

Mineralogy, Petrography and Gold Distribution at the Twin Hills, Epithermal Deposit North-Central Queensland, Australia

Adam Jones

A1215041

Supervisor: Dr. Nigel Cook

Co-supervisor: Dr. Cristiana Ciobanu

CONTENTS

ABSTRACT	5
1. INTRODUCTION	6
2. GEOLOGY OF THE TWIN HILLS DEPOSIT	7
2.1. Regional Geology	8
2.2. Deposit Geology	8
3. SAMPLING & ANALYTICAL METHODOLOGY	11
3.1. Sampling	11
3.2. Analytical Method	12
3.2.1. ASSAY	12
3.2.2. OPTICAL MICROSCOPY'	12
3.2.3. SCANNING ELECTRON MICROSCOPE	13
3.2.4. ELECTRON MICROPROBE ANALYSIS	13
3.2.5. LASER-ABLATION ICP MASS-SPECTROSCOPY	13
4. RESULTS	15
4.1. Mineralogy and Petrography	15
4.2. Sample Petrography	17
4.2.1. GANGUE MINERALS	17
4.2.2. STYLOLITES AND DISTRIBUTION OF ORE TEXTURES	18
4.2.3. PYRITE MORPHOLOGY	18
4.2.4. GOLD ASSOCIATIONS	20
4.2.5. OTHER SULPHIDES	21
4.2.6. 'EXOTIC'MINERAL PHASES	21
4.3. Whole Rock Geochemistry	22
4.4. Electron Probe Microanalysis	22
4.4.1. PYRITE	23
4.4.2. SPHALERITE AND TETRAHEDRITE	24
4.4.3. GOLD	24
4.4.4. ARGYRODITE	25
4.5. Laser-ablation inductively-coupled mass Spectrometry	25
4.5.1. PYRITE	25
4.5.2. LA-ICPMS SPECTRUM TRENDS	27
4.5.3. LA-ICPMS ELEMENT MAPPING	

4.5.4. MOLYBDENITE	.29
5. DISCUSSION	.29
5.1. Pyrite origin: Textural and Geochemical Signatures	.30
5.1.1. SINTER PYRITE	.30
5.1.2. HYDROTHERMAL AU-BEARING PYRITE OF THE MAIN BRECCIATION	ON
STAGES	.31
5.1.3. LATE STAGE HYDROTHERMAL PYRITE	.33
5.2. Genetic model	.34
5.3. Metallurgical Considerations for the Twin Hills (309) Deposit	.36
6. CONCLUSIONS	.36
ACKNOWLEDGMENTS	.37
REFERENCES	.38
LIST OF FIGURES	

~ - `		
	Figure One	43
	Figure Two	44
	Figure Three	45
	Figure Four	46
	Figure Five	47
	Figure Six	
	Figure Seven	49
	Figure Eight	50
	Figure Nine	51
	Figure Ten	
	Figure Eleven	53
	Figure Twelve	54
	Figure Thirteen	55
	Figure Fourteen	56
	Figure Fifteen	57
	Figure Sixteen	
	Figure Seventeen	59
	Figure Eighteen	60
	Figure Nineteen	61
	Figure Twenty	62
	Figure Twenty One	63

Figure Twenty Two	64
CAPTIONS TO FIGURES	

TABLES72
Table One72
Table Two73
Table Three74
Table Four 75
Table Five76
Table Six77
Table Seven78
Table Eight79
Table Nine80
CAPTIONS TO TABLES
APPENDIX I
APPENDIX II
APPENDIX III104
APPENDIX IV113
APPENDIX V121
APPENDIX VI123

ABSTRACT

The Twin Hills epithermal system is located 250 km south of Charters Towers, Central North Queensland within the Drummond Basin. Mineralisation is hosted within a half graben, filled with hydrothermal vent breccia containing lithological clasts from multiple sources, which have undergone silicification and pyritisation. The deposit features characteristic sub-low temperature, low-sulphidation mineralisation, classified as adularia-sericite type. Chalcedony quartz and later comb quartz/fluorite veins host the precious metal mineralisation. Textures within the quartz suggest that boiling was the main mechanism for the co-precipitation of gold with pyrite. The latter is a key mineral in tracing precious metal distribution in the deposit.

Scanning electron microscope (SEM), electron microprobe analysis (EPMA) and laser ablationinductively coupled mass spectrometry (LA-ICPMS) have been used to identify three main morphological-geochemical groups of pyrite at Twin Hills. Each can be linked to one of three distinct genetic stages: (1) early, largely biogenic pyrite formed in an euxinic sinter environment overlying the main ore system, and which carries high amounts of Au, Ag, As, Sb, Mo and Tl; (2) main-stage pyrite, characterised by milling, resorbtion and overgrowth in which two sub-stageseach representing distinct fluid pulses are recognised [(a) enrichment in Au-(As) and (b) enrichment in Ag-(Se)]; and (3) late-stage pyrite containing low contents of most trace elements formed in a phreatic phase after collapse of the sub-basin and which involved fluid mixing.

Twin Hills pyrite hosts significant amounts of refractory 'invisible' gold, both as lattice-bound gold and as gold nanoparticles. Concentrations of several tens of ppm Au were measured in earlyand main-stage pyrite. Electrum is, however, the main gold mineral in the deposit; it may, however, be Ag-rich and thus slow-leaching. High-grade 'ginguro' mineralisation at Twin Hills is characterised by abundant naumannite (Ag₂Se), which may contribute, alongside electrum and invisible silver in pyrite, to the overall silver balance.

The presence of enhanced concentrations of Sb, As, Tl and Mo in the pyrite formed in a euxinic sinter environments suggests that these may be viable pathfinder elements in future exploration for other possible hydrothermal outflow zones in areas of shallow cover.

1. INTRODUCTION

The Twin Hills (309) Au-Ag epithermal deposit lies against the far western boundary of the Drummond Basin in central northern Queensland, Australia. The Drummond Basin hosts a number of small-to medium-sized Au-Ag epithermal deposits. Twin Hills (309) is no exception in that it consists of typical epithermal Au-Ag ores in which gold occurs principally as electrum. The deposit is, however, substantially different to the other epithermal deposits in the belt with respect to its host lithology. The Twin Hill deposit is hosted within a phreatic/phreomagmatic hydrothermal breccia situated in a small extensional sub-basin setting (Sennit 1991, Dale 2009). Other Drummond Basin deposits are situated within local andesites (Pajingo) or within strike slip displacements, (Wirralee, Yandon). The nature of the host breccia has led to specific epithermal quartz textures showing mineralisation to be characterised by low sulfidation adularia-sericitic type (Corbett 2006a).

The sinters at the Twin Hills 309 deposit, along with those in the nearby Lone Sister deposit, were originally discovered and drilled by the company Metana in 1987. Procurement of the discovery by private investors scaled up the resource and it was sold to Battle Mountain Australia (BMA) in 2004. In 2006 BMA developed the deposit by access via a decline. Subsequent small-scale mining produced 22,000 ozs Au during 2006 (Goode 2009), after which mining ceased. The current tenement holder North Queensland Metals (NGM), in a 60-40% share arrangement with Heemskirk, took over the Twin Hills venture in mid-2009. NQM has recently undertaken an exploration drilling program to expand the resource and to prove the reinterpreted ramp and vertical veining mineralisation. The possibility of mining the 309 orebody as an open cut is currently being evaluated.

Grades from the Twin Hills 309 ore zones are highly variable. Some metallurgical tests (Harrison 2009) have shown that possible variations in grades and precious metal recoveries may be due to fine gold in silicates, slow leaching caused by silver-rich electrum, minor refractory sulphides and carbonaceous content within the ore (Harrison 2009). Variations in the recovery have direct influence on the feasibility of economical returns for the proposed operations.

The present study investigates ores and the host sequence to determine the mineralogical and geochemical character of the mineralisation and the associated alteration. Emphasis has been placed on the speciation, textures and distribution of precious metals at Twin Hills, with particular

attention given to pyrite as both an indicator for the genetic conditions, and as a potentially significant gold carrier. In an epithermal system, gold can be carried as nanoparticles or as invisible gold within the pyrite (Pals *et al.* 2003, Müller *et al.* 2001). Invisible gold is defined as the refractory, 'locked up' gold present within the sulphides developed in an ore-precipitating environment, and may lead to losses in recovery, and thus revenue when exploiting the deposit. Invisible gold can only be detected by microanalysis. In comparable deposits, invisible gold has been demonstrated to contribute considerably to the gold balance (Harris 1990; Ashley *et al.* 2000). The possible implications which invisible gold has for gold recovery warrant the investigation of this problem prior to a resumption of exploitation at the Twin Hills 309 mine. Furthermore, Twin Hills is a relatively Ag-rich deposit, yet little is previously known about the mineralogical speciation of silver in the deposit. In the present contribution, a combination of SEM, EPMA and LAICPMS techniques were used to elucidate an ore-forming model for the Twin Hills 309 epithermal system, establishing any differences with other deposits in the Drummond Basin, and also contributing to a spatial-genetic model for the deposit.

2. GEOLOGY OF THE TWIN HILLS 309 DEPOSIT

2.1 Regional Geology

The Twin Hills 309 epithermal deposit is located within the North West-trending upper Devonian to lower Carboniferous Drummond Basin (Fig. 1). The sediments that make up the Drummond Basin have been subdivided into three cycles of sedimentation (Olgers 1972).

Cycle One consists of coarse intermediate to felsic volcanics and intrusive rocks with a possible mix of coarse terrestrial sediments. These are locally derived from ancient volcanic eruptive centres, producing small localised sub-basins. Formations within the cycle one sedimentation include the Silver Hills Formation, St. Annes Formation, Mount Wyatt Formation and the Bimurra Volcanics.

Cycle Two is associated with basin subsidence resulted in the deposition of related fluvial sandstone and conglomerate facies.

During **Cycle Three**, the basin was eventually filled with mature fluvial sediments. Late Carboniferous ignimbrite sheets covered these fluvial sediments as the basin shallowed upwards.

Felsic to intermediate igneous dykes of Permian age intrude these Drummond Basin sequences.

Most of the precious metal epithermal deposits lying within the Drummond Basin are hosted by cycle one lithologies. (Fig. 1). Pajingo, also operated by NQM is the most significant epithermal deposit in the Drummond Basin. Pajingo is hosted within local andesites, with ginguro style mineralised veining similar in style to Hishikari, Japan (Izawa *et al.* 1990). Current resources for Pajingo stand at 320,000 ozs of gold (Goode 2009). Smaller epithermal deposits which have amounted to some historical production within the Drummond Basin include Yandon and Mount Coolan (Vigar 2007). These deposits are situated within jogs and offsets at reactivated east-west to east-north east transfer faults.

2.2 Deposit Geology

Mapping and interpretation of the surrounding surface geology and lithology (Fig. 3) of the 309 deposit has been established by Sennit (Sennit 1991). Subsequent geological reports have been adding on this data ever since. The 309 deposit is essentially hosted within a hydrothermal vent breccia that has been interpreted to be sitting within a local pull-apart basin (Fig. 2). The basin has formed as a result of movement within a sinstral wrenching of two fault-bounding structures (Dale 2009). Evidence for subsidence in the basin has been taken from lithological marker beds below and adjacent to the basin. The breccia host within the basin covers an area at least 300 x 300 metres. Clasts within the breccia vary from clast-supported angular clasts to well-rounded matrix-supported clasts. The clasts represent multiple phases of adjacent sedimentary sequences to the basin and clasts of previous breccias. It is common to see at least two previous breccias within the host breccia. Milling of the breccia is thought to represent proximity to gaseous vents (Dale 2009).

Sennit (1991) recognized 3 main local faults, F1 which forms the western margin of the Twin Hills sub-basin dipping 70° East. F2 is a reverse fault dipping 70°NW and terminates at the intersection with F1. F2 is believed to be the major structurally controlling factor in the genesis of the 309 epithermal deposit. F3 is inferred to trend NNW with a dip of 70°SW. The Twin Hills deposit is hosted within a local antiform. The deposit has been currently divided into three main areas (Fig 2, inset), based on resource calculations and mineralisation controls interpreted by BMA geologists (Dale 2009). NQM has recently reviewed these areas and modified them accordingly. **Area 1** is interpreted as a high-grade SW-dipping flat lode. Vertical feeder vein structures have overprinted and redistributed ore fluids and are thought to be responsible for the bonanza high grade

Au-Ag values in upper zones of area 1. This vertical feeder vein feature is believed to be structurally represented by a pipe-like corridor that is being feed by mineralisation from area 3 below. It was the basis of this hypothesis that the drill holes used for sampling for this present study were to confirm. The drilling concluded that mineralisation was dominated by structurally-flat veins. The superimposed steep veins upon these flat veins were found to be not consistent in redistributing Au-Ag mineralisation throughout the flat veins. It is has been further hypothesised that later dissolutional events may have remobilised the Au-Ag. **Area 2** consists of a series of ramp/relay silica veins rarely exceeding 15 cm in width. Local dilational sites have formed anastomosing quartz veins and stockworks with hydrothermal breccias not exceeding 20 cm in size. These ramp vein sets are orientated in an east to west strike. **Area 3** is also a series of flat, moderate to high grade veins within a broader vertical stockwork pipe. Vertical veinlets are believed to dip towards some feeder zone for this mineralisation.

Ore formation models for the Twin Hills (309) epithermal system have been proposed by Sennit (1991), Bird (2003) and Corbett (2006a, 2006b). All these authors have agreed that the driving force behind the epithermal fluids responsible for mineralisation was a deep magmatic source, which developed subsequent to development of the Twin Hills sub-basin. This sub-basin is believed to have allowed small pulses of felsic magmatic fluids to rise along faults in a half-graben setting. The rising fluids have silicified the hydrothermal vent breccia host, causing it to become structurally brittle, thus providing the perfect dilational site for the following epithermal fluids. Sennit (1991) used fluid inclusion studies to conclude that these epithermal fluids were dominantly meteoric, low salinity fluids and developed in an environment less than 350 °C.

The intriguing factor in the Twin Hills deposit is the development of its mineralisation and the associated factors contributing to electrum deposition. It has been noted that Au-Ag grade has been associated with the following textures (Corbett 2006a, 2006b, Dale 2009).

- 1) Crystalline quartz with Au-Ag at its margins.
- 2) Au-Ag precipitation at the centres of comb quartz infills.
- 3) Au-Ag at the intersection of veins and styolites.
- 4) Au-Ag precipitation at the vein wall contact with carbonaceous sediments.
- 5) Au-Ag present in distinct black styolitic bands, known as 'ginguro'.

Possible suggestions in response to the above have been:

1) Internal vein pressure, leading to Au-Ag separation to the margins of veins.

- Fluid chemistry and temperature variables. Rapid changes in pH by the mixing of two different acidic and alkaline fluids can cause gold to drop out of solution (Spycher & Reed 1989)
- Fluid interaction at vein contacts, rapid changes in pH and temperature, again causing local precipitation of gold to drop out of solution.
- Chemical reaction with hosting lithologies, where wall rock geochemistry or geochemistry of clasts within the hydrothermal breccia cause fluctuations to the pH conditions of the Au-Ag charged fluids (Bierlein *et al.* 1998).

The mineralisation at Twin Hills is hosted within a range of quartz/chalcedonic silica veins. (Sennit 1991, 1999) stated a distinct range for different quartz textures relative to depth below the sinter level at near surface. Bladed calcite replacement textures with comb quartz are present between 50 and 130 metres below the sinter. Fluorite, with comb quartz, is found at levels between 50 and 150 metres below the sinter. Veins, as packages up 70-100 meters in thickness, dip 35° SW to the N of the F2 fault which they may feed. Dale (2009, 2010) has interpreted these vein packages as flat vein sets (Fig. 5g). The flat vein sets gently dip to the S-SW and are commonly up to 20cm in thickness. They generally consist of an upper cap, underneath which is a quartz matrix breccia with hydrostatic/dissolution textures underneath with steep anastomosing veinlets. A lower cap of quartz is joined to the upper cap by local stress tension release veins. These packages are said to be up to 3 metres thick. A common theme with these mineralised veins is the controlling factor of F2 upon them, which is thought to be acting as a feeder zone to the upper areas of the Twin Hills 309 deposit. Drill cores used for sampling for this thesis were related to testing the gap between these areas and the feeder zone.

Mineralisation at the drill core level was undertaken by Sennit (1991). He proposed a five-stage paragenesis of mineralisation based on core observations and SEM analysis (Fig. 4). His fluid inclusion data confirmed the paragenetic relationship of these features.

Stage one: Styolites that wrap around clast contacts, commonly aligned with bedding planes if present. Organic matter and sulphides are seen to be dissolved by this type of stylolites. The fluid chemistry with these stylolites is believed to be alkaline, sourced from local carbonate rich waters, and thus is in equilibrium with calcite.

Stage two: Carbonate veins commonly forming bladed textures in local dilational sites. Platy calcite often forms in the restricted upflow zones and precipitates with the exsolution of CO_2 gases (Simmons and Christenson 1994).

Stage three: Chalcedonic silica veining which replaces local bladed calcite from stage II. The chalcedony is saturated in silica and is believed to be chemically neutralised by the previous precipitated carbonate resulting in rapid pH changes in the ore fluid. CO_2 and CH_4 inclusions within the comb quartz confirm decarbonation (Sennit 1991).

Stage four: Comb quartz veins and breccias, these commonly fill as vughs within the chalcedonic silica of stage three. Fluorite mineralisation is associated with this stage as infills at selected sites. (Sennit 1991) found fluid inclusion evidence to show fluorite infills with comb quartz were deposited under the highest temperatures recorded at Twin Hills (350 °C), which are not technically in a classical epithermal model. Sennit concluded the fluorine was precipitated following interaction with alkaline waters.

Stage five: Late styolites crosscut all previous four stages. They commonly connect the comb quartz cavities and veins. (Sennit 1991) suggests these late stylolites to be undersaturated in silica and hence have a strong ability to dissolve quartz. With dissolution of quartz demonstrated by de Boer *et al.* (1977) at temperatures around 340 °C, Sennit (1991) concluded that Stage V stylolites closely followed precipitation of fluorite and comb quartz.

Sennit (1991) attributed transport of gold in the Twin Hills hydrothermal system to a deepsourced fluid, with gold present as chloride- and/or thio-complexes. Early carbonate alteration provided the necessary conditions for silica-saturated fluids to be neutralised causing a change in pH and thus allowing electrum, silver and chalcopyrite to be precipitated. Fluorite fluids derived from deep in the system precipitated with interaction of near surface alkaline waters. Late stage V stylolites formed in response to increasing pressures with the advance of upwelling hydrothermal fluids. The consequent under saturated conditions allowed quartz to be locally dissolved under pressure solution fronts. The resultant pressure release and pH change allowed electrum and sulphides to precipitate. Previously reported ore minerals from the 309 deposit include chalcopyrite, sphalerite, covellite, bornite, native silver and electrum (Sennit 1991).

3. SAMPLING AND ANALYTICAL METHODOLOGY

3.1 Sampling

Drill cores THRCD 917, THRCD 919, THRCD 920, THRCD 921, THRCD 925 and THRCD 926 were logged and sampled during a visit to Twin Hills in April 2010. Field notes and photographs were taken of alteration and mineralisation features within all drill cores. Sampling was particularly focussed on intervals containing visible sulphides as well as on elevated Au grades as determined by NQM assays.

Fifteen samples were taken for whole rock geochemistry and 24 samples were prepared as oneinch polished blocks for microscopic study. Initial reflected light microscopy of the 24 polished blocks identified the main and accessory ore minerals, as well as their relationships with gangue minerals and ore textures. Subsequent to this, scanning electron microscopy in back-scattered image mode (BSE) was used to verify identifications made optically. Pyrite grains were also examined for compositional zonation caused by variation in the content of As or other elements. The study placed emphasis on the precious metals, including compositional trends and size variation among grains of native gold, electrum and Ag-bearing minerals. The study also aimed to identify whether other Auand Ag-bearing minerals such as Au-(Ag)-tellurides or -sulphosalts might be present, as had been postulated earlier. Selected, well-characterized samples were then analysed further by electron probe microanalyser (EPMA) to quantitatively determine mineral compositions, including varying As content in pyrite. Laser-ablation ICP mass-spectroscopy (LAICPMS) was used to determine the concentrations of trace elements within pyrite of different textural and morphological types. All samples investigated in this study are listed in Table 1 and are indexed with photographs and accompanying schematic drillhole sections in Appendices I and II.

3.2 Analytical Methodology

3.2.1 ASSAY

A selection of 15 samples of drillcore were sent for assay (Genanalysis, Adelaide). The following suite of elements were determined: Au, Ag, As, Bi, Co, Cu, Mo, Ni, Pb, Sb, Se, Te and Zn.

3.2.2 OPTICAL MICROSCOPY

A Leitz Laborlux-12-Pol polarizing microscope, operating in reflected light mode and equipped with a digital camera, was used to examine the polished blocks.

3.2.3 SCANNING ELECTRON MICROSCOPY

The Philips XL30 scanning electron microscope (SEM) with energy dispersive X-ray spectrometry (EDAX) and back-scattered electron (BSE) imaging at Adelaide Microscopy was used, operating at 20 eV. Back-scatter imaging coupled with semi-quantitative EDAX facilities allowed rapid identification of trace minerals, resolution of the smallest Au- and Ag-bearing grains (down to 1-2 micron) and identification of the alteration silicates.

3.2.4 ELECTRON MICROPROBE ANALYSIS

The CAMECA SX-51 electron microprobe (EMP) with wavelength dispersion spectrometers at Adelaide Microscopy Centre, University of Adelaide, Australia was used. This provided quantitative compositional data on pyrite (particularly the As content) and various minor minerals including native gold/electrum. Operating conditions were an accelerating voltage of 20 kV and beam current of 19.5 nA. The following X-ray lines and standards were used: Au (Au Ma), Bi₂Se₃ (Bi Ma, Se La), PbS (Pb Ma), Ag₂Te (Ag La, Te La), Sb₂S₃ (Sb La), CoAsS (Co Ka, As La), Ni (Ni Ka), CuFeS₂ (Cu Ka), HgS (Hg Ma) and FeS₂ (Fe Ka, S Ka).

3.2.5 LASER-ABLATION ICP MASS-SPECTROSCOPY

Laser-ablation ICP mass-spectroscopy (LA-ICPMS) analysis of pyrite was made using the Agilent HP7700 Quadripole ICPMS instrument at CODES (University of Tasmania, Hobart, Australia). This instrument is equipped with a high-performance New Wave UP-213 Nd:YAG Q-switched laser-ablation system equipped with MeoLaser 213 software. The laser microprobe was equipped

with an in-house small volume (<2.5 cm³) ablation cell characterized by <1 s response time and <2 s wash-out time. Ablation was performed in an atmosphere of pure He (0.7 l/min). The He gas carrying the ablated aerosol was mixed with Ar (1.23 l/min) immediately after the ablation cell and the mix is passed through a pulse homogenizing device prior to direct introduction into the torch. The ICPMS was optimized daily to maximize sensitivity on mid- to high-mass isotopes (in the range 130–240 a.m.u.). Production of molecular oxide species (i.e., 232 Th¹⁶O/²³²Th) and doubly-charges ion species (i.e., 140 Ce++/¹⁴⁰Ce+) was maintained at <0.2%. Due to the low level of molecular oxide and doubly charged ion production, no correction was introduced to the analyte signal intensities for such potential interfering species.

Each analysis was performed in the time-resolved mode, which involves sequential peak hopping through the mass spectrum. The laser system was operated at constant 5 or 10 Hz pulse rate; laser energy was typically 1.5-2.5 J cm⁻². At these conditions each pulse removes ~0.3 µm of the samples, resulting in ablation rates of 1.5 µm/s and 3.0 µm/s for 5 and 10 Hz, respectively. Predefined areas of the polished blocks were ablated; spot sizes of the analyses were 5 µm in diameter and 10 µm for standards. The following isotopes were monitored: ⁴⁹Ti, ⁵¹V, ⁵³Cr, ⁵⁵Mn, ⁵⁷Fe, ⁵⁹Co, ⁶⁰Ni, ⁶⁵Cu, ⁶⁶Zn, ⁶⁹Ga, ⁷²Ge, ⁷⁵As, ⁷⁷Se, ⁹³Nb, ⁹⁵Mo, ¹⁰⁷Ag, ¹¹¹Cd, ¹¹⁵In, ¹¹⁸Sn, ¹²¹Sb, ¹²⁵Te, ¹⁸²W, ¹⁸⁵Re, ¹⁹⁷Au, ²⁰⁵Tl, ²⁰⁸Pb, ²⁰⁹Bi and ²³⁸U. Results are reported in elemental ppm.

Analysis time for each sample was 90 s, comprising a 30-s measurement of background (laser off) and a 70-s analysis with laser-on. Acquisition time for all masses was set to 0.02 s, with a total sweep time of 0.6 s. Data reduction was undertaken according to standard methods, using Fe as the internal standard for pyrite. Calibration was performed using an in-house standard (STDGL2b-2), comprising powdered sulphides doped with certified element solutions and fused to a lithium borate glass disk. This standard is suitable for quantitative analyses in different sulphide matrixes (Danyushevsky *et al.* 2003, in press).

Element mapping was performed using the New Wave UP-213 Laser, coupled to an Agilent HP 4500 Quadropole ICP-MS at CODES. Trace element maps were generated by ablating sets of parallel lines in a grid across the sample. The lines were ablated at a frequency of 10 Hz, with a beam size of 10 im, rastering at 10im/s. See (Large *et al.* 2009) for further details of the methodology.

4. RESULTS

The deposit description of the Twin Hills 309 ore body was interpreted from the logging results of the six sampled drill cores, in combination with previous consultancy geological reports that exist from previous company reports.

Deposit description is best described from the combination of macroscopic scale descriptions at the drill hole scale, and at the micro-scale by the descriptions made whilst analysing by SEM (EDAX)

4.1 Mineralogy and Petrography

A brief outline of lithology and mineralisation with associated veining types from the six sampled diamond drill cores is given below. Representative mineralisation and veining used in discussion is given in (Figs. 5 & 6). Full sample descriptions are given in Appendix I.

THRCD 917

The most prominent lithology making up diamond drill hole THRCD 917 is a matrix-supported pebble hydrothermal vent breccia, dominant between 126-151 metres and again from 155 to 186 metres, which marks the end of the hole (EOH). The two zones of hydrothermal vent breccia are separated by coarse-grained arenites. Pyritisation is disseminated throughout the core. Argillic alteration is present adjacent to comb quartz veining. Samples AJ 52, AJ 54, AJ 55, AJ 56, AJ 59, AJ 60, AJ 61, AJ 62, AJ 63, AJ 64, AJ 65 and AJ 66 are representative from this hole.

THRCD 919

The drill hole lithology of THRCD 919 consists of pebble-sized hydrothermal vent breccia topped by fluidised breccias and fine-grained mudstones. Fine pyrite mineralisation is associated with areas of silicic alteration. Fluorite veins infill anastomosing comb quartz veins. Stylolite veins are also present. These comb quartz veins have steep contacts with each other. The fluorite veins appear as flat vein sets. Samples taken from this hole include AJ 67, AJ 68, AJ 69 and AJ 70.

THRCD 920

Diamond drill hole THRCD 920 consists essentially of three main lithologies. The majority of the drill hole consists of medium to coarse-grained matrix supported hydrothermal vent breccias. Bedded, very fine-grained mudstone is interbedded in packages with the vent breccia throughout the hole, and probably indicates part of the offshore Drummond Basin cycles. The top of this diamond drill hole consist of a phreomagmatic vent breccia. Silicic alteration is pervasive and gives drill core a 'drusy', cloudy appearance. This alteration has had some influence with reacting with the clast edges of the pebbles within the hydrothermal vent breccia. Veining includes hydrothermal crackle quartz infills, mosaic quartz and anastomosing quartz veinlets. Spider veinlets are associated with high molybdenum values. Samples AJ 71, AJ 72, AJ 74, AJ 75 and AJ 76 are from THRCD 920.

THRCD 921

This was the longest drill hole sampled with EOH at 222.53 meters The main mineralisation is hosted in the hydrothermal vent breccia. Intervals of mudstones, fine-grained siltstones and minor airfall volcanics are dominant at the top of the drill hole. Interesting dykes, made up of pebbled breccias, are present, suggesting a proximity to gaseous escape vents within the epithermal system. Chloritic alteration is more prolific in the mudstone units due to the strong aluminous silicate nature of these sediments. Veining is present as comb quartz and hydrothermal crackle breccia infill. Sampling was limited to two samples (AJ 19 and AJ 21).

THRCD 925

The lithology in drill hole THRCD 925 has more variation compared to the other cores, with an approximately 50:50 ratio of hydrothermal vent breccia to mudstones and siltstones. The last section of the drill hole is dominated by hydrothermal vent breccia. Quartz/silica textures are also most variable in this drill hole. Chalcedonic silica, spider veinlets and anastomosing veinlets all being present. Fluorite is a dominate feature with the anastomosing veins. Silica veins are controlled by fractures and bedding, where the fluorite seems to have been the last infill post the silica. Samples from this hole for analysis included AJ 1, AJ 2, AJ 4, AJ 5 AJ 6, AJ 8, AJ 10, AJ 16 and AJ 17.

THRCD 926

Hydrothermal vent breccias once again dominate the majority of the THRCD 926 diamond drill core. Clasts in the breccia range in size up to sub-rounded cobbles. Minor intervening mudstone beds are present. Veining styles are present as anastomosing veins and high-tensile fissure veins with quartz and fluorite infilling fractures in veins with carbonate. High tensile veinlets are noted to be a later event, often faulting the anastomosing veins. The infilling Comb quartz textures with fluorite in dilation sites are suggesting fluorite mineralisation is syn- to post-comb quartz deposition. Samples taken from THRCD 926 include AJ 32, AJ 36a, AJ 36b, AJ 38, AJ 40 and AJ 47.

4.2 Sample petrography

4.2.1 GANGUE MINERALS

Samples analysed have undergone extensive alteration by silicification. Most of the clasts supported within the hydrothermal vent breccia have undergone adularisation to some degree, dependant on their lithology. Fine sandstones, mudstones and tuffs are more prone to fine crystal development throughout. Images have shown that there is a tendency for silicification to proceed after adularia (Fig.7b). Vughs within silica and at clast boundaries have turned to clay minerals (Fig.7e). These are probably illite clays reported to be extensive with minor kaolinite (Brigdon 2006, Corbett 2006a). Apatite has been introduced during the hydrothermal event and is present in veins and as overprinting spots on the host breccia (Fig.7a). Apatite clasts are also shown to be present in the hydrothermal vent breccia, derived from previously brecciated apatite mineralised veins (Fig.7d). Fluorite is commonly associated with hydrothermal crackle breccia infill. There does seem to be a possible connection between fluorite mineralisation and cockscomb quartz infill textures. Pyrite +/- electrum stylolites often overprints fluorite indicating these stylolites to be post-fluorite mineralisation (Fig.7c).

4.2.2 STYLOLITES AND DISTRIBUTION OF ORE TEXTURES

Two subtypes of stylolites have been observed within the representative samples, mineralogy being the common factor for the division of the two sub-types. One stylolite is associated with pyrite \pm -electrum mineralisation, whereas the other is associated with carbonaceous matter and TiO₂ minerals.

Samples AJ69, AJ71 and AJ74 show distinct stylolitic bands that are associated with carbonaceous matter and TiO₂ (Fig. 9) Sphalerite was observed to be present in some cases (Fig. 9f). These stylolite bands commonly host very fine-grained pyrite (ranging from 5 μ m up to very rare 200 μ m in size). The pyrites also often display euhedral faces. Minor chemical zonation was seen in the centre of some of the fine pyrite (Fig. 9g); SEM study reveals this zonation is due to variation in manganese content. The pyrite within these stylolites show brecciation textures (Fig. 9b), and frequently makes up granular aggregates at 'hair-pin' points in the course of the stylolites. Quite often this surrounds the clast margins of occurs parallel to quartz/silica veins.

Stylolites consisting of pyrite and electrum (Fig. 8) were seen in a number of samples, usually with corresponding high Au-grades (Table 1). These stylolites were often seen to overprint all other mineralisation stages and represent some of the last stages in the paragenetic evolution of the 309 deposit. The hydrothermal vent breccia host was seen to have limited control on the course these stylolites followed; clasts were often overprinted. Silica veins do exhibit some control, where different competent lithologies in the silica have altered the course of the stylolites to run parallel to veins. Pyrites ranged in size from 5 to 120 μ m in size; and showed no signs of major brecciation. Minor fracturing was noted with porous centres on occasion. Minor arsenopyrite was observed within these stylolites, but was rare. Fluorite mineralisation showed to be pre deposited to stylolites, often in this case the stylolite appears to 'push through and apart' fluorite. (Fig. 8e). Apatite mineralisation seems to have some temporal connection to these stylolites (Fig. 8d) These types of stylolites are best represented in samples AJ6, AJ64 and AJ55.

4.2.3 PYRITE MORPHOLOGY

The morphology of the pyrite within the 309 deposits depends on its location, textural setting and which minerals it is hosted within. Pyrite has precipitated in the hydrothermal vent breccia, often pyritising the portions of certain clasts (Fig 11a). This pyrite is often present as very fine euhedral

crystals. It can be said that the majority of the pyrite can be found growing wherever silicic fluids have altered the host rock; this includes the source of the fluids (anastomosing veins, comb quartz veins etc.). The largest pyrites observed occur as granular aggregates, usually along margins of overprinting high-tensile stringer veinlets and anastomosing veinlets (in, for example, sample AJ72). Aggregates were also observed to achieve masses up to 5 mm in size. The smallest pyrite observed were present in the carbonaceous/stylolites and as framboids and 'twins 'in adjacent sediments to veins (sample AJ 1 for example). Pyrite has often replaced organic matter and clasts.

Samples AJ 71, AJ 5 and AJ 72 all show remnants of organic matter. Forms in the shapes of tree seeds and algal matter are preserved by overprinting pyrite (Figs. 10a, b, c). Framboidal clusters are also common with the organic matter. Carbonaceous matter often behaves as nuclei for new pyrite with overgrowth rings (Fig. 10c). The organic matter is probably left over from the collapse of an early-formed sinter. Subsequent milling/brecciation has dispersed the fragments throughout the host rock. 'Bitumen' like looking carbonaceous matter overprints, as a later stage event throughout some samples (AJ 1, AJ 60),(Figs. 10d, e). This material is most likely connected to the disseminated organic matter.

Unique 'twinned 'pyrite crystals are disseminated throughout the sediments adjacent to veins (Figs. 10e, f) in samples AJ 1 and AJ 65. This pyrite is believed to pseudomorph crystals of feldspar in tuffaceous sediments, or adularia.

Two samples (AJ 2 and AJ 4) show pyritisation in two distinct lamellar shapes, sometimes up to 1.5 mm in length (Fig. 11b. The laminated pyrites are associated with haematite, chalcopyrite and tetrahedrite (Fig.11d) The laminations are formed from subeuhedral aggregates of fine-grained pyrite built into long lamellar fibres. The lamellar shapes are probably related to an organic substrate and may have been initially deposited as marcasite, a common feature in brown coal mines (Temple & Delchamps 1953). In the case of AJ 4, the textures look organic-derived (Fig. 10g). The lamellar textures in AJ 2 may be attributed to pyritisation within a mud ball clast that has perhaps slumped into the sediment upon subsidence of the Twin Hills sub-basin.

Most of the pyrite is granular/subhedral in shape. That is to say that some faces of the pyrite display overgrowths of euhedral faces associated with new growth fronts, whereas the outer edges in other parts of the same pyrite grain show no euhedral growth faces. Concentric compositional zonation is common within the subhedral overgrowths. Zonation is most pronounced in pyrite within pyrite +/- electrum stylolites (Fig. 11e, f)and as overgrowths on organic matter. The zonation is caused by variation in arsenic content within each growth stage of the pyrite.

Minor zonation is expressed as cores of Mn-rich pyrite within fine euhedral pyrite of carbonaceous stylolites. Haematite and new subeuhedral pyrite commonly overgrow marcasite fibres, and display elongate, lamellar elongated shapes. Samples AJ 2 and AJ 4 display these characteristics.

4.2.4 GOLD ASSOCIATIONS

The textural habit of gold is present within the 309 deposit is of outmost importance for economical recovery. In the studied samples, three main gold associations were recognised (Fig. 12): combined grains of pyrite and electrum, electrum within the silica gangue, and a characteristic electrum on the rims of naumannite-centred pyrite. Size distribution data are summarised in Table 2.

