ACCATTGGGCCAGCAGCCTAAAGCTGTACACCAGGCTTACTAGGGACCTGCCAGGAGGTG TAACTGACTCTGGGTTTATGTCCTTTATGAGATCTTTGGTACCATACATAGGAGTCAGTG CTCATGAAAAAATGATAAGAAACCTGTCCCTGACCATGGCAGATATTGCTTCCTCCACTG CCACTGCCTTGGCAGCCCAGCAGACATCCCTCAACTCCCTTGGGAAGGTTGTTTTAGACA ACAGAATTGCTCTAGACTTTCTTTTAGCCCAACTGGGAGGAGTGTATGCAATTGCCAACA CCTCCTGCTGTACCTGGATAAACACCTCAGGTATCGTAGAAACACAAGTAGAGGAGATCC GGAAGCAGGTTCACTGGCTGCAGACAGTGGGGCCACCTGAAGGATCCTTCTTTGACCTCT TTAGCAACTTCTTACCTGGATCACTGGGATCCTGGGCTAGGTCACTGCTCCAGGCAGGCC TGATCATCCTGCTTGTGGTAGTAGTCCTCCTGGGCCCAGTGAAATGTATTCTGGCTATGG CTCAATGATGTTGCACTGAGATTGTGTCAGTCAAGGTGCTACATCAATCTGACAAGACAA ACCTCTGCCTCCAGATCCGGGGAGGTCGGTGGGCATATGAAATGGACTAGCTTTGCTAAG GGGGATATCTGGGTTGGGGG

Abstract

>3_cons CAAAACCGCCCTGTTTGAGAAAGAAGAAATGGACACCCTGAAAGCACCTCGCGACCCTAA CGCAAGACAAAAATACGTCAGGCAGACAGTGAAGGTAGGCCCCCACAGAATGGGAAATGG CACCTTGGAGTCACTGAGGGTAGCCTCCCTTAGAAGGGTTGAGTTCTTTCAAACAGCCCA ACAGCCCACAGCCACAGACAGAAAATCTAAGTCACCCTGAGGTATGAAAATAAAAAAAAA AAACTCAGGCGGAACTTGCACCGGGGGGCTGGCCCAAGACAAGCAAACAAGGAAGGTCTC TCCAGATCAGCAAGGCTGCACAGCCCGGGGCTAGCCCAGAAGCCTTTTGTTCTTTGTGTA ATTAACATGCCCACAGGGGAAAATTCCCTCCCCTTTTCAGACACATGCATAGTGGGCTCC AAAGGAACATAAACAAATATGGAGGAGCAATACCAACACCAAACTAAGGGTCATACAAAC AAGAGAAGCAGCGCTTTGTGCCAACCGAGAGGCATCCTTACCAGAGCATAACAAAAATGG AGTGGAACAATCCTCCCTCAAAGAAACACTGCGCCTTATGCAATAAGAAGAGTCGCTCAG CAAGCGCCACACAGCACTAGAGGACCTTAAAATCTGCAGCACTAGTATTCAACAGCGACA CCATGTGCCAATGAAGAAAAATGGCAATAGTGGACTGATCCCACTTCCGGGCTCCCCTCT CTGCTGCAGAGAGCTTTCCTCTCTCAAGAAGGAGACAAGACATGTTTATAAATAGCCAAA ATGCAGCTTAGTAAACTTTCACTCCAACCTCACACTTCGAGGGAGAGAGAAATAAACGAA GCAAGAAGCCTCAAGAGGAAGAGATGTGTCTCCATGCTCATTAATAACGCCGGCACTATA TTTCCTGATTGTAAGAACAAAGAACTCCGGATAATACCTCACAAGAAGAAATTTAGAAAC AGCTAATTTGAGGAGCATTGGCGACACCTAAACCTGTAACA

[^0]TTTACCTAAAAGAGACTGTTTAAATCACTGGAATTGACTGAGTTTACCTGGAAGTGACAA GATTAAGTCGTTCTCACGCTTCCCGCCAGCCCGGCGGGATGGGGGCTCGGAATCAGAAAT TAAGTTGAGTTATAGAAAATAAAGAAATGTTACATTTTCCTTGCACACCTGAGTTTGTGG CGAGTAAGATTGCATACCCGCTACA

SVA consensus sequences:

Abstract

>1_cons СТСТСССТСТСССТСТСССТСТСССТСТССССАТGGTCTCССТСТСССТGTСССТСТТТ CCACGGTCTCCCTCTGATGCCGAGCCGAAGCTGGACTGTACTGCCGCCATCTCGGCTCAC TGCAACCTCCCTGCCTGATTCTCCTGCCTCAGCCTGCCGAGTGCCTGCGATTGCAGGCGC GCGCCGCCACGCCTGACTGGTTTTCGTATTTTGTTGGTGGAGACGGGGTTTCGCTGTGTT GGCCGGGCTGGTCTCCAGCTCCTAACCGCGAGTGATCTGCCAGCCTCGGCCTCCCGAGGT GCCGGGATTGCAGACGGAGTCTCGTTCACTCAGTGCTCAATGTTGCCCAGGCTGGAGTGC AGTGGCGTGATCTCGGCTCGCTACAACCTCCACCTCCCAGCCGCCTGCCTTGGCCTCCCA AAGTGCCGAGATTGCAGCCTCTGCCCGGCCGCCACCCCGTCTGGGAAGTGAGGAGCGTCT CTGCCTGGCCGCCCATCGTCTGGGATGTGAGGAGCCCCTCTGCCCGGCCGCCCATCGTCT GGGAAGTGAGGAGCGCCTCTGCCCGGCCGCCATCCCGTCTAGGAAGTGAGGAGCGTCTCT GCCCGGCCGCCCATCGTCTGAGATGTGGGGAGCGCCTCTGCCTGGCAACCGCTCCATCTG AGAAGTGAGGAGCCCCTCCGCCCGGCAGCCGCCCTGTCTGAGAAGTGAGGAGCCCCTCCG CCCAGCAGCCACCTGGTCCGGGAGGGAGGTGGGGGGGTCAGCCCCCCGCCCGGCCAGCCG CCCCGTCCGGGAGGGAGGTGGGGGGGTCAGCCCCCAGCCCGGCCCGCCGCCCCGTCTGGG ATGTGAGGAGCGCCTCTGCCCGGCCGCCCCTACTGGGAAGTGAGGAGCCACTTTGCCCGG CCAGCCACTCTGTCCGGGAGGGAGGTGGGGGGGTCAGCCCCCCGCCCGGCCAGCCGCCCC GTCTGGGAGGGAGGTGGGGGGGTCAGCCCCCCGCCCGGCCAGCCGCCCCGTCCGGGAGGG AGGTGGGGGGGTCAGCCCCCCGCCCGGCCAGCCGCCCCGTCCGGGAGGTGAGGGGCGCCT CTGCCCGGCCGCCCCTACTGGGAAGTGAGGAGCCCCTCTGCCCGGCCACCACCCCGTCTG GGAGGTGTACCCAACAGCTCATTGAGAACGGGCCATGATGACGATGGCGGTTTTGTCGAA TAGAAAAGGGGGAAATGTGGGGAAAAGATAGAGAAATCAGATTGTTGCTGTGTCTGTGTA GAAAGAAGTAGACATAGGAGACTTTCCATTTTGTTCTGTACTAAGAAAAATTCTTCTGCC TTGGGATGCTGTTGATCTATGACCTTACCCCCAACCCCGTGCTCTCTGAAACATGTGCTG TGTCCACTCAGGGTTAAATGGATTAAGGGCGGTGCAAGATGTGCTTTGTTAAACAGATGC TTGAAGGCAGCATGCTCGTTAAGAGTCATCACCACTCCCTAATCTCAAGTACCCAGGGAC ACAAACACTGCGGAAGGCCGCAGGGTCCTCTGCCTAGGAAAACCAGAGACCTTTGTTCAC TTGTTTATCTGCTGACCTTCCCTCCACTATTGTCCTATGACCCTGCCAAATCCCCCTCTG CGAGAAACACCCAAGAATGATCAATAAAAAAAAAAAAAAAAAAAAA

>2_cons
СТСТСССТСТСССТСТСССТСТСССТСТСССТСТСССТСТСССТGТССССТСТТТССАСG GTCTCССTCTGATGCCGAGCCGAAGCTGGACTGTACTGCTGCCATCTCGGCTCACTGCAA ССТСССTGCCTGATTCTCCTGCCTCAGCCTGCCGAGTGCCTGCGATTGCAGGCGCGCGCC GCCACGCCTGACTGGTTTTCGTATTTTTTTGGTGGAGACGGGGTTTCGCTGTGTTGGCCG GGCTGGTCTCCAGCTCCTAACCGCGAGTGATCCGCCAGCCTCGGCCTCCCGAGGTGCCGG GATTGCAGACGGAGTCTCGTTCACTCAGTGCTCAATGGTGCCCAGGCTGGAGTGCAGTGG CGTGATCTCGGCTCGCTACAACCTACACCTCCCAGCCGCCTGCCTTGGCCTCCCAAAGTG CCGAGATTGCAGCCTCTGCCCGGCCGCCACCCCGTCTGGGAAGTGAGGAGCGTCTCTGCC TGGCCGCCCATCGTCTGGGATGTGAGGAGCCCCTCTGCCCGGCCGCCCAGTCTGGGAAGT GAGGAGCGCCTCTGCCCGGCCGCCATCCCGTCTAGGAAGTGAGGAGCGTCTCTGCCCGGC CGCCCATCGTCTGAGATGTGGGGAGCGCCTCTGCCCCGCCGCCCCGTCTGGGATGTGAGG AGCGCCTCTGCCCGGCCAGCCGCCCCGTCTGGGAGGTGGGGGGGTCAGCCCCCCGCCCGG CCAGCCGCCCCGTCCGGGAGGAGGTGGGGGGGTCAGCCCCCCGCCCGGCCAGCCGCCCCG TCCGGGAGGTGAGGGGCGCCTCTGCCCGGCCGCCCCTACTGGGAAGTGAGGAGCCCCTCT GCCCGGCCACCACCCCGTCTGGGAGGTGTACCCAACAGCTCATTGAGAACGGGCCATGAT GACAATGGCGGTTTTGTGGAATAGAAAGGCGGGAAAGGTGGGGAAAAGATTGAGAAATCG GATGGTTGCCGTGTCTGTGTAGAAAGAAGTAGACATGGGAGACTTTTCATTTTGTTCTGT ACTAAGAAAAATTCTTCTGCCTTGGGATCCTGTTGATCTGTGACCTTACCCCCAACCCTG

TGCTCTCTGAAACATGTGCTGTGTCCACTCAGGGTTAAATGGATTAAGGGCGGTGCAAGA TGTGCTTTGTTAAACAGATGCTTGAAGGCAGCATGCTCGTTAAGAGTCATCACCACTCCC TAATCTCAAGTACCCAGGGACACAAACACTGCGGAAGGCCGCAGGGTCCTCTGCCTAGGA AAACCAGAGACCTTTGTTCACTTGTTTATCTGCTGACCTTCCCTCCACTATTGTCCTATG ACCCTGCCAAATCCCCCTCTGCGAGAAACACCCAAGAATGATCAATAAAAAAAAAAAAAA AAAAAA

ERV consensus sequences:

>1_cons

AATTTGGTGAGCCAGCCAGGAGCCGCTGGGACGGTGATGCATTCAGCGGCCAGCGGCTTG TGACGAGACAGTCTTCAGGAGACTCCCAGCAGCTGCTGGGTGAGATTATCCAGGGGACTC TCCTGAGGGCTGTCCCTTGGACAAAACCACACATCCCTCTCACTACTGGGGAAGAACGGA GGTCAGGAACGGACGTGCTCAAGGGGTGAGTAAAACTGAACCTAATAAGGGACTTATTAT TTTCCTATCTGGGCTTGTTAAGCCATTTGTCCGGTACCACCAGGGAGACAATAGGGCTCA TTTGTACACCCGCTTTGCGTTTGGTTAAAATCAGGTTTTGAGTTGGTTTTGAATCTGTTA TGTCAGCAAGACACCCAGGAGGTAGACCCATAGGTCCGGAATCATCCTACGCTTGTTAAT GGATCGCTCTAGGGATTGCGGTACCAGATAGGACCAACGGTGAGAAGACAAGATCCAGTG ACAGCAGGGACGACGGTGGACAGAAACCAGTCGAGAGGGAAAAAGTAGCGATAGCAGCTG AGAGCGAAAAGGAAAGAAGAAGACCATTACACCGGCGGCAGAGACAAGTAGGAATTAGTA ACTGCGCGAAGGGGTGTGAATGCACAAACCCTGAGGGATGCACCACTGTTTAAGGTGGCC CCGGCCCAAGACAAGCCCATAGAAACCGACTCAAAAACCTACGCCCACACACTGGCCTGA CGGCACCGCCCCGAAGGCAAGGAGCACAGACACGCCCGGCACGAGCCCCGGAACAACAGC GTAAACCCCCACTTCAGCGGAGGGAAGGGAGGGACAACCACAACACACACCCCCAGTCCG TCCGAAGCCCCCTCCGGCCTACTGCCCCTGGCAACAGGCAGGGGCCCCCCCATGCCACGC CAGCATGAACGCCAACAGGATCCGGCAACGCAGGCGAGCCGACCCGCAGTCATAATGGCA CCCTGTGCTTACAGGGCCGACACTCAAACGCGCCAGCGCAGATCCGGACCCCTCGCCGGC CGACGTCAGCGGGAACATCCACGAGCCAAGGCGTTACCGGGGTGGGATGAGCCGGCCAGC AGGCGGGACTACTCCACCTTTCGACTTCCGAGTGAGGGCGCTGGCAGCCCTCCCAGCCCC CGCACGCTGTCGGCGCCGGACCCGCGTCGGCGCGCACTCTGGCCGCGCTAGAGAAGCCCA CCCTATTCCTGCAGGCCGGTGGATGCCTGCTCCCCCCGCCTGGCCTGGCCCAGCACAAAG CCCGGGCTCCGAGCTCGGAGGAAAGTTTGGGCCGAGCCCGGGCGCAGTCACAACAAGAAC GGGTATGCACACACTCGTGGTAGCGCTGAAACCCCAGACACCAGCCGCCTCGGCCACCTC CAGACATTTGGCGCCACCGAGCATGGGCGCCTGGCCAACGAGGGGCGGAGGGTAGCTAGG CGCAGGCCTCCAGGCGCACCTTGGCCTGAACAGCCAGGGTGCCATGAACAACACCACAAA ACTCACAATAGCGGCATTCCCGAGTCCAATGCACACATTACTAAGACTTCTCCGAATTAA CCATGCTTACACCCACCGCTTCTTGAAAGGTTTAAGGAGGCAGACAAATGCCTGGGCCCC GAAATCACTATACCGGGCAGCACGAACTTCCACAGGGGGCCACCCCATGAGGCAGAAAGG AAAGTTAACATCAGGGCATCCCAAAGGAATGACACCCAAGCAAAGCTGTACTGCAGCAAA CTTGAGACGGAATGAAAAAAAAAAGGCAGGGAAAAAACACTCATGGCAACAGCAGGAGGA AACCCAAGAGGGAAGGGACCCGAAAAGCGGAAAGGGAAAATAGAAAAGGATCAGTGCGCA TACTGCTGGGAAACGGGGCATTGGAAAAAGGATTGCCCAAAGTTAAGCCAGAAAGAACCA AGGCCAATAATGGCAGTTAAGCCCGGGAATGAATCTGAGGAAGATTGAGGGTGCCCAAGA CTCCCAGCAGCTCCAACTCTATCTGACATCAAAATTTCCCCACCGGGTCCCTTACTAGAC ATGGGGACAACCAGGAAAAGCCCACAGGACGCAAAAAAAAAGTGGACTTCAGACAAGACA AGCAAACTAAAAATCAGCTAAGAAAAAAACAAACTAATGAACTATCGCAAAACCCTGTCA GTATAATACGAGTAACCACAAAAGGGAATTCGGCGAAACCCCACCTTCCATCCTGAGGAA AATATCGCAAAAATAGAATTACTCAAAAATACCCAAGAAAGATAGAAAGACCGCTTCTCT TTCCAGGCCCACATAGGCCATCCAACTAATAGTCTCATATCGGCTACCAGTCGGAGATAC GGCACCTTTTCCGCCAAAGACAGCCTGAAGCCTGAAAGCCAGGCTACCAGTTCCAGCTGA GACCCGCGGCCCAACAAACTGATTGTGAGTTGATCAAACAGCAACACGGCGACAAGGTAA AACCAGAGGTCTGGGCATGAGACCGACCCGGGAGGGCAATTAATGTGAGTCCGGTAAAAA TCAAACTGAAGGAAGGGGCCCAACCTATCCGGAAAAAAAAATACCCCTTAAAGAGGGAAG CCTTGGAAGACATCCAGCCAGTCTTAGTCCAGTTCTTGCAGTATGGCCTAGTGAGAACAG GCATTCCTTTTCTGCAATACTGTCTGGCCCCATTATCAGACAACAAGCCCAGAATACCGG GCAAACAAAGCCACCCTCAAATGAGAAAAGATCTACCAATTATCTAAAACATGATTTTGG