Pyrite and electrum with minor free arsenopyrite is found to be distributed throughout the stylolitic textures. At the hand-specimen scale, these stylolites seem to coincide to the weak ginguro mineralisation and the late-stage overprinting black stylolitic seams. The electrum is relatively coarse, with a size range from 2 to 50 μ m. The gold present in the stylolitic seams is moderately Au-rich electrum, averaging Au_{0.65-0.68} Ag_{0.32-0.35} (see also analytical EPMA data presented below). In most cases, gold is present as free electrum on the rims of granular/subhedral pyrite; electrum enclosed in pyrite was only seen in a few cases.

Electrum is present within a variety of quartz and silica textures. The electrum also displays a wide variety in composition. Electrum associated with chalcedonic silica, often displaying calcite silica replacement textures (Fig. 12d), averages $Au_{0.57-0.65}Ag_{0.35-0.43}$. Quartz infill of secondary breccias and hydrothermal crackle breccias seem to contain electrum with the highest Au content (averaging $Au_{0.68-0.76}Ag_{0.24-0.32}$. The electrum ranges from fine, 5 µm-sized grains to relatively coarse (60 µm) grains (Fig. 12h). Electrum often forms elongated shapes (Fig. 12). Rare sphalerite and fluorite occur within the silica host with some of the free electrum grains.

Naumannite-centred pyrite with electrum rims is associated with the weak *ginguro* mineralisation, especially where chalcedonic silica is present. As a rule, the electrum is present as grains either attached to the rims of the pyrite or in overgrowth phases on the porous naumannite-centred pyrite (Figs. 12a, b, c). The pyrite grains themselves are usually large (up to 200 μ m in size) and the electrum is also relatively coarse, ranging from 5 to 60 μ m in size. Compositions of

electrum in this textural habit are similar to those in the chalcedonic silica bladed calcitereplacement veins.

4.2.5 OTHER SULPHIDES

Sphalerite is the most common base metal sulphides seen in the sample suite. Sphalerite may display a close association with comb quartz textures and apatite (Fig. 13d). It is associated on occasions with pyrite that has been rimmed by electrum. Sphalerite is thus probably related syn-post to the same mineralisation stage as the electrum. (Sennit 1991) indicates that apatite and sphalerite belong to stage IV and stage V mineralisation.

Rare **tetrahedrite** and **chalcopyrite** were found during analysis. The chalcopyrite occurs as very fine grains in sample AJ 2 and AJ 65. These grains are from 5 μ m to 120 μ m in size (Fig.13g). The chalcopyrite is expressed paragenetically in sample AJ 2 by later sphalerite and tetrahedrite which overprint and rim the chalcopyrite(Figs. 13g,h & Fig. 14a). Interesting bright spots of sub-micron size are seen at the chalcopyrite-tetrahedrite phase boundary(Fig. 13h). These may be inclusions of gold, but this cannot yet be confirmed. Analytical data for tetrahedrite by EPMA is shown below.

Two samples were taken where high molybdenum assays were noted. **Molybdenite** was seen to be situated in the stylolites themselves, often 'flooding' around the pyrite present within them (Fig. 14g). The molybdenite has a 'dirty' appearance; individual fine crystals cannot be recognised and it is assumed that the mineral is microcrystalline. Apatite was observed to be associated with molybdenite in stylolites in sample AJ 16 (Fig. 14c). Molybdenum mineral geochemistry is given below in the section dealing with LA-ICPMS data.

4.2.6 'EXOTIC' MINERAL PHASES

Naumannite, Ag_2Se , is present within samples AJ 55 and AJ 64 (Fig. 5d). As a rule, naumannite is present as blebs and inclusions only with the porous portions of certain pyrite grains. Pyrite hosting the naumannite is quite coarse, sizes up to 200 µm being common in some samples. The porous centre of this pyrite is commonly overgrown by subeuhdral growth faces, associated with As zonation, and with rims of electrum.

Grains of **argyrodite**, ideally Ag_8GeS_6 , ranging in size from 10 to 25 µm in size, appear in sample AJ 60. The grains are situated adjacent to the hydrothermal vent breccia footwall within the silica vein (Fig. 13e). Rare grains are associated with pyrite that is less than 10µm in size. SEM imagery and EDAX quantitative data has shown the Ge content varies within the argyrodite and a distinct compositional zonation is recognised in the back-scattered electron images (Fig. 13f)(see below). Rare sphalerite was found to be associated with argyrodite.

4.3 Whole rock geochemistry

Original core assays had been taken at regular metre-length intervals by NQM. Sections of drill core showing discernable features were subjected to further assaying. By assaying smaller segments of core which contains major changes in the veining and mineralisation style over the metre interval, it was expected that more subtle geochemical trends could be recognised and if so, they could be correlated with macroscopic features. Reported assays are displayed in Table 3.

Assays showing the highest Au concentrations can be correlated with macroscopic features such as hydrothermal crackle breccias, calcite replacement by chalcedonic silca and stylolites (samples AJ 40, AJ 52, AJ 56 and AJ 63). These samples can be considered as high grade ore, with Au concentrations ranging from 12-20 ppm Au. Macroscopic features such as the hydrothermal vent breccia, stylolites and secondary breccia textures with minimal amounts of quartz contained the lowest Au concentrations, usually <1.5 ppm Au. Interestingly, high As concentrations do not correlate well with high Au values. The most steady and moderate As concentrations seem to be linked to hydrothermal vent breccia host rocks and secondary breccia textures. Selenium is well below detection limit in all samples, except for samples AJ 54 and AJ 56 (2 and 3 ppm Se, respectively). These samples are associated with replacement of bladed calcite by chalcedony and hydrothermal crackle breccias and stylolites. Te was not detected in any samples, coincident with the lack of observed tellurides.

4.4 Electron Probe Microanalysis

Quantitative electron probe microanalysis was carried out on grains that had been preselected during the SEM work. Interest was focused on establishing the composition of electrum (Au:Ag ratio), pyrite (range of As values, possible measurable differences in Mn, Co and Ni), tetrahedrite (identifying if this is as a potential Ag-carrier, establishing the Sb/As ratio) and naumannite (potential evidence for Ag_2S-Ag_2Se solid solution). The respective analytical results for pyrite are given in Table 4, for sphalerite/tetrahedrite in Table 5, and for electrum in Table 6.

4.4.1 PYRITE

Arsenic concentration in pyrite is commonly associated with higher concentrations of invisible gold (Cook & Chryssoulis 1990). The EPMA dataset shows that As is present in all analysed pyrite (213 spot analyses). Concentrations range from <0.02 to 3.4 wt.%. The data are summarised in (Table 4) and as histograms in (Fig. 15a, b). The full EPMA dataset is given in Appendix III. There is considerable variation in As content between spots, but the majority of grains have concentrations below 0.02 a.p.f.u. As. On the histograms, there is an interesting small 'spike' of As between 0.05 and 0.06 a.p.f.u. This is more likely due to the analytical bias towards As-rich parts of the pyrite (especially within overgrowth of granular/sub-euhedral pyrite) in the dataset. The data showing variations in As content within pyrite are presented in (Fig. 15b), divided by drill hole in an attempt to understand if there is any systematic variation with lithology. Samples taken from drill hole THRCD 920 show the best spread of As values around the centre of the population. The drill hole showing the lowest As content within pyrite is THRCD 919. This drill hole is, however, only represented by one sample (AJ 69), and thus the data may not be entirely representative of the full range of As content in pyrite throughout the drill hole. Most analytical spots were concentrated within a carbonaceous, rutile-bearing stylolite, suggesting that low As content is a feature of pyrite associated with this type of stylolite. Drill hole THRCD 917 shows a broad range of As content in pyrite. Pyrite analysed from this drill hole is associated with samples that contain free electrum. The largest number of analytical spots in drill hole THRCD 917 was obtained from sample AJ 65. Rare free arsenopyrite grains in AJ 65 were found to be situated about the clusters of pyrite. The full EPMA dataset for sample AJ 65, shows low concentrations of As in the majority of pyrite grains within the clusters (<0.02 wt.% up to 1.1 wt.%).

All pyrite analysed by EPMA have been calculated to 3 atomic proportions per formula unit (FeS₂). We are interested in how the As content influences pyrite stoichiometry. Plotting As against

S (Fig. 15c), showing variations by sample I.D, there is a systematic trend in which S decreases as As content increases. This is seen well in samples AJ 64 and AJ 1 where As approaches 0.1 a.p.f.u.

The analysed pyrite grains contain substantial concentrations of **antimony** with averages of <0.01-0.24 wt.% within individual analysis. In sample AJ 72, Sb reaches 0.5 wt %. Such concentrations are relatively high in comparison with published data. Samples from drill hole THRCD 920 show the highest mean Sb content (Fig. 16e). The correlation between Sb and S (Fig. 16e), suggests that at least a part of this Sb is present in solid solution within pyrite. It can be speculated that Sb enters pyrite in a similar manner to As, which is resembles in terms of ionic state.

The variation in **selenium** content among the analysed pyrite grains is shown in (Fig. 15d, e and Fig. 16a). Pyrite from sample AJ 65 (THRCD 917) contains the most Se-rich pyrite; this drillhole dominates the upper range of concentrations in Fig. 13e. Selenium concentrations in pyrite in AJ 65 are believed to be contributed by the presence of inclusions of naumannite (Ag₂Se), identified in the SEM work (Fig. 12a, b, c). Other samples (AJ 69, AJ 71, AJ 72, AJ 74, AJ 75, AJ 1, AJ 2, AJ 4 and AJ 6, from THRCD 919, THRCD 920 and THRCD 925) contain no detectable Se.

No significant trends are seen in the **copper** content of pyrite over the sampled population (Fig. 16b). Neither was any strong indication of enhanced **manganese** content established, despite the recognition of clear compositional zonation with respect to that element (Fig. 16c).

4.4.2 SPHALERITE AND TETRAHEDRITE

Analytical data for tetrahedrite are restricted to two analytical points from sample AJ 2 (Fig. 13g). These are reported in Table 5. Due to the intergrown nature and size of other tetrahedrite grains, reliable analytical results could not be obtained for them. Formulae calculated for the ideal tetrahedrite $(Cu,Ag)_{10}(Fe,Zn)_2(Sb,As)_4S_{13}$, i.e., based on 29 atoms per formula unit, are also given. Results show the composition $(Cu_{8.60},Ag_{0.01})_{8.61}(Fe_{0.47},Zn_{3.20}Pb_{0.03}Cd_{0.01})_{3.71}(Sb_{2.70},As_{0.71})_{3.41}S_{13}$.

A total of eight sphalerite analytical points are reported in Table 5. Sphalerite occurs as an accessory phase with tetrahedrite which it may postdate (Fig. 13h), and within apatite mineralisation (Fig. 13d). EPMA data gave stoichiometric compositions for the majority of sphalerite: $Zn_{0.90-0.93}Fe_{0.04-0.08}S$, based on 2 a.p.f.u., with only minor Cd present.

4.4.3 GOLD

Analysed compositions of native gold and electrum, as measured by EPMA are summarised in Table 6. A total of twelve analyses over nine different samples and three different drill cores are given. Gold is present as electrum with compositions ranging between 58.0-76.2 wt.% Au and 29.13-43.68 wt % Ag). Copper, Hg, Bi and Te are present, but at very low concentrations around the detection limits. The low Te concentrations are reflected in the whole rock geochemical analysis (Table 3), where Te is below detection limits for assay. The Au/Ag ratio in electrum may increase with depth in that the deepest samples from 168.5 m to 182.3 m in drillhole THRCD 920 show the Au-content of electrum up to 76 wt.% Au. The composition of electrum hosted within chalcedonic silica and associated weak *ginguro* mineralisation (Fig. 5d), however, is closer to Au₅₀Ag₅₀ (58.02-64.99 wt.% Au, 35.01-43.68 wt.% Ag). In general, the electrum containing the highest Au/(Ag+Au) ratios are observed in electrum associated with hydrothermal crackle infill breccias and associated stylolites.

4.4.4 ARGYRODITE

A total of 12 semi-quantitative EDAX analyses were made on the argyrodite grains shown in (Fig. 13e) and described above. Element signals for Ge, Se, S, Ag, Sn and Te were measured for a minimum of 55 seconds on the L α lines (K α for S). The presence of widespread inclusions and intergrowths with other minerals (sphalerite, Cu-minerals, selenides?) presented difficulties, but four good analyses were nevertheless obtained Table 7. These data shows the presence of both argyrodite and canfieldite, the Ge- and Sn-end-members of the Ag₈GeS₆-Ag₈SnS₆ solid solution series.

4.5 Laser-ablation inductively-coupled mass spectrometry

A total of 127 spot analyses were made on pyrite. Results for elements of interest are summarised in Table 8. In addition, 15 analytical spots were made on molybdenite from a single sample Table 10.

4.5.1 PYRITE

In the majority of most of the samples, the mean **gold** concentration within pyrite is rather constant, typically averaging less than 30 ppm Table 8. The range of concentrations within each sample does,

however, show considerable variation from minimum Au concentrations of generally <1 ppm Au up to maximum concentrations that exceed 200 ppm Au. Broadly speaking, there is a positive correlation between the As and Au content of pyrite (Fig. 17a), with samples from drillcores THRCD 920 and THRCD 921 showing this trend clearly. The strong influence of As on Au concentration is seen especially well in the sub-population of pyrite from sample AJ 19.

The As vs. Au plot (Fig. 17a) shows that the majority of data points plot below the gold solubility line of Reich *et al.* (2005), indicating that the gold is likely to reside in solid solution. Pyrite from sample AJ 55, however, as well as some analytical spots from sample AJ 64 plot above the line. These samples contain visible gold as seen under the SEM (Fig. 12c, h) and it can be reasonably assumed that these higher concentrations can be accounted for by nanoparticulate gold. Size variation of gold inclusions probably has a normal distribution, extending down from 1-20 micron range seen under the SEM to the nanoscale.

Silver concentrations, as a whole, range from <1 ppm to > 100,000 ppm. Two sub-populations exist, the lower population ranges from <1ppm to 100 ppm where AJ 72 forms the peak concentration of Ag. The higher population is dominated by samples AJ 55 and AJ 64 with a range from 100-100,000 ppm Ag. (Fig 17b, c) shows the variation in As composition as a function of Ag composition in pyrite. No trends exists to suggest that higher concentrations of As in pyrite correlate with higher Ag values. When divided by sample, (Fig. 17b) it can be clearly seen the higher concentrations of Ag are dominated by samples AJ 55 and AJ 64 which contain naumannite; thus these analytical points have a bias affect on the population.

When Au concentrations in pyrite are plotted against those of Ag (Fig. 18b), two distinct populations can be recognised - characterised by either high or low Ag content. The two elements do not show a good correlation (as is commonly seen in comparable studies). This demonstrates a degree of decoupling between the two elements. This is also evident from the lack of correlation between As and Ag (Fig. 17b). Pyrite from samples AJ 55 and AJ 64 fall into the high Ag-Au category, as might be expected by the presence of naumannite inclusions. A steep linear trend exists within the low-Ag sub-population, showing a greater increase in Au with a relatively much smaller increase in Ag concentration.

Antimony concentrations within the pyrite are high in certain samples (Fig. 17d), in particular sample AJ 72. Concentrations of Sb in pyrite range from <1ppm up to 8,309 ppm or 0.83 wt.%. High Sb ranges like this have been rarely published, although Huston *et al.* (1995) mention concentrations up to 8.6 wt.% Sb. Although Sb concentrations are high in the analysed pyrite, there is no apparent correlation between the As and Sb in the whole dataset. (Fig. 17d, e). Some

individual pyrite sub-populations, however, display some positive correlation between the two elements. The time-resolved depth profile for one spot from sample AJ 72 (Fig. 19d) shows the high steady concentrations of Sb may be in solid solution, like As. There is, however, no clear correlation between Sb and Au (Fig. 18c).

Previous SEM imagery has revealed molybdenite to occur within stylolites with associated apatite (Fig. 14c). Apatite is recorded by Sennit (1991) to be one of the last mineralisation events along with electrum, pyrite and sphalerite (Fig. 4). A weak correlation trend exist between Mo and Au (Fig. 18d) if samples AJ 55 and AJ 64 are taken out of the bias. Most concentrations of Mo are low except in sample AJ 72 and AJ 76 where it is present in hundreds ppm. The trend in Mo and As are present. There is, however, a weak positive correlation between Mo and Zn (Fig. 18a) and between Mo and Ag (Fig. 18e). The correlation trend between Mo and Ag becomes more clear if samples AJ 55 and AJ 64 are eliminated; these bias the Ag distribution because of the abundant naumannite inclusions.

Silver and selenium correlate well (Fig. 18g), indicating the role of naumannite inclusions in governing part of the Ag distribution, notably in samples AJ 55 and AJ 64. However, there is marked lack of correlation between Ag and Se for many of the sub-populations for other samples, supporting the conclusion that there are several, independent mechanisms governing Ag distribution within the Twin Hills 309 epithermal system.

Nickel to cobalt range within pyrite in (Fig. 18f) shows all samples have equal concentrations of Ni and Co throughout. Sample AJ 72 has the highest values with 100> ppm. AJ 38 is situated at the bottom end of the trend with only ~10 ppm. High nickel to cobalt concentrations can indicate magmatic influences on the ore fluid (Loftus-Hills & Solomon 1967).

4.5.2 LA-ICPMS SPECTRUM TRENDS

Selected LA-ICPMS time-resolved depth profiles for pyrite are presented in Figs. 19 and 20. The profiles represent a quasi-three-dimensional view of variation in the elements of interest with depth (a few microns). The profiles illustrate certain features within pyrite with respect to ore texture, host and mineralogy.

Two depth profiles representative of pyrite from late stylolites are shown as (Fig. 19a and b). Relatively flat signals for As, Ag and Pb can be seen. The small 'bumps' on the profile for As probably correspond to micron-scale As-zonation, a feature characteristic of the pyrite in these stylolites (see Fig. 11e and f). The larger peaks on the As profile may either represent zones of particularly As-rich pyrite, or nanoinclusions of arsenopyrite (Fig. 19b). Gold is present in moderate concentrations within these pyrites. The peaks on the depth profile suggest that at least part of the Au is present as nanoparticles rather than in solid solution.

Lead, Ag, Cu and Sb levels are moderate within this type of pyrite and the small peaks also suggest that these elements are present as mineral inclusions rather than bound in the sulphide lattice. An increase in the line for uranium on (Fig. 19a) may also be attributable to nanoscale mineral inclusions (*marked as U*). Although significant amounts of Se can readily enter the pyrite structure, variation in the Se pattern in pyrite from the stylolites suggests that this element may also be present as mineral inclusions, possibly linked to the marked porosity (Fig. 19a). More homogenous pyrite in the stylolites, i.e., with a less obvious porosity (Fig. 19b) shows Se levels to be present as inclusions.

Zinc also occurs as inclusions (presumably of sphalerite, see (Figs.13a and b) in pyrite of different textural types (e.g., Fig. 19c). Pyrite characteristically carries low concentrations of Zn and is generally a poor host for this element; Zn typically forming sphalerite inclusions.

Silver concentrations are generally like those of Au. Ag is dominantly present as micron-sized and nanoparticles, especially in naumannite-centred pyrite (Fig.20a, b) as would be expected. There is an excellent correlation between the profile pattern for Se and Ag in this type of pyrite.

LA-ICPMS depth profiles from pyrite in sample AJ 72 shows that Sb, Au and Ag are most probably in solid solution. The profiles are flat without peaks to indicate the presence of nanoinclusions (Fig. 19c, d and Fig 20c, d).

4.5.3 LA-ICPMS ELEMENT MAPPING

LA-ICPMS element maps were made of a selected area within sample AJ 72 containing distinctly contrasting pyrite textures. The SEM image of the area reveals two texturally-distinct types of pyrite to be present. One pyrite type is characterised by distinct laminations. Within these laminations there are fibres resembling possible relict marcasite with subsequent overgrowth of subhedral pyrite. The second type of pyrite occurs in the form of the edge of a large mass and exhibits zones marked out by porosity. Both types of pyrite are brecciated to some extent.

Element maps are shown in (Fig. 21) and stress the role that textures play upon element distributions at the grain-scale. There is a good correlation between Ag and Sb throughout both types of pyrite. Gold closely follows suit, but there is a distinct difference, in that Au distribution is enhanced in the porous parts of the large mass of pyrite whereas Ag and Se are not. Even if absolute concentrations are rather low, the higher concentrations of Se, Bi, Hg and to some extent also Cu, are generally restricted to lamellar zones within the laminated pyrite. Arsenic concentrations are greatest within the laminated pyrite; again the maximum concentrations seem to be present in the lamellar zones. Lower As concentrations are noted within the larger pyrite mass. Manganese and Hg concentrations are quite low, reflecting the low values found during spot analysis. Nickel and Co are present throughout both pyrite textures; higher Ni values are restricted to the edge of the large pyrite mass. For these elements too, porosity in the large pyrite mass appears to have some control on the element distributions.

4.5.4 MOLYBDENITE

Fifteen LA-ICPMS spot analyses of molybdenite were made on two grains in sample AJ 16. Results are summarised in Table 9 and given in full in Appendix VI. A feature of the dataset is the significant enrichment in Ag, Sb, Tl, As and Pb (all several thousand ppm in all spots) and more modest enrichment in a range of other elements, including Cu and Se. Although these elements, except Ag, give smooth time-resolved depth profiles (Fig. 22), the enrichments are best interpreted as sub-microscopic inclusions of discrete minerals or, more likely, ultra-fine-grained phases making up the matrix between the individual particles making up the microcrystalline aggregate. Similar 'dirty' molybdenite, often spectacularly enriched in a wide variety of trace elements, has been observed in a number of other deposits of different types (Cook, pers. comm. 2010). The elements W and Re have mean concentrations of 759 and 15 ppm, respectively. These elements are generally considered to be lattice-hosted within molybdenite. Rhenium can be a valuable by-product of molybdenite mining, but concentrations of around 15 ppm are relatively low.

5. DISCUSSION

The present study has focused on understanding the mineralogy, association and distribution of Au and Ag throughout the vent breccia in the Twin Hills deposit. Although rarely exceeding a couple of vol.% in the ore, pyrite is a ubiquitous component of the breccia, as well as in the silica veining. It varies not only with respect to morphology but also in abundance, size and textural relationship

with other minerals. By emphasizing how pyrite textures can help understand the architecture of the epithermal system, and correlating these textures with the trace element contents of the pyrite, it is possible to deduce a model for the deposit which also considers deposition mechanisms for the precious metals, the behaviour of related elements such as Se, Sb and As, and also the fluid evolution of the system.

5.1 Pyrite origin: textural and geochemical signatures

The present study has identified various morphological types of pyrite, e.g., framboidal, atoll-like, fine-grained and 'dirty', lamellar, idiomorphic, sub-idiomorphic, etc. (Figs. 10 & 11). These categories are also broadly different in terms of their trace element signatures and relationships with Au mineralisation.

5.1.1 SINTER PYRITE

The organic-like textures (Fig. 10a, b, c) observed in the framboidal/atoll-like pyrite, are clearly indicative of a specific origin/location with respect to the brecciation event(s). The dark cores in the atoll aggregates feature ring-like textures (Fig. 10b) and have been attributed by Sennit (1991), to growth of pyrite around algae nuclei. The latter is characteristic of life form in a shallow hot spring sinter. The framboidal/atoll pyrite also has a pronounced homogeneity in terms of Au concentration (tens of ppm Au) and a distinct character of associated trace elements (Fig. 20d). In particular, it is enriched in Sb (Fig. 17d) and Tl (thousands of ppm). These two elements are commonly associated with crystallisation of pyrite in an euxinic environment. High levels of Sb and As in pyrite are also known to occur around shallow epithermal outflow zones with algal matter (Krupp & Seward 1987).

The dirty, fine-grained pyrite, sometimes with rhythmic/banding textures, is also present in abundance in the same sample as the framboids/atoll-like pyrite. The former has similar geochemistry with that of the framboidal/atoll pyrite and this is clearly apparent in terms of its Au, Ag and Sb content (Fig. 20c). The only marked difference is noted from the results obtained by LA-ICPMS elemental mapping of an area comprising both banded and massive textures. This shows enrichment of As and Se in the banded pyrite (Fig. 21), but a good overlap between Au, Ag and Sb across the two types of pyrite morphology. Both the framboidal and dirty pyrite also represent best

examples of pyrite in which trace elements are incorporated in solid solution, as seen from the outstanding flat signals of these elements across the LA-ICPMS depth profiles (Fig. 19d. Fig. 20c, d).

Surprisingly, Mo, commonly considered as a granitophile element, is high (hundreds of ppm) in both the framboidal/atoll-like pyrite and the dirty pyrite throughout the sample, suggesting that this element might of been abundant in the euxinic environment. Such a presumption is backed-up by the fact that the same elements discussed here (Sb, Tl, Ag), are seen in very-high to high concentrations (up to several wt.% for Sb, and hundreds of ppm for Tl and Ag) in the analysed molybdenite. The latter is situated in an adjacent drillcore and at comparable depth with the framboidal pyrite. Strong enrichment of Mo, Sb, Tl, Se, Ag etc. in pyrite is known from black shale deposits formed biogenically in euxinic environments (e.g. Orberger *et al.* 2003). Geochemical work on sinters associated with epithermal systems (e.g. Pope *et al.* 2005, Vikre 2007) have shown high to very high concentrations of all these elements, with Tl characteristically present at concentrations of thousands of ppm in bulk samples.

Corroborating all the aspects above, it can be inferred that fragments of the sinter have collapsed and have been incorporated within the black breccia such that the breccia carries a pyrite not only with peculiar morphological aspects but also with a distinct trace element signature. Although the framboidal and atoll-like character is most prominent in such sinter fragments, it is, however, not entirely restricted to them.

A final type of pyrite in the sinter is small (10-15 micron), idiomorphic pyrite with negligible Au (<1 ppm). This texturally-distinct variety is best considered as resulting from the incipient stage of breccia venting.

5.1.2 HYDROTHERMAL AU-BEARING PYRITE OF THE MAIN BRECCIATION STAGES

The pyrite that carries measurable 'invisible' Au (from a few ppm up to tens of ppm) and is also seen in direct association with electrum, is typically granular, idiomorphic to sub-idiomorphic in shape and is zoned with respect to As (up to 1 wt.%). Such pyrite is mostly found along stylolites/seams and in the *ginguro*-style mineralisation, as well as in the silica veins. Some of the latter are more complex with respect to crosscutting relationships between silica and fluorite. The sinter pyrites discussed above also contain comparable concentrations of Au.

The *ginguro* pyrite contains some tens of ppm Au. Samples from the same drillcore, 20 m apart, have similar mean values, but the LAICPMS depth profiles for spots in the upper sample (AJ55) showed that Au is present as inclusions (Fig.20b), whereas the corresponding profiles for the lower sample (AJ64) features flat profiles indicating Au in solid solution (Fig. 20a). Some of the highest measured Au concentrations (sample AJ36b) are from stylolitic/seam pyrite, where Au is in solid solution.

The pyrite with the most modest Au content (a few ppm) is from crackle breccia defined by seams of pyrite, electrum, fluorite in a silica matrix. Such masses of silica with crackle appearance are typical of the joints between the vertical and ramp veins (Fig. 5g).

In all samples that contain Au-bearing pyrite (except the sinter), electrum is observed as small inclusions in pyrite and along the same seams that host the pyrite. The relative abundance of the inclusions varies, however, from sample to sample. There is, in general, a greater abundance of inclusions the higher the gold concentration in pyrite. Inclusion density also correlates with the degree of porosity and brecciation. The excellent correlation between Ag and Se (Fig. 18g) reflects an abundance of naumannite inclusions in the chalcedony-hosted *ginguro* mineralisation, in which marginal electrum is also a prominent component. However, there is no overall correlation between Au and Se and the characteristic naumannite-centred pyrite is not especially Au-rich. On the Au-Ag plot (Fig. 18b), the naumannite-centred pyrite forms a distinct cluster. The straightforward inference is that the naumannite inside the pyrite, and the second forming electrum on the pyrite rims.

The fact that high-As does not necessarily imply high Au in the pyrite, e.g. in the crackle breccia (AJ38), is backed up by the lack of direct correlation between Au and As in individual zones. Instead, porosity seems to control gold distribution by creating a mechanism for release of Au from the sulphide and which is re-precipitated as electrum on the pyrite rims. The lack of any systematic relationship between Ag and As (Fig. 17c) further emphasizes that the two elements were likely precipitated from distinct fluids belonging to different stages of ore formation. Abundant electrum is also seen along seams with pyrite that co-exists with arsenopyrite.

The notion of multiple fluids is supported by overgrowth textures in 'mature' pyrite. Specifically, initial small, idiomorphic grains of pyrite appear to have grown and interacted with later fluids causing development of porosity, marked compositional zonation, development of overgrowth rims and local brecciation. Development of porosity can also create a mechanism to release gold from the pyrite lattice to be subsequently precipitated on the pyrite rim or at a short distance away in the same seam.

The fine-grained Au-free pyrite in the sinter considered as resulting from incipient breccia venting is a hydrothermal pyrite as much as the others in the paragraphs above, but can be considered as an immature equivalent of the overgrown pyrites in the vent breccia. This hypothesis could be tested by in situ S-isotope analysis to identify magmatic vs. sedimentary/diaganetic/ biogenic fluid signatures.

5.1.3 LATE-STAGE HYDROTHERMAL PYRITE

Some of the larger accumulations of pyrite are seen in hand specimen as mm- to cm-sized lenses and/or thin veinlets crosscutting or weaving along sets of silica stringers in the rock (Fig. 5f). At the microscopic level, this appear as, lamellar, bladed and radial aggregates occurring in a matrix that has a pervasive, fine-grained silica-adularia alteration, probably formed from initial volcanics. The larger masses of pyrite are connected by thin seams with a stylolitic appearance. The presence of Fe-oxides/hydroxides in the adjacent areas may be suggestive of the origin of this pyrite by pseudomorphic replacement of hematite, even though other replacement scenarios might also be possible. The lamellar aggregates have marginal overgrowths of granular pyrite (Fig. 11b). Accumulations of such granular pyrite, alone, are seen along the same vein/seam direction; zonation patterns with respect to As, as well as areas with high porosity are characteristic. Despite the differences in the morphologies, however, both lamellae and granular pyrite are tied together by their location along the same veinlet/seam and are low in As (mean 0.25 wt.%). Similarly, granular pyrites from other samples show weak zonation patterns and variable degrees of porosity and they are also characterised by low As contents (<0.4 wt.%). In some cases, although compositional zonation is observed (Fig. 9g), this is not due to the As content but rather to small and varying concentrations of Mn in the pyrite (<1 wt.%). None of these pyrites were considered for analysis by LA-ICMS because the lack of premise for Au scavenging into pyrite via As incorporation, the paradigm of 'invisible' Au in pyrite (Cook & Chryssoulis, 1990). It is reasonable to presume nonetheless that the Au contents would be negligible or low.

These low-As pyrites are also found along seams containing a dark carbonaceous material, possible bitumen (?). In one of the samples from the top of the system (AJ1), this material is seen infilling grain boundaries instead of seams, suggesting infiltration of bitumen from the top of the basin. This breccia also preserves textures indicating an early pyritisation, as seen from partially-replaced phenocrysts of plagioclase. Adding to the assemblage typifying such pyrites are minerals

such as fluorite and apatite, as well as the presence of base metals, i.e., sphalerite, tetrahedritetennantite, chalcopyrite and phases from the argyrodite-canfieldite series.

Despite their eclectic character in terms of mineralogical association and textural features, the (i) inferred lack of Au in pyrite, (ii) presence of base-metals, and (iii) direct observation of crosscutting relationships with silica veinlets, are all arguments to consider that this type of pyrite formed during the late (waning) stages of the hydrothermal system.

5.2 Genetic model

The Twin Hills epithermal system developed in a half-graben sub-basin bounded by two main faults; F1 (Western Fault) and F2 (Southern Fault). F2 played an important role in controlling the direction of the rising fluids, forming the ramp vein sets described by Dale (2009). The ascending mineralizing fluids were possibly sourced in felsic intrusive, such as the rhyolite in the nearby Lone Sister deposit (6 km to the south) and intruding the St. Annes Formation according to Sennit (1991). Alteration accompanied mineralisation changing the hydrothermal vent breccia host rock to a black mass. The breccia features smaller clasts of intensely-altered volcanic rocks and larger sedimentary clasts from the basin margin within a fluidised matrix. The sinter at the basin paleosurface is also recognised in fragments within the breccia. The dominant alteration is a pervasive silica-adularia assemblage, which is vuggy in places, with bladed calcite replaced by pyrite. A local argillic alteration is also recognised in pockets within the breccia. The contact between the clasts and the matrix is characterised by pressure solution along stylolitic boundaries reflecting inward corrosion of the clasts. The role of stylolites has had little previous recognition in ore genesis. Stylolites are known to form through dissolution of fluid through the porosity of the rock during diagenesis. Reactions between at least two chemical fluids, in disequilibrium with one another, occur at the boundary of two dissimilar lithologies (Park & Schot 1968). Similar processes have surely occurred during late-stage deformation events at Twin Hills. Photography in the field supports evidence for pressure-solution reactions involving clasts and high-tensile veining leading to reduction of host rock material (Figs. 5f and 6b).

High-grade intersections are characterised by massive silica, as veins and pockets, some of which are located at the junctions between the vertical and ramp veins. Crackle breccias occur with these junctions. High-grade ores are also marked by irregular, often weak, black *ginguro* intervals throughout the mass of chalcedonic quartz. *Ginguro* mineralisation is widely described in the

literature (e.g., from Pajingo; Corbett 2006a; 2006b) and although definitions vary, the term is applied to dark bands within chalcedonic silica with a characteristic flow pattern and which contain pyrite (± other sulphides), electrum and a range of Ag-minerals, including sulphosalts and, notably naumannite. Exceptionally, *ginguro* at Twin Hills contains mm-scale rims of electrum at the contact between the dark bands and the chalcedony Corbett 2006a). Some authors have explained the textures in *ginguro* in terms of colloidal gold transport within the silica (Saunders 1994). At Twin Hills, fluorite is also an abundant component of the chalcedony-dominated parts of the breccia. Fluid inclusion studies of chalcedony (Sennit 1991) showed evidence of mixing between magmatic-derived and basinal fluids.

Based on results from the present study, several constraints can be made o the evolution of the epithermal system. The sinter was the first expression of the hydrothermal system (note the distinct geochemical signature and morphology of sinter pyrite). Sinter development was partially coeval with vent brecciation underneath, which led to milling, sealing and reworking of the clasts. The evolving history of this hydrothermal venting is recorded in the textural complexity of the 'mature' pyrites along seams and in the *ginguro*. This was coeval with the man phase of mineralisation. Nevertheless, the pyrite records discrete pulses of (i) a Au-As-rich mineralising fluid, and (ii) a later Ag-Se-rich overprinting fluid. The textural and geochemical similarities between the pyrite along the seams in the breccia and in the *ginguro* show that their formation must have been broadly coeval. Differences are due to local lithological inhomogeneities and structural control.

The end-stage of the epithermal system is marked by deposition of barren pyrite, base metal sulphides and of bitumen interstitially within silica-adularia assemblages. It can be inferred that this stage was phreatic in style, involving collapse of the basin and associated flushing of the hydrothermal system by basinal waters. Bitumen infiltration, sinter fragmentation and the aforementioned fluid inclusion data showing mixing are all evidence in support of a phreatic style at the end of the genetic cycle.

Although some genetic relationship between the 309 deposit at Twin Hills and the Lone Sister deposit might be invoked on the basis of their geochemistry, in which the Ag-rich 309 is a distal member of the same mineralising system and the As-rich Lone Sister deposit is proximal, the large distance between them (6 km) makes a direct relationship unlikely. It is perhaps more plausible that an intrusive source is located at depth below 309.

5.3 Metallurgical considerations for the Twin Hills (309) Deposit

Various metallurgical tests have previously been undertaken on ores from Twin Hills. Results indicated that oxidised ores provide the best metal recoveries. The presence of organic carbon within the primary ore presents possible preg-robbing issues for CIP leaching methods. Ores containing high silica content also required a minimum grinding size to release free electrum. Refractory ores, such as gold in pyrite and electrum with high silver content, cause slow leaching rates (Harrison 2009). The present study has contributed three sets of new information that have implications for ore processing.