GAGTGCTTTCCTCTGAAACCCCCCTACTTCTCACCTATTATATGTACACCCCCCCCCGCA TGCTTCGTTGTTAATACTGTCTTTTCCCCCCCTGAATGGTGTCCTAAGGCAGAACTAGAT ATTATAGATGACCCCCTTTTACAAGGGCCACCTGTCTCTCAGGGTGAACAGCAACCGCCC CCATATAGCCCCTTGCCAAGTGCTCCTGAGGCTAAAACCCAGGAGCAAACACCGGGGACC CTACTAAGTCCCССTCACACTCGGAGGGGAACACCGTATTCAACCCTTTTTCTGGGCCTC AAGATAATAACCCCAATCCGAAAAAGAGAAATTGGAGGCAGCCACTCATGGCCGCCCATG GAGACAAGACACTAACCCATCAGCCCGCACTCCCCCCTCTAACCGATATACAACAATGCA AGGAAAAACTAGGAAACTATTCGGAGAATCCAAGGAAGTTTAAAGACGAGTTAAATAAAT TGACCATGGCCTTTGATCTACCCTGAAGAGACCTACAATTAATTCTATAGGCCTCCTGCA CACATGAGGAAAATCAACGGATTGTAGTTCCACAGCAACCGGACGCCCAACCTGAGCCCA TAAAAACTGCCCAGGCTCCACAATTCTCGTCATTTACTGTGCACCAGGAGCAAAACATAC ACACCTAGACCAAAACTAAGAATGCCAAAGAGACTACCAAGAGCTTGAAAAAAAAGGATA AATTACAACAAGATCAACATAAAGGAATGAGAAAGTAAACAGGTAAGCAAATAAATTGGG ACAAAGGCAGAGAGCCAGACGGGGGGAAGCCCAGAGGAGCAGCCAGGCTGACAGGCAGAG AGACGACCGAACGTAGGAGAGATGCGAGGGAACGCCCGGGGTAAGGCCAGAGGCGAGAGC TGCGGCGAGGGGGCCGGACCCCCAAATCCACCCAAGAGACAACCAGTAAGCTGCAAGAAA CAGAGAGGGGCACACAAAATACTAAAGACCAACATTAAAAAACCGCCTTTATCTTTTAAA AGAAACCGACCATGAAGAAATGAAGAGAAAAACAAAGAAAAGAAAAAAAACAGAACAAAT TTGTGGCAGCCTTAGCCCCCCCGCTCCCTTAAGGCCACATAGCTCCAGAGAGCCACGAAA AGTTTCCGTCCAAAAAGGACAGAAAAGAGTACCCCTTCACCTAGCACAAAGGTGAGAATA AGTATAACAACTCTAAGCATCATGGTCAAGGCACCAAGGATTTACCCGCCGGCACCAGTC AAAACGGAAAGCACCGAATCAATAACAGAGCTAACATCCTCCCAACAGCTCACTCAGACA AAACTTTAGCAGCGAAAAAAACCAAATTACAAGAACATTGACCAAAAGGACAGCCGCCCA TAAACGAATACAAGGGCCAACGGCAACAATTGTCTGCAAAATCCCCACGACCGAGCAGGT CCGCTAACAAGAAGGCCACACCAAAGGCCACCATTGAGAAAAGCCAGGCACACCCCCCCC CCACCAAGGTGAGGCAACGGCAGACTCTTCCCGGCCTCTTCCGATATTCCAGACCAACCG GGCCCAACAAAACTCAAACAAGAAAACCAGTCCAAAAGTTAACAAAAAAGGAGACGGCCT GGGAGTCGGACGAACAGCCCCAGACCACCAACATGGAAATAATAACTCATTATCTTCAGG GAAAGATCACCTTCATACCAGGCTGTCCCCTTCCGGGTCCCCTCTCCCTACCGCATGTTA AAACCGGCCCAAATGGTAAAGGGTGAAAATGAACGAACCCCACCAAGGGCTTGAGTTAAA CGGAAGAAAAAGGGTACAAAAGATAAAATATACCTCAGATATTTTATACATTGTAAAACA ATCAGCTAAATACTGCATAAGATGGAAAAAATGCCCAGCGGTCGTTAAATTCGCATGGGA CCTTGGTTCTTGGAGGTGGTCTAAACATAGCTATTAAAAGTAAAAATGTTAAACACATGT GAATGGAATAGATGCTTAAATAGTGAGCTTATTGTACGCCCTGAGAGCTGAACACTCGAT GAGACAACCCGCCTACAGATAAGATATACCTTCAAAGAAGCGGAACACCACCGGATCCCT ACCCCCAGGTAAGGGACGCCACAAACCGACACTTCCTACCGGGGAGAAAGAATAACCAAT AAATAGGAACTTATAAAAAATAAGCTTCAAAATATAAAGAAACCAATACTGAAAAATCAG AAACATAACTAACACAACCGAGACAAACTGGATAAACGGCAAAAGAAGCATAATAGAAAG GAAGCGAAAAGCAGAAAATCTCTGGGAGACTAAATACTTGTAAACACACCAAGCATCTCT TCCTATCTGTCTCATCACTCAATAATCCGGGAAAAAAGAAAACACCAAACACCCACAACT GACCCAAGACAAAACCATGGGCTCTTAAAACCCTGCAACCCTCCTCCGCACAAACATTCC TCAAGCCTGTGATAAAGCTCTCCCGTTCATAAATTGTCTGCGGAAACAAAGATAAGGAAA GGGAATCGGAATTTCTAAAGAGGGTCTTAGCAGAAGCAAACAACGCGGAGCATGTAAGTG ACCTCATGGGGACTTGGAGAACTTTTCAGCAAAAGGTTTGAAAAGCTCTTCCTCAACATC CTCCTAAACAACACTTGCATGACCTAAAACATGGAGATATTCTCTAAAGGACGCCGGACA AGAACAAACCGAGCACAGACACAAAACGAAAAGATACCGGCTGCTCAAAAACTAAAAACC GAGATTACCTAAGGCATTTATTTATGAAATGGCAAAAGGCTATGACTTCAAAGACAGTAC ACTACGACAGTTGAGCACTTCCTCGAGGCTTTACGGAAAGCCTTAATTCCTCTAATTGAT CAAAAGGGCTGGATGTTCACCTACAGTTTTGGGAAAATGGCATGATGCTAGAGTATTTGG AATTCGATCTTAAAAAGAACGGAACTATAGAACATTATGAAGGCCATATATATAAACCTG TGCATAGCATTGAAGAAATGGAAAACAAAGTGCATAAAAAGAAGTTAAAGGCGAAAGACC AATCGCTCACCTACATACAGAAATATTCAAGAGCGGTAGCCCGGCAAATACACCTAGAAC TAGTACACCCGAGGTGTAAACTGAGGCCAAAGAACAATAAGAACTAGCTCAGGCCATGGC AGGCAAAAGACGGTTGGAGAGGCAGCCAGATGCCACAATTATGGCTTATAGCATATCCAC AAAGGCCACCAACAACAGGGGATTAAAAAAAAGTCACAGTAAAGACGAAGACCTTCTCAA GATGGAAAAAGGAATATCCAGACCGGCTCAAGGGAACCCACCAAAAAGGGACCACAAAGC AAGCTGTAAAACTCTCCGCAACCTGCCCCCTGCCTTCAGGGAATAACTAGTTGGGTACAA

CTGTCCAGGATTAAACCTGTTTCTTATGAGTCACAGGCACAAAAGGAGGACACCATGACC TACATCTGTGAACCTTTGGAAGACTTCCACTACCTATTTAAAAGAATCAACACTCAGCCA GAAGTGGTAACGTGATGCTGACGGAAGCAAAAGTAATAATAACCCTTCACTAACTACTGA ATTAACTAAATATGTAAAAAAGAAGAAGGGAATAACATTGAAACTGCAAACACCGAAATT ACCATAATAACCCGGACAAACCGCCAAAATGACCAACAAGTTAAAAAGAATCAACTCCAA ATCGTGTAAGCACACCCAGTTAAAACGAACCAATGTAATTGGAATCGAAAAACTCAAGAA AATAATACAAAACAAAAAACAGAAAGAAATAACCCCCAATGAAGTTGAATTAGTCATAAA CATAACCGGAAACAAGTGTACGATCACCGAAACGATCCCAAAAAACCAGCAAACAATTCA AAACAATCCCGATCAAACCAGAAAAACCCCTAACAATCTAAACACCTTTTCGTCAATGCG AACCGTCCCAAACTCAGATGATTCCCCCCAGCCGTTCAAAACTGATAGAGAAAGAACCTG GAAAGAACAGAAGCAACAGCTTCCCGAGCAAAAGGAGGAAAACAATTGGACCGACCGGAG TGCTGAAGTCTCGAAAGCCGAAGGGTCGCAGCAATAGGAAGCCGCAACCCCCGGAGCCCC GTGCCAGGGGGCGACACCCGCCCTGAAAAGGGGAAAGGGCCCAACAGAGCTGTAACCATT AAGCCGTCCGCGGACGGCAAAGCTAAAAGAGAACAACAACAGCCACACAGATCATAAATA AACATGCATTCTGGGTCATGCACATGCCAAAAACTGCAAAGAAAGGGCACCACAAACTAC CAAACACTAACCTATAAAGCAAGTGAAAGAAATTCCAAAGCCAGTGTAAGCAATACAACA GCCACCCTCCGGACCTATAAAATATTAGAACAACACCCAATGTGTCTGGACCCGAATAGA GCCGGAAACAAAGAGGGCCACACGACCCAGCTGTGCCAACCCCCTTGGGCCTCAGTTTGT GCCCCAACTGGGCTCATTTTTAGGAGAACACATAAAAAGGCAAAAGCCCGCGGCCGCTGG CACCCCCCCGTAGATGCCGCCTTTTGCGCCTCCCTGTGATCCTCGGCACGACCTCGCCGA CCATATGAAAAGAATGGAACAAACAGGAAACTAACCTGGAAACCCTAGACCCCCGGGCTG GATAAGATAATAACCACGAAAAGAACACTAATGAGTCAGAAAAACCCACAATCAATATTT CCAATTACGAAGAGCACCAAAACTCACCCTCGGAAAAAAAAACAAAAGAAAACATAAGAA CCTGAGAAACTCCCGTACCAGAGCCCAAGGCAGAAGCCCAGACTGCCAGAACTCAAAACC ACCAATATAAACCCTGCTTCCGCCACGCCTGGGCCAGCAGCAGCCTCCCAGGGAGCCGGC ACCCGTGCCTGAACACACCTACCAACAGATGATACAAGAAAACAAAACAATAGATTGAGC CGGCGCCTGGAGTCGCTCGCCCCACCACAGCAACCGACCCACACGGACAACGGCAGCAGC ACAACACCCAGACACAAAGACACCGAAGATACAAATATCAGTTCCAGAGACCTGACCATT TTTGGCGAGTGGTGGACACAAGCACTAACACAATAGTGCAAACTTACGAGCTTAGCAAGG CGGAGGCCGGATAATTAATAGCACAATATGTCTCCCATTGGAGACACGGAACATATATAA AAACGATACTAAACTCAAAAAAGACAATACGGTGTCCCAAGAGTAGGCACATGAAAGTCT ATAGCAACTATGAACAAATGCCACCATGCTGCAGGTACACAGAAAACTCTGGACAAACTA AAAAAAACACACAAGACAAAAATTATCACGAAACAACAGAAACCACCAACACCGGACCCC CAAGGACCCTGCGAAAGAAACGAAAAACCCCGAAAGCAAAAACTAACATAGACACAATTG GGACCTTATAACTAACGATATCCATAACAGACAGAAAAGTGACTTACAAAAACAAAACAG GCTTGGCATTATACCAGCTGAGCATAGAACAATCTGCGCACAACTAACTTCTGGCGCTCG CTTGCATGCTCCCTCCCGCTTGGGGCCTAGCTCGGCCTCGCCAGTCGTGAAGCCAGCGAC GGTACGGGCACACAAACTCCAAAAGAGATCGACTACTCAACCAGGGCATCACAAACCTCG GTCACCGAATTACATCCTACTGGGAAGACATAACACAGGCAAAGAACTACAACCAAATAG CCCGACACATCTTAAAAGAAGAAAGCCAGCAAAACAGGAAGCCCCGGACCCAAAACCGGA TGGTCCCAGAAACAACAACACCTGCCAAACGGGGCAACACCGCAAGTACAGGAACACAAG ACAGCAAAAAGATAACTAAAAACCTACCAACTTTCCTTGGTGTCTTTGTTGCATAGTTAC TGCGGGCTGAGCAAACCAGGCACCCCCTGAGAATAACAATGACAGCCACAGGGGATCACG GCCGGTCATATCCTAAGAGAGTTGGGCATACAAATATCCTGAACAATCAAAGGCTGTAGA CATCAGTGGGCCAAAAGAAACCAACGCAGCACAGCAAAACTCAGAGAGATGTACCACTGA CCGCAAAGGTCTGCAGCTCGCTAATAGGACCAAAAATCGGATAAACAAACTCAGTTCAAC TCGCCCACACACCATCAAGCGCCAAAAAATCAACCAAAAACGCTGACAACAAACTCCTGC CAAGCACTTGCCACGTGACACACCACATGAAGACGATCCCCTGTGATAAGGGGCGGGTGC ACAGCCACTGTCAGTCATCAACCAGGATCCAACAAATGATCATCCAACAAAAAGAACAAG GATCCTGCCCCTTCCGGCGCGCGCCAAATCTGCCGAAAGTAAGTATAAAACAATGACACA AGAAAAACAAACAGTAAACAGGACTCAAAAAAAGAATTAAACAAATCACAAATCGACAGT GGGAAATCCTTCAGATCGGGATGAAGAATGACCAAAGGAGAAAT
>2_cons
TACTTTGGTGCCGCGTGACTCGGATACGTTCCCTAGTGGTAAGAAACCTCTATGCCTCGC CTTCTTTGGCTGGAGGCGTTCAACCCCCGTATGCAGTTTTCTTCTCCCCCGGCACCCCAC CGCGGACCAACCAAACCCCAAAAAAAAGCCGACCGGCCACAGTCGCTCCGCTCCCCCGAG