Firstly, refractory sulphides are present within the Twin Hills ore. Microanalysis has shown that both Au and Ag occur within pyrite, both lattice-bound and as discrete particles with sizes of a few microns down to the nanoscale. A good part of the electrum occurring within silica and on the rims of pyrite is likely to be available to common leaching processes, but the size distribution of gold as inclusions will be more problematic. Pre-treatment of these ores would be necessary to achieve a satisfactory recovery of Au. Electrum is observed on the rims of pyrite in late-stage stylolites, on the rims of naummanite-centred pyrite, within weak *ginguro* mineralisation and as free grains in chalcedonic silica. A nugget effect can be expected.

Secondly, although electrum present within late-stage stylolites and as free grains in the chalcedonic silica is notably richer in Au (around $Au_{70-75}Ag_{25-30}$), the electrum in weak *ginguro* mineralisation is Ag-rich (typically $Au_{50}Ag_{50}$). Slower leaching rates would therefore be expected for ores containing chalcedony with *ginguro* mineralisation.

Thirdly, organic carbon is confirmed to be present in at least two situations: disseminated throughout stylolites containing carbonaceous matter and rutile; and also as random microparticles throughout the hydrothermal vent breccia host rock. The source of the carbon within the breccia is believed to be organic matter introduced during collapse of the paleo-sinter. Further reworking of the breccia by localised faulting and late pervasive alteration has disseminated the carbonaceous material within the ore.

6. CONCLUSIONS

• Silicification is the main expression of alteration at Twin Hills, with subordinate adularisation. Intensity of alteration alone only gives a partial indication of high gold grade.
Evidence of fluid boiling is widespread and was probably the main mechanism of gold precipitation.

- Pyrite is an abundant mineral throughout the investigated drill cores from Twin Hills and contains 'invisible gold'. Although pyrite grains are small (rarely exceeding 200 microns), and the mineral rarely exceeds more than a couple of vol.% of any given intersection, the measured Au concentrations of up to several tens of ppm, suggest that this refractory gold must make a significant contribution to the overall gold balance in the deposit.
- Visible gold is essentially electrum, with variable Au:Ag ratio. Some of the electrum grains analysed had compositions towards Au₅₀Ag₅₀, confirming earlier work.
- Silver is present as (i) Ag-rich electrum, (ii) in solid solution and as nanoparticles within pyrite, and (iii) as the Ag-selenide naumannite (the latter principally in the *ginguro* mineralisation). The apparent decoupling of Au and Ag in pyrite suggests that there may have been distinct Au-(As) and Ag-(Se) fluid pulses during (the main stage of) ore formation.
- Pyrite is present in a variety of different textures that span the duration of the epithermal system. Comparison of morphologies and trace element concentrations assists construction of a genetic model for the Twin Hills deposit. Three main stages are recognised: early sinter development in an anoxic sub-basin; a main mineralising stage that was coeval with vent breccia development; and a concluding, phreatic stage upon collapse of the sub-basin, causing fluid mixing.
- The pyrite formed under anoxic conditions in the sinter has a characteristic geochemical signature (enriched in Ag, Sb, Tl and Mo), opening up new opportunities for exploration for other paleo-sinters in the area.

Acknowledgements

Angus Netting, Benjamin Wade, Ken Neubauer and John Terlet of Adelaide Microscopy are gratefully acknowledged for their assistance with the analytical work. Leonid Danyshevsky, Sarah Gilbert and Ian Little (CODES, University of Tasmania) are thanked for their helpful assistance with the LA-ICP-MS study. Peter Browne and Brentan Grant (North Queensland Metals) generously contributed ideas, practical assistance and expertise to the project. I thank North Queensland Metals for the opportunity to carry out this project, for their partial sponsorship of the analytical work, logistical support during the site visit, and for the friendly cooperation and interest of NQM personnel. CODES staff will be co-authors in eventual publication of the LA-ICPMS data and element maps. The South Australian Museum (SAM) is gratefully acknowledged for access to microscope facilities.

REFERENCES

- ASHLEY P. M. CREAGH & C. J. RYAN C. G. 2000. Invisible gold in ore and mineral concentrates from the Hillgrove gold-antimony deposits, NSW, Australia. *Mineralium Deposita* **35**, 285-301.
- BIERLEIN F. P, FULLER T, STÜNE K, ARNE D. C, & KEAYS R. R. 1998. Wallrock alteration associated with turbidite-hosted gold deposits. Examples from the Palaeozoic Lachlan Fold Belt in Central Victoria, Australia. Ore Geology Reviews 13, 345-380.
- BIRD M. 2003. 309 Prospect Geological Interpretation, BMA consultant report (unpubl).
- BRIGDON J. 2006. Hydrothermal Alteration Mineralogy and Trace Element Geochemistry associated with Gold Mineralisation at 309, *BMA consultant report* (unpubl).
- COOK N. J & CHRYSSOULIS S. L. 1990. Concentrations of "invisible gold" in the common sulphides. *Canadian Mineralogist* 28, 1-16.
- CORBETT G. 2006a. Comments on Geology and Exploration of the Twin Hills Gold Project, Queensland, Australia, April, *Corbett Geological Services Pty. Ltd* (unpubl).
- CORBETT G. 2006b. Comments on Geology and Exploration of the Twin Hills Gold Project, Queensland, Australia, November, *Corbett Geological Services Pty. Ltd* (unpubl).
- DALE P. 2009. Geological Report Twin Hills 309 Deposit- submitted in support of resource estimation. *Conglomerate Project Management Pty. Ltd consultant report* (unpubl).

- DALE P. 2010. Drilling Report, Twin Hills 309 Deposit, January-March 2010. Conglomerate Project Management Pty. Ltd consultant report (unpubl).
- DANYUSHEVSKY L. V, ROBINSON P, MCGOLDRICK P, LARGE R. R, & GILBERT S. 2003. LA-ICPMS of Sulphides: evaluation of an XRF glass disc standard for analysis of different sulphide matrixes. *Geochimica et Cosmochimica Acta* 67, 23.
- DANYUSHEVSKY, L.V, ROBINSON P, GILBERT, S, NORMAN, M, LARGE, R, MC-GOLDRICK, P, & SHELLEY, J.M.G., A technique for routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: *Geochemistry: Exploration, Environment, Analysis* (in press).
- DE BOER R. B, NAGTEEGAL P. J. C, & DUYVIS E. M. 1977. Pressure solution experiments on quartz sand. *Geochimica et Cosmochimica Acta* **41**, 257.
- GOODE K. 2009. NQM Limited (NQM)- Aiming to Increase Pajingo's Gold operations to >100,000oz pa. *Eagle Research consultant report* (unpubl).
- HARRIS D. C. 1990. The Mineralogy of gold and its relevance to gold recoveries. *Mineralium Deposit* 25, supplement S3-S7.
- HARRISON G. 2009. Review of Twin Hills Metallurgical file. Interim report, NQM consultant report.
- HUSTON D, SIE S. H, SUTER G. F, COOKE D. R, & BOTH R. A. 1995. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part I, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II, Selenium levels in pyrite; comparison with delta ³⁴ S values and implications for the source of sulfur in volcanogenic hydrothermal systems. *Economic Geology* **90**, 1167-1196.
- IZAWA E, URASHIMA Y, IBARAKI K, SUZUKI R, YOKOYAMA T, KAWASAKI K, KOGA A, & TAGUCHI S. 1990. The Hishikari gold deposit: high- grade epithermal veins in Quarternary volcanics of southern Kyushu, Japan. *Journal of Geochemical Exploration* 36, 1-56.
- KRUPP R. E, & SEWARD T. M. 1987. The Rotokawa Geothermal System, New Zealand: An Active Epithermal Gold-Depositing Environment. *Economic Geology* 82, 1109-1129.
- LARGE, R.R., DANYUSHEVSKY, L., HOLLIT, C., MASLENNIKOV, V., MEFFRE, S., GILBERT, S., BULL, S., SCOTT, R., EMSBO, P., THOMAS, H., SINGH, B., FOSTER, J.(2009) Gold and Trace Element

Zonation in Pyrite Using a Laser Imaging Technique: Implications for the Timing of Gold in Orogenic and Carlin-Style Sediment-Hosted Deposits. *Economic Geology* **104**,635-668.

- LOFTUS-HILLS G & SOLOMON M. 1967. Cobalt, Nickel and Selenium in Sulphides as Indicatorsof ore Genesis. *Mineralium Deposita* **2**, 228-242.
- MÜLLER D, KAMINSKI K, UHLIG S, GRAUPNER T, HERZIG P. M., & HUNT S. 2001. The transition fom porphyry-to epithermal-style gold mineralization at Ladolam, Lihir Island, Papua New Guinea: a reconnaissance study. *Mineralium Deposita* **37**, 61-74.
- OLGERS F. 1972. Geology of the Drummond Basin, Queensland. Bureau of Mineral Resources Bulletin 130.
- ORBERGER B, PASAVA J, GALLIEN J. P, DAUDIN L., & TROCELLIER P. 2003. Se, As, Mo, Ag, Cd, In, Sd, Pt, Au, Tl, Re traces in biogenic and abiogenic sulphides from Black Shales (Selwyn Basin, Yukon territories, Canada): A nuclear microprobe study. *Nuclear Instruments and Methods in Physics Research* B 210, 441-448.
- PALS, D. W, SPRY P. G & CHRYSSOULIS S. 2003. Invisible Gold and Tellurium in Arsenic-Rich Pyrite from the Emperor Gold Deposit, Fiji: Implications for Gold Distribution and Deposition. *Economic Geology* 98, 479-493.
- PARK C. W & SCHOT E. H. 1968. Stylolites: Their nature and origin. *Journal of Sedimentary Research* 38, 175-191.
- POPE J. G, BROWN K. L, & MCCONCHIE D. M. 2005. Gold Concentrations in Springs at Waiotapu, New Zealand: Implications for Precious Metal Deposition in Geothermal Systems. *Economic Geology* 100, 677-687.
- REICH M, KESLER S. E, UTSUNOMIYA S, PALENIK C. S, CHRYSSOULIS S. L., & EWING R. C. 2005. Solubility of gold in arsenian pyrite. *Geochimica et Cosmochimica Acta* **69**, 2781-2796.
- SAUNDERS J. A. 1990. Colloidal transport of gold and silica in epithermal precious-metal systems: Evidence from the Sleeper deposit, Nevada. *Geology* **18**, 757-760.
- SAUNDERS J. A. 1994. Silica and gold textures in bonanza ores of the Sleeper Deposit, Humboldt County, Nevada: Evidence for colloids and implications for epithermal ore-forming processes. *Economic Geology* 89, 628-638.

- SAUNDERS J. A & SCHOENLY P. A. 1995. Boiling colloid nucleation and aggregation, and the genesis of bonanza Au-Ag ores of the Sleeper deposit, Nevada. *MIneralium Deposita* **30**, 199-210.
- SENNIT C. M. 1991. Aspects of Epithermal Gold Mineralisation, Twin Hills, Queensland. MSc thesis, James Cook University (unpubl.).
- SENNIT C. M. 1999. Structural Controls on Gold Mineralisation at the Twin Hills Project, Drummond Basin, Queensland. *Solid Geology consultant report to Homestake*.
- SIMMONS S. F & CHRISTENSON B. W. 1994. Origins of Calcite in a Boiling Geothermal System. *American Journal of Science* **294**, 361-300.
- SPYCHER N. F & REED M. H. 1989. Evolution of a broadlands-type epithermal ore fluid along alternative P-T paths; implications for the transport and deposition of base, precious, and volatile metals. *Economic Geology* 84, 328-359.
- TEMPLE K. L & DELCHAMPS E. W. 1953. Autotrophic bacteria and the Formation of Acid in Bituminous Coal Mines. Applied Microbiology 1, 255-258.
- VIGAR A. 2007. *Drummond Basin Gold Deposits*. Presentation for Australian Institute of Mining and Metallurgy, Brisbane, Australia.
- VIKRE P. G. 2007. Sinter-Vein Correlations at Buckskin Mountain, National District, Humboldt County, Nevada. *Economic Geology* **102**, 193-224.

FIGURES

Figure One

Figure Two 44

Figure Three 45

Vein Stage	Ι	II	III	IV	V
Mineral	Early Stylolite	Carbonate	Chalcedony	Comb quartz	Late Stylolite
Smectite				•	
Celadonite					
Muscovite					
Illite					
Kaolinite					
Jarosite					
Calcite					
Siderite			*		
Apatite					
Fluorite					
Quartz					
Magnetite					
Pyrite					
Chalcopyrite			-	>	
Sphalerite			\sim		\checkmark
Covellite					
Bornite					
Native Silver			-	>	
Electrum			_	> .	

Figure Four

Figure Five

Figure Six

Figure Seven

Figure Eight

Figure Nine

Figure Ten

Figure Eleven

Figure Thirteen

Figure Fourteen

Figure Fifteen

Figure Sixteen

Figure Seventeen

Figure Eighteen 60

Figure Nineteen

Legend of elements on spectrum	Fe As Pb Sb Zn Cu Au Ag
	Se Mo

Figure Twenty

Figure Twenty One

Figure Twenty Two

CAPTIONS TO FIGURES

Fig. 1. Regional epithermal deposits within the Drummond Basin, central north Queensland. Current NQM operations are located at Pajingo and Twin Hills (Cirlced in red).

Fig. 2. Simplified local geology showing the proposed Twin Hills sub basin (*after* Corbett 2006a). Recent drill cores used in this study have also been plotted. Cross section A-B (*inset*) shows current underground decline access to workings with relative positions of the 3 resource areas interpreted by BMA. Drill cores used in this study were primarily focussed around area 2.

Fig. 3. Regional geology of the Twin Hills epithermal region. reproduced from (Sennit 1991).

Fig. 4. Proposed paragenetic sequences of mineralisation present at the Twin Hills 309 epithermal deposit *after* (Sennit 1991).

Fig. 5. Representative mineralisation and veining styles within the Twin Hills 309 epithermal deposit. (a) High Tensile veining caused by local dilation with late stylolite and pyrite, *sample AJ 2*. (b) Calcite (carbonate) replacement by chalcedonic silica. (c) Silica replaced bladed calcite textures. (d) Chalcedonic silica with weak *ginguro* mineralisation. (e) Hydrothermal crackle breccia infill with angular brecciated wall rock clasts. (f) Stylolite as seen under hand lens. High tensile stringer veins terminate at stylolite contact; this is taken as evidence for pressure-solution mechanisms. (g) Underground view in area 2 of flat ramp veining (*yellow arrows*). Large anastomosing vertical veins act like 'pipes' and feeders to nearby veins, creating vein sets or packages. Junction of veins create hydrotermal crackle breccia infills.

Fig. 6. Representative mineralisation within the Twin Hills 309 epithermal deposit, core logging examples. (a) Anastomosing chalcedonic and comb quartz veinlets. (b) Late stage stylolites showing sutured contact and dissolution of clasts boundaries by stylolites. (c) Hydrothermal vent breccia host rock, showing cobble sized clasts (*at top*). Clasts consist of arenites, mudstones and previous brecciated fragments. (d) Dyke consisting of remobilised hydrothermal vent breccia. Note the roundness of remobilised pebbles. (e) Fluorite infill veins. (f) Local faulting *as marked* showing 65

comb quartz vein infills at dilation sites. A crackle breccia has also been faulted. The sharp contact suggests that the faults are post to the crackle breccia infilling. *Abbreviations;* HVB= Hydrothermal vent breccia.

Fig. 7. Gangue minerals in the Twin Hills 309 epithermal deposit. BSE images. (a) Spots of hydrothermal apatite overprinting clasts in breccia. (b) Silicification altering apatite edge showing sutured edge. (c) Fluorite overprinted by late pyrite and electrum stylolites. Fluorite line shows the original fluorite along the vein wall. (d) Apatite clasts within hydrothermal vent breccia host rock. Note overprinting quartz veinlets, these are associated with pyrite and electrum stylolites. (e) (f) Clay alteration (illites, kaolinite) within vughs in the silica. Sphalerite has later infilled vughs. *Abbreviations; apt= apatite; py= pyrite; flu= fluorite; el= electrum; sphal= sphalerite.*

Fig. 8. Distribution of ore textures within the Twin Hills 309 epithermal deposit; Pyrite and electrum stylolites. BSE images. (a) Pyrite and electrum late stylolites overprinting breccia host. Arsenopyrite is present, wedged between zoned pyrites. *AJ* 6(b) As-rich zoned pyrite stylolite in chalcedonic silica vein. *AJ* 36B(c) detail of (a), showing electrum precipitated between pyrite grains in stylolite. Note adjacent pyrite grain centres are outlined by porosity.and subeuhdral overgrowths displaying compositional zonation with respect to As. (d) Pyrite aggregate formed on edge of anastomosing vein. Late stylolite has caused the mass to brecciate. Stylolite follows edge of anastomsing vein. *AJ* 72(e) Late pyrite and electrum-rich stylolites with fluorite. *AJ* 6(f) Pyrite and electrum stylolite detail, showing porosity in pyrite centre.*AJ* 6. *Abbreviations: aspy= arsenopyrite; py= pyrite; adu= adularia; el= electrum; apt= apatite; flu= fluorite.*

Fig. 9. Distribution of ore textures within the Twin Hills 309 epithermal deposit; carbonaceous/titanium stylolites. BSE images. (a) Carbon at the hair pin of a stylolite. $AJ \ 60$ (b) brecciation of the pyrite aggregate seen in (a). (c) Framboids and titanium dioxide is present within stylolite. Note wavy hair pin of stylolite course. $AJ \ 71$ (d) Rutile undergoing alteration along crystal axes. $AJ \ 71$ (e) contrasting pyrite morphology at the 'hair-pin' of a stylolite. Large subeuhedral pyrite in adjacent breccia, stylolite contains finer granular/euhedral pyrite. Note carbon and titanium dioxide. $AJ \ 69$ (f) Carbonaceous stylolite taking advantage around a silica infill. Sphalerite mineralisation is associated. $AJ \ 69$ (g) Manganese zonation in pyrites within stylolite shown in (e). *Abbreviations:* py = pyrite; Mn = manganese; sphal = sphalerite; Ti = Rutile; Car = carbon.

Fig. 10. BSE images of Pyrite morphology within the Twin Hills 309 epithermal deposit. (a) (b) (c) Pyritisation of organic matter (tree seeds, algae internal structures/attols); later subhedral pyrite appears as overgrowths. *AJ* 72(d) (e) (f) Bitumen-like material and pyrite pseudomorphing feldspar or adularia phenocrysts showing 'twinning' like crystals, adjacent to comb quartz vein. *AJ* 1(g) (h) marcasite with later granular/subhedral growth in lamellar fashion. Microscopic particle of gold within porous pyrite. *Abbreviations: py= pyrite; el= electrum; naum= naumannite; sphal= sphalerite; As= Arsenic-rich zonation; CO³=calcium carbonate.*

Fig. 11. BSE images of Pyrite morphology within the Twin Hills 309 epithermal deposit (a) Pyritisation of a clast within the hydrothermal vent breccia, with associated silicification. Note the granular/euhedral pyrite growth. *AJ* 6(b) Lamellar overgrowths of subeuhedral pyrite on probable marcasite. (c) Framboidal pyrite. Commonly nucleate on organic matter. *AJ* 2(d) Laminates containing haematite. Chalcopyrite, tetrahedrite and sphalerite precipitated together with this granular/subhedral pyrite. *AJ* 2 (e) (f) As rich zonations as brighter concentric rings within *ginguro* mineralised stylolites. *AJ* 36b(g) Pyrite showing different growth phases. A subhedral core has been preceded by porous development in the pyrite. Subhedral overgrowths are the final development stage of the pyrite grain. *Abbreviations: HVB= Hydrothermal vent breccia; adu= adularia; py= pyrite; chal= chalcopyrite; he= haematite; sphal= sphalerite; As= arsenic-rich zonations*.

Fig. 12. BSE images representing Gold mineralisation within the Twin Hills 309 epithermal deposit. (a) (b) (c) Naumannite-centred pyrite within silica vein; electrum rims the outside of pyrite and Aszonation is pronounced in the overgrowth. Note porosity in As zoned areas. *AJ* 55(d) Bladed calcite-silica replacement texture with naumannite and electrum along the length of the pyrite within a chalcedonic silica vein. *AJ* 36A(e) Naumannite-centred pyrite with later sphalerite. *AJ* 55(f) Reflected light image of pyrite with electrum; note the porosity seen in some pyrite. *AJ* 6(g) BSE image of elongate electrum grain within silica. (h) Freely disseminated electrum with minor pyrite and electrum within chalcedony silica vein. *Abbreviations:* $HVB=Hydrothermal vent breccia; py= pyrite; el= electrum; naum= naumannite; sphal= sphalerite; As= Arsenic rich zonations; <math>CO^3 = calcium carbonate$. **Fig. 13.** BSE images of base metal sulphides and 'exotic' minerals within the Twin Hills 309 epithermal deposit. (a) (b) Sphalerite situated in zones of porosity in pyrite. *AJ 19*(c) Rare Earth Elements (REE) and sphalerite on pyrite rim suggesting a connection between Zn-bearing fluids and REE. *AJ 19*(d) Sphalerite overprinting apatite clast. *AJ 5*(e) Argyrodite within fractures in the silica groundmass. *AJ 60*(f) Argyrodite showing Ge-rich zones (brighter shade) and canfieldite (Sn)-rich zones (slightly darker). *AJ 60*(g) Chalcopyrite with tetrahedrite and sphalerite rims. *AJ 2*(h) Small particles of gold? (bright spots) at the contact between tetrahedrite and chalcopyrite. *AJ 2. Abbreviations: HVB= Hydrothermal vent breccia; py= pyrite; sphal= sphalerite; REE= rare earth elements; Au= gold; apt= apatite; argy= argyrodite; chalc= chalcopyrite; tetra=tetrahedrite; moly= molybdenum.*

Fig. 14. BSE images of base metal sulphides and 'exotic' minerals within the Twin Hills 309 epithermal deposit. (a) Paragenetic phases of base metals, tetrahedrite and sphalerite. Combined with Fig. 13g, h, this gives evidence a Fe-Cu rich fluid was proceeded by, Ag/Au, followed by Zn rich fluids forming sphalerite. AJ 2(b) (c) (d) (e) (f)'Dirty' molybdenite within stylolites, with associated pyrite and apatite. AJ 76(g) Pyrite within molybdenite-bearing stylolite shows more euhedral crystal faces. AJ 76. Abbreviations: HVB=Hydrothermal vent breccia; <math>py=pyrite; sphal=sphalerite; REE= rare earth elements; Au= gold; apt= apatite; argy= argyrodite; chalc=chalcopyrite; tetra=tetrahedrite; moly=molybdenum.

Fig. 15. (a) (b) (c) Histograms and x y plots showing As variations in pyrite analysed by EPMA from Table 4, divided by sample and drill core. (c) shows a trend for the 2 atomic proportions of S in stoichiometry within the pyrite to be exchanged by higher concentrations of As, present as zonations as seen within the rims of the pyrite.(d) (e) show variations of Se concentration in pyrite by all samples and drill core. Higher Se in pyrite is probably due to ginguro related naumannite centered pyrite. Plots at 2 atomic unit per formula (FeS₂).

Fig. 16. Histograms and x y plots of EPMA analysis of elements within pyrite; by sample and drill core showing (a)Se by sample (b) Cu (c) and Mn. Se in pyrite is dominated by sample *AJ 65*. Part Se exchange for S at the atomic level is possible for naumannite centered pyrite of sample *AJ 64* (*triangle*). Cu and Sb varies throughout the analysed pyrite.(d) (e) Plots showing Sb/S by drill core

and sample.showing strong trend to suggest S in sample AJ 75 (*circles*) to be substituting for Sb. Plots at 2 atomic unit per formula (FeS₂).

Fig. 17. Selected binary plots for elements in pyrite as measured by LA-ICPMS. Data are subdivided by sample and drill core. (a) As versus Au, showing the maximum solubility line (*i*)of Au in arsenian pyrite (*after* Reich *et al* 2005). Note that many of the data points plot below the line (i.e., Au is probably in solid solution, where as some plot above the line, reflecting submicro- to nanoscale inclusions. (b) and (c) As versus Ag, showing no correlation on the scale of the entire dataset, but two distinct sub-populations are seen, in which spots from AJ 55 and AJ 64 define a distinct higher-Ag population. (d) and (e) Sb versus As showing a broad correlation between the two elements, possibly indicating both are present in the pyrite lattice. Sb distribution in samples AJ 72, AJ 36b and AJ 38 may, however, be controlled by other factors.

Fig. 18. Selected binary plots for elements in pyrite as measured by LA-ICPMS. (a) Zn versus Mo, showing a weak correlation between the two elements. (b) Au versus Ag, showing two distinct sub-populations separated by low to high Ag values. (c) Sb versus Au, showing little correlation between the two elements. (d) Mo versus Au; there is a correlation between the two elements if the samples with naumannite inclusions (AJ 55 and AJ 64) are excluded. This excluded correlation line is shown in red. (e) Ag versus Mo – there is a pronounced correlation between the two elements if he naumannite inclusion samples are eliminated, the resulting correlation line in shown in red. (f) Co vs. Ni showing the excellent correlation between the two elements (equal Ni/Co concentrations). (g) Se versus Ag showing a near perfect correlation between the two elements. The upper end of the trend is dominated by samples AJ 55 and AJ 64 in which pyrite contains inclusions of naumannite.

Fig.19. Representative time-resolved LA-ICPMS depth profiles for pyrite showing the concentration of elements with depth. (a) Porous pyrite from a late-stage stylolite. The spectrum shows a large uranium peak with associated peaks in the profiles for Pb and Cu. (U= uranium trend line); Sample AJ 6. (b) Spectrum of more homogenous but less porous pyrite from late-stage stylolite; Note the high As and solid solution Au spectrum. Equal Se and Ag peaks show inclusions of naumannite. Sample AJ 6. (c) Base metal association with little Au. Sample AJ 19. Zn is present as nanoparticles of sphalerite as indicated by Zn peaks. Variation in the profile for As suggests micron-scale compositional zoning with respect to As. Note precious metals concentrations are low.

(d) (e) The profile shows high, and rather constant concentrations of Sb and As; the two elements are probably in solid solution; Sample AJ 72.

Fig 20. Representative time-resolved LA-ICPMS depth profiles for pyrite showing the concentration of elements with depth. (a) (b) The pronounced peaks on the spectra for Ag, Au and Se indicate the presence of sub-microscopic inclusions of electrum and naumannite.Samples AJ 55 and AJ 66. (c) (d) Spectrum for a spot in sample AJ 72 showing flat lines for Sb, Au and Ag, suggesting these elements are in solid solution within As-bearing pyrite.

Fig.21. (a)Distribution of selected elements throughout two different pyrite types in sample AJ 72. Analysis map by LAICPMS. Close trends are evident between Ag, Au and Sb distribution and between the distribution of As, Bi, Se and Cu distribution. Porosity development in the pyrite has some role on the remobilisation and distribution of elements. *a* in Au image marks zone of porosity in large pyrite mass. Note the depletion of high concentrations of Au and Ag with porosity development.

Fig. 22 (a) LAICPMS time-resolved depth profile of molybdenite in stylolite. Although the flat profiles suggest that most elements are in solid solution, it is suspected that these are actually present as very small nano-inclusions trapped within fractures and cleavage planes within the soft surface of molybdenite.

TABLES

Children Constant Con									ethods		
Sample ID	Drill hole (THRCD)	Meter	NQM assay	Ore minerals	Gangue minerals	Ore host	Primary textures	SEM	EPMA	LAICPMS	Assay
AJ 1	925	108.9	0.15		Cl a ys	Cmb qtz	Silica	х	х		
AJ 1 (2)*	925	108.9	0.15	Sphal	Cl a ys	Cmb qtz	Silica	х			
AJ 2	925	120.7	0.04	Tetra, Chal	REE	HTS	HTS, Py clast	х	х		
AJ 4	925	136.1	0.37	Sphal, Chal	Ti O ₂	HVB	Si Crackle Breccia	х	х		
AJ 5	925	139.1	0.62	Sphal	Apatite	HCB	HCB, Flu	х			
AJ 6	925	143.5	6.23	Elect, Aspy	Adul, Flu	HCB, Sty	HCB	х	х	x	
AJ 10	925						Chal qtz, Flu				x
AJ 16	925	179.9	781 (Moly)	Moly	Apatite	Sty	Si infill HVB, Spid	х		x	
AJ 17	925	178.4	2.69								x
AJ 19	921	191.3	2.15	Sphal		HVB	HCB	x		x	
AJ 21	921	192	0.85				Silicified HVB				x
AJ 32	926	137.4	5.79				Chal qtz, Cmb qtz				x
AJ 36a	926	140.6	3	Elect, Sphal, Naum	Flu	Diss silica, Sty	Cb repl, Chalc qtz	x			
AJ 36b	926	140.6	3	Elect	Flu	Diss silica, Sty	Cb repl, Chalc qtz	x		x	
AJ 37	926	140.2	3								x
AJ 38	926	141.2	10	Aspy	Apatite, Adul, Flu	Anas Silica, Sty	HCB, Anas qtz	x		x	
AJ 40	926	141.9	10				HCB				x
AJ 47	926	149.7	0.14				Remob Sediments				x
AJ 52	917	133.4	14.2			Anas Silica	HCB				x
AJ 54	917	134.6	14.2			Sty	НСВ				x
AJ 55	917	139.4	25	Elect, Naum, Sphal	Adul	Sty, Chal qtz	Chal qtz, WGM	x		x	
AJ 56	917	139.7	25				Cb repl, Chalc qtz, HCB				x
AJ 59	917	143.2	2.25				Cb repl, Chalc qtz				x
AJ 60	917	145.4	3.3	Argyrodite	Car	Cmb qtz, Sty	Chalc qtz	x			
AJ 61	917	148.4	6				Cb repl, Chalc qtz				x
AJ 62	917	151.4	34	Elect, Naum	Clays	Cb repl, Chalc qtz	Cb repl, Chalc qtz	x		x	
AJ 63	917	152.5	34				Chal qtz				x
AJ 64	917	155.3	32.6	Elect, Naum	Apatite, Adul	Sty, Chal qtz	Chal qtz, WGM	x	x	x	
AJ 65	917	159.6	16.8	Aspy, Sphal, Chal	Clays, Adul	HVB	Cb repl, Chalc qtz	x	x		
AJ 66	917	163.5	3.98	Elect	Si	Diss silica	Cb repl, Chalc qtz	x	x		
AJ 67	919	130.2	19.9				HVB				x
AJ 68	919	131.5	1.24	Elect, Naum	Adul, Flu	Cb repl, Chalc qtz	Cb repl, Chalc qtz	x			
AJ 69	919	131.5	1.24	Sphal	Car, TiO ₂	Sty	Chal qtz, Cmb qtz	x	x		
AJ 70	919	137.7	2.59				• • •				x
AJ 71	920	143.1	34.7	Py	Apatite, Adul, Car	Sty	Si infill HVB	x	x		
AJ 72	920	144.5	1.55	Py	Apatite, Adul, Car	Sty, Anas silica	Anas veins, Chalc qtz	x	x	x	
AJ 74	920	168.5	0.79	Elect	Hae, Apatite, Adul	Sty	HCB, Cmb qtz	x	x		
AJ 75	920	182.3	34.7	Elect, Aspy	Apatite, Adul	Sty, Comb qtz	НСВ	x	x		
AJ 76	920	163.3	973 (Moly)	Moly	Hae, Car	Sty	Remob Sediments?	x		x	

Abbreviations: Elect=electrum, Sphal=sphalerite, Tetra=tetrahedrite, Aspy=arsenopyrite, Moly=molybdenite, Naum=naumannite, Chal=chalcopyrite, Py=pyrite. Adul=adularia, Flu=fluorite, Car=carbon, Si=silicification, Hae=haematite. Cmb qtz=comb quartz, HTS=high tensile stringer veins, HVB=hydrothermal vent breccia, HCB= hydrothermal crackle breccia, Sty=stylolite, Chalc qtz= chalcedonic quartz, Spid= spider veinlet, Cb repl=carbonate/silica replacement textures, Anas qtz= Anastomosing quartz veins, Remob=remobilised, WGM= weak ginguro mineralisation.
TABLE TWO

Sample	Au Grade (g/t)	Size Dist	ribution (µm)	Host	Host morphology	Macroscopic features of sample
		m	in max			
AJ 66	3.98	8	60	Silica	Disseminated	Chalcedony with carbonate replacement textures
AJ 75	34.7	4	20		Styolitic	Hydrothermal crackle breccia with secondary brecciation textures
AJ 64	32.6	2	50		Styolitic	chalcedonic silica vein with weak ginguro mineralisation
AJ 36A	3.0	5	40		Disseminated	chalcedonic silica vein with weak ginguro mineralisation
AJ 55	25	10	60	Naumannite centered Pyrite	Disseminated	hydrothermal vent breccia chalcedonic infill with weak ginguro mineralisation
AJ 68	1.24	20	20		Disseminated	Chalcedony with carbonate replacement textures with fluorite infill
AJ 62	34	5	20		Styolitic	Chalcedonic silica vein with overprinting silica veinlets
AJ 36B	3.0	15	15	Silica	Disseminated	chalcedonic silica vein with weak ginguro mineralisation

TABLE THREE

TABLE	THREE	GE	EOCHEMIC	CAL ASSAY	Y RESULTS	5 FOR SELE	ECTED LIT	HOLOGIES	S/TEXTURI	ES		
Sample	Au (ppm)	Au rpt (ppm)	Ag (ppm)	As (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Se (ppm)	Te (ppm)	Zn (ppm)	Hand sample features
AJ 10	2.0		1.3	13	42	39	<mdl< td=""><td>1.1</td><td><mdl< td=""><td><mdl< td=""><td>21</td><td>Chalc qtz/Flu/Sty</td></mdl<></td></mdl<></td></mdl<>	1.1	<mdl< td=""><td><mdl< td=""><td>21</td><td>Chalc qtz/Flu/Sty</td></mdl<></td></mdl<>	<mdl< td=""><td>21</td><td>Chalc qtz/Flu/Sty</td></mdl<>	21	Chalc qtz/Flu/Sty
AJ 17	0.54		1.5	143	8.0	81	8.0	6.1	<mdl< td=""><td><mdl< td=""><td>37</td><td>SB, no quartz infill</td></mdl<></td></mdl<>	<mdl< td=""><td>37</td><td>SB, no quartz infill</td></mdl<>	37	SB, no quartz infill
AJ 21	1.3		1.4	142	8.0	121	8.0	6.8	<mdl< td=""><td><mdl< td=""><td>47</td><td>SB, quartz fill, Sty</td></mdl<></td></mdl<>	<mdl< td=""><td>47</td><td>SB, quartz fill, Sty</td></mdl<>	47	SB, quartz fill, Sty
AJ 32	5.5		5.0	125	7.0	60	9.0	7.1	<mdl< td=""><td><mdl< td=""><td>33</td><td>Chalc qtz/Comb quartz</td></mdl<></td></mdl<>	<mdl< td=""><td>33</td><td>Chalc qtz/Comb quartz</td></mdl<>	33	Chalc qtz/Comb quartz
AJ 37	0.49		1.8	103	8.0	21	10	7.2	<mdl< td=""><td><mdl< td=""><td>33</td><td>HVB, Sty</td></mdl<></td></mdl<>	<mdl< td=""><td>33</td><td>HVB, Sty</td></mdl<>	33	HVB, Sty
AJ 40	15	14	10	91	6.0	110	6.0	4.6	<mdl< td=""><td><mdl< td=""><td>35</td><td>HCB, Chalc qtz</td></mdl<></td></mdl<>	<mdl< td=""><td>35</td><td>HCB, Chalc qtz</td></mdl<>	35	HCB, Chalc qtz
AJ 47	0.12		1.3	212	8.0	13	11	14	<mdl< td=""><td><mdl< td=""><td>32</td><td>FB, Sty, HTV</td></mdl<></td></mdl<>	<mdl< td=""><td>32</td><td>FB, Sty, HTV</td></mdl<>	32	FB, Sty, HTV
AJ 52	12		11	109	11	34	9.0	6.3	<mdl< td=""><td><mdl< td=""><td>30</td><td>HVB, AV</td></mdl<></td></mdl<>	<mdl< td=""><td>30</td><td>HVB, AV</td></mdl<>	30	HVB, AV
AJ 54	0.10	0.12	3.0	108	6.0	59	9.0	6.7	2.0	<mdl< td=""><td>39</td><td>HVB, quartz infill, Sty</td></mdl<>	39	HVB, quartz infill, Sty
AJ 56	20	22	32	53	9.0	13	<mdl< td=""><td>4.7</td><td>3.0</td><td><mdl< td=""><td>19</td><td>Cb, Chalc qtz, Sty,</td></mdl<></td></mdl<>	4.7	3.0	<mdl< td=""><td>19</td><td>Cb, Chalc qtz, Sty,</td></mdl<>	19	Cb, Chalc qtz, Sty,
AJ 59	5.5		31	46	7.0	7.0	<mdl< td=""><td>3.6</td><td><mdl< td=""><td><mdl< td=""><td>20</td><td>Cb, Chalc qtz</td></mdl<></td></mdl<></td></mdl<>	3.6	<mdl< td=""><td><mdl< td=""><td>20</td><td>Cb, Chalc qtz</td></mdl<></td></mdl<>	<mdl< td=""><td>20</td><td>Cb, Chalc qtz</td></mdl<>	20	Cb, Chalc qtz
AJ 61	0.49		6.9	<mdl< td=""><td>5.0</td><td>х</td><td><mdl< td=""><td>1.7</td><td><mdl< td=""><td><mdl< td=""><td>4.0</td><td>Comb quartz, Sty</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	5.0	х	<mdl< td=""><td>1.7</td><td><mdl< td=""><td><mdl< td=""><td>4.0</td><td>Comb quartz, Sty</td></mdl<></td></mdl<></td></mdl<>	1.7	<mdl< td=""><td><mdl< td=""><td>4.0</td><td>Comb quartz, Sty</td></mdl<></td></mdl<>	<mdl< td=""><td>4.0</td><td>Comb quartz, Sty</td></mdl<>	4.0	Comb quartz, Sty
AJ 63	16	16	8.7	<mdl< td=""><td>2.0</td><td>х</td><td><mdl< td=""><td>1.8</td><td><mdl< td=""><td><mdl< td=""><td>3.0</td><td>Cb, Chalc qtz</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	2.0	х	<mdl< td=""><td>1.8</td><td><mdl< td=""><td><mdl< td=""><td>3.0</td><td>Cb, Chalc qtz</td></mdl<></td></mdl<></td></mdl<>	1.8	<mdl< td=""><td><mdl< td=""><td>3.0</td><td>Cb, Chalc qtz</td></mdl<></td></mdl<>	<mdl< td=""><td>3.0</td><td>Cb, Chalc qtz</td></mdl<>	3.0	Cb, Chalc qtz
AJ 67	0.76		1.3	217	9.0	13	<mdl< td=""><td>17</td><td><mdl< td=""><td><mdl< td=""><td>42</td><td>HVB</td></mdl<></td></mdl<></td></mdl<>	17	<mdl< td=""><td><mdl< td=""><td>42</td><td>HVB</td></mdl<></td></mdl<>	<mdl< td=""><td>42</td><td>HVB</td></mdl<>	42	HVB
AJ 70	0.80		3.6	185	14	18	14	20	<mdl< td=""><td><mdl< td=""><td>10</td><td>FB, quartz infill</td></mdl<></td></mdl<>	<mdl< td=""><td>10</td><td>FB, quartz infill</td></mdl<>	10	FB, quartz infill
Detection	0.01	0.01	0.2	10	1.0	2	5	0.05	2	0.1	1	
Limit												
Method	AAS	AAS	MS	OES	OES	OES	OES	MS	MS	MS	OES	

Abbreviations: Chalc=Chalcedony; Cb=carbonate replacement textures; Flu= fluorite; Sty= Stylolite; HVB= Hydrothermal vent breccia; HTV= High tensile veinlets; SB= Secondary breccia textures; AV= Anastomosing veins; Qtz= Quartz. Descriptions of samples are listed in (appendix I).