CCCATAAACCACACAACACCCAAAAGGAAAGAAAAATACTGGGAATGAGCATGGAAGCCA AACCGAAAAAGCCAGGGACACCAACAAAAGACACGGAGAGGAGGCTCACGGGAGAGGAAA GGGTAAAGCCAAAAGCATCCCAAAATCCGGGGTGCACTCGTGGAGTCTAAAGAGAGTTGT CCCATGTAGCAAACCGGACACCACCTGGGAGCCAAGTCTTGACCAGCAGGGAACTCGAGG TCCCACTCGGGACCCCAGCTCGCTGGCAGCAAAAGAGCATCATCCTTTGTTCTCCCGCCG ATTCCTAACCTACGCGTATTGGTGATTGCCTTTATCCTTTTTTTTTTTAGCTCATCTCTC CTCCTAACTGGGATTAGGAGTCATGACAGTGCCTGGATTGGGAACAGCAACGGACCGGAT TTGGTAATTAACCGCCTTGGTATCAGTTAGAGGCCCACTGAACCTCTGTGGGTCAGAAAA AAACTGGAAGTTAAAAGAATTAGTTCAGGGGGTGTGACAGATTACAATAATTTACCAAAG ATTTTTCAAACTTTCCATTCCGACGAGAGAACTTCTCTTGTATCTTTGGGAGAAAACTTT CCCTCGGCAAATTCCCCCACCCTGCACCCAAGTAAGGACCCCACCTACCCGCCACCATGG AAGGAGCAAACATAGGCCAGGAAAGAAAAGGAGTCCTTCGACATGAGCGATCAATTAAAC CTAACAGCAAGCCCAATATTAGACCAAAAAATAAGTTCCCAGGACTCACAAACACTGCCT TCTTTAAGGCAAACACGGCCACAAATGTTAGCACCTGAAGGCAGCGAAGCAATACAGAAA TTGCCACATCCCACTAAAGCTAAAATAAGGCGGAACGTACCGAATGCTTAAAAACTCGGT CTAGAGCATCTGGTAAAAAAGACTATCAACCAAGCCTCAGAGGCGAGCCCCAGAAACAAC TCCAAAACTTAAGCCACACTTTCGACATCAACATCAAAAGGCTCATATAACAGCGTAGGG AAGACCAGCTCCTCAGTAGGAGTTAAATCCTAGATCTGGTTAGCTCTTACATTACTCACA AGACTGTTCAAAACTAGGGAGAAAGAACCACAATATGGCTGACACACTGTCCCTGGTGGG AGTCACTTTTGTCGAGGAAAACCAATGATTATGTGAGATCCCAGACCCCTCATTAAAAAA CACAATATTCCAAATAGGCTGCACAATCACAGCTTTAAAGCTATCTTTTCTAAGACTCAG GCAGACATGAAGTGACTGATCATTATGACCAATTAAATAATCAAACCTAAAAATGAACAA GGGGCCTAGGTAAGATCCTACCCCTCTCCAGCCCTAGAAAAAAACATACTTAAAAGTTTC CTCAAAACCTAAGCGTCCTCAAAAATTACTCAACTGAAGAAACCAATAAGGACCACTAAT GTAACTTCAGTCCATCAGACCCCTTTAAAACAAGCCAACGCAACCCCTTTAATTCCAATG TATTCCTCGGGTCCCCACACTCAAATCAGTAACCCTATCCATCAACCACCAGCACAACCC TAAAGAAAACCCATAAAAACACTCTGCACATTTTCACTCACAAACTGGAAAACATGAAAC AGCCATTCAAAAGCCCTAACCCACTCTAAACTACATTGGCCCCCGAAACCGACTCCTTCT GTCTCTAATACAACACCTAATTAATGCCCTTCCTACACATAATCATTTACACTTAATTTC ACGCCAACACGAGAGAGACCCCGTATTGAAACACCGTCAGCCCATAGCATGGAAATCAGT CATTTGGCAAACATTGAAAATCTATTCAGACATGACTGGAGCCCCAGTCAGGAGGCGCCG CAAGGTGGGTTCCCAAGGCAGCTAAGGAGAAAACCCCAGAGAAACCTCCCGCGGGGGCAA AAGGCCAAGCATATCTTACCAATCCAGCTTCTCCCACAAGATCCAACCATCCCAGAAATC СTCATTTTAGGCAGGTCCCAGTCTCAATTCCCCTCCTATGCAATCTCGCCCATAGCAAAC CAAAACTCAAAACTTTAACCTTAAATAGCAATTTAGGCCCTAAAAAACTTGATTCCTCTA TCCCATCTCATGAACTTAAGCAAATCAATAACGATCTTGTTATGTCTATGAATCACCCCG ATAAAGACATGTACCAGATCTGTAATGTAGCCATAGCATTTGAAGACACCTGGAAGGACA GATCAGTCATCTTGACTAAAACCCTGACTAAAGAAGAAAATTAAACCACCAGGAATGTGG CCCAAAATTTTGCAGATGAAATTCACACGACTAATCCTAATGATAATAGAGCTGGGGCAG AAGCTTTATCTAATTAAGAGTTCTACAATAAAAATCCTTTATGAAAGCTAAAAAAACAGC AGCTGCCTTAACCAAAAAGAGATTCTAGAGGACAAAAGAAGGGCCCTATATTGGATAAAG AAGGTGACTTAGGAAGCTGGAAGAGAAACCACATGATCGTGTGCTTCCTCGAAGGAATAA AAATGGCTGGAATTAAACCTTTATACTATGTAAAACTATCCAAAATAGATCAAGATCCTT ATGAAAACCCTACTGCTTTCCTCGCTCGTCTATGAGAGGCCATGAAAAATTACTCCACCT TTAACCCTAACACGGAAAGAGAAAAAAACATCCTGCAATAACAGACAAGGCTCAACCCGG AACTAGGCAACGAGGACTCTCACAAGGAAATCTAAGAAACCCTCACCAATTGACTTCTAT TССТСААТССТССТССТТТGGСТСАGССАТСАССАGATGCACGACACAAACTACACTTCC TCCAACCCACCCTTGAAGATTCTAGATTTTGTAGAAACTACTTACCACCTCTTTGAAAAT ATCTCGTACACTCGTGGTTAAGTAATAACCTTAGTTGAGGCTTGTTGGTTTCACCTGGGA GGTTACTTTTGGTAAAGTTCAAAAGCCAGAAATATTGGCCGTTTGGCCCGGCTAAAGTCG GGCAAAAAGCCAGCTGAACGGACTCAAACCCCACTACAGGACCTCCTAAAAGTAGCCTTC AAAGTCTTTAAAAACCGGGACGAAAAAAATAAAAAAAAGAAACCTAAAAAGGAGAAGCAA AAATAAAAGCAGAAGCTCCAACAAAAGGCTGCCCTATGGGCACACAACCCAACTCCAGGT CGCCATCAGATCACCCCCCCACTCAACAGCCACCCATGAGCGGGACCAGGCAAAAATGCA AAAGCCAACTGCCCCCCTTAAAGACCTCCAAAGAGCTATGGGCCGCCGCAGTCGTCAAAG ACATACTAGCCTCCCGGATCCACCTGGTCCCTGTAGTAAATAAGGCCACCTGAAACACTA AGCTAAAGATGGCCCAAGTAATAGGAAGTCCCCCAATTTTGAGTTTTGGGGGTATCAGAA

ATTACTTCGCATTATGAGAGAGCTTTGGTGTGTAATAACTAGGTAGGAAATACACATTTA

 GGGATGGCTAATGGCAGTTATGGGGGATACTCGGCTCTTTGCACATTTGGATAAGAGAAG CATGCTCTTGGCCACCTGGAAGGTATGAAAATGCCCTCCCCCCTCTGTAGGATAGAAGAC CACTGGAAGGGCGACGGTGCTCACAGACAGGGTTAACGGGGGCCGGCTCCCGTTTCAATG AAAGCCCAGCAATAAGCTCTCCACCGTCTTCCCCCAGAGGATTCACCACAACCTGGACAA CCACAAGCCAAAAGAAAAACACCACCAACAATATTCCGGGACTACGAGCAAGCCACCGAA ACCCACCCACTAGACCACAGAAGGGGCCTTGAGGCCACAGACTGTCCCCCAACCCCTATT CCCTGTAAAACATACCCATGAAGTGCGAAAGAGTTCTGAGCACAATCCCAATAGCAACTA AGAAACAAGTATAATTCTTTAAATTTATACAAGAAACACCAAATCCGTTTTACACAATCA ATTGGGAAACAAGTTATTCTAATTAACCACAATAGTCGGAACCCATCCACAAGTCTCCAA ACCCCAAGCCAAGAGGCAAAACCCTCTACTCTTGGCTTCTCCAAACTAACCCTCTTTAGA GCAAGCTCTTTAAATAATATAAAAAAATATTCCTCTCAGCACTTCACTTAAAGCTGCTCA GCCATACTGCTCAATAATATATTCATAAATTTCCCAGAAAACAAAAAACGTATTGTCTGA AAAGGGAATGTTTCTTATATGGTTTAGCCAATACTTCAATCTCCCACCCACAAACTTGAA TCTTAAATAAAAGTGAAATATACAAACAAATTAGCTGTTGGAAAAAATTCGAAACCTGCA GAAGCATCACCTTACACACCCGTCGACATAACCTTTAAAAATCCCACCAAGTTCCTAAAA AAAAAACAATATCCCATGATCCCAGAAGCTAAAAAAGAGCTAAAAACTATAATTTTTGAT CTTTTAAAAAAAGGATTACTCAGCCCAGGCAACATACCCTGTAATACACCTATTTTAACT GTAAAAAAACCAAACAAAGAAATAGTAAAAAAAGGAGATGTAATAATGGAAAGTGGATAG ATCATACAGACTAGTTCAGGACCTTAGACTTATTAATAAAGCTGTAATACCAATTCATCC TGTAGTTCCTAACCCTTATACATTACTTTCACATATTCCCTCAAGTACAAAATTATTTAC TGTACTTAAGCTAAAGGATGCCTTTTTTTCTTAACCCTTAAACACCATGACCCAAAATAT TTTTTTATTTAAAAATGGCAATAACAAAACAAACACGTTTACACACAGATCACATGGTCT GTTCTACAAACAATTGAACAGGCACATAAAAGCTCTATAAGAAAGACATTTTAAGGTCAA ACAAATAAAGATTGTATAATATTCTCTAAAAAATATTTAATAAGAATGCGAGCGAATATA ATAGTATTTGAACCAATAGATGAAGTTAAACAATCAATTTAAAATGGAAAGCTCAGGGAT TCAGAGATAGCCCCCACCTATTTGGACAGGCCCTTACAAAAGACCTCGCTGAAATACGCC TTACACAAGACACACTTCTTCAATAAGTCAATGACTTGCCTCTTTCTATGCCAAAAGGTT AAATAACCTTCCAAAACAGTAAGCATTCACTTAACTTAATGGAATGAACAAAAAAAACCT AGAAAGCAACAAAAGAAAACCAGTCATCTGGCACCTCTAGCATCCTCACCAAGAGACACA AAACCCCCTTGAACAAATCAGGTGTTGATATTTGGTCACATCCAAGCTAGAAAGGACCAA AATACAGTATTAGTACTAAACAAACTTGCTGATTGTGGGTACAAAGTATCTCCTTCTAAG GTACAAACATCCACACAAAGAGTTCAATTTTGGGGCCCCACTAAAAAACCACAAACAAAC AСССССТСAAGCACCCATCTACAGAGGGCTCCTGAAGCATCCAAAAGAGAGAAAAGAAAG AATCTTATATAAGTCATGCCGCCACCCAAAACTAAACAACAAAAAAGTGAATTTTTACCT ATTTCAGGATATTTTTGAATATGTATTCCAAACATTGGTTTAATAGCTCAACCCTTATAT CCTGCATTACAGGTGTCTCAGTAGGTACAATCAATCACCCATAATATTAGAAACAAGAAA AAAAAAATGCATTACAAATAATAAAACATGCTTTCATAACAGCCCCAGCACTGGCACTAC CAAAACTCATTAACCCAATTAATTAGTTTGTACAAAAACAGTGTGGAAAACCTTTTCAAG CACTCAAAATCCTAGAATATGGTGTCTTCAAGGAGGTTCATGAAAGGATGAAAAGGACCC CGAAAAGCACTCTTGAATACAGGTTTCTAATAACTTTAGAATCACATCATTTGGACTGGG TAAGAATTCCCGGAACTCTAATGAAAAGACTGACTGGTTTATAAAACTGCTAACCCAAGC AGAACAAAAATTAATTGAATACCAAGAAAATACTTTGCCAGATTATCATGCTAAATCAGC CAATACTGAAATTGTTTAGATATACAATTTGAATGAACTCCATGGTCAAAGTCAAATGAC CTATGATAACCCATCAGTTATCAGGCCAAACAAACGGAGCCGCCCAAAAAACTGTTGGCT AACTTAACAAAAAACTTAAATTTGTCGTCCAAGGATGGCCAGCCTGTCTGAGAGCCTTGG CAGCCGTGGCTCTTTTAATCCTAGAAACTCAAAAACTTTACATGCGAGAACACATAACTG TTGAAATAACACGTAACATAGAAGAAATGATAAATATAATCAGGTTACTACTTTAATTCT CTAAAAGACGTTTATACCAAACGGTAGTCTGCCTCTTCCAAATTCATGCCAAAACCATTG AAAGTTCCGCAATCTTTCGGCCAACAAATAGGCCACTTAAACCTGCATACATGCACCACA ATCAAGTGTCCTATTCTGAGCATGTTTTCTCGTTCATTAAAATCTTACCCACCCAAGAGA ACCAATACCATAACACTACCTTCATTCACAAGAATGTAACTTGTCTTGTAAATGTAAGTT ACTCCTGAGATAAAGAAGGAAGACATACAGCTGATTATGCAATTGTAACCCAAAAACAAG ATATTGAAAGCACATATCTCCCATCAGACACCACGGCTCAAAAAGCTGAACTAATGGCAT TAACTAGGGCCCTTAAATTAAAAAAAAGAAAAACAGTTAACATTTATACAGACTCTAAAT ATGCATTCCAAGTACTCCATTCATATGCCATTATCTGGAAAGAAAGAGGTTTCCTAACTA CAAAAGGAACTCCCATCAAAAATGGAAATCTCATATGCAAACTATTTGCAGCGCTCTAACTACCACAGAAAGTGGCCATTATCAATTGTAAAGGACACCATAACACGGCCAATCCAATAA CCGAAGGAAAACAGTTAACAAATTAAGCAACAAAAAAAGCAGCACTAAATTCTGAGCAAA GAGAGCCACTGAACTTCCCACCAACCCTAGAGACATGAGAATTAGAAGTAAAGCAACCAT TTTTAAACACACAAATTAAATAACAACATGAGTAGTAAAACAACGTGGGGTGGAACCTTC CATTAAAAGAATAAAAAATCTGACGCATCCATTCACACTCTCGCCCCTGTACACCCCTTA ACAACCTTAAGTTAAAACTTACCAGACAAATTCCTACCCAGAAAAAGATCGCATCCTTGA TGTGAACAGCTTATAAACAATTAAAAGAAAAAAAACTTGCCAGTAATAATAGAGACTTAT TCTTAAAAATTAAGACCCCCAATGAACAACCCTGGGCATGATGTTTCTTTCTTTCCCCCC ACCCCTGCCCTTTTCAAAGATATTAATTAGTCTTATTCTTTTTTCTACACAATAGTAACA AAGGAGGCCATTCGACTGCCTCCCTGGATCACACACTACGGCGCAGAAGAATCAACAGGG AAACTTAGGCAAATAAACCTTACTTTCGCCCTGGATGTAAGATGAAGGCCCAATCTGGGT GAAAAACATTAAAGGTATCTAGTATCTTCCGTAATTAGTAAAAACCATCACTTGGGGGAT CCAAGCACTATCGAACCCCTCCCTCAAAGGAGACACTAAAACAATGCCTTGAATCTTCTA TATGTCTAATAATTCTTAGGCCTCCCTTTCCATGGTGTCAAGCAAATGACCAAATGATTA GAAATAGATCCATCATAATAAGATCTATAGCAGATACAACCGTAAAGACTTTAGTTTTAC CAAATGCCCTAGATCTGCCCGTACTTTTAACGGGAAGAAATACAAGTGCCACCGAATTCA AACTGACTCAACAGAGCCGTTTCTGTGCAGTTGAAGGAAATTTATCCCGTACGTGAACAA AAACATTTCAGAACAAGGAAACTGAGCTGGAAGAAATTAATAAAAAATTCCTTGAAGGGC ATTAAGCACAAGACCGTTTAATAAAACGAGCAGACTCTCCTTATAGCTCCTTCATTGACC CTTCTGACCCCAATCGTCTGGATAGGTTGGGAACCCGACCAAAGACCTCAATCCACACCT CAGAAAACAGTCTCAAGAAACTCATAATCCCAAGCCTAAAAGTCCACTCTTTACCCTCGA GAGACTCTACCAAGAACAATACGAGACGTCATAAAAAAAACCCTCAACCAAGCCTCCTGT CCAAGCGAATAGATGGGGGCCCCCCCTTTTTACACCAACTAATCCAAACGAGAAAAACAA AССТТССТТТССАСАСТGGATACACCATTCСАAACTAAAAAGAGCACCAGATCCACATCC AGAAATTTCСТСАСССССАААТTATTCTСССТСССТСАСАGGAССААССТСАСТGСАСТТ AACAAGAATTCCAGAAGTTGCCAATCCAGAACGCCCTGGTCCATAACACTCTCTGCCTCC AATTTCCAATCTTTTATCTCCTACTTTGTTTCAGATCTTTCCTGGTATCCCTTCCCCATG TCCCTGGATAGTCCACGCCAATTTCTCACACTAATCCAGGAGATATGGCTGCAGGGCACC TTCСААААТТТСАСТССТАСТСАААТСТССТТТТТСТССТААGACCAAAACTGACTGTGC AAAAAACTTGGTCCACATACCATTAATCGTGGAGATAAATGGCAGCCTTCAGACAAGAAA ATTACCTCTTAAATCAGTCACACTCCCCTCTTTCTTCCAACTGTTAAATTTGTTTGTCCA CACAAATCCAGCAGTTCACAGCCCTTCCTGTCAACCTCGCAACATAAACCAGATACAAAA AAAAGCCGAAAAACAAAACAGACGATATACTCCTCCCTATGCCTACCTTAATATTTCTTC TTTTGAAATTAGTTTTCTCTTAGTCACTGAGTTTTTGCATGCAGCCATCTCTAGAATGTC AAATGGTCTCTCTTCAACTGGAATGACAAGAGCTCAAAGAAATGTATGCCCACAACGGCA CССТАACCTATGACTAACACCCTAATACCAGAAACCCTAAACTATGATTCCTAAGAGTCG CACTCCAGCAATAACCTATGGACACCCTCTCAGCTATCAGAGAACCTGACTAAAAATGGG GCAAACTCAAAAACGCAACTTTGAGACAACAAAACTTTGAACCAAGCTCGTGCACCACGC ATCCACAGACCTCAACAAAAAAAAAAGGACTAATACGTTCAAAAAAACACAAATATAAAA AGATACCCAACGAAAACAGATTCATACTCCCAAAGACCACCATTCCTTTACTTTCTGTCA GGGGGGCTAACCGGGCTAGCACACACCCAAATAGAAAAAAAATAAAAGAAGAAAAAAACA GGCGGTTCAAGAGACAACCACCAACCAAACAGCCCCTGCCACCATAACCTACAACTTTTG TCTGTCCACCCCCAGTGTCTTCTTCCTGTGTGGCACAAACTCCAGGTTTTGCCAGAAGGC GGGCCACCCTACACCAACAAGTACAAAAAAACAATCACCAAAAGTCATCGTTCCCACCAT GCAAAACCCAATGTTCGACTGTTTTCCAGCAAATCTAATACCCCCAATAACTATCGGAAA TTACACGATAACATACAAGCTCAAACAAAAATCGCTTCAGACATCCGAAACGGACCATAA CATCCCTTAAAAAATCAGTAGGGATGGGTACCAAAAAAACTTCTCGTCTTGTACATCGGA TTTCTTCAATTAATTAACACACTGAAACTAAGAGACATTGTATTCATCCATACTTCACTT AATGGAACTCCAGTTGCCTATACGCCCTTTTGAAGATAGGCACCAATAGACAGATTAAAA GGTGAAAGCAGCCCGACCCTCAGTATGGTCCTGCTACAATGACAACCTGAATATCAGCCA CTCTCACAAAATTCAGTGAAAGACCAAAAGGCGCGAATTCAAAAACAATAACCACAACAC AACACCCAAACCAAAAATGAGCAGGCAAAATAACTTCCCTTGTCCCTGTTAAATTTACAA AAAAATAGAAGGGAAGAA