Repeats: Duplicate sample checks were made on samples AJ 40, AJ 54, AJ 56 and AJ 63.

Methods: AAS- 25gm lead collection fire assay, analysed by flame atomic absorption spectrometry. MS- Multi acid digest (HF, HNO3, HClO3, HCL), analysed by ICP-MS. OES- ICP (optic) atomic emission spectrometry of multi-acid digest. Genalysis Laboratory Services, Adelaide.

TABLE FOUR

	TABLE FOU	JR	SUMMA	ARY OF EPM	IA RESUL	TS FOR P	YRITE WI	THIN SEL	ECTED SA	AMPLES		
	Т	HRCD 91	7	THRCD 919		THRO	CD 920			THRC	D 925	
	155.4 mts	159.6 mts	163.5 mts	131.5 mts	143.1 mts	144.5 mts	168.5 mts	182.3 mts	108.9 mts	120.7 mts	136.1 mts	143.5 mts
Wt.%	AJ 64 (n=12)	AJ 65 (n=14)	AJ 66 (n=1)	AJ 69 (n=24)	AJ 71 (n=8)	AJ 72 (n=9)	AJ 74 (n=28)	AJ 75 (n=44)	AJ 1 (n=35)	AJ 2 (n=18)	AJ 4 (n=10)	AJ 6 (n=7)
Cu	0.07	0.03	0.03	0.02	0.04	0.06	0.02	0.02	0.03	0.02	0.02	0.01
Mn	0.01	0.01	0.01	0.09	0.02	0.02	0.10	0.02	0.01	0.02	0.01	0.03
Fe	46.33	46.28	46.28	46.13	46.18	45.14	46.21	45.96	45.80	46.42	46.13	46.76
Со	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ni	0.01	0.02	0.02	0.01	0.01	0.02	0.03	0.02	0.02	0.02	0.02	0.02
Sb	0.05	0.02	0.02	0.03	0.03	0.24	0.02	0.07	0.18	0.02	0.01	0.01
As	1.08	0.31	0.31	0.33	0.40	0.89	0.41	0.96	1.17	0.25	1.02	0.15
S	53.19	53.55	53.55	53.55 53.95		53.05	53.19	53.36	53.25	53.78	53.53	53.90
Se	0.05	0.18	0.18	18 0.01		0.02	0.02	0.02	0.03	0.02	0.03	0.00
Total	100.80	100.41	100.41	100.58	100.01	99.44	99.99	100.42	100.49	100.55	100.78	100.88
a.p.f.u *	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cu	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NM Fa	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
re	0.99	0.99	0.98	0.98	0.99	0.98	0.99	0.99	0.98	0.99	0.99	1.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AS Sh	0.02	0.01	0.02	0.01	0.01	0.01	0.01	0.02	0.02	0.00	0.02	0.00
So	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S	1 99	2.00	2.00	2.01	2.00	2.00	1 99	2.00	1 99	2.00	2.00	2.00
S Total M	1.01	1.00	1.00	0.99	1.00	1.00	1.01	1.00	1.01	1.00	1.00	1.00

TABLE FIVE		EPMA	A SUMMA	RY OF TE	TRAHED	RITE/TEN	NANTITE	E AND SPH	IALERITI	E GRAINS	IN SELEC	CTED SAI	MPLES	
Tetrahedrite-tennant	ite													
TH 925: 120.7	Analysis	s (wt. %)												
AJ 2	Ag	Cu	Pb	Fe	Mn	Zn	Cd	Sb	As	Те	Se	S	Total	
Mean (n=2)	0.11	34.53	0.33	1.74	<mdl< td=""><td>12.70</td><td>0.76</td><td>20.56</td><td>3.36</td><td><mdl< td=""><td><mdl< td=""><td>26.28</td><td>100.39 % Tetr</td><td>% Tenn</td></mdl<></td></mdl<></td></mdl<>	12.70	0.76	20.56	3.36	<mdl< td=""><td><mdl< td=""><td>26.28</td><td>100.39 % Tetr</td><td>% Tenn</td></mdl<></td></mdl<>	<mdl< td=""><td>26.28</td><td>100.39 % Tetr</td><td>% Tenn</td></mdl<>	26.28	100.39 % Tetr	% Tenn
Formula a.p.f.u = 29	0.01	8.61	0.03	0.47	-	3.24	0.01	2.71	0.71	-	-	13.10	79.3	20.6
Sphalerite														
TH 917: 163.5	Analysis	s (wt. %)												
AJ 66	Ag	Cu	Pb	Fe	Mn	Zn	Bi	Sb	As	Cd	Te	Se	S	Total
Mean (n=3)	<mdl< td=""><td>0.39</td><td>0.10</td><td>2.54</td><td><mdl< td=""><td>62.4</td><td>0.09</td><td><mdl< td=""><td>0.02</td><td>0.07</td><td>0.01</td><td>0.04</td><td>33.5</td><td>99.17</td></mdl<></td></mdl<></td></mdl<>	0.39	0.10	2.54	<mdl< td=""><td>62.4</td><td>0.09</td><td><mdl< td=""><td>0.02</td><td>0.07</td><td>0.01</td><td>0.04</td><td>33.5</td><td>99.17</td></mdl<></td></mdl<>	62.4	0.09	<mdl< td=""><td>0.02</td><td>0.07</td><td>0.01</td><td>0.04</td><td>33.5</td><td>99.17</td></mdl<>	0.02	0.07	0.01	0.04	33.5	99.17
Formula a.p.f.u = $2*$	-	0.01	0.00	0.04	-	0.93	0.00	-	0.00	0.00	0.00	0.01	1.02	2.01
ТН919: 131.5	Analysis	s (wt. %)												
AJ 69	Ag	Cu	Pb	Fe	Mn	Zn	Bi	Sb	As	Cd	Te	Se	S	Total
Mean (n=2)	<mdl< td=""><td>0.35</td><td>0.13</td><td>4.41</td><td>0.03</td><td>59.81</td><td>0.15</td><td><mdl< td=""><td><mdl< td=""><td>0.05</td><td><mdl< td=""><td>0.06</td><td>33.30</td><td>98.32</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.35	0.13	4.41	0.03	59.81	0.15	<mdl< td=""><td><mdl< td=""><td>0.05</td><td><mdl< td=""><td>0.06</td><td>33.30</td><td>98.32</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>0.05</td><td><mdl< td=""><td>0.06</td><td>33.30</td><td>98.32</td></mdl<></td></mdl<>	0.05	<mdl< td=""><td>0.06</td><td>33.30</td><td>98.32</td></mdl<>	0.06	33.30	98.32
Formula a.p.f.u = 2*	-	0.01	0.00	0.08	0.00	0.90	0.00	-	-	0.00	-	0.01	1.02	2.01
TH 925: 108.9	Analysis	s (wt. %)												
AJ 1	Ag	Cu	Pb	Fe	Mn	Zn	Bi	Sb	As	Cd	Te	Se	S	Total
Single analysis (n=1)	<mdl< td=""><td>0.07</td><td>0.13</td><td>3.06</td><td>0.00</td><td>61.55</td><td>0.25</td><td>0.02</td><td>0.04</td><td>0.12</td><td>0.02</td><td><mdl< td=""><td>33.37</td><td>98.62</td></mdl<></td></mdl<>	0.07	0.13	3.06	0.00	61.55	0.25	0.02	0.04	0.12	0.02	<mdl< td=""><td>33.37</td><td>98.62</td></mdl<>	33.37	98.62
Formula a.p.f.u = 2*	-	0.00	0.00	0.05	0.00	0.92	0.00	0.00	0.00	0.00	0.00	-	1.02	2.00
TH 925: 120.7	Analysis	s (wt. %)												
AJ 2	Ag	Cu	Pb	Fe	Mn	Zn	Bi	Sb	As	Cd	Te	Se	S	Total
Mean (n=2)	0.13	5.41	0.92	3.98	<mdl< td=""><td>55.37</td><td>0.20</td><td>0.10</td><td>0.05</td><td>0.46</td><td><mdl< td=""><td><mdl< td=""><td>32.60</td><td>99.24</td></mdl<></td></mdl<></td></mdl<>	55.37	0.20	0.10	0.05	0.46	<mdl< td=""><td><mdl< td=""><td>32.60</td><td>99.24</td></mdl<></td></mdl<>	<mdl< td=""><td>32.60</td><td>99.24</td></mdl<>	32.60	99.24
Formula a.p.f.u = 2*	0.00	0.08	0.00	0.07	-	0.83	0.00	0.00	0.00	0.00	-	-	1.00	2.00

denotes calculated atomic proportion per formula unit at 29 a.p.f.u, solid solution series for tetrahedrite-tennantite $(Cu,Ag)_{10}$ (Fe,Zn)₂ (Sb,As)₄ S₁₃. * denotes calculated atomic proportion per formula unit at 2 a.p.f.u for sphalerite (ZnS).

TABLE FIVE

TABLE SIX

		Т	THRCD 917				THRCD 920)	THRCD 925
	AJ 62		AJ 64	A	I 66	AJ 74	A	J 75	AJ 6
	151.4 mts*	155.3 mts	155.3 mts*	163.5 mts	163.5 mts*	168.5 mts*	182.3 mts	182.3 mts*	143.5 mts
	(n=1)	(n=5)	(n=5)	(n=3)	(n=1)	(n=1)	(n=3)	(n=3)	(n=2)
Au	64.99	58.02	61.50	59.82	64.99	62.30	70.37	76.21	66.25
Ag	35.01	43.68	36.33	41.65	35.01	29.13	30.73	23.79	34.78
Cu		0.03		0.00			0.02		0.01
Hg	0.40			0.27			0.28		0.12
Bi		0.20		0.18			0.17		0.14
Те		0.05		0.05			0.05		0.06
Total		102.4		102.0			101.6		101.36
MeanAu/(Ag+A u) 2 a.p.f.u		0.42		0.44			0.56		0.51
Host of Electrum	Sty, WGM	CS,	Cb blade	CS,CI	b blade	Sty, HCB	HQ	I, SB	Qtz, Sty, Fluorite

TABLE SIXEPMA/SEM* ANALYTICAL RESULTS FOR SELECTED ELECTRUM GRAINS

* Analysis results from Phillips XL30 SEM with EDAX

Abbreviations: **Sty**=stylolite, **WGM**=weak ginguro mineralsation, **CS**= chalcedonic silica, **Cb blade**= Carbonate/silica replacement textures, **HCB**= Hydrothermal crackle breccia, **HQI**= Hydrothermal quartz infill textures, **SB**= secondary breccia textures, **Qtz**= Quartz. .* indicates analysis by SEM EDAX, counts to 55 seconds.

TABLE SEVEN

TABLE SEVEN	SUMM	ARY OF SEM (ED	OAX) ANALYSIS OI	F ARGYRODITE G	RAINS
THRCD 917 145.4					
mts					
AJ 60	1	2	3	4	mean
Wt.%	canfieldite		argyı	rodite	
Ag	64.4	72.7	73.6	73.6	73.6
Sn	6.2	2.0	3.7	1.5	2.6
Ge	2.1	6.9	5.7	6.9	6.3
Se	10.7	0.80	2.6	4.4	3.5
Те	6.1	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
S	10.4	17.7	14.4	13.6	14.0
Total	100.0	100.0	100.0	100.0	100.0
Formulae (calculated	to 15 a.p.f.u.)				
Ag	7.547	7.505	8.030	8.056	8.043
Sn	0.658	0.186	0.370	0.149	0.260
Ge	0.372	1.059	0.920	1.119	1.019
sum Ge+Sn	1.030	1.245	1.290	1.268	1.279
Se	1.710	0.113	0.389	0.659	0.524
Те	0.607	0.000	0.000	0.000	0.000
S	4.106	6.137	5.292	5.016	5.154
sumS+Se+Te	6.423	6.250	5.681	5.675	5.678
% argyrodite	36.2	85.1	71.3	88.2	79.8
% canfieldite	63.8	14.9	28.7	11.8	20.2
%Ag8(Ge,Sn)S6	63.9	98.2	93.1	88.4	90.8
%Ag8(Ge,Sn)Se6	26.6	1.8	6.9	11.6	9.2
%Ag8(Ge,Sn)Te6	9.5	0.0	0.0	0.0	0.0

all analysis with Phillips XL30 with EDAX. Analysis @L 55secs

TABLE EIGHT				S	UMMARY	OF TRAC	CE ELEME	NTS WITH	IIN PYRIT	E (LA-ICP	MS)						
THRCD 917 AJ 55	Au(ppm)	Ag(ppm)	Se(ppm)	As(ppm)	Mo(ppm)	Te(ppm)	Bi(ppm)	Sb(ppm)	Zn(ppm)	Pb(ppm)	TI (ppm)	Cu(ppm)	Co(ppm)	Ni(ppm)	Pyrite Morphology	Ore host	Spot Positions
Mean (n=26) S.D Min Max AJ 64	28 43 0.33 198	16956 46084 20 226575	1700 3992 13 19398	3504 4273 28 16974	245 612 1.4 2194	1.9 2.2 0.45 7.0	1.0 1.1 0.06 3.8	61 83 0.26 282	84 204 0.76 614	39 47 0.17 165	11 26 0.04 116	317 499 4.0 2026	26 23 2.4 91	49 42 0.45 171	Granular/Sub hedral (porous centres)	Silica	porous, OG,
Mean (n=21) S.D Min Max THRCD 920	44 58 1.2 261	5871 11901 58 49286	823 1871 35 8187	9809 7389 1269 24172	94 296 0.29 1370	4.8 7.4 0.86 30	0.33 0.30 0.09 0.90	285 451 0.77 1638	24 75 0.66 316	33 21 6.6 62	31 54 0.2 192	202 238 32 1080	10 19 0.29 85	22 23 0.95 68	Granular/Sub hedral (porous centres)	As Sty	OG, Porous, CC
AJ 72 Mean (n=25) S.D Min Max	25 25 0.44 120	128 85 3.1 327	76 77 6 368	9370 11388 2781 55820	535 587 1.3 2864	2.7 2.9 0.40 12	2.2 2.8 0.16 8.9	3861 1867 18 8309	57 86 1.8 317	142 178 2.7 771	545 244 22 1244	538 567 10 2293	113 239 2.5 1121	122 139 4.5 547	Framboidal, Subhedral	HVB, Sty, Silica	OG, CR
AJ 76																	
Mean (n=11) S.D Min Max	2.7 3.2 0.05 11	32 29 1.1 79	22 22 3.6 59	3737 3939 366 13486	805 1578 5.2 5312	0.63 0.19 0.41 0.91	1.4 1.1 0.05 3.1	175 173 14 617	24 24 2.6 75	123 101 8.3 350	34 35 0.87 94	127 85 17 274	38 37 0.63 129	36 29 2.4 87	Granular/ Euhedral/Sub hedral	Mo Sty	OG, CC
THRCD 921 AJ 19																	
Mean (n=12) S.D Min Max THRCD 925	2.8 3.3 0.17 10	7.2 3.5 0.75 14	10 5.9 2.3 19	1062 1138 120 3215	48 70 0.30 241	- 0.00 0.00	0.44 0.19 0.05 0.71	13 9 0.36 31	138 429 3.9 1501	39 16 5.6 71	11 10 2.3 38	43 18 4.9 66	11 6.4 1.4 22	13 6.4 2.6 26	Granular/ Subhedral (Sphalerite zoned grains)	HVB	CC, CR, OG
AJ 6	_																
Mean (n=14) S.D Min Max	3.5 3.0 0.49 10	27 17 7.0 70	30 40 3.8 148	4693 3172 337 11309	168 409 2.3 1570	1.4 - 1.4 1.4	1.5 1.1 0.17 3.9	77 64 8.0 251	17 31 0.64 121	90 53 21 225	8.5 7.7 1.0 28	128 62 23 227	39 52 1.4 182	65 82 1.8 311	Framboidal, Lamellar, Subhedral	HVB, As Sty, Silica	OG, Porous, CR
THRCD 926 AJ 36b	_																
Mean (n=5) S.D Min Max	44 25 17 85	12 8.7 5.3 26	19 - 19 19	25182 4375 18500 30456	83 146 2.3 343	- 0.00 0.00	0.12 - 0.12 0.12	75 22 60 113	3.5 2.0 1.3 4.8	13 11 2.8 32	6.7 4.4 2.9 14	21 14 4.1 43	1.8 1.4 0.32 3.0	11 7.6 3.1 22	Granular/Sub hedral (zoned grains, norous)	As/Elec Sty	OG, CR
AJ 38 Mean (n=13) S.D Min Max	1.8 1.6 0.08 5.5	13 6.9 3.5 24	6.9 5.9 2.8 15	19890 7644 6464 33596	10 17 2.0 64	- 0.00 0.00	0.25 0.14 0.05 0.47	142 70 90 317	2.2 2.0 0.79 6.2	11 7.1 1.5 25	11 3.1 7.1 17	16 11 3.2 38	0.91 1.6 0.09 6.0	6.7 5.3 0.57 14	Granular/Sub hedral	As Sty	OG, CC

Abbreviations: As=arsenic; Mo=molybdenite; Elect=electrum; Sty=stylolite; HVB=hydrothermal vent breccia; OG= overgrowth, CC=central core of grain, CR=cluster rims (spot within clusters of minute pyrite); P=porous.

TABLE EIGHT

TABLE NINE

Molybdenum AJ 16 THRCD 925																	
179.9 mts	TABLE N	NINE			SUMMA	ARY OF I	AICPMS	S ANALY	SIS OF M	IOLYBD	ENITE						
	Au(ppm)	Ag(ppm)	Se(ppm)	As(ppm)	Mo(ppm)	Te(ppm)	Bi(ppm)	Sb(ppm)	Zn(ppm)	Pb(ppm)	Cu(ppm)	Co(ppm)	Ni(ppm)	W (ppm) F	te (ppm)	TI (ppm)	U (ppm)
Mean (n=15)	0.50	7988	229	5291	599400	8.2	7.8	4686	64	2210	166	15	22	759	15	5044	6.6
S.D	0.31	987	29	493	0.00	1.2	0.89	446	29	304	30	7.0	11	180	5.1	509	3.9
Min	0.29	5985	186	4934	599400	6.3	6.4	4116	31	1663	128	7.6	15	479	6.6	3632	2.0
Max	1.4	10175	295	6890	599400	11	10	5683	159	2772	258	33	55	1037	23	5676	13

CAPTIONS TO TABLES

Table 1. List of samples from Twin Hills investigated in this study. The table also gives drill core location, depth in drill core, the main ore minerals seen, the main macroscopic (hand sample) textures and the study methods used for each sample.

Table 2. Summary of minimum and maximum sizes of electrum seen in samples analysed. The table also shows NQM assay grades for the sampled interval, the host situation of electrum and macroscopic features often seen in hand sample.

Table 3. Results for geochemical assays of selected lithological targets. Hand sample features are stated.

Table 4. Summary of EPMA analytical results within selected pyrite grains. Sample numbers, associated drill core with depth (mts) are given. Arsenic results are highlighted in red. Analysis is given in wt.% and *atomic proportion per formula unit (a.p.f.u.) calculated for FeS₂.

Table 5. Summary of EPMA analysis of tetrahedrite and sphalerite in selected samples from the Twin Hills 309 epithermal deposit. Fe in sphalerite is at low to moderate concentrations.

Table 6. Summary of EPMA analysis for electrum. Drill core and depth given, along with textural setting situation of electrum as seen by SEM imagery. Au/(Ag+Au) indicates gold proportion of electrum.

Table 7. SEM-EDAX analyses of argyrodite within quartz vein wall of sample AJ 60. Results confirm the presence of compositions corresponding to both argyrodite and canfieldite.

Table 8. Summary of selected element concentrations within pyrite, as measured by LA-ICPMS. Concentrations are given in parts per million (ppm). A summary of pyrite morphology, pyrite host and pyrite LAICPMS analytical spot position is given in the last columns. Pyrite types have been described in section 4.2.2.

Table 9. LA-ICPMS analytical data for molybdenite in sample AJ 16. Remarkably high Ag levels are present. These are believed to be present as nano-inclusions rather than in the sulphide lattice. The Re content of the molybdenite is quite low.

APPENDIX I

LOCATION DESCRIPTIONS AND REASONS BEHIND SAMPLED ZONES.

- Core photographs of samples are shown in adjoining figures relative to drill core I.D.
- Conclusions for the reasons behind the specific samples are written in italics.

THRCD 917

AJ 52: 133.4 mts

This sample was taken for assay. Core logging is misleading if this zone is either the 4.26g/t Au interval or the 14.2 g/t Au interval. The sample is a matrix supported Hydrothermal pebble vent breccia, with overprinting tension stringer and anastomosing veins.

AJ 54: 134.6 mts

Textures featuring a poly breccia sample showing sub angular clast supported breccia. Brecciated clasts contain multiple lithologies, these include, medium grained arenites, mudstones and previous chalcedonic silicas that have been brecciated and now are part of the hydrothermal breccia host. Minor stylolitic contacts surround clast boundaries.

AJ 55: 139.4 mts

A section of banded silica textures are represented in this sample, and also contains good examples of the so called 'spider veinlets'. Core logging describes these veins as being rebrecciated. Comb quartz textures suggest the silica has infiltrated a more open space. Argillic and Pervasive silica alteration are present, with also pyritisation, disseminated thoughout. This sample was taken from a zone of high grade and hence is of interest.

AJ 56: 139.7 mts

Chalcedonic silica has replaced bladed calcite. Minor stylolitic bands follow the replaced calcite blade boundaries. Assays show this interval contains up to 25 g/t Au within it, thus has been assayed.

AJ 59: 143.2 mts

This sample was assayed due to the chalcedonic silica infilling replacing calcite. This can be clearly seen on the back of the core.

AJ 60: 145.4 mts

This sample is of a chalcedonic silica vein showing no strong indications of replacement of bladed calcite textures. A black stylolitic band at the vein wall could be the reason why in this interval we see the Au grade jump to 3.3 g/t.

AJ 61: 148.4 mts

Sample shows a chalcedonic silica vein, replacing bladed calcite. Minor stylolitic mineralisation has developed at one end of the drill core. NQM's original assay over meter intervals throughout this

intersection of the drill core show it was carrying 6 g/t Au. This representative sample was taken from the silica vein from within this meter.

AJ 62: 151.4 mts

This sample represents all of the similar described textures as to AJ 61, with exception that weak 'ginguro'mineralisation is present. A polished block was made to analyse sulphides seen within the chalcedonic silica where it replaces calcite. This was taken from within a high grade zone (34 g/t Au).

AJ 63: 152.5 mts

This sample was also taken from the same high grade interval as sample AJ 62. An assay was made to check the influence of weak ginguro mineralisation on grade. Textures present include bladed calcite,replaced by, chalcedony.

AJ 64: 155.3 mts

This marks the beginning of a massive silica vein in the drill core. This extends more or less over a distance of 5 meters. This also contains high grade Au zones (34g/t). Potassic alteration occurs in the clasts adjacent the vein. Silicification and pyritisation occurs throughout the matrix. The veining also displays weak ginguro mineralisation.

AJ 65: 159.6 mts

This interesting sample includes an angular fragment of a sub- rounded pebble quartz arenite. This is a foreign clast that has fallen in from the edge of the collapsing Twin Hills sub- basin. The silica is a dark chalcedony replacing calcite bladed textures. This sample is also from an interval of high grade (16.8 g/t Au).

AJ 66: 163.5 mts

This sample is also from a high grade Au zone. It is taken from near the end of the 5 metre section of the silica vein mentioned in AJ 64 above. This vein is more crystalline in texture with chalcedony replacing calcite.

THRCD 919

AJ 67: 130.2 mts

This sample is of the matrix supported hydrothermal vent breccia. Some of the fragments within the pyritised matrix are of previous silica veins. This sample was taken for assaying because of the nature of the fragments and the matrix relative to a high grade Au intersection of 19.9 g/t Au.

AJ 68: 131.5 mts

This sample is from 130.5 meters. It contains a large chalcedonic silica vein, showing a late minor fluorite infill. The silica displays crystalline, comb quartz textures. Stylolitic textures are also presented well. Assays from NQM show grade for this ore is high at 19.9 g/t Au. Specks of Au were observed on adjacent quartered drillcore. It was sampled based on the assumption adjacent core contained visible gold as well.

AJ 69: 131.5 mts

This sample, at 131.5 meters, was from within an interval that NQM assays show to contain Au grades to 1.24 g/t. Although being adjacent to the 19.9 g/t Au section of sample AJ 68, visible Au was present within this sample. It was of interest because of this observation and the similar nature of the adjacent richer Au grades.

AJ 70: 137.7 mts

This sample was for assaying the geochemistry within an intensly silicified zone of the hydrothermal vent breccia host and the relevance of this texture to Au grade.

THRCD 920

AJ 71: 143.1 mts

Pervasive silicification throughout and locally, chloritic alteration have affected the rims of the clasts situated within the matrix. The rims show sharp, sutured contacts, probably formed through the disequilibrium of fluids in the matrix to the clasts. This is also in an interval showing high grade Au at (34 g/t). This grade, however might be situated in an adjacent silica vein which were not sampled.

AJ 72: 144.5 mts

Sample AJ 72 is a part of tension stringer vein sets. Pyritisation adjacent and overprinting these quartz stringers has taken place. This core interval is low in Au, grade being only 1.55 g/t Au. The sample was taken from a fluidised, well bedded, very fine grained mudstone. Clearly, this is overprinted with chalcedony and a later comb quartz vein. These textures are in association with hydrothermal crackle infill breccias, which were present in the next interval (145-146 meters).

AJ 74: 168.5 mts

This sample is within an interval where Au grade drops to 0.79 g/t. stylolite development against a silica vein created enough interest to compare it with the stylolites within high grade zones of silica. Host lithology is a brecciated very fine grained siltstone. Adularisation is present. *The conclusions after this research confirmed the stylolites that developed parallel to the vein are barren in Au and commonly showed carbonaceous matter and titanium dioxides.*

AJ 75: 182.3 mts

This sample was taken from within the high grade interval of 34 g/t Au at 182.3 metres. Lithology is a brecciated very fine grained mudstone. Quartz textures were logged by NQM as 'spider'

veinlets and blebs of Au were visible. *BSE imagery showed two stylolite present. 1*) *Carbonaceous/titanium stylolite. 2*) *Electrum rich stylolite with granular pyrite showing porosity. The latter was responsible for the high Au grades.*

AJ 76: 163.3 mts

NQM assays stated very high Mo (973 g/t) within this drillcore interval. Ag content is moderate (8.2 g/t) whilst Au concentrations are low. The trends for high Mo to Ag ratios lead to suggest there is reason to suspect a Mo-Ag correlation. *We conclude Molybdenum mineralisation within the breccia is locally developed nearby paleo-sinter blocks within the breccia. The pyrite within the sinter blocks is organic derived evident on the framboidal/attol textures and contain high amounts of Tl, Sb, Ag and Au in solid solution.*

THRCD 921

AJ 19: 191.3 mts

There is a jump in the Au grade (up to 2.15g/t) in this interval. It includes part of the hydrothermal crackle breccia silica infill. *The pyrite in this sample is hosted within the Hydrothermal vent breccia associated with sphalerite inclusions. Au concentrations within the pyrite average 2.8 ppm. The base metal associations with low Au concentrations are considered to be a late phase of mineralisation.*

AJ 21: 192.0 mts

This was taken for assaying. The hand specimen shows a probable fault boundary situated between adjacent sandstone lithologies, defined by well developed bedding. Sub angular fragments with post quartz infill are shown adjacent to the sandstone.

THRCD 925: 108.9mts

AJ 1

This was the first sample taken from the drillcore used in this study. Within the crystalline comb quartz an unknown silver mineral was observed whilst sampling. Two blocks made from this section were intended for further analysis of the unknown silver mineral. The host lithology is a very fine mudstone or tuff. *The unknown visible mineral was lost during transport of the samples. Sphalerite is common in vughs of the comb quartz. The host lithology was concluded to be a volcanic rock based on widespread pyritisation of alike size phenocrysts.*

AJ 2: 120.7 mts

Pyrite is shown to be present within the clasts of this sample. Fine, high tensile veinlets also with pyritisation are also observed and seem to have some connection to the clasts. *Pyrite with base metals of tetrahedrite and chalcopyrite overprint the high tensile veinlets*.

AJ 4: 136.1 mts

This sample was taken because of the relation between pyrite and high tensile veinlets. *Base metals of sphalerite and minor chalcopyrite were again observed with these type of veinlets.*

AJ 5: 139.1 mts

This sample represents a fluorite infilled hydrothermal crackle breccia. *Base metals of sphalerite and chalcopyrite were present with granular pyrite*.

AJ 6: 143.5 mts

This sample represents the fluorite rich hydrothermal crackle breccia. NQM assays state Au Grade was 6.23 g/t. Because of NQM's results it was sampled. *BSE images revealed the Au was situated in late generation stylolites with arsenopyrite.*

AJ 10

An assay was made of the fluorite infill overprinting the chalcedonic silica vein. Chalcedony has replaced calcite blades. A later stylolite has cut alongside the fluorite infill. *Assay returned a low* 2.0 g/t Au. There likely is a common connection between stylolites that run parallel to veins and the carbonaceous/titanium dioxide stylolites.

AJ 16: 179.9 mts

This sample from 179.9 meters, was taken because of NQM's high Molybdenum assay of 781 ppm. Molybdenite was clearly seen in a vugh in the back of the drill core within stylolitic banded textures. *LA-ICPMS spot analysis was undertaken on the molybdenite showing it contained high traces of Tl and Ag. The molybdenite is considered to be a collector of 'junk' passing fluids.*

AJ 17: 178.4 mts

Fine crosscutting veinlets with sulphides cut across the host rock. An assay of this was taken.

THRCD 926

AJ 32: 137.4 mts

An assay was taken of the chalcedony silica with later comb quartz where Au grades were stated by NQM to be 5.79 g/t Au. *Results show these silica veins to contain moderate Au levels of 5.5 g/t.*

AJ 36a AJ 36b: 140.6 mts

This sample represents a chalcedonic silica vein with calcite replacement textures. Weak ginguro mineralisation is portrayed on the downhole side of the vein. On the uphole side of are the silica replaced calcite blades. NQM assay results show Au grade from this point in the drillcore is rising

(3> g/t Au). To represent the differences between the ginguro mineralisation and the silica/chalcedonic vein, two blocks were prepared from this section labelled AJ 36a and AJ 36b. Only sample AJ 36b was analysed by LA-ICPMS. These results show high Au concentrations in solid solution with As. BSE images for sample AJ36a revealed pyrite, electrum and minor naumannite were precipitated distinctly along the replaced bladed calcite.

AJ 38: 141.2 mts

Crystalline anastomosing vertical /fluorite silica veins are present within the drill core sample, which represents a high grade interval of 10 g/t Au. Sample includes some high tensile veining. *LAIPCMS spot analysis results from pyrite within this sample showed a high As content buy a very low Au concentration.*

AJ 40: 141.89 mts

An assay has been made from this dirty grey mix of chalcedonic silica with minor calcite replacement textures. Adjacent wall rocks suggest a part of the hydrothermal crackle breccia. Sulphides are seen at the vein and clast edges. *Results from assay show these textures within the crackle breccia are indicative of high grade ore.*

AJ 47: 149.7 mts

An assay has been taken from this heavily silicified sample. The host rock has undergone intense immobilisation. Interest is in the type of geochemistry with these textures. Assays returned very low Au values of 0.12 g/t.

AJ 52

AJ 54

AJ 55

AJ 56

AJ 60

ginguro mineralisation

AJ 61

AJ 62

AJ 64

AJ 65

AJ 66

THRCD 919

AJ 67

AJ 68

AJ 69

AJ 70

AJ 71

AJ 72

AJ 74

AJ 75

AJ 21

THRCD 925

AJ 10

AJ 16

AJ 32

AJ 36A, AJ 36B

AJ 38

AJ 40

APPENDIX II Drill logs of sampled Drill cores

SAMPLE METERS ALTERATION MINERALUATION 113 0.01.0 Serie 1: 400 117 THRCD HYDRATHERMAL CHARLE FLUIDUED BRECCA 919 129 打 67 行 8 行 70 CHALCEDORY VEINING DISSEMINATED PARME 139 WEAK GINGERS MINERALISAFION n CHALLEDANY VEINING FUSRITE WEAK GINGUNS MINERALLIATION HYDROTHERMAL CRACKLE BRECCA FILCH TENSILE STRINGER VENS 177.4 (EOH) LITHOLOGY FIRE GRAINED SILTSTONES 0.0.0.07 PEBBLE - LOBBLE SIZED MATIRUX SUPPORTED HYMROTHERMAL VENT BREACIA

APPENDIX III EPMA analysis of Pyrite (full dataset)

Comple/CDB44 and	Pyrite le/EPMA spot size Morphology						Cu	Mn	Fe	Co	Ni	Sb	As	S	Se	Total
sample/EPIVIA spot	size (um)	Morphology	Ore Textures	Quartz Texture	Associated Minerals	Host										
1aj2	30	Anhedral	Anhedral cluster	Comb Qtz	bitumen/carbon	Sediment/Tuff?	0.0165	0.0001	46.615	0.0001	0.0471	0.0017	0.2281	54.2158	0.0082	101.1326
1aj3	40	Anhedral	Anhedral cluster	Comb Qtz	bitumen/carbon	Sediment/Tuff?	0.0001	0.0001	46.8093	0.0001	0.0215	0.0336	0.0988	54.5388	0.0002	101.5025
1a j4	40	Anhedral	Anhedral cluster	Comb Qtz	bitumen/carbon	Sediment/Tuff?	0.0001	0.0001	46.9345	0.0001	0.0041	0.0001	0.571	53.9911	0.0014	101.5025
1a j 5	70	Framboid	Fine grained cluster	Comb Qtz	bitumen/carbon	Sediment/Tuff?	0.0165	0.0034	46.8117	0.0001	0.0051	0.0705	0.3696	54.34	0.0002	101.6171
1a jl 1_1	70	Anhedral	Homogenous	Comb Qtz			0.0001	0.0387	47.0583	0.0099	0.0051	0.0001	0.2774	54.8641	0.0002	102.2539
1a jl 1_2	70	Anhedral	Homogenous	Comb Qtz			0.0445	0.0001	46.189	0.0001	0.0295	0.0987	2.3322	52.3711	0.0251	101.0903
1a jl 1_3	70	Anhedral	Homogenous	Comb Qtz			0.0001	0.0057	47.3275	0.0001	0.0143	0.0588	0.3315	54.3182	0.0068	102.063
1a jpt23	80	Subhedral	Homogenous	Comb Qtz		QV	0.0377	0.0216	46.7974	0.0001	0.0205	0.0101	0.5499	54.3423	0.0109	101.7905
1ajpt24	80	Subhedral	Homogenous	Comb Qtz		QV	0.0001	0.0001	47.5526	0.0001	0.0174	0.005	0.3295	54.2368	0.0287	102.1703
1a jpt25	80	Subhedral	Homogenous	Comb Qtz		QV	0.0001	0.0091	46.9812	0.0001	0.0419	0.0134	1.4507	53.4826	0.0415	102.0206
1a jpt26	80	Subhedral	Homogenous	Comb Qtz		QV	0.0316	0.0001	46.2586	0.0001	0.0275	0.0134	2.308	52.8328	0.0084	101.4805
1a jpt27	60	Subhedral	Homogenous	Comb Qtz		QV	0.0001	0.0001	46.5696	0.0001	0.0001	0.052	1.7213	53.3067	0.0429	101.6929
2a jl 1_1	200	Anhedral	Lamellar, overgrowth		Chalc, Tetra, Sphal	HTSV/Clast	0.0001	0.0215	47.0594	0.0001	0.0193	0.02	0.1684	53.8777	0.0002	101.1667
2a jl 1_2	200	Anhedral	Lamellar, overgrowth		Chalc, Tetra, Sphal	HTSV/Clast	0.0117	0.0045	46.7443	0.0127	0.0203	0.0001	0.5753	53.8478	0.0002	101.2169
2a jl 2_1	200	Anhedral	Lamellar, overgrowth		Chalc, Tetra, Sphal	HTSV/Clast	0.0246	0.0001	46.3948	0.0001	0.0071	0.0001	0.3838	54.1578	0.0365	101.0049
2a jl 2_2	200	Anhedral	Lamellar, overgrowth		Chalc, Tetra, Sphal	HTSV/Clast	0.0632	0.0079	47.0558	0.0001	0.0285	0.02	0.0817	54.2304	0.0002	101.4878
2a jl 3_1	200	Anhedral	Lamellar, overgrowth		Chalc, Tetra, Sphal	HTSV/Clast	0.0001	0.009	46.5155	0.0001	0.0326	0.0918	0.2355	54.151	0.0002	101.0358
2a jl 3_2	200	Anhedral	Lamellar, overgrowth		Chalc, Tetra, Sphal	HTSV/Clast	0.0234	0.157	47.0949	0.0028	0.0193	0.0001	0.0187	54.1145	0.0002	101.4309
2a jl 4_1	200	Anhedral	Lamellar, overgrowth		Chalc, Tetra, Sphal	HTSV/Clast	0.0129	0.0001	46.9365	0.0001	0.0001	0.0133	0.1286	54.2663	0.0351	101.393
2a jl 4_2	200	Anhedral	Lamellar, overgrowth		Chalc, Tetra, Sphal	HTSV/Clast	0.0187	0.0001	46.7372	0.0001	0.0071	0.0401	0.0398	54.2912	0.0002	101.1345
2a jl 5_1	200	Anhedral	Lamellar, overgrowth		Chalc, Tetra, Sphal	HTSV/Clast	0.0012	0.0068	46.787	0.0152	0.0336	0.02	0.4096	53.8977	0.0002	101.1713
2a jl 5_2	200	Anhedral	Lamellar, overgrowth		Chalc, Tetra, Sphal	HTSV/Clast	0.0001	0.0068	45.8782	0.0065	0.0001	0.0001	0.576	51.5945	0.0096	98.0719
2a jl 6_1	200	Anhedral	Lamellar, overgrowth		Chalc, Tetra, Sphal	HTSV/Clast	0.0257	0.0135	46.8694	0.0218	0.0001	0.0001	0.9557	53.4889	0.0532	101.4284
2a jl 7	200	Anhedral	Lamellar, overgrowth		Chalc, Tetra, Sphal	HTSV/Clast	0.0526	0.0001	45.4682	0.0001	0.0001	0.0518	0.1828	53.8923	0.0002	99.6482
2a jpt2	40	Anhedral	Porous centre		Chalc, Tetra, Sphal	HTSV/Clast	0.0328	0.0034	45.787	0.0001	0.0001	0.0033	0.1497	53.6354	0.0337	99.6455
2a jpt3	40	Anhedral	Porous centre		Chalc, Tetra, Sphal	HTSV/Clast	0.028	0.0001	45.3367	0.0001	0.0001	0.0517	0.0105	52.4395	0.0002	97.8669
2a jpt4	40	Anhedral	Porous centre, overgrowth		Chalc, Tetra, Sphal	HTSV/Clast	0.0082	0.0102	46.2419	0.0001	0.0355	0.045	0.0291	54.1335	0.0901	100.5936
2a jpt5	40	Anhedral	Porous centre		Chalc, Tetra, Sphal	HTSV/Clast	0.0187	0.0305	46.0389	0.0073	0.0416	0.05	0.2552	53.9308	0.0002	100.3732
2a jpt6	40	Anhedral	Porous centre, overgrowth		Chalc, Tetra, Sphal	HTSV/Clast	0.0245	0.0226	46.4579	0.0001	0.0183	0.03	0.1691	53.9554	0.0002	100.6781
2a jpt7	40	Anhedral	Porous centre, overgrowth		Chalc, Tetra, Sphal	HTSV/Clast	0.0245	0.0045	46.1658	0.0001	0.0366	0.0001	0.164	54.0512	0.0296	100.4764
4a jl 8_1	40	Subhedral	Porous centre overgrowth			HVB	0.0153	0.0001	46.3584	0.0001	0.0267	0.0084	0.1081	54.251	0.0366	100.8047
4a jl 8_2	40	Subhedral	Porous centre overgrowth			HVB	0.0035	0.0001	46.1284	0.0001	0.0001	0.0554	2.267	53.0725	0.0417	101.5688
4a jl 8_3	40	Subhedral	Porous centre overgrowth			HVB	0.0001	0.0001	46.7013	0.0047	0.0133	0.0001	1.3733	53.451	0.0373	101.5812
4a jl 8_4	40	Subhedral	Porous centre overgrowth			HVB	0.0001	0.0001	45.7033	0.0001	0.0001	0.0017	0.8377	53.2656	0.0178	99.8265
4a jpt63	40	Subhedral	Porous centre overgrowth			HVB	0.0507	0.0148	46.4169	0.0001	0.0001	0.0118	0.3254	54.1863	0.0002	101.0063
4a jpt64	40	Subhedral	Porous centre overgrowth			HVB	0.0271	0.0001	46.8512	0.0001	0.0349	0.0001	0.2736	54.1207	0.0002	101.308
4a jpt65	40	Subhedral	Porous centre overgrowth			HVB	0.046	0.0001	46.1067	0.0001	0.0646	0.0151	0.3351	53.8639	0.0191	100.4507
4a jpt66	30	Anhedral	Anhedral cluster			HVB	0.0364	0.0182	45.4898	0.0001	0.0031	0.0001	1.5474	52.8165	0.0648	99.9764
4a jpt67	30	Anhedral	Anhedral cluster			HVB	0.0118	0.0001	46.0512	0.0001	0.0492	0.0118	0.2817	53.9784	0.0204	100.4047
4a jpt68	30	Anhedral	Anhedral cluster			HVB	0.0187	0.0204	45.5008	0.0001	0.0448	0.0251	2.8816	52.337	0.0518	100.8803

APPENDIX III ANALYSIS RESULTS FOR PYRITE (EPMA) Total dataset

	Pyrite						Cu	Mn	Fe	Со	Ni	Sb	As	S	Se	Total
Sample/EPMA spot	size	Morphology	Ore Textures	Quartz Texture	Associated Minerals	Host										
64 1_1	60 60	Anhedral	Anhedral fractured			Stylolite	0.4231	0.0011	46 3727	0.0001	0.0457	0.035	0.09	53 9649	0 0149	100 9475
6411_2	60	Anhedral	Anhedral fractured			Stylolite	0 175	0.0202	45 1271	0.0001	0.0141	0.055	2 9408	52 0024	0.0145	100.5475
6411_3	60	Anhedral	Anhedral fractured			Stylolite	0.175	0.0001	46 2277	0.0001	0.0001	0.0001	2.0446	52 5023	0.0152	100.9090
6412 1	120	Anhedral	Porous centre overgrowth			Styronice	0.0001	0.0485	46 479	0.0001	0.0001	0.0001	1 192	53 46	0.0478	101 2277
6412_3	120	Anhedral	Porous centre, overgrowth				0.007	0.0282	46.7792	0.0001	0.0001	0.07	0.0659	53,5959	0.0324	100.5788
64pt1	120	Anhedral	Porous centre			Stylolite	0.0001	0.0001	47.296	0.0001	0.0001	0.0183	0.0468	53,7373	0.0217	101.1205
64pt2	120	Anhedral	Porous centre			Stylolite	0.0222	0.0305	46.4528	0.0001	0.0001	0.0701	0.0467	53.9954	0.0323	100.6502
64pt3 1	50	Subhedral	Porous centre, overgrowth			Stylolite	0.042	0.0147	46.0637	0.0001	0.0001	0.0001	1.4345	52.9772	0.0069	100.5393
64pt4	120	Subhedral	Porous centre, dark zoned centre			Stylolite	0.0269	0.0001	47.2814	0.0011	0.001	0.0001	0.0928	54.2633	0.0622	101.7289
64pt5	120	Subhedral	Porous centre, zoned edge			Stylolite	0.0001	0.0001	46.1206	0.0107	0.0394	0.0001	3.0659	51.9012	0.0182	101.1563
64pt6	120	Subhedral	Porous centre, zoned edge			Stylolite	0.0258	0.0001	45.4565	0.0001	0.0397	0.0001	0.0002	52.9165	0.2045	98.6435
64pt7	120	Subhedral	Porous centre, zoned edge			Stylolite	0.0001	0.0203	46.341	0.0001	0.0001	0.1946	1.9082	53.0224	0.0523	101.5391
65aj1	80	Anhedral	Anhedral cluster	Chalcedony, Comb Quartz	Arsenopyrite	HVB	0.0435	0.0295	47.0521	0.0001	0.0001	0.0772	0.2464	54.3808	0.0177	101.8474
65aj2	20	Anhedral	Anhedral cluster	Chalcedony, Comb Quartz	Arsenopyrite	HVB	0.0341	0.0057	47.4662	0.0001	0.0001	0.0001	0.6918	53.809	0.0631	102.0702
65aj4	40	Framboid	Fine grained cluster	Chalcedony, Comb Quartz	Arsenopyrite	HVB	0.0377	0.0068	46.9374	0.0001	0.0184	0.0218	0.2181	54.055	0.0449	101.3402
65ajl6_1	60	Anhedral	Anhedral cluster	Chalcedony, Comb Quartz	Arsenopyrite	HVB	0.0577	0.0034	45.6734	0.0001	0.0215	0.0421	0.6	53.5775	0.0723	100.048
65ajl6_2	60	Anhedral	Anhedral cluster	Chalcedony, Comb Quartz	Arsenopyrite	HVB	0.0047	0.0308	46.1627	0.0001	0.0287	0.0067	0.1918	53.4272	0.0844	99.9371
65ajpt47	60	Anhedral	Anhedral cluster	Chalcedony, Comb Quartz	Arsenopyrite	HVB	0.0106	0.0001	45.1869	0.0001	0.0297	0.1024	0.1166	51.8521	0.1688	97.4673
65ajpt48	60	Anhedral	Anhedral cluster	Chalcedony, Comb Quartz	Arsenopyrite	HVB	0.0106	0.0001	45.0779	0.0001	0.0594	0.0017	1.1342	52.5659	0.0082	98.8581
65ajpt49	60	Anhedral	Anhedral cluster	Chalcedony, Comb Quartz	Arsenopyrite	HVB	0.0012	0.041	46.3356	0.0001	0.0113	0.0168	0.0941	53.8315	0.289	100.6206
65ajpt50	60	Anhedral	Anhedral cluster	Chalcedony, Comb Quartz	Arsenopyrite	HVB	0.0001	0.0001	45.969	0.0001	0.0001	0.0001	0.1574	53.3426	0.4694	99.9389
65ajpt51	60	Anhedral	Anhedral cluster	Chalcedony, Comb Quartz	Arsenopyrite	HVB	0.0578	0.0114	46.3685	0.0001	0.0615	0.0505	0.2629	54.0395	0.0613	100.9135
65ajpt52	60	Anhedral	Anhedral cluster	Chalcedony, Comb Quartz	Arsenopyrite	HVB	0.0001	0.0137	46.6368	0.0001	0.0266	0.0001	0.069	53.7513	0.4792	100.9769
65ajpt53	60	Anhedral	Anhedral cluster	Chalcedony, Comb Quartz	Arsenopyrite	HVB	0.1648	0.0001	46.5184	0.0001	0.0184	0.0001	0.4831	53.1542	0.3558	100.695
65ajpt54	40	Anhedral	Anhedral cluster	Chalcedony, Comb Quartz	Arsenopyrite	HVB	0.0425	0.0182	46.2146	0.0001	0.0174	0.0001	0.0556	53.9148	0.1153	100.3786
65ajpt55	40	Anhedral	Anhedral cluster	Chalcedony, Comb Quartz	Arsenopyrite	HVB	0.0001	0.0001	46.317	0.0141	0.001	0.0001	0.0749	53.985	0.2616	100.6539
66ajpt1	15	Anhedral	Grain in silica	Comb Qtz	electrum	QV	0.0595	0.0011	45.3665	0.0001	0.0233	0.0001	1.2377	53.3123	0.0341	100.0347

	Pyrite						Cu	Mn	Fe	Со	Ni	Sb	As	S	Se	Total
Sample/EPMA spot	size	Morphology	Ore Textures	Quartz Texture	Associated Minerals	Host										
69-11	(μπ) 120	Subbodral	Subbodral contro porous pyrito			LI\/D	0.0274	0.0001	16 5027	0.0001	0.0142	0 0202	0.0164	52 9200	0 0002	100 5202
69aj1	25	Anhedral	Mn2core zoned			Stylolite	0.0374	0.0001	40.3337	0.0001	0.0142	0.0383	0.0104	52 8685	0.0002	98 3642
69aj2	25	Anhedral	Mn ² core zoned overgrowth			Stylolite	0.0105	0.0001	46 2034	0.0001	0.002	0.0001	0.1340	53 9851	0.0002	100 5721
69nt10	25	Anhedral	Subhedral centre norous pyrite			Styronite	0.0047	0.0001	46.0326	0.0001	0.0478	0.2201	1 8501	53 5526	0.0213	101 5264
69pt10	20	Subbedral	centre Homogeneous				0.0526	0.0150	45.6529	0.0001	0.0203	0.0233	0 187	54 0926	0.0002	100.319
69nt12	20	Subhedral	Homogenous rim				0.0320	0 1164	45.8452	0.0001	0.0071	0.0334	0.107	54 4759	0.0002	101 0318
69pt12	25	Anhedral	Porous centre		Sphalerite	Styolite/around silica	0.0001	0.0407	46 7515	0.0063	0.0001	0.0684	0.0186	54 084	0.0337	101.0010
69nt16	25	Anhedral	Porous centre		Sphalerite	Styolite/around silica	0.0001	0.0722	46 8695	0.0025	0.0081	0.0133	0 7818	54 0208	0.0002	101 7685
69pt18	40	Euhedral	Centre Mn core?		Sphalerite	Styolite/around silica	0.0001	0.009	46.071	0.0001	0.0203	0.0217	0.0829	53.4926	0.0002	99.6979
69pt19	40	Euhedral	Mn core? Overgrowth		Sphalerite	Styolite/around silica	0.1075	0.0486	45.628	0.0001	0.0173	0.0001	0.2761	53.868	0.0081	99.9538
69pt2	120	Subhedral	Porous centre, overgrowth			HVB	0.0001	0.7269	46.3582	0.0001	0.0001	0.0167	0.4994	54.1305	0.0068	101.7388
69pt20	40	Euhedral	Mn core? Overgrowth		Sphalerite	Styolite/around silica	0.2045	0.052	45.4399	0.0073	0.0396	0.0001	0.3386	53.4396	0.0002	99.5218
69pt22	40	Anhedral	Porous centre		Sphalerite	Styolite/around silica	0.0001	0.0001	46.639	0.0001	0.0274	0.0017	0.2723	54.0377	0.0513	101.0297
69pt23	40	Anhedral	Porous centre, rim		Sphalerite	Styolite/around silica	0.0315	0.0192	46.4063	0.0001	0.0001	0.0567	0.5496	54.1265	0.0244	101.2144
69pt26	40	Subhedral	Mn core?		Sphalerite	Styolite/around silica	0.0001	0.0181	46.7226	0.0001	0.0153	0.0001	0.1387	54.9024	0.0498	101.8472
69pt27	30	Subhedral	Mn core? Overgrowth		Sphalerite	Styolite/around silica	0.0001	0.0249	45.5387	0.0036	0.0001	0.0001	0.7147	54.0076	0.0002	100.29
69pt28	30	Subhedral	Mn core? Overgrowth		Sphalerite	Styolite/around silica	0.0001	0.061	46.2736	0.0001	0.0122	0.005	0.5407	54.7957	0.0391	101.7275
69pt3	120	Subhedral	Porous centre, overgrowth			Styolite/vein edge	0.0001	0.0565	46.6053	0.0331	0.0366	0.0001	0.219	54.3784	0.0002	101.3293
69pt4	120	Subhedral	Porous centre, overgrowth			Styolite/vein edge	0.0001	0.1185	46.8111	0.0251	0.0001	0.0001	0.0903	53.9228	0.0189	100.987
69pt5	120	Subhedral	Porous centre			Styolite/vein edge	0.0001	0.1762	45.9236	0.0001	0.0001	0.0584	0.0002	53.5371	0.0002	99.696
69pt6	120	Subhedral	Porous centre			Styolite/vein edge	0.0023	0.0068	45.5643	0.01	0.0091	0.0001	0.2871	52.862	0.0338	98.7755
69pt7	20	Anhedral	porous pyrite rim?		Sphalerite	Styolite/around silica	0.0129	0.0181	46.2103	0.0001	0.0091	0.0167	0.2874	53.9423	0.004	100.5009
69pt7	20	Anhedral	centre, porous pyrite		Sphalerite	Styolite/around silica	0.0152	0.1199	45.5194	0.0001	0.0163	0.0001	0.0379	53.8064	0.0027	99.518
69pt8	20	Anhedral	porous pyrite rim?		Sphalerite	Styolite/around silica	0.0001	0.0001	46.2996	0.0001	0.0001	0.0635	0.0284	54.6286	0.0497	101.0702
69pt9	25	Anhedral	centre, porous pyrite		Sphalerite	Styolite/around silica	0.0001	0.0034	46.7571	0.0001	0.0437	0.0001	0.0002	54.2901	0.0013	101.0961
6a jl 1	50	Subhedral	Homogenous, adjacent FeAsS		Arsenopyrite/Electrum		0.0001	0.0441	47.394	0.0074	0.0489	0.0001	0.0253	54.2292	0.0002	101.7493
6ajpt15	50	Subhedral	Porous pyrite, overgrowth		Arsenopyrite/Electrum		0.0001	0.0916	46.813	0.0001	0.0001	0.0001	0.1718	54.1083	0.0068	101.1919
6ajpt16	50	Subhedral	Porous pyrite, overgrowth		Arsenopyrite/Electrum		0.0047	0.0001	46.986	0.0001	0.0102	0.0433	0.0002	53.6671	0.0002	100.7119
6ajpt17	50	Subhedral	Porous pyrite, overgrowth		Arsenopyrite/Electrum		0.0001	0.0181	46.3487	0.0001	0.0265	0.0001	0.3027	53.7179	0.0002	100.4144
6ajpt5	30	Anhedral	porous pyrite		Arsenopyrite/Electrum		0.0503	0.0001	46.2257	0.0001	0.0041	0.005	0.4912	54.0884	0.0203	100.8852
6ajpt8	30	Anhedral	porous pyrite rim	-	Arsenopyrite/Electrum	.	0.0507	0.0353	45.845	0.0001	0.0001	0.0488	0.1767	53.1803	0.034	99.371
	Pyrite						Cu	Mn	Fe	Со	Ni	Sb	As	S	Se	Total
-------------------	-------------	------------	--	----------------	---------------------	--------------	--------	--------	---------	--------	--------	--------	--------	---------	--------	----------
Sample/EPMA spot	size	Morphology	Ore Textures	Quartz Texture	Associated Minerals	Host										
	(μm) 100	Anhadual	Fine grained eluster		tito pium (oo sho p	Chulalita	0.0177	0.0125	46 210	0.0001	0.0001	0.0296	0 2425	F2 4674	0.0000	100 0071
/ldji/_l	100	Anneural	Fine grained cluster		titanium/carbon	Stylolite	0.0177	0.0125	40.318	0.0001	0.0001	0.0280	0.2425	53.4074	0.0002	100.0871
71aji7_2	100	Anneural	Fine grained cluster		titanium/carbon	Stylolite	0.0025	0.0005	45.9059	0.0001	0.0220	0.001	0.2465	52.9490	0.0002	00 0110
71aji7_3	100	Anneural			titanium/carbon	Stylolite	0.015	0.0501	45.764	0.0001	0.0518	0.0001	0.1427	52.7240	0.0054	101 2020
71aji7_4	20	Anneural	overgrowth		titanium/carbon	Stylolito	0.0459	0.0001	40.0710	0.0001	0.0125	0.0255	0.9216	53.4272	0.0002	101.5029
71ajpt58	30	Annedral	overgrowth		titanium/carbon	Stylolite	0.0483	0.025	40.8072	0.0185	0.0225	0.0280	0.4280	52 6144	0.0423	101.0255
71ajpt00	100	Anhedral			titanium/carbon	Stylolite	0.000	0.0001	40.3310	0.0001	0.001	0.0131	0.2740	53.0144	0.0002	00.000
71ajpt01	100	Anhodral			titanium/carbon	Stylolito	0.0471	0.0000	43.330	0.0001	0.0115	0.14/2	0.1606	54 2504	0.0000	101 7657
71ajptoz 72ai1	1000	Annedral	Brecciated cluster		anatite	OV	0.0412	0.0295	47.0103	0.0001	0.0225	0.1443	0.1000	54.0182	0.0002	101.7057
72aj1 72aj2	1000	Anhedral	Brecciated cluster		apatite	QV	0.0576	0.000	43.700	0.0001	0.0205	0.5086	0.1713	52 6679	0.0002	98 4718
72aj2	1000	Anhedral	Brecciated cluster		apatite	QV	0.0370	0.0001	44.0137	0.0001	0.0001	0.0017	2 8552	52.0075	0.0103	101 61/1
72aj5	60	Anhedral	Vein wall growth zoned		Carbon	Stylolite OV	0.0259	0.0001	44 8079	0.0001	0.0001	0.0217	0.8538	53 2789	0.0002	99 2012
72ail4 1	80	Anhedral	vein wall growth, fine grained cluster		our our		0.0518	0.0308	44.8984	0.0001	0.0307	0.1735	0.5984	53.4026	0.0204	99.2067
72ail4_2	80	Anhedral	vein wall growth, fine grained cluster				0.0576	0.0387	44.5613	0.0001	0.0286	0.0993	1.1699	52.9044	0.0055	98.8654
72ail4_3	80	Anhedral	vein wall growth, fine grained cluster				0.145	0.0947	44.0943	0.0001	0.0001	0.2579	0.4483	53.1791	0.0312	98.2507
72ajl4 4	80	Anhedral	vein wall growth, fine grained cluster				0.0881	0.0001	44.1394	0.0273	0.0041	0.4663	1.3229	51.1545	0.0248	97.2275
72ajl5 3	200	Anhedral	Brecciated cluster		apatite	QV	0.0071	0.0068	47.0501	0.0001	0.0524	0.0286	0.1184	53.7877	0.0287	101.0799
74aj1	40	Euhedral	porous centre			Stylolite	0.0118	0.0001	46.7308	0.0001	0.0133	0.0001	0.1018	52.9849	0.0002	99.8431
74aj2	40	Euhedral	porous centre			Stylolite	0.0001	0.0001	46.8502	0.0001	0.0409	0.0001	1.0507	51.9453	0.0097	99.8972
74aj3	40	Euhedral	porous centre			Stylolite	0.0059	0.0979	45.4409	0.0327	0.0072	0.0001	0.3663	54.3165	0.0311	100.2986
74aj4	40	Euhedral	porous centre			Stylolite	0.0318	0.0001	46.3556	0.0001	0.044	0.0001	0.0824	54.2003	0.0002	100.7146
74aj6	40	subhedral	Subhedral cluster			Stylolite	0.0177	0.0353	45.9998	0.0001	0.0001	0.0286	0.1546	53.8439	0.0002	100.0803
74ajpt1	40	Euhedral	porous centre			Stylolite	0.0001	0.0318	46.8355	0.0001	0.0001	0.0001	0.39	53.9212	0.0423	101.2212
74ajpt10	60	Anhedral	Porous centre, overgrowth			Stylolite	0.0001	0.0001	46.5273	0.0001	0.0001	0.0001	0.0473	51.1084	0.0002	97.6837
74ajpt11	60	Anhedral	Porous centre, overgrowth			Stylolite	0.0931	0.0399	43.9425	0.0001	0.0001	0.0624	0.3364	53.7866	0.0754	98.3365
74ajpt12	10	Euhedral	Euhedral cluster			Stylolite	0.0001	0.0001	46.0486	0.0001	0.0113	0.1024	0.3901	53.2869	0.0082	99.8478
74ajpt13	10	Euhedral	Euhedral cluster			Stylolite	0.0152	0.0001	45.3921	0.0001	0.0427	0.025	2.5289	49.1649	0.0002	97.1692
74ajpt14	10	Euhedral	Euhedral cluster			Stylolite	0.0483	0.008	46.1746	0.0029	0.0491	0.005	0.4092	52.6705	0.0287	99.3963
74ajpt15	10	Euhedral	Euhedral cluster			Stylolite	0.0001	0.5475	46.3549	0.0001	0.0092	0.0001	0.0415	53.9541	0.0002	100.9077
74ajpt16	10	Euhedral	Euhedral cluster			Stylolite	0.0247	0.0001	47.2674	0.0001	0.0001	0.0268	0.5123	53.7178	0.0055	101.5548
74ajpt17	10	Euhedral	Euhedral cluster			Stylolite	0.0495	0.0751	45.8466	0.0001	0.0195	0.0001	0.2216	52.6778	0.0002	98.8905
74ajpt18	10	subhedral	Subhedral cluster			Stylolite	0.0001	0.0034	45.7785	0.0001	0.1137	0.0001	0.542	53.3536	0.0055	99.797
74ajpt19	30	Subhedral	Porous centre, rim			HVB	0.0177	0.0137	46.9205	0.0148	0.0001	0.0001	0.1772	53.7515	0.0123	100.9079
74ajpt2	40	Euhedral	Porous centre			HVB	0.0317	0.0068	44.6243	0.0001	0.137	0.0723	1.1264	53.0953	0.0273	99.1212
74ajpt20	30	subhedral	Porous centre			HVB	0.0071	0.0114	46.6128	0.0001	0.0646	0.0001	0.0211	53.3105	0.0095	100.0372
74ajpt21	30	subhedral	Subhedral cluster			HVB	0.0001	0.0102	46.4454	0.0001	0.0001	0.0134	0.1044	53.8388	0.0002	100.4127
74ajpt22	30	subhedral	Subhedral cluster			HVB	0.0001	0.8361	46.0733	0.0001	0.0236	0.0001	0.3661	53.254	0.0137	100.5671
74ajpt3	40	subhedral	Porous centre			Stylolite	0.0001	0.1878	46.8958	0.0052	0.0205	0.0001	0.0373	53.9826	0.0002	101.1296
74ajpt4	40	Euhedral	Porous centre			Stylolite	0.0001	0.0136	45.5189	0.0296	0.0205	0.0117	0.3736	51.8165	0.0328	97.8173
74ajpt5	25	Anhedral	Anhedral fractured			Stylolite	0.0753	0.7749	45.4683	0.0001	0.0001	0.0001	0.6049	53.6378	0.03	100.5915

c /5014	Pyrite	Mambalagy	Ore Textures	Que de Teuture		Upot	Cu	Mn	Fe	Со	Ni	Sb	As	S	Se	Total
position	size (μm)	worphorogy	Ore rextures	Quartz Texture	Associated Minerals	HOST										
74ajpt6	10	Anhedral	Anhedral cluster		•	HVB	0.0295	0.0934	46.5266	0.0001	0.0174	0.0387	0.1804	53.9964	0.0002	100.8827
74ajpt7	10	subhedral	Subhedral cluster			Stylolite	0.0071	0.0136	46.9704	0.0001	0.0001	0.0201	0.265	52.8576	0.0438	100.1778
74ajpt8	50	Anhedral	Porous centre, overgrowth			Stylolite	0.0001	0.0001	46.3728	0.0001	0.0001	0.0553	0.882	52.9184	0.0398	100.2687
74ajpt9	50	Anhedral	Porous centre			Stylolite	0.0332	0.0503	46.7981	0.0232	0.0432	0.0001	0.1031	54.1316	0.0002	101.183
75aj10	130	subhedral	zoned rings, overgrowth			Stylolite/QV	0.035	0.0226	46.0508	0.0089	0.0528	0.0883	1.246	53.029	0.0068	100.5402
75aj11	130	subhedral	zoned rings, overgrowth			Stylolite/QV	0.0573	0.009	46.3818	0.0001	0.0001	0.025	0.4742	54.0838	0.0189	101.0502
75aj12	130	subhedral	zoned rings, overgrowth			Stylolite/QV	0.0082	0.0192	46.5758	0.0001	0.002	0.0516	1.0343	53.6473	0.0436	101.3821
75aj13	150	Anhedral	cluster zoned			Stylolite/QV	0.0001	0.017	46.3253	0.0001	0.0295	0.0001	0.1929	53.9444	0.0229	100.5323
75aj21	15	subhedral	gold?				0.0001	0.0159	44.7228	0.0084	0.0051	0.1613	3.0492	52.3849	0.0002	100.3479
75aj3	150	Anhedral	cluster zoned				0.0186	0.0113	44.3872	0.0001	0.0001	0.391	3.4063	51.7362	0.0504	100.0012
75aj4	100	subhedral	zoned rings, overgrowth				0.0325	0.0001	44.5326	0.0001	0.0243	0.2769	3.1137	51.9174	0.0544	99.952
75aj5	100	subhedral	zoned rings, overgrowth				0.0597	0.0001	45.2417	0.0001	0.0305	0.1003	0.1658	53.1572	0.004	98.7594
75aj6	10	Anhedral	cluster zoned			Py clast	0.0328	0.0001	46.5926	0.0001	0.0184	0.0001	0.0147	54.499	0.0002	101.158
75aj8	60	subhedral	overgrowth				0.0199	0.0045	47.4476	0.0001	0.0377	0.0001	0.0945	54.0083	0.0176	101.6303
75aj9	20	Anhedral	lamellar, cluster			Organic replacement/QV	0.029	0.0686	44.8528	0.0086	0.0363	0.1413	2.7752	52.3192	0.0002	100.2312
75 1_1	150	Anhedral	cluster zoned				0.0162	0.0315	44.7859	0.0001	0.0332	0.2542	3.4006	52.3341	0.0376	100.8934
75 1_2	150	Anhedral	cluster zoned				0.0001	0.0001	45.5013	0.0001	0.0001	0.0949	1.9693	52.9881	0.0343	100.5883
75 1_3	150	Anhedral	cluster zoned				0.0707	0.0124	44.9963	0.0001	0.0001	0.0765	2.8574	52.5651	0.0498	100.6284
75 1_4	150	Anhedral	cluster zoned				0.0839	0.0496	45.3693	0.0159	0.0001	0.05	1.1698	53.8666	0.0002	100.6054
7512_3	100	Anhedral	cluster zoned				0.014	0.0565	46.262	0.0001	0.0001	0.0501	0.2666	54.4641	0.0002	101.1137
7512_4	100	Anhedral	cluster zoned				0.0001	0.0001	45.447	0.0001	0.0193	0.0701	0.735	54.273	0.0002	100.5449
75 3_1	130	subhedral	zoned rings,porous			HVB	0.0001	0.0485	45.975	0.0001	0.0001	0.0849	1.561	53.1322	0.0002	100.8021
75 3_1	130	subhedral	zoned rings,porous			HVB	0.0269	0.0001	45.915	0.0066	0.0001	0.02	0.2192	54.0916	0.0002	100.2797
7513_2	130	subhedral	zoned rings,porous			HVB	0.0001	0.0001	45.7483	0.0038	0.0407	0.0934	0.2543	53.544	0.0377	99.7224
7513_3	130	subhedral	zoned rings,porous			HVB	0.0001	0.0001	46.7278	0.0001	0.0001	0.0267	0.0755	54.6469	0.0094	101.4867
7513_4	130	subhedral	zoned rings,porous			HVB	0.0105	0.0023	46.2605	0.0001	0.0265	0.0267	0.0065	53.7923	0.0121	100.1375
75 4_1	130	subhedral	zoned rings,porous			HVB	0.0001	0.0147	45.9066	0.0001	0.0519	0.0001	0.0493	53.4614	0.0444	99.5286
7514_2	130	subhedral	zoned rings,porous			HVB	0.0082	0.026	46.2485	0.0208	0.0234	0.0033	0.2542	54.0054	0.0135	100.6033
7514_3	130	subhedral	zoned rings,porous			HVB	0.0001	0.0001	45.8112	0.0029	0.0628	0.0001	1.7627	53.1039	0.0002	100.744
7514_4	130	subhedral	zoned rings,porous			HVB	0.0597	0.0001	46.4834	0.0001	0.0001	0.0001	0.1642	52.2696	0.0002	98.9775