>3_cons

TTTCTGGGGTCCCAGACCAGGAAGCGAGACAACAGATGGACTGTCTCCTTTGCCTGTGGG GAGGCAGCCCCTGAGCCGGCGGAGACCTGCCATCCGAAGCATCCCTGCGGGGAACTCCAG

CCAGCAGGAGAGACCCGGACCCCCAGAACCCTCCCAGCCAGCCAATCACCCCAACGGAAC GCCTCAAGGGGCTACAGGACGATACCAGCAACAGCGTGCTAAAGAACCGCGGTAAGGAGC AAGGGCCCAAGGAAGGAGTGCCAGGCCCATATGGACGAAAAAGGAACTGGATCAACACCC GGAAGGAACCGACAAATCCAACCCAGACATGCGAAACGTGGCAAGACTGGCCTGCGAAAC TGGACCAACCCCATACCCCCCTAACAAGTGAAAGTGGTTCACTGGTGGAGAAAATGGGCC GATAGAGCGGCAAGTCCAACAAAGAAGAGCTTGCTGGCAGGGTGGCAAGAGTGGCTTGCC ACCCCAACTGGGAGTGGGGAAGTGTGTGTGGACCTACCCAGGACATGAGAGAGGCTCGTT TCGTCCGATGAGGAGTCCTGGGGTAGGAGTGGTGTGTGTATGTGTGTGAATGTGGGAGCC TAACTAGGCTCACCCGGGACACGGGAGAGGCCTATTACGTCCCAACAACAAACCGGCGAA AGGCAATGAGTGTGAACGTGGCCGTATCACACAAGGCCAACGTGGACAGGAACGTTGGGT GCTGTAGGTCACTTGGCTTGGATTGTTTGCTCCGAGGGGAGTGGGTGGAACATCGGTTCT ACCAGCGAACATCCGCCAGGGCAATTACATATGGCTAACAGAAAAAACAAACAACTTAGC GACCGAGGTGGCCTGCGTAAGGGGAAGGTACGTACCCAACAGCAAAATTGGGGGCTTTCC CAAGGATCACATTTTCGTCCTGGGTCGGGTTTCTGGTAAAGTGTAAAAAAGGGGAGTGCGC GCCCCACACCCCTTCTTTGGGTTGCGGTTTGCATCAGGAGGGAGCAAGCTGGATCCACCC AGAGGTTCATGAAAAACACGAGAATAACACCAACTCAATAAGAAACTGTGTTGAAAAATT GTTAAAAGGGTTCTGAAGGAGACTGGCGAATAAAAATCACTGTACACAAACTAAGGACGG AAAATCCAATAGAGTGGCCAACGTTTATCGTTGGTGGGCCGGCCGAAGGTAACATGGACG GGGCTGTAATTCGCCGTATGTTTAAGATATGGTATGAGGTATGTTGAAAGCCAGGGCACC CAGACCAGTTTCCGTACATAGACTCTTGGCTACAGCTGGTCCTAAACCCCCCAACCCCGA AGTTGAAGATAATACAGTCCTCCAAACGCCAAGCAGAACCAAAAAAAGACCTAGGAGAAA AGAGACAAAAGAAAAAGAAACAAAAGAAAAAAAGCGTGGAGAAACACCAAAAGACAGACA GCAATGCCAGGCAAGAAATTGCAAGACGGAAGAAGCGAGCCAAACCGAGCCTCAGACAGA AGAAGAAGCAACTACGAGTAGGGGGAGAAAAGGAGACAGTAACCCTAGAAAAGACAACAA AAACCAGATTTGCAGAAACCAGCAAAGGAAAGACAAAGACTGGAAACTTATAAGTCCAAA CGTAAAAGAAAAGAGAGAAAGGGATGAAAAAAGGGATCCTATGACACACCTCCAGAAGCA AAAAAGATAGTCCCATAGGTTTAATGATTAACCTATGGAAGAATCATCAAAGCACTAATC ACAAGAATAAAAAACAGATAAAACAATACTGTGCCCTTATCTGGCCACTAGGTCCCCTCC ACAGCCCCTCAATCTTCTAGCCTAAGTGGGGGTCAAATGAGGATGTAAGGGCACAAAATG TAACCCTATCCGATACTGAAAAAAGTAAAGGGGAAGAAAAAGAACAAGGTTACGCACTCT GTTGGATCTAGGAATTAAACCGCCTTGAGCCTTCCACTTCAAGAGAAGAAGAAACCCAAA TACCATGAAAAAGTAGGAAGCCAACTAGGAGGAATATCCCATTTAAAACCACCAGCGCTT GTGACCCCCTGACCTTTTTTCCTGGAAATACAGCCTCCATTCCTACACCAAAAAGCCGCA GGCTCTCATCAAGCAGCTGCAATCGATTATGATGACACAACACCTCACCTGCCCACACTG CCAACACCTTCTGCTTATAATCCTTAAAACAGAGGAGAGTAGCAGTGCGACCCAAGCAGT CCTTAACAGCCTATATACCATTACCCAAGAGGACACCCTCAACAACTACAACTATGTAAA AGCGATATTCACAAATACCGATCCCCATTCGGACCAAAAGAATGAAGAAGAAGTGTATTC CCTATAAGGGGAGTGAAAATAAAACTGGAAAAGGCTGAAATTAGTTTTATAAAAGGACTT TTAAATGAATCAGAAGTCAGAAATGCTTCAGAAGGAAGTAGAAAGTCCCCGAAAAGTCCA TTAGAGAGGAGAACATAAAAATGAACAATTATAAGGGATCTGAGGCATACACTCGGTATG CCCCAATGGCCCTCGTGGACACTCAAAGTCAAGGTAAGGAAAGAAAGGAAGATGTGGAGG GAGGCCAGGAAGAGTCAGGAAAGTCAAAACCCTCCCGGCCAAAAAGTTCCAAAAGACATA CCCAACACAAATTCATTGCCAAATCGAGACATCAGGTGAGAGCTTCAAAAGTCAGAGGGC TTTGCAAACATGAATGTCAGTAGGCAAATAATAATAGAAGGAAACGTAGAATCAAAACGC AAAAAACAAAATCTAATGAAAGCATTTGGAAGACAACAAGAGAAAGATGAAGAGCCAACA CGATGCCTACACAGACAAGAGGAGCAGATGAAGCAATAACTAGAGACCGATATGGAGGGC CCAGTCGAGGAAGGGATCAAAAAAGTCAAATTCATGAAGAAAAGTTGAACTGGCATAAAA ATAAAGGTGCAAAAAGTAGAGAAATAGGAAAATAGACCAATAAGTGAACAATTAAGGGAA AATAACAAGATATTCATAGGTAGAAAGAAAGAAAGACAAAAACGAATGACAAAAGCAATG TTTCCCACTGCCTAACAGATAGCGACAAAATCGGCTTAACATAGACAAAGGATCAAGAGA ACCAGAAAAGATAAATTGCCAGACCTTAACCACTCTAGGGACCCAGGACCCCTATAAACA AAGGGAGGCACAAAGTCCATGGATATTATGCCCAATACAGTGCCTGAAAATTCAGTAGTA AATCTTCCAATAACCCAGCTATAAAAAAACCATAATACTTTTAACAGGGCTACAGGGCAA TCAGAAAAAAAAAAAGATTGCCCTTCAAGGAGAAATCTGATAGCAGGCCTAGAACTCATG AATGTTCAAGTAGACCAGGAAAATCATCGGGTCCCTCTGTTTGAAAGAGAGTCCCACCAG AAACTGTTGACAAATATAGATTTTGCACCAGAACGTGATATAGTCACACTTTTGGTTCAC ACAAGGGCTACTGTGTCCACTATTACTGTCCCAGAATCTAATCCTGACTCCTCTGCAGAA

AAACTGACAGTCTCAGAGGTAAAAGGGGAAGGATTTACAGTGAAAATATTAAAAAAAACA GAAGTCAGATAAAGACCAGGATTACACAACTCATATTCAGCGGTCATTCTTGTTAATCCC TGAAGCAGCAACTAATTTACTAGGAAGAGACTTAATGTTAAAGTTGGGATTAGGGCTACA AGTACGATAAACACAATTCCTAACTGTAATGGGCCTACACATAATGAGCGGTCTGCATAA CATGAATCCTGGTGTCTGGGCTGAAGAAGACAACCCTGGGATGGTGGAAAACCCCCCCAC CCAGATAATAGAAATAAAACCACATGGAGAAGTAGTAAGAAGAAAACAATACCCCATTCC CAGAGAAGGCATTCAAGGGATAAAACCAATTATCGAGGGCCTCAATAAAGAAGGGATGAT AGTTCCCTGCATGTCCCCATATAACACTCCAATTCTGCCTGTGCAGAAGCCAGATGCCAA TGAAGTGTAGGTCATACAGGCTGGTACAGGACTTAAGGGCGATTAACCAAACGGTAAAGA CCATCCACCCTGTAGTACCTAACCAAGCCGCACACAAAAAAAAAGCAAAGAATAAAATGC AGATGGTTTACACCCTTCTGCGAATGATTCCATCTAATGATAAATGGTTTACTGCAATAG ATCTGAAAGATGCTTTTTTTTCCTTTCCCCTCAGGATTCTACAGCCTGGAGTGCTAAAGA GAGCCAGGACCTATTTGCCTTTCACTGGGAAGATCCACACTCAGGGAGAAAACAACAATA TACCTGGACTGTCCTGCCCCAAGGGTTCATGAACTCCCCCACCATCTTTACAGGGAGCAA ATTTTGGAGCAAGTACTTGAATAACTTTACCCTTCCAAAAGAAATCTGACTGGTACATTA CTTCGATGACATTCTTCTATTTGGAGACACTACGGAAGAGGTAGCAGACAAAGGAACACA AATTCTTAACCATCTCCTGGACAAAGGAGGGGATAAGAGTCTCAAGAAAAAAGGCTCAGT GTTTAGATCCCGAAGTTAAATATCTAGGCTTCATGATAAGTGAAGGCAAGCGAAGAATAG GTCCTGAAAGAAAGGAGGCAATTTTGTCTCTGCCCACGCCTAAAACCAAGAAAGAAGTCA GAAAATTTTTAGGGGTAGTTGGATTCTGCAGGATATGGATTCCCCAATTTGCACTAATAA CTAAGCCCTTATTTGAGAGGGTAAGAGATATCAAGAAAATGGAGAGGAAATCTCATGCAT GCAACCTATTATACGAGACTCAACATAAGAAAACTTGACCAAACTGAATAATGGAATTAA AAACCTTAAAGCAACATCTCTATGATGCCCCAGGCCCCCCCTGGAGCTACCTTACTTAGA AAAGCCATTTGTACTGTTTGTGTCAGAAGGAGATAGGATGGCTGTTGGAGTCCTTACTCA AGCCCTCAGAGGCTGGCGGCAGCCCGTGGCCTTCGTCTATCAAAACTACTCGACCCGGTC ACCTGAGGATGGCCCCAATGCCTTCAAGCCCTAGCAGCTACTGCCCTACTAGTACAAGAA AGAAACTGAAAAACCCTCCTTCCTCTTGCCATCCTTGATAACCTTTGGCCAAAACCTAAA AATAAGCACACCCCATGCTCTCATGAAACTATTGCTTTCTGACCAATAAAGCAAAAAGGA CGGCGATGGCTAACAGACTCGAGAATTCTAAAGTATGAGGGGATTCTGTGATTGGGCCCG AGCAGGCCCTGAAGGCACAAGTGAAAATCATGATATAACAGTTGAAACTTACAATACCCT GAACCCAGCCACCTTGCTATCTCTAGAACAGCATCCATTAGTGGCCTCAGAACAAAAATG TTTAGATTTAATTGAATACCAAACAAAAGTAAGACCAGATCTAAGAGAAACACCATTTCA TGACGGGTGATATCCATTTTTAGTTTTCCTGCAGCACAGCCACAGGACCTCTTTATAGAT GGGTCCTCCCAGGTGATAGATGGAAAATGATACACTGATGGTTCTGCATTCAATGGAGAA AGACTCCCAAAACCAAAAAATAGAGTCATAAAAACCCTTCCTGGGTTGCCCCAGTATTAC AGGGGTGAAGGCAGGTCTGCTCAAACGTGAGAACTGTTTGCACTGAACCTAGACCTATAC CCCTTAAAAAATCAGGAAAGAACGCAGAACTAATTGCATTAACGAGAGCTCTGTTACTGA CTAAAGGCAAAAATGTGAACATATATACTGATTCAAAGTATGCCTTTGCAGCGGTGCATA CATATGGAGAAATATGGAATGAAAGAGGCCTAATAAATACTAAGGGAAAAAGACATTATT TATAAAAAAGAAATCATGCAAGTATTAAATGAACTACGGAAACCAGAAAAGATAGCTATT ATCCATGTAAGTGGACACCAAAAAAGGACCTCATTTGAAGGTGAAGGAAATAAACAAGCA GATAAGGTGGCTAAACAAGCAGCTATGACTAAGCCTCAAACTCCAGTCATACCCCTAACT CСССАТСТСССТАAAGAACGACCTTAACCCCAGTTTCCTAATCAATCATAAAGGAAAAAG AAGTATTTTCAAAAATAGGCGACAAAAAAAAATAAAAGAAGGATAATGGATGTTACCTGA CGGGAGAGAAACGATATCTAAACCCCTAACGACAAAATTAGTATAGCAACTACATATGTG CAAGGAACACACCGGGGAAGCAAGGCTCTAGGTAATGCAGTAGTTCGGCATTATGGATTT ACACGGATTTATGCCCTCGCCAAAACGGTTACAGATAATTGCCTAATTTGTCAAAAGAAT AATCCAACACATGGTCCGAAATGTACCCCCTGGAAGAAAAGATACTGGAACAAGACCATT TGAAAATCTGCAAGTTGACTTCACAGAGATGCCTAAAATAGGAGGTCTACAATATTTACT AGTGCTCCTATTTCACCTTCCCTGAAGAAGGGTAGAAGAAAGATAGGAAATTTCTTTCCC CACCTGAAATGCAACTGCAAAAAAGATAATCAAAGCACTAATAAAAAACATTATACCCAG ATTTGGACTACCACAAAGCATTGATTCAGACAATGGAACTCACTTTACTGCAAAAGTAGT AAAGCAGTTGGCTCAAGTACTTAGAAATAAAATGGAAATTGCACTAATCTGGTCTTACCA TAСТСССТАССАТССССАGACATCAGGAAAGGTAGAAAGGATGAATCGGACTCTCAAAAA ACAATTAAAAAAATTAATTCAAGAAACTTAATCATTGAAATGGGCCAAAGTTCTCCCAAT GGCCCTCCTTAGAATTAGATCTACTCCAATAAAAGAAACTGGTTCTTCCACTTATGAGAT ATTATTCGAAAGGCCACCCCCAATCATAAGTCAAATTAAAGGTGATCTACAAGAGTTAGG