	Pyrite						Cu	Mn	Fe	Со	Ni	Sb	As	S	Se	Total
Sample/EPMA spot	size	Morphology	Ore Textures	Quartz Texture	Associated Minerals	Host										
	(μm) 40	Anhadral	la mollar ductor		alactrum	Organic replacement	0.0228	0.0215	45 0022	0.0001	0.0205	0.0001	0.0554	E2 7496	0 0224	00 0247
7515_1	40	Anneural			electrum	Organic repracement	0.0526	0.0215	45.9055	0.0001	0.0505	0.0001	0.0554	52.7400	0.0524	90.0247
/515_2	40	Anneurai	lamenar,cluster		erectrum	Organic repracement	0.0491	0.0079	46.0476	0.0001	0.0001	0.0618	0.4444	53.8555	0.0108	100.4773
7515_3	40	Anhedral	lamellar,cluster		electrum	Organic replacement	0.0001	0.0361	46.8087	0.0196	0.0193	0.0816	0.3852	53.8348	0.0068	101.1922
7516_1	60	subhedral	zoned rings, overgrowth		electrum	Organic replacement	0.0058	0.0293	46.5624	0.0001	0.0203	0.03	0.7855	53.9041	0.0122	101.3497
7516_2	60	subhedral	zoned rings, overgrowth		electrum	Organic replacement	0.0001	0.0124	46.6965	0.0001	0.0001	0.1645	1.4776	53.0369	0.0178	101.406
7516_3	60	subhedral	zoned rings, overgrowth		electrum	Organic replacement	0.0001	0.0406	46.0168	0.0001	0.0375	0.183	1.4554	53.3913	0.0274	101.1522
7516_4	60	subhedral	zoned rings, overgrowth		electrum	Organic replacement	0.0001	0.0304	46.5745	0.0001	0.0223	0.0649	0.5103	53.7595	0.0081	100.9702
7516_5	60	subhedral	zoned rings, overgrowth		electrum	Organic replacement	0.0047	0.0001	46.2129	0.0001	0.0193	0.0783	0.1348	53.0721	0.0002	99.5225
7517_1	150	Anhedral	overgrowth, porous centre		Arsenopyrite	Stylolite	0.0001	0.0034	46.8828	0.0001	0.0112	0.045	0.3456	54.0097	0.0002	101.2981
7517_3	150	Anhedral	overgrowth, porous centre		Arsenopyrite	Stylolite	0.0001	0.0158	46.9013	0.0001	0.0001	0.0001	0.3816	54.1412	0.0081	101.4484
7517_4	150	Anhedral	overgrowth, porous centre		Arsenopyrite	Stylolite	0.0524	0.0001	45.9253	0.0001	0.003	0.0001	1.3874	52.7911	0.0944	100.2539
75pt10	40	Anhedral	overgrowth, porous centre		Arsenopyrite	Stylolite	0.0524	0.0001	45.9253	0.0001	0.003	0.0001	1.3874	52.7911	0.0944	100.2539
75pt11	40	Anhedral	overgrowth, porous centre		Arsenopyrite	Stylolite	0.0058	0.009	45.7992	0.0001	0.0102	0.01	0.5138	53.8595	0.0122	100.2198
75pt2	150	Anhedral	clusterzoned		electrum	HVB	0.0001	0.0271	45.1786	0.0001	0.0061	0.01	0.8645	53.4256	0.0081	99.5202
75pt4	60	Anhedral	zoned rings, overgrowth		electrum	HVB	0.0058	0.0001	46.7383	0.0001	0.0001	0.0001	0.4505	54.0852	0.0135	101.2937
75pt6	10	Anhedral	lamellar, cluster		electrum	Organic replacement	0.0001	0.0001	46.6611	0.0001	0.0001	0.0001	0.3393	54.2108	0.0311	101.2428
75pt8	15	Anhedral	overgrowth		electrum	HVB	0.0187	0.0226	45.0087	0.0001	0.0112	0.055	0.4658	51.785	0.0002	97.3673
75pt9	60	Anhedral	Porous centre				0.0396	0.009	44.9136	0.0001	0.0243	0.0731	1.4125	51.2594	0.0192	97.7508

APPENDIX IV

LA-ICPMS analyis of Pyrite

(full dataset)

AFFEINDIX IV LATOFINIS ANALISIS OF FINITE (TOUR duudel)

	Ti(ppm)	V(ppm)	Cr(ppm)	Mn(ppm) Fe(ppm)	Co(ppm)	Ni(ppm)	Cu(ppm)	Zn(ppm)	Ga(ppm)	Ge(ppm)	As(ppm)	Se(ppm)	Nb(ppm)	Mo(ppm)	Ag(ppm)	Cd(ppm)	In(ppm)	Sn(ppm)	Sb(ppm)	Te(ppm)	W(ppm)	Re(ppm)	Au(ppm)	Tl (ppm)	Pb(ppm)	Bi(ppm)	U(ppm)
Sample/spo	t a nalysis																											
THRCD	917																											
139.4	mts																											
55aj1	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>465000</th><th>16</th><th>10</th><th>271</th><th><mdl< th=""><th><mdl< th=""><th>5.9</th><th>826</th><th>822</th><th><mdl< th=""><th><mdl< th=""><th>5758</th><th>0.35</th><th><mdl< th=""><th><mdl< th=""><th>0.7</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>7.1</th><th>0.24</th><th>6.2</th><th>0.30</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>465000</th><th>16</th><th>10</th><th>271</th><th><mdl< th=""><th><mdl< th=""><th>5.9</th><th>826</th><th>822</th><th><mdl< th=""><th><mdl< th=""><th>5758</th><th>0.35</th><th><mdl< th=""><th><mdl< th=""><th>0.7</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>7.1</th><th>0.24</th><th>6.2</th><th>0.30</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>465000</th><th>16</th><th>10</th><th>271</th><th><mdl< th=""><th><mdl< th=""><th>5.9</th><th>826</th><th>822</th><th><mdl< th=""><th><mdl< th=""><th>5758</th><th>0.35</th><th><mdl< th=""><th><mdl< th=""><th>0.7</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>7.1</th><th>0.24</th><th>6.2</th><th>0.30</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>465000</th><th>16</th><th>10</th><th>271</th><th><mdl< th=""><th><mdl< th=""><th>5.9</th><th>826</th><th>822</th><th><mdl< th=""><th><mdl< th=""><th>5758</th><th>0.35</th><th><mdl< th=""><th><mdl< th=""><th>0.7</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>7.1</th><th>0.24</th><th>6.2</th><th>0.30</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	465000	16	10	271	<mdl< th=""><th><mdl< th=""><th>5.9</th><th>826</th><th>822</th><th><mdl< th=""><th><mdl< th=""><th>5758</th><th>0.35</th><th><mdl< th=""><th><mdl< th=""><th>0.7</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>7.1</th><th>0.24</th><th>6.2</th><th>0.30</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>5.9</th><th>826</th><th>822</th><th><mdl< th=""><th><mdl< th=""><th>5758</th><th>0.35</th><th><mdl< th=""><th><mdl< th=""><th>0.7</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>7.1</th><th>0.24</th><th>6.2</th><th>0.30</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	5.9	826	822	<mdl< th=""><th><mdl< th=""><th>5758</th><th>0.35</th><th><mdl< th=""><th><mdl< th=""><th>0.7</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>7.1</th><th>0.24</th><th>6.2</th><th>0.30</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>5758</th><th>0.35</th><th><mdl< th=""><th><mdl< th=""><th>0.7</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>7.1</th><th>0.24</th><th>6.2</th><th>0.30</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	5758	0.35	<mdl< th=""><th><mdl< th=""><th>0.7</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>7.1</th><th>0.24</th><th>6.2</th><th>0.30</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>0.7</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>7.1</th><th>0.24</th><th>6.2</th><th>0.30</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	0.7	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>7.1</th><th>0.24</th><th>6.2</th><th>0.30</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>7.1</th><th>0.24</th><th>6.2</th><th>0.30</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>7.1</th><th>0.24</th><th>6.2</th><th>0.30</th><th><mdl< th=""></mdl<></th></mdl<>	7.1	0.24	6.2	0.30	<mdl< th=""></mdl<>
55aj2	1.6	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>465000</td><td>44</td><td>72</td><td>387</td><td>0.76</td><td><mdl< td=""><td>5.8</td><td>4835</td><td>2539</td><td><mdl< td=""><td>16</td><td>16056</td><td><mdl< td=""><td>0.03</td><td>0.63</td><td>29</td><td>1.1</td><td><mdl< td=""><td><mdl< td=""><td>19</td><td>2.1</td><td>21</td><td>0.48</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>465000</td><td>44</td><td>72</td><td>387</td><td>0.76</td><td><mdl< td=""><td>5.8</td><td>4835</td><td>2539</td><td><mdl< td=""><td>16</td><td>16056</td><td><mdl< td=""><td>0.03</td><td>0.63</td><td>29</td><td>1.1</td><td><mdl< td=""><td><mdl< td=""><td>19</td><td>2.1</td><td>21</td><td>0.48</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>465000</td><td>44</td><td>72</td><td>387</td><td>0.76</td><td><mdl< td=""><td>5.8</td><td>4835</td><td>2539</td><td><mdl< td=""><td>16</td><td>16056</td><td><mdl< td=""><td>0.03</td><td>0.63</td><td>29</td><td>1.1</td><td><mdl< td=""><td><mdl< td=""><td>19</td><td>2.1</td><td>21</td><td>0.48</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	465000	44	72	387	0.76	<mdl< td=""><td>5.8</td><td>4835</td><td>2539</td><td><mdl< td=""><td>16</td><td>16056</td><td><mdl< td=""><td>0.03</td><td>0.63</td><td>29</td><td>1.1</td><td><mdl< td=""><td><mdl< td=""><td>19</td><td>2.1</td><td>21</td><td>0.48</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	5.8	4835	2539	<mdl< td=""><td>16</td><td>16056</td><td><mdl< td=""><td>0.03</td><td>0.63</td><td>29</td><td>1.1</td><td><mdl< td=""><td><mdl< td=""><td>19</td><td>2.1</td><td>21</td><td>0.48</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	16	16056	<mdl< td=""><td>0.03</td><td>0.63</td><td>29</td><td>1.1</td><td><mdl< td=""><td><mdl< td=""><td>19</td><td>2.1</td><td>21</td><td>0.48</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.03	0.63	29	1.1	<mdl< td=""><td><mdl< td=""><td>19</td><td>2.1</td><td>21</td><td>0.48</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>19</td><td>2.1</td><td>21</td><td>0.48</td><td><mdl< td=""></mdl<></td></mdl<>	19	2.1	21	0.48	<mdl< td=""></mdl<>
55aj3	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>465000</td><td>2.6</td><td>0.45</td><td>2026</td><td><mdl< td=""><td><mdl< td=""><td>5.7</td><td>28</td><td>6176</td><td><mdl< td=""><td><mdl< td=""><td>49826</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.26</td><td>5.9</td><td><mdl< td=""><td><mdl< td=""><td>198</td><td>0.12</td><td>4.5</td><td>0.45</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>465000</td><td>2.6</td><td>0.45</td><td>2026</td><td><mdl< td=""><td><mdl< td=""><td>5.7</td><td>28</td><td>6176</td><td><mdl< td=""><td><mdl< td=""><td>49826</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.26</td><td>5.9</td><td><mdl< td=""><td><mdl< td=""><td>198</td><td>0.12</td><td>4.5</td><td>0.45</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>465000</td><td>2.6</td><td>0.45</td><td>2026</td><td><mdl< td=""><td><mdl< td=""><td>5.7</td><td>28</td><td>6176</td><td><mdl< td=""><td><mdl< td=""><td>49826</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.26</td><td>5.9</td><td><mdl< td=""><td><mdl< td=""><td>198</td><td>0.12</td><td>4.5</td><td>0.45</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>465000</td><td>2.6</td><td>0.45</td><td>2026</td><td><mdl< td=""><td><mdl< td=""><td>5.7</td><td>28</td><td>6176</td><td><mdl< td=""><td><mdl< td=""><td>49826</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.26</td><td>5.9</td><td><mdl< td=""><td><mdl< td=""><td>198</td><td>0.12</td><td>4.5</td><td>0.45</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	465000	2.6	0.45	2026	<mdl< td=""><td><mdl< td=""><td>5.7</td><td>28</td><td>6176</td><td><mdl< td=""><td><mdl< td=""><td>49826</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.26</td><td>5.9</td><td><mdl< td=""><td><mdl< td=""><td>198</td><td>0.12</td><td>4.5</td><td>0.45</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>5.7</td><td>28</td><td>6176</td><td><mdl< td=""><td><mdl< td=""><td>49826</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.26</td><td>5.9</td><td><mdl< td=""><td><mdl< td=""><td>198</td><td>0.12</td><td>4.5</td><td>0.45</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	5.7	28	6176	<mdl< td=""><td><mdl< td=""><td>49826</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.26</td><td>5.9</td><td><mdl< td=""><td><mdl< td=""><td>198</td><td>0.12</td><td>4.5</td><td>0.45</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>49826</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.26</td><td>5.9</td><td><mdl< td=""><td><mdl< td=""><td>198</td><td>0.12</td><td>4.5</td><td>0.45</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	49826	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.26</td><td>5.9</td><td><mdl< td=""><td><mdl< td=""><td>198</td><td>0.12</td><td>4.5</td><td>0.45</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>0.26</td><td>5.9</td><td><mdl< td=""><td><mdl< td=""><td>198</td><td>0.12</td><td>4.5</td><td>0.45</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>0.26</td><td>5.9</td><td><mdl< td=""><td><mdl< td=""><td>198</td><td>0.12</td><td>4.5</td><td>0.45</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.26	5.9	<mdl< td=""><td><mdl< td=""><td>198</td><td>0.12</td><td>4.5</td><td>0.45</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>198</td><td>0.12</td><td>4.5</td><td>0.45</td><td><mdl< td=""></mdl<></td></mdl<>	198	0.12	4.5	0.45	<mdl< td=""></mdl<>
55a j4a	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>3.2</td><td>465000</td><td>7.4</td><td>26</td><td>251</td><td>4.5</td><td><mdl< td=""><td>6.3</td><td>16974</td><td>38</td><td><mdl< td=""><td>6.9</td><td>37</td><td><mdl< td=""><td>0.02</td><td><mdl< td=""><td>282</td><td>0.52</td><td>0.40</td><td>0.03</td><td>50</td><td>68</td><td>8.8</td><td>0.07</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>3.2</td><td>465000</td><td>7.4</td><td>26</td><td>251</td><td>4.5</td><td><mdl< td=""><td>6.3</td><td>16974</td><td>38</td><td><mdl< td=""><td>6.9</td><td>37</td><td><mdl< td=""><td>0.02</td><td><mdl< td=""><td>282</td><td>0.52</td><td>0.40</td><td>0.03</td><td>50</td><td>68</td><td>8.8</td><td>0.07</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>3.2</td><td>465000</td><td>7.4</td><td>26</td><td>251</td><td>4.5</td><td><mdl< td=""><td>6.3</td><td>16974</td><td>38</td><td><mdl< td=""><td>6.9</td><td>37</td><td><mdl< td=""><td>0.02</td><td><mdl< td=""><td>282</td><td>0.52</td><td>0.40</td><td>0.03</td><td>50</td><td>68</td><td>8.8</td><td>0.07</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	3.2	465000	7.4	26	251	4.5	<mdl< td=""><td>6.3</td><td>16974</td><td>38</td><td><mdl< td=""><td>6.9</td><td>37</td><td><mdl< td=""><td>0.02</td><td><mdl< td=""><td>282</td><td>0.52</td><td>0.40</td><td>0.03</td><td>50</td><td>68</td><td>8.8</td><td>0.07</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	6.3	16974	38	<mdl< td=""><td>6.9</td><td>37</td><td><mdl< td=""><td>0.02</td><td><mdl< td=""><td>282</td><td>0.52</td><td>0.40</td><td>0.03</td><td>50</td><td>68</td><td>8.8</td><td>0.07</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	6.9	37	<mdl< td=""><td>0.02</td><td><mdl< td=""><td>282</td><td>0.52</td><td>0.40</td><td>0.03</td><td>50</td><td>68</td><td>8.8</td><td>0.07</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	0.02	<mdl< td=""><td>282</td><td>0.52</td><td>0.40</td><td>0.03</td><td>50</td><td>68</td><td>8.8</td><td>0.07</td><td><mdl< td=""></mdl<></td></mdl<>	282	0.52	0.40	0.03	50	68	8.8	0.07	<mdl< td=""></mdl<>
55aj4b	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>465000</td><td>8.5</td><td>47</td><td>4.0</td><td><mdl< td=""><td><mdl< td=""><td>7.4</td><td>729</td><td>69</td><td><mdl< td=""><td><mdl< td=""><td><md1< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.17</td><td><md1< td=""><td><mdl< td=""></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>465000</td><td>8.5</td><td>47</td><td>4.0</td><td><mdl< td=""><td><mdl< td=""><td>7.4</td><td>729</td><td>69</td><td><mdl< td=""><td><mdl< td=""><td><md1< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.17</td><td><md1< td=""><td><mdl< td=""></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>465000</td><td>8.5</td><td>47</td><td>4.0</td><td><mdl< td=""><td><mdl< td=""><td>7.4</td><td>729</td><td>69</td><td><mdl< td=""><td><mdl< td=""><td><md1< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.17</td><td><md1< td=""><td><mdl< td=""></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>465000</td><td>8.5</td><td>47</td><td>4.0</td><td><mdl< td=""><td><mdl< td=""><td>7.4</td><td>729</td><td>69</td><td><mdl< td=""><td><mdl< td=""><td><md1< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.17</td><td><md1< td=""><td><mdl< td=""></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	465000	8.5	47	4.0	<mdl< td=""><td><mdl< td=""><td>7.4</td><td>729</td><td>69</td><td><mdl< td=""><td><mdl< td=""><td><md1< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.17</td><td><md1< td=""><td><mdl< td=""></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>7.4</td><td>729</td><td>69</td><td><mdl< td=""><td><mdl< td=""><td><md1< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.17</td><td><md1< td=""><td><mdl< td=""></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<>	7.4	729	69	<mdl< td=""><td><mdl< td=""><td><md1< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.17</td><td><md1< td=""><td><mdl< td=""></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></md1<></td></mdl<></td></mdl<>	<mdl< td=""><td><md1< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.17</td><td><md1< td=""><td><mdl< td=""></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></md1<></td></mdl<>	<md1< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.17</td><td><md1< td=""><td><mdl< td=""></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></md1<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.17</td><td><md1< td=""><td><mdl< td=""></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.17</td><td><md1< td=""><td><mdl< td=""></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.17</td><td><md1< td=""><td><mdl< td=""></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.17</td><td><md1< td=""><td><mdl< td=""></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.17</td><td><md1< td=""><td><mdl< td=""></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.17</td><td><md1< td=""><td><mdl< td=""></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.17</td><td><md1< td=""><td><mdl< td=""></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>0.17</td><td><md1< td=""><td><mdl< td=""></mdl<></td></md1<></td></mdl<></td></mdl<>	<mdl< td=""><td>0.17</td><td><md1< td=""><td><mdl< td=""></mdl<></td></md1<></td></mdl<>	0.17	<md1< td=""><td><mdl< td=""></mdl<></td></md1<>	<mdl< td=""></mdl<>
55aj5	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>465000</td><td>16</td><td>37</td><td>36</td><td><mdl< td=""><td><mdl< td=""><td>6.5</td><td>142</td><td>299</td><td><mdl< td=""><td><mdl< td=""><td>2423</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>5.0</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>5.7</td><td>0.10</td><td>4.9</td><td>0.13</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>465000</td><td>16</td><td>37</td><td>36</td><td><mdl< td=""><td><mdl< td=""><td>6.5</td><td>142</td><td>299</td><td><mdl< td=""><td><mdl< td=""><td>2423</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>5.0</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>5.7</td><td>0.10</td><td>4.9</td><td>0.13</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>465000</td><td>16</td><td>37</td><td>36</td><td><mdl< td=""><td><mdl< td=""><td>6.5</td><td>142</td><td>299</td><td><mdl< td=""><td><mdl< td=""><td>2423</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>5.0</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>5.7</td><td>0.10</td><td>4.9</td><td>0.13</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>465000</td><td>16</td><td>37</td><td>36</td><td><mdl< td=""><td><mdl< td=""><td>6.5</td><td>142</td><td>299</td><td><mdl< td=""><td><mdl< td=""><td>2423</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>5.0</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>5.7</td><td>0.10</td><td>4.9</td><td>0.13</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	465000	16	37	36	<mdl< td=""><td><mdl< td=""><td>6.5</td><td>142</td><td>299</td><td><mdl< td=""><td><mdl< td=""><td>2423</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>5.0</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>5.7</td><td>0.10</td><td>4.9</td><td>0.13</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>6.5</td><td>142</td><td>299</td><td><mdl< td=""><td><mdl< td=""><td>2423</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>5.0</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>5.7</td><td>0.10</td><td>4.9</td><td>0.13</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	6.5	142	299	<mdl< td=""><td><mdl< td=""><td>2423</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>5.0</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>5.7</td><td>0.10</td><td>4.9</td><td>0.13</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>2423</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>5.0</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>5.7</td><td>0.10</td><td>4.9</td><td>0.13</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	2423	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>5.0</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>5.7</td><td>0.10</td><td>4.9</td><td>0.13</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>5.0</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>5.7</td><td>0.10</td><td>4.9</td><td>0.13</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>5.0</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>5.7</td><td>0.10</td><td>4.9</td><td>0.13</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	5.0	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>5.7</td><td>0.10</td><td>4.9</td><td>0.13</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>5.7</td><td>0.10</td><td>4.9</td><td>0.13</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>5.7</td><td>0.10</td><td>4.9</td><td>0.13</td><td><mdl< td=""></mdl<></td></mdl<>	5.7	0.10	4.9	0.13	<mdl< td=""></mdl<>
55aj7	42	1.8	3.6	6.8	465000	74	171	190	1.2	0.38	5.4	1715	197	0.17	70	1111	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>83</td><td><mdl< td=""><td>0.12</td><td><mdl< td=""><td>32</td><td>2.7</td><td>106</td><td>3.1</td><td>0.11</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>83</td><td><mdl< td=""><td>0.12</td><td><mdl< td=""><td>32</td><td>2.7</td><td>106</td><td>3.1</td><td>0.11</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>83</td><td><mdl< td=""><td>0.12</td><td><mdl< td=""><td>32</td><td>2.7</td><td>106</td><td>3.1</td><td>0.11</td></mdl<></td></mdl<></td></mdl<>	83	<mdl< td=""><td>0.12</td><td><mdl< td=""><td>32</td><td>2.7</td><td>106</td><td>3.1</td><td>0.11</td></mdl<></td></mdl<>	0.12	<mdl< td=""><td>32</td><td>2.7</td><td>106</td><td>3.1</td><td>0.11</td></mdl<>	32	2.7	106	3.1	0.11
55aj8	38	0.40	<mdl< td=""><td>2.4</td><td>465000</td><td>48</td><td>87</td><td>232</td><td>2.8</td><td>0.36</td><td>6.9</td><td>1888</td><td>287</td><td>0.39</td><td>37</td><td>2386</td><td><mdl< td=""><td>0.03</td><td><mdl< td=""><td>68</td><td>0.70</td><td><mdl< td=""><td>0.03</td><td>8.0</td><td>2.9</td><td>137</td><td>2.3</td><td>0.34</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	2.4	465000	48	87	232	2.8	0.36	6.9	1888	287	0.39	37	2386	<mdl< td=""><td>0.03</td><td><mdl< td=""><td>68</td><td>0.70</td><td><mdl< td=""><td>0.03</td><td>8.0</td><td>2.9</td><td>137</td><td>2.3</td><td>0.34</td></mdl<></td></mdl<></td></mdl<>	0.03	<mdl< td=""><td>68</td><td>0.70</td><td><mdl< td=""><td>0.03</td><td>8.0</td><td>2.9</td><td>137</td><td>2.3</td><td>0.34</td></mdl<></td></mdl<>	68	0.70	<mdl< td=""><td>0.03</td><td>8.0</td><td>2.9</td><td>137</td><td>2.3</td><td>0.34</td></mdl<>	0.03	8.0	2.9	137	2.3	0.34
55a j9	4.0	0.68	<mdl< td=""><td>13</td><td>465000</td><td>27</td><td>21</td><td>51</td><td>4.6</td><td>0.47</td><td>7.0</td><td>4565</td><td>51</td><td><mdl< td=""><td>25</td><td>20</td><td><mdl< td=""><td><mdl< td=""><td>0.78</td><td>129</td><td>0.74</td><td><mdl< td=""><td><mdl< td=""><td>2.6</td><td>6.4</td><td>21</td><td>0.78</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	13	465000	27	21	51	4.6	0.47	7.0	4565	51	<mdl< td=""><td>25</td><td>20</td><td><mdl< td=""><td><mdl< td=""><td>0.78</td><td>129</td><td>0.74</td><td><mdl< td=""><td><mdl< td=""><td>2.6</td><td>6.4</td><td>21</td><td>0.78</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	25	20	<mdl< td=""><td><mdl< td=""><td>0.78</td><td>129</td><td>0.74</td><td><mdl< td=""><td><mdl< td=""><td>2.6</td><td>6.4</td><td>21</td><td>0.78</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>0.78</td><td>129</td><td>0.74</td><td><mdl< td=""><td><mdl< td=""><td>2.6</td><td>6.4</td><td>21</td><td>0.78</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.78	129	0.74	<mdl< td=""><td><mdl< td=""><td>2.6</td><td>6.4</td><td>21</td><td>0.78</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>2.6</td><td>6.4</td><td>21</td><td>0.78</td><td><mdl< td=""></mdl<></td></mdl<>	2.6	6.4	21	0.78	<mdl< td=""></mdl<>
55aj10	2112	3.6	22	504	465000	47	43	112	511	0.91	6.8	5817	13	8.0	17	78	<mdl< td=""><td>0.19</td><td>2.6</td><td>115</td><td><mdl< td=""><td>60</td><td><mdl< td=""><td>3.0</td><td>7.0</td><td>126</td><td>3.6</td><td>8.0</td></mdl<></td></mdl<></td></mdl<>	0.19	2.6	115	<mdl< td=""><td>60</td><td><mdl< td=""><td>3.0</td><td>7.0</td><td>126</td><td>3.6</td><td>8.0</td></mdl<></td></mdl<>	60	<mdl< td=""><td>3.0</td><td>7.0</td><td>126</td><td>3.6</td><td>8.0</td></mdl<>	3.0	7.0	126	3.6	8.0
55aj11	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>465000</td><td>8.7</td><td>6.5</td><td>31</td><td><mdl< td=""><td><mdl< td=""><td>5.9</td><td>307</td><td>349</td><td><mdl< td=""><td>86</td><td>1967</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>3.2</td><td><mdl< td=""><td><mdl< td=""><td>0.03</td><td>2.1</td><td>0.80</td><td>4.4</td><td>0.06</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>465000</td><td>8.7</td><td>6.5</td><td>31</td><td><mdl< td=""><td><mdl< td=""><td>5.9</td><td>307</td><td>349</td><td><mdl< td=""><td>86</td><td>1967</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>3.2</td><td><mdl< td=""><td><mdl< td=""><td>0.03</td><td>2.1</td><td>0.80</td><td>4.4</td><td>0.06</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>465000</td><td>8.7</td><td>6.5</td><td>31</td><td><mdl< td=""><td><mdl< td=""><td>5.9</td><td>307</td><td>349</td><td><mdl< td=""><td>86</td><td>1967</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>3.2</td><td><mdl< td=""><td><mdl< td=""><td>0.03</td><td>2.1</td><td>0.80</td><td>4.4</td><td>0.06</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>465000</td><td>8.7</td><td>6.5</td><td>31</td><td><mdl< td=""><td><mdl< td=""><td>5.9</td><td>307</td><td>349</td><td><mdl< td=""><td>86</td><td>1967</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>3.2</td><td><mdl< td=""><td><mdl< td=""><td>0.03</td><td>2.1</td><td>0.80</td><td>4.4</td><td>0.06</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	465000	8.7	6.5	31	<mdl< td=""><td><mdl< td=""><td>5.9</td><td>307</td><td>349</td><td><mdl< td=""><td>86</td><td>1967</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>3.2</td><td><mdl< td=""><td><mdl< td=""><td>0.03</td><td>2.1</td><td>0.80</td><td>4.4</td><td>0.06</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>5.9</td><td>307</td><td>349</td><td><mdl< td=""><td>86</td><td>1967</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>3.2</td><td><mdl< td=""><td><mdl< td=""><td>0.03</td><td>2.1</td><td>0.80</td><td>4.4</td><td>0.06</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	5.9	307	349	<mdl< td=""><td>86</td><td>1967</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>3.2</td><td><mdl< td=""><td><mdl< td=""><td>0.03</td><td>2.1</td><td>0.80</td><td>4.4</td><td>0.06</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	86	1967	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>3.2</td><td><mdl< td=""><td><mdl< td=""><td>0.03</td><td>2.1</td><td>0.80</td><td>4.4</td><td>0.06</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>3.2</td><td><mdl< td=""><td><mdl< td=""><td>0.03</td><td>2.1</td><td>0.80</td><td>4.4</td><td>0.06</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>3.2</td><td><mdl< td=""><td><mdl< td=""><td>0.03</td><td>2.1</td><td>0.80</td><td>4.4</td><td>0.06</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	3.2	<mdl< td=""><td><mdl< td=""><td>0.03</td><td>2.1</td><td>0.80</td><td>4.4</td><td>0.06</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>0.03</td><td>2.1</td><td>0.80</td><td>4.4</td><td>0.06</td><td><mdl< td=""></mdl<></td></mdl<>	0.03	2.1	0.80	4.4	0.06	<mdl< td=""></mdl<>
55aj12	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>465000</td><td>39</td><td>121</td><td>1377</td><td>614</td><td><mdl< td=""><td>6.3</td><td>2655</td><td>4828</td><td><mdl< td=""><td>1.4</td><td>57888</td><td>0.59</td><td>0.39</td><td><mdl< td=""><td>1.3</td><td>1.9</td><td>0.08</td><td><mdl< td=""><td>26</td><td>0.09</td><td>3.0</td><td>0.23</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>465000</td><td>39</td><td>121</td><td>1377</td><td>614</td><td><mdl< td=""><td>6.3</td><td>2655</td><td>4828</td><td><mdl< td=""><td>1.4</td><td>57888</td><td>0.59</td><td>0.39</td><td><mdl< td=""><td>1.3</td><td>1.9</td><td>0.08</td><td><mdl< td=""><td>26</td><td>0.09</td><td>3.0</td><td>0.23</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>465000</td><td>39</td><td>121</td><td>1377</td><td>614</td><td><mdl< td=""><td>6.3</td><td>2655</td><td>4828</td><td><mdl< td=""><td>1.4</td><td>57888</td><td>0.59</td><td>0.39</td><td><mdl< td=""><td>1.3</td><td>1.9</td><td>0.08</td><td><mdl< td=""><td>26</td><td>0.09</td><td>3.0</td><td>0.23</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>465000</td><td>39</td><td>121</td><td>1377</td><td>614</td><td><mdl< td=""><td>6.3</td><td>2655</td><td>4828</td><td><mdl< td=""><td>1.4</td><td>57888</td><td>0.59</td><td>0.39</td><td><mdl< td=""><td>1.3</td><td>1.9</td><td>0.08</td><td><mdl< td=""><td>26</td><td>0.09</td><td>3.0</td><td>0.23</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	465000	39	121	1377	614	<mdl< td=""><td>6.3</td><td>2655</td><td>4828</td><td><mdl< td=""><td>1.4</td><td>57888</td><td>0.59</td><td>0.39</td><td><mdl< td=""><td>1.3</td><td>1.9</td><td>0.08</td><td><mdl< td=""><td>26</td><td>0.09</td><td>3.0</td><td>0.23</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	6.3	2655	4828	<mdl< td=""><td>1.4</td><td>57888</td><td>0.59</td><td>0.39</td><td><mdl< td=""><td>1.3</td><td>1.9</td><td>0.08</td><td><mdl< td=""><td>26</td><td>0.09</td><td>3.0</td><td>0.23</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	1.4	57888	0.59	0.39	<mdl< td=""><td>1.3</td><td>1.9</td><td>0.08</td><td><mdl< td=""><td>26</td><td>0.09</td><td>3.0</td><td>0.23</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1.3	1.9	0.08	<mdl< td=""><td>26</td><td>0.09</td><td>3.0</td><td>0.23</td><td><mdl< td=""></mdl<></td></mdl<>	26	0.09	3.0	0.23	<mdl< td=""></mdl<>
55aj13	<mdl< td=""><td>0.26</td><td><mdl< td=""><td>1.6</td><td>465000</td><td>22</td><td>44</td><td>728</td><td><mdl< td=""><td><mdl< td=""><td>5.9</td><td>7209</td><td>1820</td><td><mdl< td=""><td>4.2</td><td>12123</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>14</td><td>0.87</td><td><mdl< td=""><td><mdl< td=""><td>38</td><td>0.61</td><td>8.3</td><td>0.20</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.26	<mdl< td=""><td>1.6</td><td>465000</td><td>22</td><td>44</td><td>728</td><td><mdl< td=""><td><mdl< td=""><td>5.9</td><td>7209</td><td>1820</td><td><mdl< td=""><td>4.2</td><td>12123</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>14</td><td>0.87</td><td><mdl< td=""><td><mdl< td=""><td>38</td><td>0.61</td><td>8.3</td><td>0.20</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1.6	465000	22	44	728	<mdl< td=""><td><mdl< td=""><td>5.9</td><td>7209</td><td>1820</td><td><mdl< td=""><td>4.2</td><td>12123</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>14</td><td>0.87</td><td><mdl< td=""><td><mdl< td=""><td>38</td><td>0.61</td><td>8.3</td><td>0.20</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>5.9</td><td>7209</td><td>1820</td><td><mdl< td=""><td>4.2</td><td>12123</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>14</td><td>0.87</td><td><mdl< td=""><td><mdl< td=""><td>38</td><td>0.61</td><td>8.3</td><td>0.20</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	5.9	7209	1820	<mdl< td=""><td>4.2</td><td>12123</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>14</td><td>0.87</td><td><mdl< td=""><td><mdl< td=""><td>38</td><td>0.61</td><td>8.3</td><td>0.20</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	4.2	12123	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>14</td><td>0.87</td><td><mdl< td=""><td><mdl< td=""><td>38</td><td>0.61</td><td>8.3</td><td>0.20</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>14</td><td>0.87</td><td><mdl< td=""><td><mdl< td=""><td>38</td><td>0.61</td><td>8.3</td><td>0.20</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>14</td><td>0.87</td><td><mdl< td=""><td><mdl< td=""><td>38</td><td>0.61</td><td>8.3</td><td>0.20</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	14	0.87	<mdl< td=""><td><mdl< td=""><td>38</td><td>0.61</td><td>8.3</td><td>0.20</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>38</td><td>0.61</td><td>8.3</td><td>0.20</td><td><mdl< td=""></mdl<></td></mdl<>	38	0.61	8.3	0.20	<mdl< td=""></mdl<>
55aj14	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>465000</td><td>11</td><td>13</td><td>1319</td><td>0.76</td><td><mdl< td=""><td>7.1</td><td>60</td><td>19398</td><td><mdl< td=""><td><mdl< td=""><td>226575</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2.9</td><td>7.0</td><td><mdl< td=""><td><mdl< td=""><td>107</td><td>0.16</td><td>20</td><td>0.85</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>465000</td><td>11</td><td>13</td><td>1319</td><td>0.76</td><td><mdl< td=""><td>7.1</td><td>60</td><td>19398</td><td><mdl< td=""><td><mdl< td=""><td>226575</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2.9</td><td>7.0</td><td><mdl< td=""><td><mdl< td=""><td>107</td><td>0.16</td><td>20</td><td>0.85</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>465000</td><td>11</td><td>13</td><td>1319</td><td>0.76</td><td><mdl< td=""><td>7.1</td><td>60</td><td>19398</td><td><mdl< td=""><td><mdl< td=""><td>226575</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2.9</td><td>7.0</td><td><mdl< td=""><td><mdl< td=""><td>107</td><td>0.16</td><td>20</td><td>0.85</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>465000</td><td>11</td><td>13</td><td>1319</td><td>0.76</td><td><mdl< td=""><td>7.1</td><td>60</td><td>19398</td><td><mdl< td=""><td><mdl< td=""><td>226575</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2.9</td><td>7.0</td><td><mdl< td=""><td><mdl< td=""><td>107</td><td>0.16</td><td>20</td><td>0.85</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	465000	11	13	1319	0.76	<mdl< td=""><td>7.1</td><td>60</td><td>19398</td><td><mdl< td=""><td><mdl< td=""><td>226575</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2.9</td><td>7.0</td><td><mdl< td=""><td><mdl< td=""><td>107</td><td>0.16</td><td>20</td><td>0.85</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	7.1	60	19398	<mdl< td=""><td><mdl< td=""><td>226575</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2.9</td><td>7.0</td><td><mdl< td=""><td><mdl< td=""><td>107</td><td>0.16</td><td>20</td><td>0.85</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>226575</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2.9</td><td>7.0</td><td><mdl< td=""><td><mdl< td=""><td>107</td><td>0.16</td><td>20</td><td>0.85</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	226575	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2.9</td><td>7.0</td><td><mdl< td=""><td><mdl< td=""><td>107</td><td>0.16</td><td>20</td><td>0.85</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>2.9</td><td>7.0</td><td><mdl< td=""><td><mdl< td=""><td>107</td><td>0.16</td><td>20</td><td>0.85</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>2.9</td><td>7.0</td><td><mdl< td=""><td><mdl< td=""><td>107</td><td>0.16</td><td>20</td><td>0.85</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	2.9	7.0	<mdl< td=""><td><mdl< td=""><td>107</td><td>0.16</td><td>20</td><td>0.85</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>107</td><td>0.16</td><td>20</td><td>0.85</td><td><mdl< td=""></mdl<></td></mdl<>	107	0.16	20	0.85	<mdl< td=""></mdl<>
55aj15	132	0.77	<mdl< td=""><td>24</td><td>465000</td><td>30</td><td>31</td><td>95</td><td>4.9</td><td>0.40</td><td>6.4</td><td>3449</td><td><mdl< td=""><td>1.1</td><td>10</td><td>30</td><td><mdl< td=""><td>0.04</td><td>0.46</td><td>154</td><td><mdl< td=""><td>1.6</td><td><mdl< td=""><td>0.33</td><td>29</td><td>96</td><td>0.8</td><td>0.29</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	24	465000	30	31	95	4.9	0.40	6.4	3449	<mdl< td=""><td>1.1</td><td>10</td><td>30</td><td><mdl< td=""><td>0.04</td><td>0.46</td><td>154</td><td><mdl< td=""><td>1.6</td><td><mdl< td=""><td>0.33</td><td>29</td><td>96</td><td>0.8</td><td>0.29</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1.1	10	30	<mdl< td=""><td>0.04</td><td>0.46</td><td>154</td><td><mdl< td=""><td>1.6</td><td><mdl< td=""><td>0.33</td><td>29</td><td>96</td><td>0.8</td><td>0.29</td></mdl<></td></mdl<></td></mdl<>	0.04	0.46	154	<mdl< td=""><td>1.6</td><td><mdl< td=""><td>0.33</td><td>29</td><td>96</td><td>0.8</td><td>0.29</td></mdl<></td></mdl<>	1.6	<mdl< td=""><td>0.33</td><td>29</td><td>96</td><td>0.8</td><td>0.29</td></mdl<>	0.33	29	96	0.8	0.29
55aj16	22	1.4	<mdl< td=""><td>3.6</td><td>465000</td><td>17</td><td>24</td><td>64</td><td><mdl< td=""><td><mdl< td=""><td>6.4</td><td>1876</td><td>94</td><td>0.11</td><td>2.9</td><td>1378</td><td><mdl< td=""><td><mdl< td=""><td>0.25</td><td>11</td><td><mdl< td=""><td>0.21</td><td><mdl< td=""><td>7.8</td><td>1.1</td><td>42</td><td>0.53</td><td>0.05</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	3.6	465000	17	24	64	<mdl< td=""><td><mdl< td=""><td>6.4</td><td>1876</td><td>94</td><td>0.11</td><td>2.9</td><td>1378</td><td><mdl< td=""><td><mdl< td=""><td>0.25</td><td>11</td><td><mdl< td=""><td>0.21</td><td><mdl< td=""><td>7.8</td><td>1.1</td><td>42</td><td>0.53</td><td>0.05</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>6.4</td><td>1876</td><td>94</td><td>0.11</td><td>2.9</td><td>1378</td><td><mdl< td=""><td><mdl< td=""><td>0.25</td><td>11</td><td><mdl< td=""><td>0.21</td><td><mdl< td=""><td>7.8</td><td>1.1</td><td>42</td><td>0.53</td><td>0.05</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	6.4	1876	94	0.11	2.9	1378	<mdl< td=""><td><mdl< td=""><td>0.25</td><td>11</td><td><mdl< td=""><td>0.21</td><td><mdl< td=""><td>7.8</td><td>1.1</td><td>42</td><td>0.53</td><td>0.05</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>0.25</td><td>11</td><td><mdl< td=""><td>0.21</td><td><mdl< td=""><td>7.8</td><td>1.1</td><td>42</td><td>0.53</td><td>0.05</td></mdl<></td></mdl<></td></mdl<>	0.25	11	<mdl< td=""><td>0.21</td><td><mdl< td=""><td>7.8</td><td>1.1</td><td>42</td><td>0.53</td><td>0.05</td></mdl<></td></mdl<>	0.21	<mdl< td=""><td>7.8</td><td>1.1</td><td>42</td><td>0.53</td><td>0.05</td></mdl<>	7.8	1.1	42	0.53	0.05
55aj17	20	3.4	5.2	18	465000	91	120	229	8.9	0.56	6.0	3736	91	0.10	1598	289	<mdl< td=""><td>0.08</td><td>1.2</td><td>133</td><td>0.74</td><td>1.2</td><td>0.04</td><td>4.3</td><td>17</td><td>165</td><td>3.8</td><td>0.10</td></mdl<>	0.08	1.2	133	0.74	1.2	0.04	4.3	17	165	3.8	0.10
55aj18	4.6	<mdl< td=""><td><mdl< td=""><td>4.9</td><td>465000</td><td>8.9</td><td>47</td><td>63</td><td><mdl< td=""><td><mdl< td=""><td>5.5</td><td>116</td><td>275</td><td><mdl< td=""><td><mdl< td=""><td>951</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2.0</td><td>0.06</td><td>1.5</td><td><md1< td=""><td><mdl< td=""></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>4.9</td><td>465000</td><td>8.9</td><td>47</td><td>63</td><td><mdl< td=""><td><mdl< td=""><td>5.5</td><td>116</td><td>275</td><td><mdl< td=""><td><mdl< td=""><td>951</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2.0</td><td>0.06</td><td>1.5</td><td><md1< td=""><td><mdl< td=""></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	4.9	465000	8.9	47	63	<mdl< td=""><td><mdl< td=""><td>5.5</td><td>116</td><td>275</td><td><mdl< td=""><td><mdl< td=""><td>951</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2.0</td><td>0.06</td><td>1.5</td><td><md1< td=""><td><mdl< td=""></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>5.5</td><td>116</td><td>275</td><td><mdl< td=""><td><mdl< td=""><td>951</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2.0</td><td>0.06</td><td>1.5</td><td><md1< td=""><td><mdl< td=""></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	5.5	116	275	<mdl< td=""><td><mdl< td=""><td>951</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2.0</td><td>0.06</td><td>1.5</td><td><md1< td=""><td><mdl< td=""></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>951</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2.0</td><td>0.06</td><td>1.5</td><td><md1< td=""><td><mdl< td=""></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	951	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2.0</td><td>0.06</td><td>1.5</td><td><md1< td=""><td><mdl< td=""></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2.0</td><td>0.06</td><td>1.5</td><td><md1< td=""><td><mdl< td=""></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2.0</td><td>0.06</td><td>1.5</td><td><md1< td=""><td><mdl< td=""></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2.0</td><td>0.06</td><td>1.5</td><td><md1< td=""><td><mdl< td=""></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2.0</td><td>0.06</td><td>1.5</td><td><md1< td=""><td><mdl< td=""></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>2.0</td><td>0.06</td><td>1.5</td><td><md1< td=""><td><mdl< td=""></mdl<></td></md1<></td></mdl<></td></mdl<>	<mdl< td=""><td>2.0</td><td>0.06</td><td>1.5</td><td><md1< td=""><td><mdl< td=""></mdl<></td></md1<></td></mdl<>	2.0	0.06	1.5	<md1< td=""><td><mdl< td=""></mdl<></td></md1<>	<mdl< td=""></mdl<>
55aj19	2.8	0.71	3.4	2.3	465000	16	48	162	1.5	<mdl< td=""><td>7.0</td><td>9222</td><td>79</td><td><mdl< td=""><td>2194</td><td>187</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>39</td><td><mdl< td=""><td>0.66</td><td><mdl< td=""><td>30</td><td>16</td><td>49</td><td>0.94</td><td>0.03</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	7.0	9222	79	<mdl< td=""><td>2194</td><td>187</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>39</td><td><mdl< td=""><td>0.66</td><td><mdl< td=""><td>30</td><td>16</td><td>49</td><td>0.94</td><td>0.03</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	2194	187	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>39</td><td><mdl< td=""><td>0.66</td><td><mdl< td=""><td>30</td><td>16</td><td>49</td><td>0.94</td><td>0.03</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>39</td><td><mdl< td=""><td>0.66</td><td><mdl< td=""><td>30</td><td>16</td><td>49</td><td>0.94</td><td>0.03</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>39</td><td><mdl< td=""><td>0.66</td><td><mdl< td=""><td>30</td><td>16</td><td>49</td><td>0.94</td><td>0.03</td></mdl<></td></mdl<></td></mdl<>	39	<mdl< td=""><td>0.66</td><td><mdl< td=""><td>30</td><td>16</td><td>49</td><td>0.94</td><td>0.03</td></mdl<></td></mdl<>	0.66	<mdl< td=""><td>30</td><td>16</td><td>49</td><td>0.94</td><td>0.03</td></mdl<>	30	16	49	0.94	0.03
55aj20	1.3	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>465000</td><td>5.1</td><td>18</td><td>51</td><td><mdl< td=""><td><mdl< td=""><td>6.2</td><td>1258</td><td>1742</td><td><mdl< td=""><td><mdl< td=""><td>18010</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.40</td><td>0.62</td><td><mdl< td=""><td><mdl< td=""><td>7.8</td><td>0.04</td><td>2.3</td><td>0.29</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>465000</td><td>5.1</td><td>18</td><td>51</td><td><mdl< td=""><td><mdl< td=""><td>6.2</td><td>1258</td><td>1742</td><td><mdl< td=""><td><mdl< td=""><td>18010</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.40</td><td>0.62</td><td><mdl< td=""><td><mdl< td=""><td>7.8</td><td>0.04</td><td>2.3</td><td>0.29</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>465000</td><td>5.1</td><td>18</td><td>51</td><td><mdl< td=""><td><mdl< td=""><td>6.2</td><td>1258</td><td>1742</td><td><mdl< td=""><td><mdl< td=""><td>18010</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.40</td><td>0.62</td><td><mdl< td=""><td><mdl< td=""><td>7.8</td><td>0.04</td><td>2.3</td><td>0.29</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	465000	5.1	18	51	<mdl< td=""><td><mdl< td=""><td>6.2</td><td>1258</td><td>1742</td><td><mdl< td=""><td><mdl< td=""><td>18010</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.40</td><td>0.62</td><td><mdl< td=""><td><mdl< td=""><td>7.8</td><td>0.04</td><td>2.3</td><td>0.29</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>6.2</td><td>1258</td><td>1742</td><td><mdl< td=""><td><mdl< td=""><td>18010</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.40</td><td>0.62</td><td><mdl< td=""><td><mdl< td=""><td>7.8</td><td>0.04</td><td>2.3</td><td>0.29</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	6.2	1258	1742	<mdl< td=""><td><mdl< td=""><td>18010</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.40</td><td>0.62</td><td><mdl< td=""><td><mdl< td=""><td>7.8</td><td>0.04</td><td>2.3</td><td>0.29</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>18010</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.40</td><td>0.62</td><td><mdl< td=""><td><mdl< td=""><td>7.8</td><td>0.04</td><td>2.3</td><td>0.29</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	18010	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.40</td><td>0.62</td><td><mdl< td=""><td><mdl< td=""><td>7.8</td><td>0.04</td><td>2.3</td><td>0.29</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>0.40</td><td>0.62</td><td><mdl< td=""><td><mdl< td=""><td>7.8</td><td>0.04</td><td>2.3</td><td>0.29</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>0.40</td><td>0.62</td><td><mdl< td=""><td><mdl< td=""><td>7.8</td><td>0.04</td><td>2.3</td><td>0.29</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.40	0.62	<mdl< td=""><td><mdl< td=""><td>7.8</td><td>0.04</td><td>2.3</td><td>0.29</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>7.8</td><td>0.04</td><td>2.3</td><td>0.29</td><td><mdl< td=""></mdl<></td></mdl<>	7.8	0.04	2.3	0.29	<mdl< td=""></mdl<>
55aj21	499	14	<mdl< td=""><td>14</td><td>465000</td><td>17</td><td>24</td><td>136</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2593</td><td>294</td><td>2.5</td><td>74</td><td>3696</td><td><mdl< td=""><td><mdl< td=""><td>7.1</td><td>25</td><td><mdl< td=""><td>10</td><td><mdl< td=""><td>55</td><td>2.0</td><td>27</td><td>0.47</td><td>0.43</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	14	465000	17	24	136	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2593</td><td>294</td><td>2.5</td><td>74</td><td>3696</td><td><mdl< td=""><td><mdl< td=""><td>7.1</td><td>25</td><td><mdl< td=""><td>10</td><td><mdl< td=""><td>55</td><td>2.0</td><td>27</td><td>0.47</td><td>0.43</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>2593</td><td>294</td><td>2.5</td><td>74</td><td>3696</td><td><mdl< td=""><td><mdl< td=""><td>7.1</td><td>25</td><td><mdl< td=""><td>10</td><td><mdl< td=""><td>55</td><td>2.0</td><td>27</td><td>0.47</td><td>0.43</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>2593</td><td>294</td><td>2.5</td><td>74</td><td>3696</td><td><mdl< td=""><td><mdl< td=""><td>7.1</td><td>25</td><td><mdl< td=""><td>10</td><td><mdl< td=""><td>55</td><td>2.0</td><td>27</td><td>0.47</td><td>0.43</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	2593	294	2.5	74	3696	<mdl< td=""><td><mdl< td=""><td>7.1</td><td>25</td><td><mdl< td=""><td>10</td><td><mdl< td=""><td>55</td><td>2.0</td><td>27</td><td>0.47</td><td>0.43</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>7.1</td><td>25</td><td><mdl< td=""><td>10</td><td><mdl< td=""><td>55</td><td>2.0</td><td>27</td><td>0.47</td><td>0.43</td></mdl<></td></mdl<></td></mdl<>	7.1	25	<mdl< td=""><td>10</td><td><mdl< td=""><td>55</td><td>2.0</td><td>27</td><td>0.47</td><td>0.43</td></mdl<></td></mdl<>	10	<mdl< td=""><td>55</td><td>2.0</td><td>27</td><td>0.47</td><td>0.43</td></mdl<>	55	2.0	27	0.47	0.43
55aj22	15	<mdl< td=""><td><mdl< td=""><td>3.2</td><td>465000</td><td>42</td><td>93</td><td>65</td><td><mdl< td=""><td><mdl< td=""><td>7.8</td><td>832</td><td>359</td><td><mdl< td=""><td>2.0</td><td>1554</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>39</td><td>1.8</td><td><mdl< td=""><td><mdl< td=""><td>3.2</td><td>1.5</td><td>55</td><td>1.6</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>3.2</td><td>465000</td><td>42</td><td>93</td><td>65</td><td><mdl< td=""><td><mdl< td=""><td>7.8</td><td>832</td><td>359</td><td><mdl< td=""><td>2.0</td><td>1554</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>39</td><td>1.8</td><td><mdl< td=""><td><mdl< td=""><td>3.2</td><td>1.5</td><td>55</td><td>1.6</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	3.2	465000	42	93	65	<mdl< td=""><td><mdl< td=""><td>7.8</td><td>832</td><td>359</td><td><mdl< td=""><td>2.0</td><td>1554</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>39</td><td>1.8</td><td><mdl< td=""><td><mdl< td=""><td>3.2</td><td>1.5</td><td>55</td><td>1.6</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>7.8</td><td>832</td><td>359</td><td><mdl< td=""><td>2.0</td><td>1554</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>39</td><td>1.8</td><td><mdl< td=""><td><mdl< td=""><td>3.2</td><td>1.5</td><td>55</td><td>1.6</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	7.8	832	359	<mdl< td=""><td>2.0</td><td>1554</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>39</td><td>1.8</td><td><mdl< td=""><td><mdl< td=""><td>3.2</td><td>1.5</td><td>55</td><td>1.6</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	2.0	1554	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>39</td><td>1.8</td><td><mdl< td=""><td><mdl< td=""><td>3.2</td><td>1.5</td><td>55</td><td>1.6</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>39</td><td>1.8</td><td><mdl< td=""><td><mdl< td=""><td>3.2</td><td>1.5</td><td>55</td><td>1.6</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>39</td><td>1.8</td><td><mdl< td=""><td><mdl< td=""><td>3.2</td><td>1.5</td><td>55</td><td>1.6</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	39	1.8	<mdl< td=""><td><mdl< td=""><td>3.2</td><td>1.5</td><td>55</td><td>1.6</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>3.2</td><td>1.5</td><td>55</td><td>1.6</td><td><mdl< td=""></mdl<></td></mdl<>	3.2	1.5	55	1.6	<mdl< td=""></mdl<>
55aj23	295	0.76	3.8	7.5	465000	62	49	146	3.1	<mdl< td=""><td>6.7</td><td>691</td><td>1130</td><td>1.1</td><td>5.4</td><td>10426</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>38</td><td><mdl< td=""><td>2.5</td><td><mdl< td=""><td>39</td><td>2.3</td><td>64</td><td>2.2</td><td>0.25</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	6.7	691	1130	1.1	5.4	10426	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>38</td><td><mdl< td=""><td>2.5</td><td><mdl< td=""><td>39</td><td>2.3</td><td>64</td><td>2.2</td><td>0.25</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>38</td><td><mdl< td=""><td>2.5</td><td><mdl< td=""><td>39</td><td>2.3</td><td>64</td><td>2.2</td><td>0.25</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>38</td><td><mdl< td=""><td>2.5</td><td><mdl< td=""><td>39</td><td>2.3</td><td>64</td><td>2.2</td><td>0.25</td></mdl<></td></mdl<></td></mdl<>	38	<mdl< td=""><td>2.5</td><td><mdl< td=""><td>39</td><td>2.3</td><td>64</td><td>2.2</td><td>0.25</td></mdl<></td></mdl<>	2.5	<mdl< td=""><td>39</td><td>2.3</td><td>64</td><td>2.2</td><td>0.25</td></mdl<>	39	2.3	64	2.2	0.25
55aj24	7.9	1.8	11	5.3	465000	2.4	14	78	1.4	1.1	6.6	13755	29	<mdl< td=""><td>252</td><td>23</td><td><mdl< td=""><td><mdl< td=""><td>2.1</td><td>11</td><td><mdl< td=""><td>0.25</td><td><mdl< td=""><td>39</td><td>2.3</td><td>11</td><td>0.28</td><td>0.0</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	252	23	<mdl< td=""><td><mdl< td=""><td>2.1</td><td>11</td><td><mdl< td=""><td>0.25</td><td><mdl< td=""><td>39</td><td>2.3</td><td>11</td><td>0.28</td><td>0.0</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>2.1</td><td>11</td><td><mdl< td=""><td>0.25</td><td><mdl< td=""><td>39</td><td>2.3</td><td>11</td><td>0.28</td><td>0.0</td></mdl<></td></mdl<></td></mdl<>	2.1	11	<mdl< td=""><td>0.25</td><td><mdl< td=""><td>39</td><td>2.3</td><td>11</td><td>0.28</td><td>0.0</td></mdl<></td></mdl<>	0.25	<mdl< td=""><td>39</td><td>2.3</td><td>11</td><td>0.28</td><td>0.0</td></mdl<>	39	2.3	11	0.28	0.0
55aj25	17	8.6	12	11	465000	4.4	7.7	29	<mdl< td=""><td><mdl< td=""><td>7.5</td><td>414</td><td>324</td><td>0.25</td><td><mdl< td=""><td>2388</td><td><mdl< td=""><td><mdl< td=""><td>1.1</td><td>1.6</td><td><mdl< td=""><td>0.37</td><td><mdl< td=""><td>3.0</td><td>0.23</td><td>18</td><td>0.44</td><td>0.09</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>7.5</td><td>414</td><td>324</td><td>0.25</td><td><mdl< td=""><td>2388</td><td><mdl< td=""><td><mdl< td=""><td>1.1</td><td>1.6</td><td><mdl< td=""><td>0.37</td><td><mdl< td=""><td>3.0</td><td>0.23</td><td>18</td><td>0.44</td><td>0.09</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	7.5	414	324	0.25	<mdl< td=""><td>2388</td><td><mdl< td=""><td><mdl< td=""><td>1.1</td><td>1.6</td><td><mdl< td=""><td>0.37</td><td><mdl< td=""><td>3.0</td><td>0.23</td><td>18</td><td>0.44</td><td>0.09</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	2388	<mdl< td=""><td><mdl< td=""><td>1.1</td><td>1.6</td><td><mdl< td=""><td>0.37</td><td><mdl< td=""><td>3.0</td><td>0.23</td><td>18</td><td>0.44</td><td>0.09</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>1.1</td><td>1.6</td><td><mdl< td=""><td>0.37</td><td><mdl< td=""><td>3.0</td><td>0.23</td><td>18</td><td>0.44</td><td>0.09</td></mdl<></td></mdl<></td></mdl<>	1.1	1.6	<mdl< td=""><td>0.37</td><td><mdl< td=""><td>3.0</td><td>0.23</td><td>18</td><td>0.44</td><td>0.09</td></mdl<></td></mdl<>	0.37	<mdl< td=""><td>3.0</td><td>0.23</td><td>18</td><td>0.44</td><td>0.09</td></mdl<>	3.0	0.23	18	0.44	0.09
55aj26	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>7.4</td><td>465000</td><td>17</td><td>89</td><td>109</td><td>10</td><td><mdl< td=""><td>6.5</td><td>5408</td><td>1202</td><td><mdl< td=""><td>8.6</td><td>8720</td><td><mdl< td=""><td><mdl< td=""><td>0.26</td><td>282</td><td>0.45</td><td>1.2</td><td><mdl< td=""><td>8.3</td><td>116</td><td>24</td><td>0.23</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>7.4</td><td>465000</td><td>17</td><td>89</td><td>109</td><td>10</td><td><mdl< td=""><td>6.5</td><td>5408</td><td>1202</td><td><mdl< td=""><td>8.6</td><td>8720</td><td><mdl< td=""><td><mdl< td=""><td>0.26</td><td>282</td><td>0.45</td><td>1.2</td><td><mdl< td=""><td>8.3</td><td>116</td><td>24</td><td>0.23</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>7.4</td><td>465000</td><td>17</td><td>89</td><td>109</td><td>10</td><td><mdl< td=""><td>6.5</td><td>5408</td><td>1202</td><td><mdl< td=""><td>8.6</td><td>8720</td><td><mdl< td=""><td><mdl< td=""><td>0.26</td><td>282</td><td>0.45</td><td>1.2</td><td><mdl< td=""><td>8.3</td><td>116</td><td>24</td><td>0.23</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	7.4	465000	17	89	109	10	<mdl< td=""><td>6.5</td><td>5408</td><td>1202</td><td><mdl< td=""><td>8.6</td><td>8720</td><td><mdl< td=""><td><mdl< td=""><td>0.26</td><td>282</td><td>0.45</td><td>1.2</td><td><mdl< td=""><td>8.3</td><td>116</td><td>24</td><td>0.23</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	6.5	5408	1202	<mdl< td=""><td>8.6</td><td>8720</td><td><mdl< td=""><td><mdl< td=""><td>0.26</td><td>282</td><td>0.45</td><td>1.2</td><td><mdl< td=""><td>8.3</td><td>116</td><td>24</td><td>0.23</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	8.6	8720	<mdl< td=""><td><mdl< td=""><td>0.26</td><td>282</td><td>0.45</td><td>1.2</td><td><mdl< td=""><td>8.3</td><td>116</td><td>24</td><td>0.23</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>0.26</td><td>282</td><td>0.45</td><td>1.2</td><td><mdl< td=""><td>8.3</td><td>116</td><td>24</td><td>0.23</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	0.26	282	0.45	1.2	<mdl< td=""><td>8.3</td><td>116</td><td>24</td><td>0.23</td><td><mdl< td=""></mdl<></td></mdl<>	8.3	116	24	0.23	<mdl< td=""></mdl<>
Mean	201	2.9	8.7	37	465000	26	49	317	84	0.60	6.5	3504	1700	1.5	245	16956	0.47	0.11	1.7	61	1.9	6.0	0.03	28	11	39	1.0	0.88
S.D	527	4.0	6.9	120	0.00	23	42	499	204	0.30	0.63	4273	3992	2.5	612	46084	0.17	0.14	2.1	83	2.2	16	0.01	43	26	47	1.1	2.4
Min	1.3	0.26	3.4	1.6	465000	2.4	0.45	4.0	0.76	0.36	5.4	28	13	0.10	1.4	20	0.35	0.02	0.25	0.26	0.45	0.08	0.03	0.33	0.04	0.17	0.06	0.02
Max	2112	14	22	504	465000	91	171	2026	614	1.1	7.8	16974	19398	8.0	2194	226575	0.59	0.39	7.1	282	7.0	60	0.04	198	116	165	3.8	8.0

155.	3 mts	-																										
64511	11	cmdl	cmdl	7 9	465000	2.2	14	147	2.0	cmdl	6.0	20152	116	cmdl	6 9	569	0.20	0.21	cmdl	006	cmdl	cmdl	0.10	46	00	6.6	<mdl< th=""><th>cmdl</th></mdl<>	cmdl
64aji 64aj2	0.82	0.03	1.8	11	465000	0.50	36	35	5.0	cmdl	6.5	20132	110	cmdl	65	1272	0.29	0.21	4 1	1638	13	cmdl	cmdl	40	199	16	0.09	cmdl
64512	<mdl< th=""><th>0.03</th><th>z.o</th><th><mdl< th=""><th>405000</th><th>0.50</th><th>3.0</th><th>111</th><th>4.0</th><th><mdl< th=""><th>7.0</th><th>5447</th><th>690</th><th><mdl< th=""><th>1270</th><th>4109</th><th><mdl< th=""><th>0.04</th><th>4.1 <mdl< th=""><th>20</th><th>0.80</th><th>1 1</th><th>0.12</th><th>19</th><th>9.1</th><th>27</th><th>0.03</th><th>cmdl</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	0.03	z.o	<mdl< th=""><th>405000</th><th>0.50</th><th>3.0</th><th>111</th><th>4.0</th><th><mdl< th=""><th>7.0</th><th>5447</th><th>690</th><th><mdl< th=""><th>1270</th><th>4109</th><th><mdl< th=""><th>0.04</th><th>4.1 <mdl< th=""><th>20</th><th>0.80</th><th>1 1</th><th>0.12</th><th>19</th><th>9.1</th><th>27</th><th>0.03</th><th>cmdl</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	405000	0.50	3.0	111	4.0	<mdl< th=""><th>7.0</th><th>5447</th><th>690</th><th><mdl< th=""><th>1270</th><th>4109</th><th><mdl< th=""><th>0.04</th><th>4.1 <mdl< th=""><th>20</th><th>0.80</th><th>1 1</th><th>0.12</th><th>19</th><th>9.1</th><th>27</th><th>0.03</th><th>cmdl</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	7.0	5447	690	<mdl< th=""><th>1270</th><th>4109</th><th><mdl< th=""><th>0.04</th><th>4.1 <mdl< th=""><th>20</th><th>0.80</th><th>1 1</th><th>0.12</th><th>19</th><th>9.1</th><th>27</th><th>0.03</th><th>cmdl</th></mdl<></th></mdl<></th></mdl<>	1270	4109	<mdl< th=""><th>0.04</th><th>4.1 <mdl< th=""><th>20</th><th>0.80</th><th>1 1</th><th>0.12</th><th>19</th><th>9.1</th><th>27</th><th>0.03</th><th>cmdl</th></mdl<></th></mdl<>	0.04	4.1 <mdl< th=""><th>20</th><th>0.80</th><th>1 1</th><th>0.12</th><th>19</th><th>9.1</th><th>27</th><th>0.03</th><th>cmdl</th></mdl<>	20	0.80	1 1	0.12	19	9.1	27	0.03	cmdl
64aj3	cmdl	0.55	<mdl< th=""><th>cmdl</th><th>405000</th><th>12</th><th>20</th><th>135</th><th>10</th><th>0.17</th><th>5.7</th><th>2968</th><th>564</th><th>0.02</th><th>19</th><th>3256</th><th><mdl< th=""><th>0.02</th><th>10</th><th>50</th><th>3.1</th><th>cmdl</th><th>cmdl</th><th>10</th><th>1.5</th><th>59</th><th>0.32</th><th>cmdl</th></mdl<></th></mdl<>	cmdl	405000	12	20	135	10	0.17	5.7	2968	564	0.02	19	3256	<mdl< th=""><th>0.02</th><th>10</th><th>50</th><th>3.1</th><th>cmdl</th><th>cmdl</th><th>10</th><th>1.5</th><th>59</th><th>0.32</th><th>cmdl</th></mdl<>	0.02	10	50	3.1	cmdl	cmdl	10	1.5	59	0.32	cmdl
64aj5	cmdl	cmdl	cmdl	cmdl	465000	59	10	110	12	<mdl< th=""><th>5.7</th><th>2002</th><th>387</th><th><mdl< th=""><th>0.3</th><th>5064</th><th>cmdl</th><th>0.01</th><th>cmdl</th><th>7.6</th><th>1.5</th><th>cmdl</th><th>cmdl</th><th>21</th><th>0.56</th><th>32</th><th>0.50</th><th>cmdl</th></mdl<></th></mdl<>	5.7	2002	387	<mdl< th=""><th>0.3</th><th>5064</th><th>cmdl</th><th>0.01</th><th>cmdl</th><th>7.6</th><th>1.5</th><th>cmdl</th><th>cmdl</th><th>21</th><th>0.56</th><th>32</th><th>0.50</th><th>cmdl</th></mdl<>	0.3	5064	cmdl	0.01	cmdl	7.6	1.5	cmdl	cmdl	21	0.56	32	0.50	cmdl
64aj6	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>0.80</th><th>465000</th><th>17</th><th>15</th><th>80</th><th><mdl< th=""><th><mdl< th=""><th>5.4</th><th>7303</th><th>67</th><th><mdl< th=""><th>3.0</th><th>272</th><th>0.23</th><th><mdl< th=""><th><mdl< th=""><th>149</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>21</th><th>14</th><th>28</th><th>0.13</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>0.80</th><th>465000</th><th>17</th><th>15</th><th>80</th><th><mdl< th=""><th><mdl< th=""><th>5.4</th><th>7303</th><th>67</th><th><mdl< th=""><th>3.0</th><th>272</th><th>0.23</th><th><mdl< th=""><th><mdl< th=""><th>149</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>21</th><th>14</th><th>28</th><th>0.13</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>0.80</th><th>465000</th><th>17</th><th>15</th><th>80</th><th><mdl< th=""><th><mdl< th=""><th>5.4</th><th>7303</th><th>67</th><th><mdl< th=""><th>3.0</th><th>272</th><th>0.23</th><th><mdl< th=""><th><mdl< th=""><th>149</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>21</th><th>14</th><th>28</th><th>0.13</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	0.80	465000	17	15	80	<mdl< th=""><th><mdl< th=""><th>5.4</th><th>7303</th><th>67</th><th><mdl< th=""><th>3.0</th><th>272</th><th>0.23</th><th><mdl< th=""><th><mdl< th=""><th>149</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>21</th><th>14</th><th>28</th><th>0.13</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>5.4</th><th>7303</th><th>67</th><th><mdl< th=""><th>3.0</th><th>272</th><th>0.23</th><th><mdl< th=""><th><mdl< th=""><th>149</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>21</th><th>14</th><th>28</th><th>0.13</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	5.4	7303	67	<mdl< th=""><th>3.0</th><th>272</th><th>0.23</th><th><mdl< th=""><th><mdl< th=""><th>149</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>21</th><th>14</th><th>28</th><th>0.13</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	3.0	272	0.23	<mdl< th=""><th><mdl< th=""><th>149</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>21</th><th>14</th><th>28</th><th>0.13</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>149</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>21</th><th>14</th><th>28</th><th>0.13</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	149	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>21</th><th>14</th><th>28</th><th>0.13</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>21</th><th>14</th><th>28</th><th>0.13</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>21</th><th>14</th><th>28</th><th>0.13</th><th><mdl< th=""></mdl<></th></mdl<>	21	14	28	0.13	<mdl< th=""></mdl<>
64ai7	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>465000</th><th>5.7</th><th>66</th><th>1080</th><th>316</th><th>11</th><th>73</th><th>9473</th><th>56</th><th><mdl< th=""><th>6.6</th><th>521</th><th>0.29</th><th>2.7</th><th>46</th><th>74</th><th>1.5</th><th><mdl< th=""><th>0.09</th><th>34</th><th>3.0</th><th>62</th><th>0.33</th><th>0.01</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>465000</th><th>5.7</th><th>66</th><th>1080</th><th>316</th><th>11</th><th>73</th><th>9473</th><th>56</th><th><mdl< th=""><th>6.6</th><th>521</th><th>0.29</th><th>2.7</th><th>46</th><th>74</th><th>1.5</th><th><mdl< th=""><th>0.09</th><th>34</th><th>3.0</th><th>62</th><th>0.33</th><th>0.01</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>465000</th><th>5.7</th><th>66</th><th>1080</th><th>316</th><th>11</th><th>73</th><th>9473</th><th>56</th><th><mdl< th=""><th>6.6</th><th>521</th><th>0.29</th><th>2.7</th><th>46</th><th>74</th><th>1.5</th><th><mdl< th=""><th>0.09</th><th>34</th><th>3.0</th><th>62</th><th>0.33</th><th>0.01</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>465000</th><th>5.7</th><th>66</th><th>1080</th><th>316</th><th>11</th><th>73</th><th>9473</th><th>56</th><th><mdl< th=""><th>6.6</th><th>521</th><th>0.29</th><th>2.7</th><th>46</th><th>74</th><th>1.5</th><th><mdl< th=""><th>0.09</th><th>34</th><th>3.0</th><th>62</th><th>0.33</th><th>0.01</th></mdl<></th></mdl<></th></mdl<>	465000	5.7	66	1080	316	11	73	9473	56	<mdl< th=""><th>6.6</th><th>521</th><th>0.29</th><th>2.7</th><th>46</th><th>74</th><th>1.5</th><th><mdl< th=""><th>0.09</th><th>34</th><th>3.0</th><th>62</th><th>0.33</th><th>0.01</th></mdl<></th></mdl<>	6.6	521	0.29	2.7	46	74	1.5	<mdl< th=""><th>0.09</th><th>34</th><th>3.0</th><th>62</th><th>0.33</th><th>0.01</th></mdl<>	0.09	34	3.0	62	0.33	0.01
64ai8	1.9	1.4	<mdl< th=""><th>1.7</th><th>465000</th><th>26</th><th>68</th><th>202</th><th>21</th><th>0.56</th><th>7.1</th><th>6855</th><th>147</th><th><mdl< th=""><th>90</th><th>858</th><th><mdl< th=""><th>0.05</th><th>0.48</th><th>128</th><th>0.86</th><th>0.35</th><th>0.05</th><th>27</th><th>10</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	1.7	465000	26	68	202	21	0.56	7.1	6855	147	<mdl< th=""><th>90</th><th>858</th><th><mdl< th=""><th>0.05</th><th>0.48</th><th>128</th><th>0.86</th><th>0.35</th><th>0.05</th><th>27</th><th>10</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	90	858	<mdl< th=""><th>0.05</th><th>0.48</th><th>128</th><th>0.86</th><th>0.35</th><th>0.05</th><th>27</th><th>10</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	0.05	0.48	128	0.86	0.35	0.05	27	10	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
64ai9	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>465000</th><th>2.8</th><th>11</th><th>73</th><th>2.1</th><th><mdl< th=""><th>6.3</th><th>2653</th><th>119</th><th><mdl< th=""><th>1.2</th><th>1026</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>19</th><th>1.6</th><th><mdl< th=""><th><mdl< th=""><th>16</th><th>1.9</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>465000</th><th>2.8</th><th>11</th><th>73</th><th>2.1</th><th><mdl< th=""><th>6.3</th><th>2653</th><th>119</th><th><mdl< th=""><th>1.2</th><th>1026</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>19</th><th>1.6</th><th><mdl< th=""><th><mdl< th=""><th>16</th><th>1.9</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>465000</th><th>2.8</th><th>11</th><th>73</th><th>2.1</th><th><mdl< th=""><th>6.3</th><th>2653</th><th>119</th><th><mdl< th=""><th>1.2</th><th>1026</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>19</th><th>1.6</th><th><mdl< th=""><th><mdl< th=""><th>16</th><th>1.9</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>465000</th><th>2.8</th><th>11</th><th>73</th><th>2.1</th><th><mdl< th=""><th>6.3</th><th>2653</th><th>119</th><th><mdl< th=""><th>1.2</th><th>1026</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>19</th><th>1.6</th><th><mdl< th=""><th><mdl< th=""><th>16</th><th>1.9</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	465000	2.8	11	73	2.1	<mdl< th=""><th>6.3</th><th>2653</th><th>119</th><th><mdl< th=""><th>1.2</th><th>1026</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>19</th><th>1.6</th><th><mdl< th=""><th><mdl< th=""><th>16</th><th>1.9</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	6.3	2653	119	<mdl< th=""><th>1.2</th><th>1026</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>19</th><th>1.6</th><th><mdl< th=""><th><mdl< th=""><th>16</th><th>1.9</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	1.2	1026	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>19</th><th>1.6</th><th><mdl< th=""><th><mdl< th=""><th>16</th><th>1.9</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>19</th><th>1.6</th><th><mdl< th=""><th><mdl< th=""><th>16</th><th>1.9</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>19</th><th>1.6</th><th><mdl< th=""><th><mdl< th=""><th>16</th><th>1.9</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	19	1.6	<mdl< th=""><th><mdl< th=""><th>16</th><th>1.9</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>16</th><th>1.9</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	16	1.9	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
64ai10	9.4	4.3	<mdl< th=""><th>4.7</th><th>465000</th><th>9.0</th><th>18</th><th>251</th><th>16</th><th>2.2</th><th>6.1</th><th>17668</th><th>39</th><th>0.03</th><th>173</th><th>299</th><th><mdl< th=""><th>0.09</th><th>1.2</th><th>412</th><th>1.0</th><th>0.72</th><th>0.07</th><th>57</th><th>44</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	4.7	465000	9.0	18	251	16	2.2	6.1	17668	39	0.03	173	299	<mdl< th=""><th>0.09</th><th>1.2</th><th>412</th><th>1.0</th><th>0.72</th><th>0.07</th><th>57</th><th>44</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	0.09	1.2	412	1.0	0.72	0.07	57	44	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
64ai11	1.7	0.10	<mdl< th=""><th>5.66</th><th>465000</th><th>16</th><th>58</th><th>166</th><th>4.4</th><th><mdl< th=""><th>5.5</th><th>6092</th><th>35</th><th><mdl< th=""><th>114</th><th>99</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>46</th><th>1.0</th><th>0.22</th><th><mdl< th=""><th>37</th><th>4.5</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	5.66	465000	16	58	166	4.4	<mdl< th=""><th>5.5</th><th>6092</th><th>35</th><th><mdl< th=""><th>114</th><th>99</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>46</th><th>1.0</th><th>0.22</th><th><mdl< th=""><th>37</th><th>4.5</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	5.5	6092	35	<mdl< th=""><th>114</th><th>99</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>46</th><th>1.0</th><th>0.22</th><th><mdl< th=""><th>37</th><th>4.5</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	114	99	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>46</th><th>1.0</th><th>0.22</th><th><mdl< th=""><th>37</th><th>4.5</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>46</th><th>1.0</th><th>0.22</th><th><mdl< th=""><th>37</th><th>4.5</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>46</th><th>1.0</th><th>0.22</th><th><mdl< th=""><th>37</th><th>4.5</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	46	1.0	0.22	<mdl< th=""><th>37</th><th>4.5</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	37	4.5	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
64ai12	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>465000</th><th>6.5</th><th>6.2</th><th>98</th><th><mdl< th=""><th><mdl< th=""><th>7.1</th><th>7986</th><th>281</th><th><mdl< th=""><th>26</th><th>2215</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>107</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>15</th><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>465000</th><th>6.5</th><th>6.2</th><th>98</th><th><mdl< th=""><th><mdl< th=""><th>7.1</th><th>7986</th><th>281</th><th><mdl< th=""><th>26</th><th>2215</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>107</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>15</th><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>465000</th><th>6.5</th><th>6.2</th><th>98</th><th><mdl< th=""><th><mdl< th=""><th>7.1</th><th>7986</th><th>281</th><th><mdl< th=""><th>26</th><th>2215</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>107</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>15</th><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>465000</th><th>6.5</th><th>6.2</th><th>98</th><th><mdl< th=""><th><mdl< th=""><th>7.1</th><th>7986</th><th>281</th><th><mdl< th=""><th>26</th><th>2215</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>107</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>15</th><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	465000	6.5	6.2	98	<mdl< th=""><th><mdl< th=""><th>7.1</th><th>7986</th><th>281</th><th><mdl< th=""><th>26</th><th>2215</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>107</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>15</th><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>7.1</th><th>7986</th><th>281</th><th><mdl< th=""><th>26</th><th>2215</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>107</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>15</th><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	7.1	7986	281	<mdl< th=""><th>26</th><th>2215</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>107</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>15</th><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	26	2215	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>107</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>15</th><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>107</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>15</th><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>107</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>15</th><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	107	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>15</th><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>15</th><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>15</th><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	15	12	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
64aj13	1.4	0.27	<mdl< th=""><th>2.2</th><th>465000</th><th>2.9</th><th>4.2</th><th>320</th><th>11</th><th><mdl< th=""><th>6.9</th><th>16420</th><th>8187</th><th><mdl< th=""><th>30</th><th>49286</th><th>3.2</th><th>0.03</th><th><mdl< th=""><th>456</th><th>4.1</th><th>0.34</th><th><mdl< th=""><th>123</th><th>42</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	2.2	465000	2.9	4.2	320	11	<mdl< th=""><th>6.9</th><th>16420</th><th>8187</th><th><mdl< th=""><th>30</th><th>49286</th><th>3.2</th><th>0.03</th><th><mdl< th=""><th>456</th><th>4.1</th><th>0.34</th><th><mdl< th=""><th>123</th><th>42</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	6.9	16420	8187	<mdl< th=""><th>30</th><th>49286</th><th>3.2</th><th>0.03</th><th><mdl< th=""><th>456</th><th>4.1</th><th>0.34</th><th><mdl< th=""><th>123</th><th>42</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	30	49286	3.2	0.03	<mdl< th=""><th>456</th><th>4.1</th><th>0.34</th><th><mdl< th=""><th>123</th><th>42</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	456	4.1	0.34	<mdl< th=""><th>123</th><th>42</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	123	42	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
64aj14	3.4	0.31	<mdl< th=""><th>10</th><th>465000</th><th>0.29</th><th>0.95</th><th>40</th><th>0.89</th><th><mdl< th=""><th>6.4</th><th>3576</th><th>45</th><th><mdl< th=""><th>1.5</th><th>58</th><th><mdl< th=""><th><mdl< th=""><th>0.32</th><th>12</th><th><mdl< th=""><th>0.12</th><th><mdl< th=""><th>4.7</th><th>0.85</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	10	465000	0.29	0.95	40	0.89	<mdl< th=""><th>6.4</th><th>3576</th><th>45</th><th><mdl< th=""><th>1.5</th><th>58</th><th><mdl< th=""><th><mdl< th=""><th>0.32</th><th>12</th><th><mdl< th=""><th>0.12</th><th><mdl< th=""><th>4.7</th><th>0.85</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	6.4	3576	45	<mdl< th=""><th>1.5</th><th>58</th><th><mdl< th=""><th><mdl< th=""><th>0.32</th><th>12</th><th><mdl< th=""><th>0.12</th><th><mdl< th=""><th>4.7</th><th>0.85</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	1.5	58	<mdl< th=""><th><mdl< th=""><th>0.32</th><th>12</th><th><mdl< th=""><th>0.12</th><th><mdl< th=""><th>4.7</th><th>0.85</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>0.32</th><th>12</th><th><mdl< th=""><th>0.12</th><th><mdl< th=""><th>4.7</th><th>0.85</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	0.32	12	<mdl< th=""><th>0.12</th><th><mdl< th=""><th>4.7</th><th>0.85</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	0.12	<mdl< th=""><th>4.7</th><th>0.85</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	4.7	0.85	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
64aj15	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>465000</th><th>2.3</th><th>14</th><th>90</th><th><mdl< th=""><th><mdl< th=""><th>6.6</th><th>8049</th><th>301</th><th><mdl< th=""><th>2.2</th><th>4694</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>22</th><th>3.5</th><th><mdl< th=""><th><mdl< th=""><th>10</th><th>1.4</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>465000</th><th>2.3</th><th>14</th><th>90</th><th><mdl< th=""><th><mdl< th=""><th>6.6</th><th>8049</th><th>301</th><th><mdl< th=""><th>2.2</th><th>4694</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>22</th><th>3.5</th><th><mdl< th=""><th><mdl< th=""><th>10</th><th>1.4</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>465000</th><th>2.3</th><th>14</th><th>90</th><th><mdl< th=""><th><mdl< th=""><th>6.6</th><th>8049</th><th>301</th><th><mdl< th=""><th>2.2</th><th>4694</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>22</th><th>3.5</th><th><mdl< th=""><th><mdl< th=""><th>10</th><th>1.4</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>465000</th><th>2.3</th><th>14</th><th>90</th><th><mdl< th=""><th><mdl< th=""><th>6.6</th><th>8049</th><th>301</th><th><mdl< th=""><th>2.2</th><th>4694</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>22</th><th>3.5</th><th><mdl< th=""><th><mdl< th=""><th>10</th><th>1.4</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	465000	2.3	14	90	<mdl< th=""><th><mdl< th=""><th>6.6</th><th>8049</th><th>301</th><th><mdl< th=""><th>2.2</th><th>4694</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>22</th><th>3.5</th><th><mdl< th=""><th><mdl< th=""><th>10</th><th>1.4</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>6.6</th><th>8049</th><th>301</th><th><mdl< th=""><th>2.2</th><th>4694</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>22</th><th>3.5</th><th><mdl< th=""><th><mdl< th=""><th>10</th><th>1.4</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	6.6	8049	301	<mdl< th=""><th>2.2</th><th>4694</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>22</th><th>3.5</th><th><mdl< th=""><th><mdl< th=""><th>10</th><th>1.4</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	2.2	4694	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>22</th><th>3.5</th><th><mdl< th=""><th><mdl< th=""><th>10</th><th>1.4</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>22</th><th>3.5</th><th><mdl< th=""><th><mdl< th=""><th>10</th><th>1.4</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>22</th><th>3.5</th><th><mdl< th=""><th><mdl< th=""><th>10</th><th>1.4</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	22	3.5	<mdl< th=""><th><mdl< th=""><th>10</th><th>1.4</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>10</th><th>1.4</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	10	1.4	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
64aj16	1.4	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>465000</th><th>0.71</th><th>1.9</th><th>44</th><th><mdl< th=""><th><mdl< th=""><th>5.0</th><th>4499</th><th>85</th><th><mdl< th=""><th>0.8</th><th>949</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>8.5</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>261</th><th>0.47</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>465000</th><th>0.71</th><th>1.9</th><th>44</th><th><mdl< th=""><th><mdl< th=""><th>5.0</th><th>4499</th><th>85</th><th><mdl< th=""><th>0.8</th><th>949</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>8.5</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>261</th><th>0.47</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>465000</th><th>0.71</th><th>1.9</th><th>44</th><th><mdl< th=""><th><mdl< th=""><th>5.0</th><th>4499</th><th>85</th><th><mdl< th=""><th>0.8</th><th>949</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>8.5</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>261</th><th>0.47</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	465000	0.71	1.9	44	<mdl< th=""><th><mdl< th=""><th>5.0</th><th>4499</th><th>85</th><th><mdl< th=""><th>0.8</th><th>949</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>8.5</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>261</th><th>0.47</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>5.0</th><th>4499</th><th>85</th><th><mdl< th=""><th>0.8</th><th>949</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>8.5</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>261</th><th>0.47</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	5.0	4499	85	<mdl< th=""><th>0.8</th><th>949</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>8.5</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>261</th><th>0.47</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	0.8	949	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>8.5</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>261</th><th>0.47</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>8.5</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>261</th><th>0.47</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>8.5</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>261</th><th>0.47</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	8.5	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>261</th><th>0.47</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>261</th><th>0.47</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>261</th><th>0.47</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	261	0.47	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
64aj17	1.6	<mdl< th=""><th><mdl< th=""><th>0.71</th><th>465000</th><th>0.56</th><th>4.5</th><th>552</th><th>1.6</th><th><mdl< th=""><th>6.3</th><th>16173</th><th>3598</th><th><mdl< th=""><th>16</th><th>27596</th><th><mdl< th=""><th>0.02</th><th>0.47</th><th>131</th><th>7.7</th><th><mdl< th=""><th><mdl< th=""><th>73</th><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>0.71</th><th>465000</th><th>0.56</th><th>4.5</th><th>552</th><th>1.6</th><th><mdl< th=""><th>6.3</th><th>16173</th><th>3598</th><th><mdl< th=""><th>16</th><th>27596</th><th><mdl< th=""><th>0.02</th><th>0.47</th><th>131</th><th>7.7</th><th><mdl< th=""><th><mdl< th=""><th>73</th><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	0.71	465000	0.56	4.5	552	1.6	<mdl< th=""><th>6.3</th><th>16173</th><th>3598</th><th><mdl< th=""><th>16</th><th>27596</th><th><mdl< th=""><th>0.02</th><th>0.47</th><th>131</th><th>7.7</th><th><mdl< th=""><th><mdl< th=""><th>73</th><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	6.3	16173	3598	<mdl< th=""><th>16</th><th>27596</th><th><mdl< th=""><th>0.02</th><th>0.47</th><th>131</th><th>7.7</th><th><mdl< th=""><th><mdl< th=""><th>73</th><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	16	27596	<mdl< th=""><th>0.02</th><th>0.47</th><th>131</th><th>7.7</th><th><mdl< th=""><th><mdl< th=""><th>73</th><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	0.02	0.47	131	7.7	<mdl< th=""><th><mdl< th=""><th>73</th><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>73</th><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	73	12	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
64aj18	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>465000</th><th>2.7</th><th>18</th><th>32</th><th>0.66</th><th><mdl< th=""><th>6.5</th><th>1269</th><th>79</th><th><mdl< th=""><th>1.3</th><th>887</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>0.77</th><th>4.6</th><th><mdl< th=""><th><mdl< th=""><th>1.2</th><th>0.15</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>465000</th><th>2.7</th><th>18</th><th>32</th><th>0.66</th><th><mdl< th=""><th>6.5</th><th>1269</th><th>79</th><th><mdl< th=""><th>1.3</th><th>887</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>0.77</th><th>4.6</th><th><mdl< th=""><th><mdl< th=""><th>1.2</th><th>0.15</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>465000</th><th>2.7</th><th>18</th><th>32</th><th>0.66</th><th><mdl< th=""><th>6.5</th><th>1269</th><th>79</th><th><mdl< th=""><th>1.3</th><th>887</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>0.77</th><th>4.6</th><th><mdl< th=""><th><mdl< th=""><th>1.2</th><th>0.15</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>465000</th><th>2.7</th><th>18</th><th>32</th><th>0.66</th><th><mdl< th=""><th>6.5</th><th>1269</th><th>79</th><th><mdl< th=""><th>1.3</th><th>887</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>0.77</th><th>4.6</th><th><mdl< th=""><th><mdl< th=""><th>1.2</th><th>0.15</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	465000	2.7	18	32	0.66	<mdl< th=""><th>6.5</th><th>1269</th><th>79</th><th><mdl< th=""><th>1.3</th><th>887</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>0.77</th><th>4.6</th><th><mdl< th=""><th><mdl< th=""><th>1.2</th><th>0.15</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	6.5	1269	79	<mdl< th=""><th>1.3</th><th>887</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>0.77</th><th>4.6</th><th><mdl< th=""><th><mdl< th=""><th>1.2</th><th>0.15</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	1.3	887	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>0.77</th><th>4.6</th><th><mdl< th=""><th><mdl< th=""><th>1.2</th><th>0.15</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>0.77</th><th>4.6</th><th><mdl< th=""><th><mdl< th=""><th>1.2</th><th>0.15</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>0.77</th><th>4.6</th><th><mdl< th=""><th><mdl< th=""><th>1.2</th><th>0.15</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	0.77	4.6	<mdl< th=""><th><mdl< th=""><th>1.2</th><th>0.15</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>1.2</th><th>0.15</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	1.2	0.15	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
64a j 19	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>7.2</th><th>465000</th><th>0.31</th><th>5.3</th><th>85</th><th>3.6</th><th><mdl< th=""><th>7.1</th><th>24172</th><th>566</th><th><mdl< th=""><th>36</th><th>2735</th><th>0.66</th><th>0.04</th><th><mdl< th=""><th>1194</th><th>1.3</th><th><mdl< th=""><th><mdl< th=""><th>24</th><th>158</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>7.2</th><th>465000</th><th>0.31</th><th>5.3</th><th>85</th><th>3.6</th><th><mdl< th=""><th>7.1</th><th>24172</th><th>566</th><th><mdl< th=""><th>36</th><th>2735</th><th>0.66</th><th>0.04</th><th><mdl< th=""><th>1194</th><th>1.3</th><th><mdl< th=""><th><mdl< th=""><th>24</th><th>158</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>7.2</th><th>465000</th><th>0.31</th><th>5.3</th><th>85</th><th>3.6</th><th><mdl< th=""><th>7.1</th><th>24172</th><th>566</th><th><mdl< th=""><th>36</th><th>2735</th><th>0.66</th><th>0.04</th><th><mdl< th=""><th>1194</th><th>1.3</th><th><mdl< th=""><th><mdl< th=""><th>24</th><th>158</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	7.2	465000	0.31	5.3	85	3.6	<mdl< th=""><th>7.1</th><th>24172</th><th>566</th><th><mdl< th=""><th>36</th><th>2735</th><th>0.66</th><th>0.04</th><th><mdl< th=""><th>1194</th><th>1.3</th><th><mdl< th=""><th><mdl< th=""><th>24</th><th>158</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	7.1	24172	566	<mdl< th=""><th>36</th><th>2735</th><th>0.66</th><th>0.04</th><th><mdl< th=""><th>1194</th><th>1.3</th><th><mdl< th=""><th><mdl< th=""><th>24</th><th>158</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	36	2735	0.66	0.04	<mdl< th=""><th>1194</th><th>1.3</th><th><mdl< th=""><th><mdl< th=""><th>24</th><th>158</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	1194	1.3	<mdl< th=""><th><mdl< th=""><th>24</th><th>158</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>24</th><th>158</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	24	158	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
64a j 20	<mdl< th=""><th>0.07</th><th><mdl< th=""><th><mdl< th=""><th>465000</th><th>85</th><th>46</th><th>308</th><th>3.8</th><th><mdl< th=""><th>5.2</th><th>2423</th><th>1652</th><th><mdl< th=""><th>4.2</th><th>16468</th><th>0.88</th><th>0.03</th><th><mdl< th=""><th>41</th><th>30</th><th><mdl< th=""><th><mdl< th=""><th>36</th><th>1.7</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	0.07	<mdl< th=""><th><mdl< th=""><th>465000</th><th>85</th><th>46</th><th>308</th><th>3.8</th><th><mdl< th=""><th>5.2</th><th>2423</th><th>1652</th><th><mdl< th=""><th>4.2</th><th>16468</th><th>0.88</th><th>0.03</th><th><mdl< th=""><th>41</th><th>30</th><th><mdl< th=""><th><mdl< th=""><th>36</th><th>1.7</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>465000</th><th>85</th><th>46</th><th>308</th><th>3.8</th><th><mdl< th=""><th>5.2</th><th>2423</th><th>1652</th><th><mdl< th=""><th>4.2</th><th>16468</th><th>0.88</th><th>0.03</th><th><mdl< th=""><th>41</th><th>30</th><th><mdl< th=""><th><mdl< th=""><th>36</th><th>1.7</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	465000	85	46	308	3.8	<mdl< th=""><th>5.2</th><th>2423</th><th>1652</th><th><mdl< th=""><th>4.2</th><th>16468</th><th>0.88</th><th>0.03</th><th><mdl< th=""><th>41</th><th>30</th><th><mdl< th=""><th><mdl< th=""><th>36</th><th>1.7</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	5.2	2423	1652	<mdl< th=""><th>4.2</th><th>16468</th><th>0.88</th><th>0.03</th><th><mdl< th=""><th>41</th><th>30</th><th><mdl< th=""><th><mdl< th=""><th>36</th><th>1.7</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	4.2	16468	0.88	0.03	<mdl< th=""><th>41</th><th>30</th><th><mdl< th=""><th><mdl< th=""><th>36</th><th>1.7</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	41	30	<mdl< th=""><th><mdl< th=""><th>36</th><th>1.7</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>36</th><th>1.7</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	36	1.7	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
64a j 21	1.5	0.05	<mdl< th=""><th>2.6</th><th>465000</th><th>15</th><th>56</th><th>275</th><th>5.9</th><th><mdl< th=""><th>6.5</th><th>18998</th><th>113</th><th><mdl< th=""><th>12</th><th>1063</th><th>0.38</th><th>0.08</th><th>1.0</th><th>474</th><th>1.3</th><th><mdl< th=""><th><mdl< th=""><th>75</th><th>46</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	2.6	465000	15	56	275	5.9	<mdl< th=""><th>6.5</th><th>18998</th><th>113</th><th><mdl< th=""><th>12</th><th>1063</th><th>0.38</th><th>0.08</th><th>1.0</th><th>474</th><th>1.3</th><th><mdl< th=""><th><mdl< th=""><th>75</th><th>46</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	6.5	18998	113	<mdl< th=""><th>12</th><th>1063</th><th>0.38</th><th>0.08</th><th>1.0</th><th>474</th><th>1.3</th><th><mdl< th=""><th><mdl< th=""><th>75</th><th>46</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	12	1063	0.38	0.08	1.0	474	1.3	<mdl< th=""><th><mdl< th=""><th>75</th><th>46</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>75</th><th>46</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	75	46	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
Mean	2.4	0.72	1.8	4.9	465000	10	22	202	24	1.0	6.3	9809	823	0.03	94	5871	0.81	0.27	7.9	285	4.8	0.47	0.09	44	31	33	0.33	0.01
S.D	2.5	1.3	-	3.6	0.00	19	23	238	75	0.90	0.71	7389	1871	0.00	296	11901	1.0	0.73	16	451	7.4	0.36	0.03	58	54	21	0.30	-
Min	0.82	0.03	1.8	0.71	465000	0.29	0.95	32	0.66	0.17	5.0	1269	35	0.02	0.29	58	0.23	0.01	0.32	0.77	0.86	0.12	0.05	1.2	0.15	6.6	0.09	0.01
Max	9.4	4.3	1.8	10.5	465000	85	68	1080	316	2.2	7.3	24172	8187	0.03	1370	49286	3.2	2.7	46	1638	30	1.1	0.13	261	192	62	0.90	0.01