AGAAATAACATTAAATTATGTTTACCCTTAGAATAAGAGGCAAATGCAAAGCTTTAGGAA TAGCAATACAGAAAGTCCAAGGCTGGGTAAGAGAAAGAATACCTATAAGCCTAACAGACC CAGTACACCCATTCAAACCAGGGGACTCTGTCTGGGTCAAGAAATGGAATCCAACCACTT TGGGACCCATATGGGATGGGCCCCATACTGTAATCATGTCCACTCCCACTGCTGTTAAAG TTGCAGGAATCACACCTTGGATCCACCACAGCCGGCTGAAACCAGCAGCACCAGAAACCC CCGATGACGACAAGTGGACCAGCCAACAAGACCCAGACCACCCCACCCGAATAATCCTAC GACGAAACCCAACCACCACTAAGAGACGACAACAGCCCTGCTCCGACCACACCGGAAGCT GACCAGTCTACGCACGGCCGAAGCTTGAAGAGCCAACAAGCCCTGCTCTAGTCACACCCC GGAAGCTGACTAGTCTATGCATTGCCAAAGCTAAACTCCACTTCAAATGTCCCTAAAATG AAAATAAAAAATCTGATTCCTATAACCTTCCTGATAATACTAATTGTTCTACTATTACGC TACCACTGCAAATGCTGCAAACCTCCACCCCCAGAGAAAGACCTCCCATGACCCTGACTG GTATAAGCATGCTACTATTAACCAAAAGCTCACCACGGAAGAAACTACACATAAACTGAT GATTTTACCATTACTGACTTCACGAAAAGAAGATGAAAATATACTTGGTTTATCACCTAT TATATCCTCCATCCAGCCTGGACAGCCATTAACAAAAATCGGCTGCTACCTAAGTTTTAC TATAAATGTACAGCAACCTTCCCATTAACCTGTATCTGCCTTAAGACCTTAGTTCCAGAA GCACCAACCTCCCCATTCTGAGACCCAAAAAACACTAACCCAAATGTATGTTATGACCCT AATCTCTTACCATCAGACACCAGGTTTGAAATAAAAATAAAAACTAGCCAACTCCGAGGG GATACAAATGGAATAAAAGAAGGAAAACTTATAGATCAAACCAAAGAAGACCCTCCCTCC AATAAGAGGCCTATATCCTTGTACTTTGATGATTGCCATGCAACATATAAACATAAGCAT AACAAACCAAAAGCAACCAGAAAATGTTTAAATCAAAAAACAACTATCAATAGTGGCCCT AAAAATATAAGTTAAAAAAAACAGATTGCATCCCTGAACCGTTCCATTAACTGGGAAAGG AGCTACAGAATAAAAAATAAATATGTTTGTAAGAAGTTCTGAGGTTCTGAGCTGGGCCCC CAGGTCTGAGCTCTGCTAAATCCGACCTGAAAATAACATTCAAAAGGGCCAGTTTTTCTA ACAAAAGGCAAAGACAAAAACTACTGTGCGAACAGCAGAAAGAGGCCGGAATAACCAAAC ACGAGTCAACCAACTCCTCCACAACGGAAAAAAGGAAAAGAAGCAATGTAATAAAGCAAG TCCAGAGGCAAGCTGGAAGCATTTTTTTACTTTATTGTTTGAAACACTGCTGTTTTTTTT GTTTTATTTTCTTGAGTCAAGAAAACTTTTTCTTTTGACCAGACTCCCAGGTGAAACCAC TAATAAACGAAAACTCAAAAAAACCTAAAATGAACCAATATTCCAAATCTCTTATTATTA ACTAATTCTGCAAGCATCAGAAATTCTAAAAAAATCAGAAAACCACATTTACAACAAACA TATTACTCGTTCTTCGTTTCCTTCTCCAACTAGCAGAAAATGGAGATTAATGTAACCAAG TCAATTCATGCTATGTATATGGAGTTTCAAGCATGGGAGATCAATCCCCGTGGGAAGTGA AGTTAATTTTGTAGAGCCAACAAAAAGTCCTTGGGAAAAACTGTCTGCACAATCCGGAGA GTCAATGACAGCTCTCTCAGTCAGAAAAGTACCTTTAGTCCTACTAACCCTCCTCATGAA GGACAATAGAAAACTACAACCATCTAGTCCTTAAAGAACTCCATAAAGGCAACATACTGC ATAGCTAGAGCCTTGAATGACCCCACAAGGCCTATAGGAAGTATAACCTGAAGTCTCTGG CCTAGGCCAATAGTCTGTTGACGACGCAATAGAAAGAATGGACTGTCAAAACAAGCTTTT ATATAATTACAAGCTACAGAAACTAAAACAATAAATTCAATTAATCCAAGGGCCAACCCC CCCAAAAATTAATCCTACTAGAGGGACACCCAGACACAAACGGTGAATCTTTCTGAATAA AАССТАТССТТСТТТТТАТСТТСТСТСАААСССGСТTGGTACCACCCAGATTCTCAACCG GACTGGAAGGCTCCCTCTGGTATATACGGGATATGGTATAGGGGCAGAGGTTACAGGGAA AGACCCCATTGGATTCTTTGAAAACCGTTTCTCAAATACACTAATCAAAAAATCAACCTC CAGCACCTGCCCCAAAAGATGTCTCCAACACCACTCACAACTAAAGAAAACCAAGCATTC GCCCACCATCTATCAAACGACCCGACCAAGATAACGATCGTAGAGGTTAAAGACTTAAAA CAAACTTTAGCAAGAAATTGAGACAGGATACCAAGATGTAAATGCCTGGCTAAAATGGAT CAAATATTCCATCCGCACCTTGAACAAAAGGCATAGTTACGCTTGCGCACAAAGTAGACC GGAGGCTGTGTACTTGGCACAATTAATCCCTTTTCCTTTATAATGCCCCTCAAAACAGGC GAACACATGCGGTACCCTGTCTATGTTGAAAATAAAAAAAAAAGAAAAACCAACCAGGAT AAGACAGCCTGGGGTGACAAGACATGCAAAGCTATAGCAATGCTGAATCACAAAGAACGG CACCCTGAAGGTAAGATCCCATGGGATAGCCCACCTCCATCGCCACAAGAAAGATCAAGG GCACATCGTACCCCTATCTACAGGCACAAACCTATCATACGGTTATAGGCGATCTGATTG AAATAATAACCAATGAATAAAGGAAAGCAGTGAGTTTACTAACTCGGAAAGACACACAAA TGAGTAAGCCCTTCTTCATCCCCGAGCGGATGTATGGTGGTATTGTGGGAAATGCTACCT ATAAGAAAAAACTTGCCCTAGACCTCCTGCTGGACGTGTACTCAGGTCCATTTGGAAATT AACTAACGTGTATTCATTCTCACTGGTATTTGGTCACAAATAAAAGAAAAAAGAAAGACA GTAAAAAACAAGAGAAGCCACATATCAATCTTGGGACACGTACCTGTACATAGATGGCAT TGGAGTCCCACGGGGACTACCTTTGGAATTTGGTGCCCAAAATTAGATAGATGCAGAATT TTAATCAATGTTCTTCTGGTTGTAAAAGGAACCTGCTTTATCAAACTTTTTTTTTTGTTT

Abstract

TGATAAACTACATCTATTACAACCAACAGCGATTTATTAACTACACTAGAGATGCTCTTA AAGGAATAGCTGAACAATTAGGAGCTACTAGCCAGATGGCCTGGGAAAATAGGATAGCCT TAGACATGATATTAGCAGAAGAAGGAGGACTCTTTCTCATTATAAGAACCAAATGCTCTA ССТTCATAAACACACAACATCACGCCCAAACAATACCGCCCCTGATGGAAACATAACAAA AGCATTACAAGGTCTGACTGCTCTATCCAATGAGCTAGCCAAAAATTCTGGAATAAATGA CСССТTTACAAAATGGCTAGAAAAGTGGTTCGGTAAATGGAAAGGAATAATAGCCTCAAT CCTTACATCTCTCGCAGTCGTAATAGGAGTACTTACTCTTGTAGGATGCTGTGTCATACC ATGTATCCGAGGATTAGTACAAAGGCTCATTGAAACAGCACTTACTAAAAAACCTCCCTT AACTATCCTCCACCTTATCCAAATAAGCTGCTTACTTGCAACCTTTTAGCAGAATGAATC AGCATAATATTATCATTTGCATAAAAATAAAAATGTTTTAAAGAGATACGAAAAGAGAAA TAGTGAAAATGAGAATTACAACCAATGGTATAAATAGTAAAAAGGGGGGAAAAGGAAT

[^1]ATGTCCTTGGGAGCTTGACTTTGTGACCATGTGGGGGTACTCTCTCTTGGTCTCCACCAT CCAGAAGAGGAAAAGAAGCAAAATAAGAAAAAGAACCAGACATAAAAGAACAGCCAGTCT TGCAACTTATCCCCCACAGACAGACCACCCAGCTCTCCCCCTTGCCCTAGTTCССТСССА AACGCTCCTCCCCCAACTAATGATGGTTCTTCTACAGCCCCCTTACCAAAAGGGCCACAA GCAGATCGTCGATCGAATAAAATATAAGCCATACCCCTTTCCTAAAGACCCCCTTTTGGC CTAGGTGATCCTAAAGAAAACCTGTCAATCATAGAGAGTGGAATAAAAAAGCCTTAAAAA TTAAGGCAAAAGTAAAACTAAAAACACCATAAAAAGAAAAAGCACTTTAGAGAACTCATA GGCCAAACTTTCATACTTATGAAATATTATAGGTGTAAAATTGGCATAAGTTAAAAATAT CTAAAATTGTCGATTTTGTTTGCGTGGAGAATTCAAGTGGTTTCATGCTTACACCAGAAG AAAAAAATAAGACCTCAAAAAGAGCAACAAAGAACATAAAACGACAAACACAGCCCAAAA AACAATGGACAAAGAGCGTCTTATATGTGAAGGATAACAGGTACCTTAAAAACTGTTTAA AGCACAATAAGAAAAGGCAAGATAGAACACATATCCTAAAACTGCCTCAACAAAAATGAT AGCCTCTCCCCTTGCACATTGAAATTCAAAGAAAAAGCATAAATACTAAGACAAAATCCT AAATAATAAAAAAAGCCTTCTAAGTGTCTTGTAACTTGTCAGTGCCAGAATAATAAACTA AATTACCAGAAATTTATACCTCCCTTTTATCAAAATTGAAGAGATATAATTGTTCAGTTT TATCTTCAAACAAAAGACCAAAAAGAAACATGTATTCTATTTACAGAAACCTGAGAATTT AAAGATGCCTGGTATCTTAGTAAAGTCCATTATATACCTCAAGCCGAATAAAGAGTAACC TTAGAAACATTCAAAAAGTAAATCCCAAAAGTAGAACCCGACTGCCATATTGAATGAGAT AATGGTGATTGGAGCTGAAAAAAATTAACCGAAAAAAGGTTAGTACTGTAAAAATAAGGT CACTCTCATTGTAGACGGGTTTATGAAAAATTGAAAAAATCCTAAGAACTATTCAAAAAC AAACACTAATACTAAGGGAAAAGAAGAATATCCATTTGCTTTTTTCGAAAAAACAAAGGA GCCGATGAGAAAAAATAGCAATCTGAAAACTGAATCCATTGAATACTAAAAGATATAAAA AGATTAATCCAAAAGCCAATCAGCTGCATATATTATTAGTAAACTTCAAAAAAATAATAT GAGCCCAAAAAAAATTTTTTAAAAATAAAAGATTATTATTTCTACATTTAATGCCGTCTA GATTCTTGCCACCCTCAATGCCCACAAGAGAGGACCTAAGGTAATTTCTGACAGCCTGGG ACTCCTTGGGAAAAACAGTGGAGGTGCCACAGACACTATTGAACCTGGCAACCTCGGTGT TCTATAATAGAGACCAAGAGGAACAGGCCAAAAGGAAAAAGCGAGACTAAGAAAAAGGCC GCAGCCTTAGTCATGGCCCTCAGACAAGCAGACTTTGGAGGCTCAGAGGGAACCAAAAGT GGAGCAGGACAATTGCATGGTAGGGCTTGCTACCAGTGAGGTTTGCAAGGACACTTTAAA AAAGATTATCCAAGTAGAAACAAACTGCCCCCTTACCCGTGTCCAATATGTAAAGGAAAT CACTGAAAGGAGCACTGCCCCAAGGAACAAAAGTCCTCTAGGACAGAAGCAAACAACTAG TTGTAATAACAGAAGAACTTTGGATATCTGGAGCAAAAGATAAAACAAGACATTACTATC ACAAAGACACTAGGATTCACTACCATTGAAGACCAGGAAAATGACTTCCTCAGGGATACC AGTACGGCCTTATCAGTCTTACTCTAATATCATTGACCTCTGTCTTCTAAATCAATTACT ATCCTAGGGATATAAAGTAAACCACTTAAATGGTATTTCTCCAACCTCTTAATTTGTAAT TAGGTAACTTTGCTTTTATAAAATCTTTTTCTTTTTATGTCTAAAAGTACCAACCTCTTA TTAGGGAAAGTTATAATAACATATCTTATAAAAACAGTAGCTACTATCAAAATGAACTTG TAGAAAAAATTACTAACTTAAAGTCTCTAACTTGAGAAAGGATATATACTTGTGATTTTA ATTTATATTTAATAAAAGCTCTTATGGAAAACAAGGCTAAAAATATCAGTGAAGAAAAAT TCTAAAAGGCAAATAATGATCATCAAATTCTATTTAAAATTAAAGAATATATCACAATTC CTTAAAAAAAACAATAACTCCTTCTACCTAAAACTTTAAAAAGATTTAAAAAGATAATAA AAAATATAATAATACAAAGTATATTAAAAAAATTTAATTACATAAATCTTACAAAATTAC AATCTTTTGAATACAAAAATCTAACTGTAAATCTATATGTCTTAAAGTATAACATTATAA AAAACAGTATAAACTAAAAAAGTTACAAAAAAAGCAGTACATTTATAACAAAAAAAAACA AGATTTTAAGATAAATATCTTAAAATAAAAAATAACAAAAATAAATTCTTGGACATAAAA TTCATATAATATTATAAAAATGATTATATAAAAAATCTAAATTATGGAATACTTAAACCA TATACTCCGTTTTCACATATACCAAAGAAAGTAGTATGGTTTATTATTAAAGATAATAAA GATTAAATTTTTTATTATATACAAATATAATTACAATTAATAATTGTTTTATTTGAAACA TTGATTTGAAGATCATAAAAAACTGGCCTCTCATATAACTTGGAAAGTCTTACCACAAGA GTTGATAGATAGCCCAAAACTAAATAGCCAAACTTTAGTCCGGGATTTAAGCAAGTTCTC AAACATATTACCTAACCCTCATATCATTCAATATGTGGATAACATACTTTTGGCTAACAG TTAAGAATAGACCTTGTACTTTCAACTACACATAGTAAACAAGTTACTCAAGAACCCTCT ATAAGAATAGAATCAACATTTGCTTAAAATTTCTAGATAATCAAGGGTACAAAATTTTAC TTAAAAAGACTCAGATTTTCTTTTAATAAGTAAATTATAAAGAATTAGGCTAATCGAAAG ACTTAAGGGCCCTAAGCGAAGAAAGAATCAATCTTAAACTTGTTTATCCATGTTTCAAAA ACATGAAAATATTTGAAGGGGATCTTTAAAATAACTCAATTGTGTAAACAATTATTCACA GGATACAGAGATATAATCCAGTCATTCTAGACCCTGAAAAAGGAAAAAAAAATAGCAAAT

GCGTATTTAATAGAATGGAAACCTTCATAAACCACATTCAGATAAAAACAGTCCCACTAA ACACAGAAACAGCCTATAAAAAGCTTATATAAATCTTACCCTAAGATCCAACATAACAAA ATAATTAAATTAGTTTAGTTTTAAGAGTTTATTAAAACAAGCTTGAGCGATATAAGACTA CCCACAGGACAAAACTTACCTTTAGAATACAGCCATCCACATGAGGTAAAACCAGCAAAG TACAATAATACACCTATTTTCAAAGAAATTACAGGTATAACCTTACATGAAGTTAAAATA AAAGTTATATAACGTCTTAATATCCAGTAAAATAAATTAGTAGAAAATTTAAAGTAATAG AAATGGGTTGGCTTCAATGTTTAAAAATTGTTTCAACAGTTTCAATCTTAATAATTGATA CATTTAAAATAATTCATGAAAAATATCTTACTTTGAGGATATTTTACGATGTTAAAGGTA TATTAGATGCTAAAAATAATTTGTGGCACAAAGATAACCAATTACTTAAATATCAGTCTC TACTCCTTGAAGGACCAATATTTCAAATATGAAATTGTAAAGCTCTTAACCATGCCACTT TTCTCCCAGAGGATAAGGAACCAATTAACCATGGCTGCCCAAAAATTTTTTCTCAGACAT AAACCATTCGTGTGGATTTTTTGGACGTCCTTATAGATAATCTTAACATCAACTAGAAAA CTGTAAAAAGTGCTTTTGAATAAAATTTAATGCAAAAATTAGAGTATGTTATAGTTAGTG ATACGAAAATAATTGAAAATTAGTAATGAACTGAAATTATCAAACATAACAAAAGGAACA GAAATATAGATAATAAAATGAACCAAAAAGAAAGCAGAATAATAATTAATTAATTTGTAC AAAAATAGTTTAAATCGGTGAATTTTAATTATATATTTAAATAAAAGTTTACATTTCTAT TTCTTTATGCTATAAGCATCAATATTTCTTATATGTTATAGAGTCAAAATAACTATCTAA TAATTAAAATCTGACAGAAATTAAAGTATTATGCAAAGAAATTAAAATAGAGCATTCCTG ATCCCCTCTAGGGGAACACCCATTAAACACCACAAAGAAATTATGAAATTATTGCAGGCA CTACAAAAACCTAAAAAGGTGGCAGTCTTACACTACCAGCGTCATCAAAAAGGTGAAGGA TAAAAAGTAGAAGGAAACCATCAAACAGAAAGCAAAACCAAAATTGCTGAAAGGGAGAAA СТТССТTTAAAAATAAATATCAAAGGACCCCTAGAATGGGACAAACCCCGCAAGGAAAAA AATCCACAATATTCACCAATAGAAATAAAATTAGGGAGACTTTCACAATAACATAATTAC AAAAATAAATAAACCCTCAACAAGGTTAACAAAAGAAGAAGGAAAAATATTTATTCCTGC AGCTTTCCTCCAGAATATAGAAACTATTCGTGAGCATTCTTATCTTATGGCAATGTAATT ATTTGCATAAATCAAATAAGAATATGTTTATTTTTGTAACAGGACATAATTGTAAAAACC GGTTAGAATGACCAAGGCTTTCCCTGCAAGACATTGGCAAGTGTTAGAGGAAAAGAGGAA AGTTTATCCGAAAGTGTTATTGAAATCCCCCGGAGAAGAGACAATGGAAAGGTCTGTTGG ATGTTCCAACTTTAAATTAAAAATCAAAATTATCATTAGAAGGCAATAAAAAAAAAATAT GAAAGCCATAAAATAAGGTATTACCCGGGAAAGGACAGGGAATCAGACCTTACGCAGATT ACCAAAGTCACGATAATACAGGACAGGCACATAAAAAAATTCAGTATTTATTAGTCTGTG TTGATACCTTTACTGGTTGGATAGAAGCCTTCCCCTGCAAGACAGAGAAGGCACAAGAAG TAATTAAAGCACTAATTCATGAAATAATTCCTAGATTTGGGCTTCCCAAAAGCTTACAGA GTGACAATGGTCCAGCTTTTAAAGCCACAATAACCCAAGGAATATCCACGGCGCTAGGAA TACAATATCACCTTCACTGCGCCTGGAGGCCACAATCCTCAAGGAAAGTCGAAAAGGCAA ATGAAACACTCAAAAGGCATTTAAGAAAACTAACACAGGAAGCCCATCCCCCTTCTCTTT СTCTAAACCTCACGCAGAGAGCAATTTAACCAACTCATAAGTTTTTTAGGGGAAAAAGAC ATGCCTTTCTTTAGCAGGCACAGGATCCAAAAGATGCCCATAGACTTAGTCAACTAAGAA TCCTACAAGTCTTTAAAAAGCTCTTATAAAAAATTCATTATAAGAAAAAAAATTCCATTA AAAACAAAATAAAAGGCATATTGGAAAAATAAGTATTCTTGCTAAACTTTTTGCAAAAAA TAGGTTTAATAGTAATAAATATAAGAATTGTATCTCAATCCAAAATTCTAAAGTTTATGT TCCAGCAAAGCAAACCTTAAAAGAGCCTATGTGGTCAGTCACTATTCTTGCTGCATTTAT GTAAATAATCAGGCCAAGTCTAATGAGATCAGACTTATTTTGCAAGCAACCATTTTTAAA CTATTGACAACATGCTAAAACAGGAAAAAACAAATGTGGACACAAAAAATATAGCACACC TGTTGTTAAATACTAGTATTGCCTAAAATTTTTCAAACTTCAGCACTGGCTTTGGGCAAA ATATCAAAAAAAAAGCAGGCAAAATCTTAAGACGAAAATAAGCCTCAAAAGAAGACCAGA GTACAATCATTACTAATAAATGTTATTGACGTCTTAATATCAAACAACACTATAAAAAGC ATGTCACAGAGATAAAGGTATAATCCTTTTTCAACTAAAAGTCTTCAAATTAATCAATTC AATTСТСТСТААСССТTСАТСССТGGAATCСССАСАAAATTAGGAGTCCCССТССТСАGA TTTGATGCAGACAAGGAATAATCCAATCTACCCCAAAAACCCTCTACGTAGAGATAAAGA CTCAAACCATGCAGTTAAAATCGAAGGAGTGGAATCATGAAAAAACCACACCTGACTAAA ACATTAGACACTGCCTGAGATAACTAATAAAACATCAACCCCGTAAAGACAAGGTCAGCG AAAGAAAAATCAATACACATGGAAACCAAAGGAGGACCTGCAGCCTCCTTTGAGAAGGCA ACCTACATGAAGGAAAAAATATAGTCTGTAAAGGTTTTCTATTCTTTCTCGGTTAGCTGT СТТСТТССTAAAAGAAAAGAAATAAACTTGCTTTTCTTTTACCTAATTCTGAGAATAATT AACGGCAACCTTAAAAAAGAAAAAGGAAAAAACAAAAAAAAAACAAAAACCACATTAATC AGTTACAGCTCTCATTGCTCTCTTTAATGGAAGACTTCTACTATTTCATCACATTATTAA

GCAGCATACTAACCACACTCCTTATAATAGGACTATATACTGTAGCTCCTGCCAGGATGA AAATCCTAATCACATCAACCTTCTTTCTATCAGCCTTCCTTGTAACAGCAATTCACTCCT ACCTTTAACTCAGCCTGGAAAAAATGATGTCATCTTCCAGAGCACCCCCCTTATCTTTCT АТТТАСТАТТТСССТААСААСАССТСАТGАТТССТТТСАСАСТТССТGСААТСАСТССТС СССАТАСТССАGССССТААСТСССАСТАСААААСАСТССАСТТGAСААТGТGССТССССG GAAAAACAGAACAACCATTCTATAGGAAATTATTGAAGGCTGGGTAGCCCCCTACAAACC CCCACATATGTTGCCACTCACACTCACATGAAAAACAAATGCTATAACACTACAACTCTC TGCACTCATAATAAACAAAAACACCTTATAAGACAAAAAAAAAAATAAAAACTAGCTGAC CTAAAAAACGGGGAACCAACACTTGTTGGACATACTATACCCATACAGGTATGTCTAACA AAGGAGAAGTCCAACTTTTACGTTAATAAGACTAAAAAATAACATATAAAACAAGTAATC AAAAACCTAAACCAAGTACACAAAACACCAAGACCATATAAAAAATTAGACCTCTCAAAA CTACAAAAAACCCTCAGTTATCATACTCGCCCCTGGAGCCTATTTAACACCACCCTTACA ATTAAACCCTACAACTTCAAGCCCCAACTGATCATAGTAACTTCTGAGTCACCCAAACAG CTCCATTCAAATGGTTTGTCTGCTCAGGGCCCCCAGAATACATGAGGTCTCCCCTAATAA ACCAACAAACTGTTGGATGTGACTCCCCATGCATTTCCAGCCATACATTTCAATCCCTGT CCCCAAACAGTGGAACAACCACTACTAGTGAATGCCCTCTAAATTTCTCTTTCAGTCACT CTCTCAAAAAGTACAAAACACATCCAAATTAGTAGGTCCCATAGTTACCAATATAGAAAA CACAGAGACCTCAAAACTCACATGCATAAACTTAAGCAAGACTATATACAAAAACATCTC CCAATAAATTTCATAGGAAACAACACAGTCACGAATCGCCTGGCTAACATAAAATAAAAA TAAAGAAAAATCAACCAAGGAATATTATTCTTCTGTTATAACACAACCTATCGATACCAG AATAGTATCTTAATAAACAAATGCACTTTCGAAGCTCAAAATGCTTACATTTAAATATAT AAAGATCACAAGCCTCACTTATATTCTCTTGTCTCTGACACCGAAAATTGATCTGAATAA CTGACTATGAGAAACACGAATTCTTTACAAAATCAGACTACCAAATATCCACCTAGAAAC TTGCACAAGATCAAGGCCACCATTGAACCCTTGAAGAGCCCCCATTCTAAAATTTATTGT TTGAGCGCCAATGATAGATACAATCCAAGGGAATAGAACTGCAGGAATAACAACCTCAAC ATAGACTAAACACAAACTATCAAAACAATTAAAGGAAACAATAAAAAAAATAACCAAACA ATAACAGACACTACAAACACACCTTAACTCTGTGGAACATGTACCCTTCCGAAACTGCAG AGCCATGAACCTTTCCTTGGTGGAACAAAGAAGAACCTTTTCCTTGTCCGATATAATATG GGGAGATTTGATTTATTAAACTACCAAAACAATAAACATAACACATAAATTTAAAGAAAT TCAAGAACGCACACTAAGTAGACAAAAGGAGCCTCATAACACAGAATCCTTCAACCTCCT TAGCAGATGGATACCATCGCTTCTCCCCTTTTTAGGTCCTGTAACAGCAATCATATTGCT ACTCGCCTTTGGGCCATGTATCTTTAACCTCCTTGTCAAATTTGTTTCCTCCAGAATCGA GGCCATCAAGCAACAAAGGTTCTCACAAATGGAACCACAAATAAGCTCAACAACCAACTT CAGAACACCAGACCAAAGAATACCAAGGACCCGTGGACCCACCCCCTAGCCCCTCCACCG AACTGAATATCCAAAAACGATACCCTCTCGAGGACATAACAAAGGCAGGGCCACTTCTTC GCCCCTATTCAGCAGGAAGTAGTTAGAAAAAAAATCCGCCAACCTCCCCAACAGCATTTG GCATTTCCTGTTTAGAAGGGGGACATGAGGAAGAATGGGGATA
>5_cons
AGTGGCGTCCACGTGGGGGCTCTCTGGCGCCCAAAAGGGGTTTCTCACTCACTGAGGGAA AGTGTGGGAGTCCATTTAGCCTGTCTACCTCATCCTCTCACTGCACTCCGAGTGATGACT AAGGACGGCAGCTCTTAAGCATCGGGGGAAGAGTGGCCACATAGGGTATTTCCGAAACTC CCCTCGTTAAACTTTTACACACCGGTTGTGTTGTAGAAGTATTGTATAAAAAACCTACTG AAAACACGAGAAATAACAGTTATTTATAACACTACTATATAAAACTAAAGGAAAGACAGG GTCATATCCACGCGGCTTCCAACAATCTGAACTCTTTATTTAAAAAGATGGAAAAATACT GTCCTTAGTTTCCTGAAAAAGGAACCATGGAGCTAAAAGTATGGGACCGAGTTGGTGCAA CATTCCGGCAACGGGTCACAGCAGGTAATTATCTTCCCATCACTATTTGGAGTGAATGGG CССTAATACGTGTTGCCTTACTTCCATACCAGTCCAGTGAACCCCTACAACTACCACAAC TTAACGCACATGGCGACCCGCAGCCTTTACCTCAGATATCCACCCCCACTCCGACTTCAC TTTCTGATCACCAAATACAATACAATCTACCTCTCCTACCTCACCAAAAGGAGGAATCTA TGAATAACTCCCGAAACATCCCCTTAACCTCACCACCTGAATATCTTAAATCTTTTCAAA CAGAGCTGCTACTCCCAGAACCAGCGGAACAGACTCAGCCATCCTGTGAACATCTAAATC СТСАТТСТТСТСАССССААТСАТСАGСАССССТАСТСТАAGССТАСТССТАСТАGСАAСG AGACCAAACAACATATTTCATAAACTTATACTGCCCCTCCCCCAAAGACTACAGCCCCAC AСССТССТААССТТТСGСТСАТTСАСССGGCCACTGTTCAACCCATCCAAACTACTAATC AGCACGCAACTTAAAACATGAAGACAACTAATCACCAGGAAGTTTAGGCCCCTCCAACAC CCACAACCCCCAAGTCTCAAACTCCAATACCGGTCCGACCTCCTCAACCTCAGTTTCCCT

TATCTACACATACTTTTCCTGTCACTTCTATGCCGACTCCGTCTCATGTGCCTGCTCTTG AAACTTCCATGCAATGCTTATTACGCGTAGGTAGGAAACTGTGCGTCAGCCTGGCTTGAA GTCTCTCAACTTCTATATTCAAAACCCCAATTTCTTTTCTGCTTCTGGTCCAGTCACAAC TGCTGTTGCTACCCATAAGCAATAGGTTACATACATTCCTGATAATGACACCCCTCTTAT GAGGGCCATTCTCAGGGCAAGGGAATACGGGGATCCCGAGGCATGGTGTCCTGTTATTCT ACAATCTCCTATACCTGCTGCCCCCATTCTAGCTGCCCCTGCTCTGGCTGCAATGGATCA GCCACCACCTGCTGACCAAGTTCAGCAGGCAGCTGACGCCACTGCCTCTCCAGACCCGCA GCTCAGGGGATCAGGCTCCTCAGCCAGTGCAAGAAGGGCCTGATGTCCCAGCAGAGCCAG TTCCTGAAATTTGATTTAGAGGCGTGGCAGTACCCCGTCACACTACACCCCCCAGATAAA CAAGCAAAAGACATGCGACAATATGAACCTTTCCCTTTAAAATTCCTAAAAGAATTTAAA GATGCTTGAAATCAGTATGGACCAAATTCTCCTTATGTCAAAACAGTACTAAAAACCTTT GCTACTGAAAAACGATTGGTTCCTATTGACTGGGACATTCTAGCAAAAGCTGTTCTAACT CCATCTCAATACTTACAATTTAAGACATGGTGGGCAGATGAGGCCCAGATTCAAGCTCCG CTAAATCAGGAAAATGAAACTCAAATTAATGTGACTACTGACCAGCTTCTGGGAGGGGGC GATTGGGCGGCTATAAGTAACCAACAAATAGCCTAGGATAAACCCACTTTAGATCAGGTT ACCAGAACAAGTTAGTTAGGAGGAAAGGAAAAAATCCCCTTTGAAGGTCTTGCCTTTTTG CAAATAACAGCTATTAAACAGGGTCAAAATGAACCATACCCCTGATTTCATGGCTCAAAT ACAAGATGCTGCTGAAAAATCTATTCCTGATACGAATGCACAAGATATAGTCCTGCAAAT GTTAGCTTTTGAAAATGCTAATCCAGAGTGTCAGGCTGCTATACAATCTGTCCAACGTAA AACCCAACCAGAAAATGATTTGACCACTACCTATATCAAAAATAGAGCAGGTGTTGGTAG AACATCACAAACTCATAAAGTTAAGTAGAGTCTTCTAAAGCTATCTGTTTCTCTATTTCC TTTTCTGCCTGCTTTGAATCTGCTGTTATTAAGCTACCGGTGTTGAGATAAAACTCACTG TTTATGGTACCGCTAGCCTCAGCAAAGAATATAGCCCACTTGCACAAAAGCATTCTTTGA GCACAGGCAATGAAAGAACCCAAACAAAATAAAGCAAATAATTCCTTTTCCAGATCAACC TGTTACATCAGGAAACAAGGTCATACTCGACAAGATCAAAAAACTGTAGCCTAAAAGACC GAAAGAAACAAAGTCCTTTACTTAATGCTAATCCCCAACAACCTGCTCCTCAGAGACGGA CAAAAACGAATACCTGTGTGGAATGTATGCCCAAGATGGAAAAAAGGAAAACATTGGACA AATCATTGTCACTCTAAATTCGATATAAATGGTAACCCGTTACCGCAAATTCAGATAAAC GGAAAGGGCAGGAAGCCCCAGCCCACACAACCAAACAGGAGGAGGCACCAGCCTCAAGCC CCAATCCCAATCAGGGCTCCGGGGTTTCGTCCACAACTCCCAGCACCTCCCACTAAAACC AAAACAGCATTCCCGCATCAACCAGTCCAAACAAAGCCACAGACACAACCTCAAATACTC AAACCACAACCATATGCGTCTCAGCCCCTTCTCTTATCCCAGTACAATGCCCGTCCACCG CCACAACAGGAGGTGCCGCAGTAGATCTATGCAGTACTATACCTATGACCCTACTACCTG GGGAACCCCCTAAAATTGTCCCCACAGGAGCCAATGGCCCTTTACCTGGAACTTTAACTA GATAAATTTTGGCCAACCCCTGCTTAGCAACAAAAGGTGTTAAAGTTCATACCGGACTCA TTGATTCTGATTACTCTGGGGAAATAAAAATTGTTATTTCTACTAAAGTTCCCTTTAAAA CTGAAGCAGGAGAATGAATTGCTCAACTTCTGCTTCTCCCGTAACTGAAAATCGGTACAA ATAAAGGTAAACAAACAAGAGGCCTTGGGAGTACCAATAAACAAGGAAAAGCCGCTTATT GGGTTAATAAAATTTCTGATAAACGGTCCGTGACCTGAAGGTAGAGACACTATAAAGGGA AAGAACCTCCATGATTTTCTAGACAGAGGAACTGATTTTTCTATAATTTCTCCTCAGCAA TGGCCTTCCACCTGGCCAAAACAACCCGCAAAAATCAAATTAGTGGGAGTTGGAAAAGCC CCGGAAGTTTATCAAAGCTCTTTTATTTTGCATTGTACAGGCCCAGATGACCAAATGGGA ACAATTCAACCATATATAACTCTTTCCCCATGTAATCCAGGGAACAGTGCTGCACTACAA CAATGGGGGGCGGACATGACCAAACACAAGAAAATCACAGGCTATGAAAATGGTTAACAG GAAAATAACTTATAATCCTGACCAGCTTTGTCTAAGGCCTTGGTTCTCAAAATCCACATA AATTAAATACTAAGCAAAAACAAAATAAGTTAAAAAAAATGAGATATATGCCTGGAAGAG GACTAGGAGAAAATTGGCAAGGGATAAAAGAACCCCTGCAACTCACCAAAAAACTTGACA ACTAAGGATTTGGATATCCTTTTTAGTGGCGGCCATTGTCAAGCCTCCAGACCCTATCCC TTTAAAATGGATATCTGATAAGCCAGTTTGGATAGAGCAGTGGCCGCTTCCTAAAAAAAA ACTGGAGGCTTTAAATAAATTAGTTAATGAACAATTAGAAGATGGACACATTGAGCCATC TTTCTCTCCATGGAATTCACCTGTGTTTGTAATACAAAAAAAATCAGCGGAAAATGGAGA ATGGTAACTGACTTAAGAGCCATTAATGCAGTAATTAAACCTGGACGGTCACCACCCAGG GGCACGTACAACCCGGCATGCCCTCCCCCGCTATGATCCCTAAAAATTGGCCTCTAATAC TCATAGATCTTAAAGATTGCTTTTTTAATATTCCTTTAGACAAGCAAGACTGTGAAAAAT TTGCTTTTACTGTACCTTCAATCAACAATCTGGAGCCTGCAACTCGTTATCAATGGAAAG TACTACCACAAGGAATGCTAAACAGTCCTACAATTTGCCAGCCTTATGTTGGGCAAGTGC TTCAACCTGTCCGACATAAATTTCCACAGGGTTACATTCTTCATTATATGGATGATATAC

TTTGTGCTGCCCCCACTGAAGAAGAATTAATTCACTGTTTTGCCTTCTTGAAACAAGCCA TTTCAGAGGCTGGATTAAACATAGCTCCAGATAAAATTCAAAATACCACTCCTTTTCAAT ATTTGGGAATGCAGGTAGAAGACAAACCCATTAAGCCACAAAAAGTCCAACTTAGTAGAG ATAATTTAAAAACCTTAAATGACTTTCAAAAATTACTAGGTGACATTAATTAGATAAGAC CTACTTTAGGCATCCCTACATATGCGATGTCTAACCTGTTTGCCACACTATGTGGAGATC CAAATCTAAACAGTCAAAGGCCTCTAACAGAAACCGCAGACTAAAAGAGGCTAAACCAGA GTTGCAATTGATGGAAAAAAGAGTCCAAAAGGCTCAAGTAACTAGAATAGATCCAAATTA GCCTTTACATTTTCTAATTTTTCCAACTCAGCACTCTCCTACGGGACTAATAGTTCAACA GCATGATCTAGTTGAATGGGGTTTTCTTCCTCATTCCACTTCAAAAACTCTAACTATTTA TCTGGACCAAATCGCCACCATAATTGGGCAAGCAAGATCTCATATTATTAAAATTTACGG ATATGATCCTAAAAAAATTATAGTCCCTTTAAAACAACAACAAATACAACAAGCCTTTAC AAATTCTCTTACTTGGCAAATAAATTTGGCTGACTTTATTGGCATTATTGATAATCATTT GCCTAAAAAAAAATTGTTTCAATTTCTAAAAATAACTTCTTGGATTCTACCTAAAATAAC CAAAGATAAACCAATTACAGGAGCCGTTACAATGTTCACTGATGGGTCCAGTAATGGAAA AGCGGTCTACGTCCCACCAAAACACCAAGCAATCCACACAACATCTGCCTCCTTTGAAAT ATCATATATAATAAACATAGAAGAAAGAAGGGGGGGCTTACTGCCGTTTCTGAGCCATTC AAGGAGATTAATATACCCCTAAAAATTGTCTCTGATTCTGCATATGTAGTACATGCCACT AAGAAAATAGAAACAGCTACCATCAAATATATTGCTGATGAAAAACTGATTTCTTTATTT CCAAGGTTACAAACGGGACCTAGGAACCTTAGTCACCACCCCCTTAAGCCGCCCACTAAA AACCTGCCCCATACCCATCCGCCCCGAAACCGGTCTGCTGGCAATCATAAAGCTGATGCT CTAGTCTCTTCCGCAATTAAAGAAGCACGACACTTTCATAATCTCACTCATGTCAATGCC GCAGGACTCAAACACAAATACCCTCTCACATGGAAAGAAGCTAAACATATTGTACAGCGC TGTTCACATTGCAAAGAGAGAATGGGAAAAACAACAAAGCAGGCAATGAAGCATACAACC AССАССТТССАGACTCAACACCAAACAACCCCCGCCACGAGTCAATCCCACAAACAATTC CGTCAAGTGCTAATCCTACCAACTCTGGCTCCAGGAGTTAATCCCAGAGGCTTGGCACCT AACGCTCTTTGGCAAATGGATGTCACCCATGTTCCATCTTTTGGAAGACTAGCTTATGTA CATGTATCAGTAGACACCTTTTCACATTTTATCTGGGCTACATGCCAAACAGGAGAAGGC ACTGCCCGTGTTAAAAGACATATGTCTTCTTGTTTTGCGGTTATGGGCATTCCACCTCAG ATTAAAACAGACAACGCCCCAGGCTATACCAGCAAAGCTTTTAAAAAATTTATTCAACAA TGGAATATTAACCGCACTACTGGAATCCCTTATAAGCCCCAAGGACAGGCTCCAGTAGGA GTGAGCAAATAACACTTCCAAAAAACAACAGTTACAAAAACAGAAAGAAAGAAAAAAGGA ATTAAGTACCCCCCACAAGCAATTAAATCTGGCACTTCTGACTCTGAATCCTTCCATTTT GTCAAAGCTCCGTCCTCTAATGGCAGCCGAACAACACTATACAGGCAATAAATTTTTTCG GCACCTAAACAAGAAATTAAGAAACAAGCACAAAAAAAAGAAGAAAAACAAATGACGCAC TGGAAAGAACAAAGAACAAAAAGTTGGCAAATAGCTAAAAAAGAAAGTTCGGGCCCACTG CCGGTGTTCTCTCCTTGATGTCTGGGAGCAGACCAGATTGGTAGACAAACACGAAAACCA AAAACTAGGCAAGAGGAACAATCAGAACACGAGAAACAGGGTATGCTACAGGTCCACCAG AAGAAAATCAATCCCCTGTTTGGGTCCCTACTAGAAATCCCTGAGTCCGTCTGAAGAATG ACAATGAAAACAACAAGAAAAAAACATCAGGGCCACAAACCACCCGCAAACATAGCCAAA ACTGGGCAAAAGAACAAAAAACAGACACGACAAACCAAAAACCATATAACCCAACAAGAC CAGAGCACAAAGAAAACATAGAAATTTAATCCCAAAACCCCAAATTCCGTCACGATCAAC ACACGCAAACATAAAAAACTAACCTAGGAAAAGACCAAGAAACATACACAGCTCAAAGCA ATCCACCAAACCAAAGCAAAGAATCTCGCCCCAACGATGATTGTCATGATCACTCTGATA CGCATAATCAACACTGCAGTAACTCTCCCTTACACCAAGCTGCATACAACAATAAATCTG TCTCAGTGGACTTCTTTGCCTTTTCCTCCACTTATTCGACCCATCACATGGATGGATGCT CCTGTAGAAGTCTATACTAACGATAGTGCTTGCATGCCTGGATCTATAGATGACCGTTGT CCTGCTCAACCAGGAGAAGAAGGAACGCCTTTTAATGTTACCATTGGATATAAATATCCA CCTTTGTGCCTGGGACATGCACCTGGTTGTATCCCATTAGATAATCAAAATTGGCTGGCG ACACTACCAGCCGGCAACACTGATACGAAATAGGGACATATGGTCTCAGATCTCACAATT AAACCTTTAAGATATACTATTACGGGTGTGGCAGACTACACTCAAAAATCTCAATATAAG CCAATAGGAACCACGCCAGAGCAGACGAACTTGCTCGCAGTGCCAGACCCCTAAAAAGAC CAAAAAAAGGGAATAAAAAACTAAAAATTTAATATGGAAAGATTGCATTAACGCACAAGC AGAAGTGCTAAAAAATGATTCCCACAGAATCATTATTGACTGGGCCCCAAAGGGGCATTT TAGGAATAATTGCTCTGCTCAGCAAACACAATGTCAGGAGGCTACCTATTTTATTGCTTA TTAAGAGAATAGCGACCACCCTCACATATTAAAGGAAAGGTTGACCACATTCTGTCССТС TAATTGGAAAAATAAAGGCATTGCCTGCATGAGACCAGGAGCCAGGGTCGGCCTCCGAGG GACAGAAAAAATAGAACCAAAAAAGAACCCTCAACAGTTAGAAATATGGAAATTGGCTAT

[^2]
Supplementary Material S3:

Figure 18: The regulatory motifs of 17 bp subsequence of LTR in lincRNA.

| Transcription factor | Seq1 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Sequence | From | To | Score | Strand |
| Broad-complex 1 | AAAATAAATAAATA | 1 | 14 | 9.221 | + |
| Broad-complex 4 | AAAATAAATAAA | 2 | 12 | 9.487 | + |
| HFH-2 | AAAATAAATAAAT | 2 | 13 | 12.485 | - |
| HFH-3 | AAATAAATAAAT | 2 | 13 | 12.439 | - |
| HMG-IY | AAAATAAATAAATAAAT | 2 | 17 | 9.534 | + |
| HNF-3beta | AAAATAAATAAAT | 2 | 13 | 11.759 | - |
| Hunchback | AAATAAATAA | 2 | 11 | 6.384 | + |
| Athb-1 | AATAAAATA | 3 | 10 | 7.226 | - |
| HFH-1 | AATAAAATAAAT | 3 | 13 | 7.914 | - |
| SQUA | ATAAATAAATAAAT | 4 | 17 | 8.950 | + |
| Broad-complex 1 | TAAAATAAATAAATA | 5 | 18 | 8.121 | + |
| Broad-complex 4 4 | AAAATAAATAAA | 6 | 16 | 9.487 | + |
| HFH-2 | AAATAAATAAAT | 6 | 17 | 12.485 | - |
| HFH-3 | AAAATAAATAAAT | 6 | 17 | 12.439 | - |
| HNF-3beta | AAAATAAATAAAAT | 6 | 17 | 11.759 | - |
| Hunchback | AAATAAATAA | 6 | 15 | 6.384 | + |
| Athb-1 | AAATAAAATA | 7 | 14 | 7.226 | - |
| HFH-1 | AATAAAATAAAT | 7 | 17 | 7.914 | - |
| Athb-1 | AATAAAATA | 11 | 18 | 7.226 | - |

Broad-complex_1
Broad-c
HFH-2
$-\mathrm{HFH}-3$
$-\mathrm{HMG}-\mathrm{IY}$
-HMG-IY
-HNF-3beta
-Hunchback
$\int_{-1}^{\text {Athb }}$-1
Broad-complex_1
Broad-complex_4
HFH-2
$\mathrm{HFH}-3$
$\mathrm{HNF}-3$ beta
Hinf-3beta
Athb-1
-HFH-1 \quad Athb-1

Figure 19: The regulatory motifs from two subsequence of ERV in lincRNA.

B

| Transcription factor | Seq1 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Sequence | From | To | Score | Strand |
| Pbx | TCTGATTGAGGA | 9 | 20 | 10.707 | - |

\qquad

Transcription factor	human				
	Sequence	From	To	Score	Strand
Myf	CGGGTGCTGGTG	4	15	7.989	+
Snail	CGGGTG	4	9	6.063	+
Snail	CTGGTG	10	15	6.770	+

Figure 20: The regulatory motifs of 150 bp subsequence of MIR in lincRNA.

Transcription factor					
	Sequence	From	To	Score	Strand
Snail	CAGGTT	2	7	7.278	+
Spz1	CAGGTTACCCT	2	12	7.659	-
Snail	CAGGAG	41	46	6.028	+
Snail	CAGGAG	50	55	6.028	+
Snail	CACCAG	67	72	6.770	-
Snail	CAGGAG	74	79	6.028	+
CREB	TCTGATGACGAC	80	91	10.371	+
bZIP910	ATGACGA	84	90	7.070	+

$\left[\begin{array}{l}\text { Snail } \\ \text { Spz1 } \\ \text { Snail } \\ \text { Snail } \\ \text { Sna } \\ \hline\end{array}\right.$

Figure 21: The regulatory motifs of 100bp subsequence of SVA in lincRNA.

SVA
D

Transcription factor	Seq1				
	Sequence	From	To	Score	Strand
COUP-TF	CTGTTCAAGGGGCC	4	17	8.853	-
NF-kappaB	GGCCAGTCCC	14	23	7.528	-
TBP	TCCCTCCATGTATAC	20	34	7.528	-
AGL3	CCATGTATAC	25	34	5.939	+
CF2-II	CCATGTATAC	25	34	8.425	-
CF2-II	ATGTATACAA	27	36	6.185	+
FREAC-4	ATGTATAC	27	34	8.269	-
FREAC-4	GTATACAA	29	36	8.102	+
Snail	AACCTG	35	40	7.278	-
SOX17	ACCATGGTC	44	52	6.411	+

Reference

1. Belancio, V.P., D.J. Hedges, and P. Deininger, Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Res, 2008. 18(3): p. 343-58.
2. Mirkin, S.M., Expandable DNA repeats and human disease. Nature, 2007. 447(7147): p. 932-40.
3. Kunarso, G., et al., Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat Genet, 2010. 42(7): p. 631-4.
4. Lynch, V.J., et al., Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat Genet, 2011. 43(11): p. 1154-9.
5. Cowley, M. and R.J. Oakey, Transposable elements re-wire and fine-tune the transcriptome. PLoS Genet, 2013. 9(1): p. e1003234.
6. Pereira, V., D. Enard, and A. Eyre-Walker, The effect of transposable element insertions on gene expression evolution in rodents. PLoS One, 2009. 4(2): p. e4321.
7. van de Lagemaat, L.N., et al., Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet, 2003. 19(10): p. 530-6.
8. Rebollo, R., M.T. Romanish, and D.L. Mager, Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu Rev Genet, 2012. 46: p. 21-42.
9. Jacques, P.E., J. Jeyakani, and G. Bourque, The majority of primate-specific regulatory sequences are derived from transposable elements. PLoS Genet, 2013. 9(5): p. e1003504.
10. Conley, A.B., J. Piriyapongsa, and I.K. Jordan, Retroviral promoters in the human genome. Bioinformatics, 2008. 24(14): p. 1563-7.
11. Medstrand, P., J.R. Landry, and D.L. Mager, Long terminal repeats are used as alternative promoters for the endothelin B receptor and apolipoprotein C-I genes in humans. J Biol Chem, 2001. 276(3): p. 1896-903.
12. Franchini, L.F., et al., Convergent evolution of two mammalian neuronal enhancers by sequential exaptation of unrelated retroposons. Proc Natl Acad Sci U S A, 2011. 108(37): p. 15270-5.
13. Sela, N., et al., Comparative analysis of transposed element insertion within human and mouse genomes reveals Alu's unique role in shaping the human transcriptome. Genome Biol, 2007. 8(6): p. R127.
14. Schoeftner, S. and M.A. Blasco, Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol, 2008. 10(2): p. 228-36.
15. Azzalin, C.M., et al., Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science, 2007. 318(5851): p. 798-801.
16. Nilsson, M.A., et al., Expansion of CORE-SINEs in the genome of the Tasmanian devil. BMC Genomics, 2012. 13: p. 172.
17. Kelley, D. and J. Rinn, Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol, 2012. 13(11): p. R107.
18. Mc, C.B., The origin and behavior of mutable loci in maize. Proc Natl Acad Sci U S A, 1950. 36(6): p. 344-55.
19. Kramerov, D.A. and N.S. Vassetzky, Short retroposons in eukaryotic genomes. Int Rev Cytol, 2005. 247: p. 165-221.
20. McCarthy, E.M. and J.F. McDonald, Long terminal repeat retrotransposons of Mus musculus. Genome Biol, 2004. 5(3): p. R14.
21. Singer, M.F., SINEs and LINEs: highly repeated short and long interspersed sequences in mammalian genomes. Cell, 1982. 28(3): p. 433-4.
22. King, R.C. and W.D. Stansfield, A dictionary of genetics. 5th ed. 1997, New York: Oxford University press. vii, 439 p.
23. Kajikawa, M. and N. Okada, LINEs mobilize SINEs in the eel through a shared 3' sequence. Cell, 2002. 111(3): p. 433-44.
24. Jurka, J., Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc Natl Acad Sci U S A, 1997. 94(5): p. 1872-7.
25. Cordaux, R. and M.A. Batzer, The impact of retrotransposons on human genome evolution. Nat Rev Genet, 2009. 10(10): p. 691-703.
26. Chen, C., T. Ara, and D. Gautheret, Using Alu elements as polyadenylation sites: A case of retroposon exaptation. Mol Biol Evol, 2009. 26(2): p. 327-34.
27. Roy-Engel, A.M., et al., Human retroelements may introduce intragenic polyadenylation signals. Cytogenet Genome Res, 2005. 110(1-4): p. 365-71.
28. Shen, S., et al., Widespread establishment and regulatory impact of Alu exons in human genes. Proc Natl Acad Sci U S A, 2011. 108(7): p. 2837-42.
29. Sela, N., et al., Characteristics of transposable element exonization within human and mouse. PLoS One, 2010. 5(6): p. e10907.
30. Vorechovsky, I., Transposable elements in disease-associated cryptic exons. Hum Genet, 2010. 127(2): p. 135-54.
31. Chen, L.L., J.N. DeCerbo, and G.G. Carmichael, Alu element-mediated gene silencing. EMBO J, 2008. 27(12): p. 1694-705.
32. Levanon, E.Y., et al., Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat Biotechnol, 2004. 22(8): p. 1001-5.
33. Hohjoh, H. and M.F. Singer, Sequence-specific single-strand RNA binding protein encoded by the human LINE-1 retrotransposon. EMBO J, 1997. 16(19): p. 6034-43.
34. Kolosha, V.O. and S.L. Martin, In vitro properties of the first ORF protein from mouse LINE-1 support its role in ribonucleoprotein particle formation during retrotransposition. Proc Natl Acad Sci U S A, 1997. 94(19): p. 10155-60.
35. Feng, Q., et al., Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell, 1996. 87(5): p. 905-16.
36. Mathias, S.L., et al., Reverse transcriptase encoded by a human transposable element. Science, 1991. 254(5039): p. 1808-10.
37. Fanning, T. and M. Singer, The LINE-1 DNA sequences in four mammalian orders predict proteins that conserve homologies to retrovirus proteins. Nucleic Acids Res, 1987. 15(5): p. 2251-60.
38. Weiner, A.M., SINEs and LINEs: the art of biting the hand that feeds you. Curr Opin Cell Biol, 2002. 14(3): p. 343-50.
39. Deininger, P., Alu elements: know the SINEs. Genome Biol, 2011. 12(12): p. 236.
40. Team, R.D.C., R : A language and environment for statistical computing. 2010, R Foundation for Statistical Computing.
41. Vance, A., Data Analysts Captivated by R's Power. New York Times, 2009.
42. Dreszer, T.R., et al., The UCSC Genome Browser database: extensions and updates 2011. Nucleic Acids Res, 2012. 40(Database issue): p. D918-23.
43. Kent, W.J., et al., The human genome browser at UCSC. Genome Res, 2002. 12(6): p. 996-1006.
44. Pruitt, K.D., T. Tatusova, and D.R. Maglott, NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res, 2007. 35(Database issue): p. D61-5.
45. Ernst, J., et al., Mapping and analysis of chromatin state dynamics in nine human cell types. Nature, 2011. 473(7345): p. 43-9.
46. Meyer, L.R., et al., The UCSC Genome Browser database: extensions and updates 2013. Nucleic Acids Res, 2013. 41(Database issue): p. D64-9.
47. Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res, 2004. 32(5): p. 1792-7.
48. Price, M.N., P.S. Dehal, and A.P. Arkin, FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol, 2009. 26(7): p. 1641-50.
49. Han, M.V. and C.M. Zmasek, phyloXML: XML for evolutionary biology and comparative genomics. BMC Bioinformatics, 2009. 10: p. 356.
50. Talavera, G. and J. Castresana, Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol, 2007. 56(4): p. 564-77.
51. Huang da, W., et al., The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol, 2007. 8(9): p. R183.
52. McCue, A.D. and R.K. Slotkin, Transposable element small RNAs as regulators of gene expression. Trends Genet, 2012. 28(12): p. 616-23.
53. Cabili, M.N., et al., Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev, 2011. 25(18): p. 191527.
54. Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997. 25(17): p. 3389-402.
55. Belancio, V.P., D.J. Hedges, and P. Deininger, LINE-1 RNA splicing and influences on mammalian gene expression. Nucleic Acids Res, 2006. 34(5): p. 1512-21.
56. Belancio, V.P., A.M. Roy-Engel, and P. Deininger, The impact of multiple splice sites in human L1 elements. Gene, 2008. 411(1-2): p. 38-45.
57. Cenik, C., et al., Genome analysis reveals interplay between 5'UTR introns and nuclear $m R N A$ export for secretory and mitochondrial genes. PLoS Genet, 2011. 7(4): p.e1001366.
58. Cenik, C., et al., Genome-wide functional analysis of human 5' untranslated region introns. Genome Biol, 2010. 11(3): p. R29.
59. Barrett, L.W., S. Fletcher, and S.D. Wilton, Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell Mol Life Sci, 2012. 69(21): p. 3613-34.
60. Faulkner, G.J., et al., The regulated retrotransposon transcriptome of mammalian cells. Nat Genet, 2009. 41(5): p. 563-71.
61. Kim, D.D., et al., Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Res, 2004. 14(9): p. 1719-25.
62. Cohen, C.J., W.M. Lock, and D.L. Mager, Endogenous retroviral LTRs as promoters for human genes: a critical assessment. Gene, 2009. 448(2): p. 105-14.
63. Moran, J.V., R.J. DeBerardinis, and H.H. Kazazian, Jr., Exon shuffling by L1 retrotransposition. Science, 1999. 283(5407): p. 1530-4.
64. Costa, F.F., Non-coding RNAs, epigenetics and complexity. Gene, 2008. 410(1): p. 917.
65. Martianov, I., et al., Repression of the human dihydrofolate reductase gene by a noncoding interfering transcript. Nature, 2007. 445(7128): p. 666-70.
66. Caretti, G., et al., The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation. Dev Cell, 2006. 11(4): p . 547-60.
67. Siomi, M.C., et al., PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol, 2011. 12(4): p. 246-58.

[^0]: >4_cons
 TGTGGCAAGGATAATATTTTGAGATATTAATTTATGTTTTGTTCTCCTCTTGGTAAACCT GTATTTTCCССТTCCCACCTTCCCCCATTATGGCCCCAAGCAGGTAGCCAGGCCCTTGAT GACTCATTGCCTCGGGGGAGGTATGTGCCGCAGGGGAAGTCCATGCCAGAAAAGCAGAAA GAATGCTGCATGAAGTCAACAACTCTTCCTGGCTTTTGTTTTCCAAAAGCCTAAGCCCAT TGGAGGGAGTATGCTAGGAGACCTGGGGAGGAGGGGGAAAGAGGTTAGAGGCTGAGAGGG AACCTGAGAGGAGGCCGGGCTCCCTCCCCCCCAGACAAAGAGGAAGAGATTCCCCTGGGC TGAAACCCAGGAAGGAAGGCGGGACAGGAGCTTTAAAAAAACCCAGATAGGTCTGGGGGA ATCCTGGGAGGAGAGCAGGGAAGGGGACCTGTGCCCTGCTTCCCGGCAGCGCAGCCCGGG GAGGCGGCAAGACTCTCAGAGAGGCCCTGCATTTGGCTCGGCGCCACGTCCAACATGGCG CGAGAGCGGTAGAGCAGCAATGGCTGCGTGGTGTGTCTAGGCAGACGGGACCGAGGGCAG CCCCACCGGGGCTCCCAGCCTCCCATGGCCTGCGTGTGGCACGGAGGGGAGCCAAAGATT CCCGAGTGCCCCAAGCATGGCACGGAAGGTGGGCTCAGAGAGAGCCGAGGCAGAAAGCAG CAGAGAGCCGCCGGCCCTGAAGGGGCCATCACAGAGGGGCAGAAGAGGGCCTACATGCCT GGGAGAAGGAGCCCGGCGACCGGAGGCCAAGAGGGAAATGGCCACCACCGCGGACACCAG CAGGGAGCGGAGGCGCATCACGCCCAAGGACCAGACGGGACAAGGGACATCTCAGCGGTC ACCAGCACAGGGAGCAGACCAGACCAGCCACTCCGCAGCAGAGACCAGTGTGGATCCCGA TGACGCCACGAGGACCAGAGGCCCCCCCCCGATCCCCCAATGCCACGGCAACTGCGTAAG CCCACACTACCCCCGGAACCTTGGCACAACCCTGGGGAGAAGGGGAGGAGAGGGAGGGGG AGAATCCTGAATTGACTGAGTATTTCCCCAAAAATGACTGAGTCATAAAAAAGAGACTAA

[^1]: >4_cons
 GATGGTACCACAAGGGCCCCGAAAAAAAAGAAGGCGCCAAGACGGGGATTAGGAGTCGAA ACAAACATTTTCAACCTCGCAATGGGGACTTCATCACACGTGGTAACTGCAGCATAGAAA GCATCCCACAAAACCTAGCACCCCAGTCAACCTTGGGTACCGTGTGAGAGACACCGAAGG GACTCCCCCCGCGAGGCAAGCGGCCCCTCGCACCTCTCССTACATGCAGTCTTTAATACC GCGGGACTCTCCCTCTAGAGAAGAACAGCTCACTATCCTGTCCGTGCCTGCCATAGAGAT GAAGGGCTCAAGATTGCTCAACTGCCCGCCAATTAGAATACCAGTGCCAAAATTAGGCTA GAAAAAGAAAAACTTCCAAAGGACCTAAGCTATCGAACCTTCTTTTTTTCCTAAGCAACC ATGTGTTAGCGCCCTCCCTTAATCCAAGGTTAGGTGTCTTGATCAACCTTCGGTTGTGCT GTCAATTTAGGAGCTTTATAGTCGTTTCTATCCCTGGGGAAGGGCTCTTTAACTATCCCC AACCTTTTCGCGTCTTAAGTAACGGTTTGCTACGAACAGGTTTTCTCTGCTCTTACTTTT CTGTGGAGCGATGTCGCACACCTGTCAGGAAAAACATAACGTCTTTGAGTCACCCAGAAT TTCCCAATTGAGCCAGAAGTTGAGCCCGATCTGTCCCTTGACATATCAGCTGACCTCTAG CGAGCTCGCTACTATGGTTCCTCTGTCTTCTGCCTCCTGGGTCCAGATCATGACGAGCAC GAAAAGGTAGCCACAAAAGCACCAGGACCACCGAAGCGACAACCTCGCATCACAGACTGC CTGGAACTAATGACTTCCTCTCTCATCTCCTCTACAAGGTTATTCCTGCTAAGAAAAATC AAGAAGCCCTACGCAGAAGCCTTAAACACCTAGGCTAGGAACCAAAAGATCCCTGTCCCT GGTGCCCTTCCAGATTTAGGCATAAGACTCAATTCAAGGGCAAATTTGAGGGACCAGTTC CCCACCATAGTGGACAGGCCCCCACATCTGTAAATGGCTAAGGGAAAAGAGAGACAGAGG AGAGAGAGAGAGACGGAGGAGAGAGAGAGAGAGACAGAGAGGAGAGAGAGACAGGAGAGA GACAAAACAAAGAGAGAGACATAGAGGAGAGAGAGAGAGTCAAAGAGAGAAAGAAAGAGA AAGAAATAGTAAAGAAAAAACAGTGTGCCCTATTTTTTTAAAAACCACAGTAGCATTAGG GCCTATCATCAATTATTCCCCAGAAAGACTTCCCCATAACACCAGGCCTCTCAAATACAA TCTTGTTGTCAGTGTAAACAAGGGCGTGGAGCAAGGGTACAGAGACCACAGACAATCAAT TGСTTTCCAATCAAAAATCCTTAACCCAGTAACCCGCGGATGGCCCAAATGCATTCAGTC AGTAGCGGCAACTGCTTTGCTAACAGAAGAAAGTACAAAAATAACTATTAGAGGAAACCT CATTGTGAGCACACCTCACCAGTTCAGAATTATTCTAAGTCAAAAAAGCAAAAAGGTAGC TTACTAACTCAAAAATCTTAAAGTATGGGGCTATTCTGTTAGAAAAAGGTATAATAACTC CAACCACAGAAAACTCCCTTAACCCAGCAGATTTCCTAACAGGGGATTTAAATCTTAATT ACCATACAAAGGTCCGACCAGACCTAGGAGGTACCCCCTTCAGGACAGGGCGATAGATGG TTACTCCTTCGTTATTGAGGAAAAACACCAAAATAGGGAAACAAAAAGCAATAAAGACAC TCTCGCGAAAACAGAGGAAGAAAAATTGCCAAATAACAGCTATCAGCAAACACAGGAGAT GTTCGCACACACCCTAACTTGAGAATACTCACAACACCAATAAACTATAAAAAACATGAC GTAAATGATTCCAAATTCCCTCTTTCAAGGTCATTTCAATAAGAACACTAATTGATGGCC AGGCCTACAGAAAAGGCAGCTGAGCTGGCATGAATCATTCGTACCCCCCACCCAGGACTA GTAACCACCTCGGAACGCAAAGCATGTCCTCCATAAGGTGTAAAAGGACACCTAGAATCA AAAAATTCTAACGCCCTGTCTATGAGGCAAAATATGCGAGACAACAGGGACCAAACACTC TTGCAAATTCGTTTGCATGACTAAAGGCAGCTGATAAACAGATGATTGAAGGCAGTGAAG AAAACTGTTAAAAAATACACCTCAGGCCCATAGGGGACGCTCTAAGGGAACTTCAGACCC TAGACTAACTAAAAATGCGAGCATAACTATCTGTATACTTTCAGATGAGAACTATACCTC TCTGAGAACAATCTCCATTAATATGTATCCTTAACAATTGGGACAAATTCAAACCTGAAA TTTTAAAAAAAAAGCGGCTGATATTCTTCTACAATACTGTCTGGCCCCAAAATTATCTTC TTTTAAGAATGAAAAACATGGCCACCTGACGGAAGTATTAATTATAACACTATTTTACAA ATAGACCTTTTTTGTAAAAAAGAAGGCAAATGGAGTAAACTCACATATGTCAATACAAAC TTTCTTTGCATTAAATGACAATACTCAAATATGCAAAAGGTTTCCCTCTCGTCTTGTTTT

[^2]: AGCCATATCCGGAATCAGAGTATGGGAAGGTGATAATAATAAATCTATTATAACAACTAA AACACAAAAAAAACAGATTTCTTTACACTATGATAAACACACACCCAAAAATATCACTAT GGCAAACACCAAAACGCCAATACAAAAATCCGACAGGAAAGACGATAAGGACTAACAACC CACCGATGCCAATCTACCCCCACAACATCCCAAACAACCTAGGACCCCCACCCCACAGTC AAAAAAAAGAGGAATTGCCACCGCCGCTCCTCTCCCTCAGTATCAACCCAAAAACAGACA TACTACCTAGATGAACTCCAACAAAACTATACCAATAAAAAGTTGTGTTAAACCACCATA TATGTTATTAGTAGGAAACATAAATATTAGCACAAAAAATCAAACTATTAAATGCATTAA TTGTAAATTGTATACTTGTATTGACTCAACATTTGATCCAAAAAAAAGTGTTATAATGGT CAGAGCCAGAGAAGGAATATGGATACCAGTAACTTTACACAGACCTTGGGAATCCTCCCC TTCAATCCATTTTATTAAAAAAATTCTACAGAGAATTCTTAAAAGAACTAAGAGATTTAT TTTTACTTTAATTGCAGTGATAATGGGCTTAATTGCTGTTACTGCAACAGCCGCTACTGC TGGAGTAGCATTACATCAATCTATTCAAACCGCTCATTTTGTGGATAAATGGCAAAAAAA TTCCACCCGAATGTGGAATTCTCAGCCAGGCATTGATCAAAAATTGGCCAATCAAATTAA TGATCTAAGACAGACTGTTATATGGATGGGAGATAGGATAATGAGTTTAGAACATCGAAT GCAAATGCAATGTGATTGGAATACTTCTGATTATTGTATAACACCATATAGATATAATGA GAATCACCACAGTTGGGAAACAGTAAAAAGCCATCTACAAGGAAGCGATGATAATTTATC CTTAGACATAACAAAACTAAAAGAACAAATTTTTGAAGCCTCCCAAGCTCACTTAACTAC TATACCCGGAGCTGAAGTGTTTGAAGGAATCGCAGAAAGATTATCTGATCTAAACCCCAT TAAATGGATAAAATCTCTTGGAGGCTCCATTATTGTAAATATTGTACTGATTTTAATCTG TTTTATTTGTTTGTTTTTAGTCTGCAGAACTCGACACAGAATCCTACGATAAAATCGTGA CCAGGACCAAGCCATCATCGCAATTGTTGACTTAGCAAAAAAGAAACGGCGACAGAATAT AAGAGCTGGGGAACGGGGTGGAT