Ti(ppm) V(ppm) Cr(ppm) Mn(ppm) Fe(ppm) Co(ppm) Ni(ppm) Cu(ppm) Zn(ppm) Ga(ppm) Ga(ppm) As(ppm) Se(ppm) Nb(ppm) Mo(ppm) Ag(ppm) Cd(ppm) In(ppm) Sb(ppm) Te(ppm) W(ppm) Re(ppm) Au(ppm) Tl(ppm) Pb(ppm) Bi(ppm) U(ppm)

THR	CD 920				<u>, , , , , , , , , , , , , , , , , , , </u>																							
144	.5 mts	_																										
72aj1	1.3	0.38	2.8	15	465000	18	40	647	29	0.33	6.2	17241	23	<mdl< th=""><th>185</th><th>327</th><th>2.1</th><th>0.16</th><th>1.4</th><th>3402</th><th>1.6</th><th>0.35</th><th>0.06</th><th>40</th><th>710</th><th>161</th><th>1.1</th><th>0.08</th></mdl<>	185	327	2.1	0.16	1.4	3402	1.6	0.35	0.06	40	710	161	1.1	0.08
72aj2	2.3	0.38	4.4	2.7	465000	55	135	143	8.1	0.61	5.0	3236	35	<mdl< td=""><td>556</td><td>45</td><td>2.4</td><td>0.05</td><td>0.24</td><td>2574</td><td><mdl< td=""><td>0.15</td><td>0.07</td><td>11</td><td>478</td><td>92</td><td>0.16</td><td>0.02</td></mdl<></td></mdl<>	556	45	2.4	0.05	0.24	2574	<mdl< td=""><td>0.15</td><td>0.07</td><td>11</td><td>478</td><td>92</td><td>0.16</td><td>0.02</td></mdl<>	0.15	0.07	11	478	92	0.16	0.02
72aj3	5.0	2.7	<mdl< td=""><td>21</td><td>465000</td><td>18</td><td>42</td><td>589</td><td>53</td><td>1.7</td><td>5.4</td><td>17621</td><td>28</td><td><mdl< td=""><td>159</td><td>286</td><td>2.2</td><td>0.18</td><td>1.8</td><td>3147</td><td>1.4</td><td>0.36</td><td>0.05</td><td>36</td><td>696</td><td>137</td><td>1.3</td><td>0.05</td></mdl<></td></mdl<>	21	465000	18	42	589	53	1.7	5.4	17621	28	<mdl< td=""><td>159</td><td>286</td><td>2.2</td><td>0.18</td><td>1.8</td><td>3147</td><td>1.4</td><td>0.36</td><td>0.05</td><td>36</td><td>696</td><td>137</td><td>1.3</td><td>0.05</td></mdl<>	159	286	2.2	0.18	1.8	3147	1.4	0.36	0.05	36	696	137	1.3	0.05
72aj4	6.1	3.6	6.5	14	465000	11	31	492	19	2.1	5.9	14383	22	<mdl< td=""><td>374</td><td>245</td><td>2.2</td><td>0.17</td><td>0.85</td><td>3628</td><td>1.3</td><td>0.17</td><td><mdl< td=""><td>30</td><td>587</td><td>124</td><td>1.3</td><td>0.04</td></mdl<></td></mdl<>	374	245	2.2	0.17	0.85	3628	1.3	0.17	<mdl< td=""><td>30</td><td>587</td><td>124</td><td>1.3</td><td>0.04</td></mdl<>	30	587	124	1.3	0.04
72aj5	2.8	0.63	3.7	2.2	465000	47	144	154	12	0.69	6.4	3400	38	<mdl< td=""><td>584</td><td>50</td><td>2.7</td><td>0.05</td><td>0.55</td><td>2757</td><td>0.75</td><td>0.14</td><td>0.05</td><td>10</td><td>447</td><td>99</td><td>0.24</td><td>0.03</td></mdl<>	584	50	2.7	0.05	0.55	2757	0.75	0.14	0.05	10	447	99	0.24	0.03
72a j 6	1095	35	36	48	465000	190	290	633	270	26	6.3	3411	145	5.0	153	109	2.6	0.33	2.8	3081	1.3	61	0.05	18	464	31	1.3	1.6
72aj7	1298	2.5	3.8	46	465000	205	326	633	164	0.95	5.3	5289	368	6.8	137	107	2.6	0.45	0.23	2706	2.3	111	0.03	20	420	40	1.3	1.1
72aj8	155	1.8	15	26	465000	113	171	229	17	1.6	5.8	2781	34	0.82	279	94	1.4	0.05	0.42	4813	1.2	16	0.10	16	511	38	0.40	1.0
72a j9	363	6.5	17	30	465000	10	35	237	15	2.9	6.0	3340	34	1.9	390	107	1.3	0.07	0.60	4199	0.84	19	0.13	16	528	41	0.36	3.5
72aj10	294	1.6	8.8	88	465000	6.5	23	255	14	2.6	6.6	3644	40	1.7	470	113	1.4	0.07	<mdl< td=""><td>3831</td><td>1.4</td><td>18</td><td>0.15</td><td>17</td><td>589</td><td>45</td><td>0.26</td><td>0.93</td></mdl<>	3831	1.4	18	0.15	17	589	45	0.26	0.93
72aj11	528	2.7	8.8	42	465000	4.5	10	259	15	2.4	6.6	3729	36	3.5	518	132	1.3	0.08	0.33	3874	1.5	17	0.11	18	543	46	0.27	1.2
72aj12	278	2.4	7.5	23	465000	2.5	4.5	274	16	2.8	6.0	3586	34	2.1	522	133	1.5	0.07	0.44	3779	1.4	15	0.12	18	508	46	0.28	1.7
72aj13	270	2.4	7.0	28	465000	4.4	16	287	15	2.0	7.0	3694	36	1.5	525	126	1.6	0.08	0.48	4057	1.5	15	0.12	17	575	52	0.28	1.4
72aj14	90	1.0	9.1	69	465000	52	61	283	16	1.9	6.5	3579	42	0.49	550	122	1.5	0.11	0.42	4442	1.4	10	0.24	17	616	60	0.69	3.0
72aj15	39	0.60	2.9	27	465000	163	151	1199	41	1.6	6.4	4285	87	0.19	260	124	5.5	0.11	0.40	3310	3.6	4.3	0.05	22	338	186	4.4	0.26
72aj16	269	56	25	136	465000	1121	547	2050	317	57	7.9	23662	172	0.43	291	213	1.5	0.30	7.1	3316	12	5.1	0.44	120	428	180	7.9	21
72aj17	142	34	21	82	465000	96	218	2293	175	29	6.2	19056	119	0.20	1046	253	2.3	0.21	4.4	6565	6.7	3.8	0.16	71	1244	228	8.9	3.1
72aj18	29	0.28	5.4	18	465000	39	179	618	20	1.0	6.7	4701	102	0.11	2864	136	2.5	0.12	0.65	8309	9.3	2.5	0.06	25	808	771	8.8	1.0
72aj19	54	0.59	5.6	61	465000	49	30	542	130	0.40	6.0	4202	71	0.16	747	128	1.7	0.15	0.47	5991	2.1	1.8	<mdl< td=""><td>35</td><td>719</td><td>146</td><td>2.8</td><td>0.10</td></mdl<>	35	719	146	2.8	0.10
72a j20	125	1.6	<mdl< td=""><td>20</td><td>465000</td><td>23</td><td>43</td><td>132</td><td>19</td><td>1.6</td><td>6.9</td><td>5348</td><td>87</td><td>0.75</td><td>1440</td><td>45</td><td>3.2</td><td>0.08</td><td>0.33</td><td>4957</td><td>0.65</td><td>6.0</td><td><mdl< td=""><td>12</td><td>845</td><td>189</td><td>0.81</td><td>0.62</td></mdl<></td></mdl<>	20	465000	23	43	132	19	1.6	6.9	5348	87	0.75	1440	45	3.2	0.08	0.33	4957	0.65	6.0	<mdl< td=""><td>12</td><td>845</td><td>189</td><td>0.81</td><td>0.62</td></mdl<>	12	845	189	0.81	0.62
72a j 21	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>47</td><td>465000</td><td>14</td><td>6.1</td><td>47</td><td>3.3</td><td><mdl< td=""><td>5.6</td><td>8979</td><td><mdl< td=""><td><mdl< td=""><td>17</td><td>7.2</td><td><mdl< td=""><td><md1< td=""><td><mdl< td=""><td>691</td><td><mdl< td=""><td>0.83</td><td><mdl< td=""><td>0.9</td><td>30</td><td>8.5</td><td>0.24</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>47</td><td>465000</td><td>14</td><td>6.1</td><td>47</td><td>3.3</td><td><mdl< td=""><td>5.6</td><td>8979</td><td><mdl< td=""><td><mdl< td=""><td>17</td><td>7.2</td><td><mdl< td=""><td><md1< td=""><td><mdl< td=""><td>691</td><td><mdl< td=""><td>0.83</td><td><mdl< td=""><td>0.9</td><td>30</td><td>8.5</td><td>0.24</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>47</td><td>465000</td><td>14</td><td>6.1</td><td>47</td><td>3.3</td><td><mdl< td=""><td>5.6</td><td>8979</td><td><mdl< td=""><td><mdl< td=""><td>17</td><td>7.2</td><td><mdl< td=""><td><md1< td=""><td><mdl< td=""><td>691</td><td><mdl< td=""><td>0.83</td><td><mdl< td=""><td>0.9</td><td>30</td><td>8.5</td><td>0.24</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	47	465000	14	6.1	47	3.3	<mdl< td=""><td>5.6</td><td>8979</td><td><mdl< td=""><td><mdl< td=""><td>17</td><td>7.2</td><td><mdl< td=""><td><md1< td=""><td><mdl< td=""><td>691</td><td><mdl< td=""><td>0.83</td><td><mdl< td=""><td>0.9</td><td>30</td><td>8.5</td><td>0.24</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	5.6	8979	<mdl< td=""><td><mdl< td=""><td>17</td><td>7.2</td><td><mdl< td=""><td><md1< td=""><td><mdl< td=""><td>691</td><td><mdl< td=""><td>0.83</td><td><mdl< td=""><td>0.9</td><td>30</td><td>8.5</td><td>0.24</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>17</td><td>7.2</td><td><mdl< td=""><td><md1< td=""><td><mdl< td=""><td>691</td><td><mdl< td=""><td>0.83</td><td><mdl< td=""><td>0.9</td><td>30</td><td>8.5</td><td>0.24</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></md1<></td></mdl<></td></mdl<>	17	7.2	<mdl< td=""><td><md1< td=""><td><mdl< td=""><td>691</td><td><mdl< td=""><td>0.83</td><td><mdl< td=""><td>0.9</td><td>30</td><td>8.5</td><td>0.24</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></md1<></td></mdl<>	<md1< td=""><td><mdl< td=""><td>691</td><td><mdl< td=""><td>0.83</td><td><mdl< td=""><td>0.9</td><td>30</td><td>8.5</td><td>0.24</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></md1<>	<mdl< td=""><td>691</td><td><mdl< td=""><td>0.83</td><td><mdl< td=""><td>0.9</td><td>30</td><td>8.5</td><td>0.24</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	691	<mdl< td=""><td>0.83</td><td><mdl< td=""><td>0.9</td><td>30</td><td>8.5</td><td>0.24</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	0.83	<mdl< td=""><td>0.9</td><td>30</td><td>8.5</td><td>0.24</td><td><mdl< td=""></mdl<></td></mdl<>	0.9	30	8.5	0.24	<mdl< td=""></mdl<>
72a j 22	236	1.3	<mdl< td=""><td>35</td><td>465000</td><td>541</td><td>375</td><td>804</td><td>24</td><td>1.3</td><td>7.4</td><td>4269</td><td>77</td><td>1.5</td><td>794</td><td>179</td><td>2.7</td><td>0.15</td><td>0.38</td><td>4099</td><td>2.8</td><td>39</td><td>0.13</td><td>31</td><td>548</td><td>236</td><td>6.1</td><td>1.4</td></mdl<>	35	465000	541	375	804	24	1.3	7.4	4269	77	1.5	794	179	2.7	0.15	0.38	4099	2.8	39	0.13	31	548	236	6.1	1.4
72a j 23	43	0.11	<mdl< td=""><td><mdl< td=""><td>465000</td><td>5.5</td><td>11</td><td>10</td><td>1.8</td><td><mdl< td=""><td>5.2</td><td>9610</td><td><mdl< td=""><td>0.25</td><td>1.3</td><td>3.1</td><td>0.59</td><td><md1< td=""><td>1.1</td><td>18</td><td><mdl< td=""><td>0.20</td><td><mdl< td=""><td>0.44</td><td>22</td><td>2.7</td><td><md1< td=""><td>0.16</td></md1<></td></mdl<></td></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>465000</td><td>5.5</td><td>11</td><td>10</td><td>1.8</td><td><mdl< td=""><td>5.2</td><td>9610</td><td><mdl< td=""><td>0.25</td><td>1.3</td><td>3.1</td><td>0.59</td><td><md1< td=""><td>1.1</td><td>18</td><td><mdl< td=""><td>0.20</td><td><mdl< td=""><td>0.44</td><td>22</td><td>2.7</td><td><md1< td=""><td>0.16</td></md1<></td></mdl<></td></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<>	465000	5.5	11	10	1.8	<mdl< td=""><td>5.2</td><td>9610</td><td><mdl< td=""><td>0.25</td><td>1.3</td><td>3.1</td><td>0.59</td><td><md1< td=""><td>1.1</td><td>18</td><td><mdl< td=""><td>0.20</td><td><mdl< td=""><td>0.44</td><td>22</td><td>2.7</td><td><md1< td=""><td>0.16</td></md1<></td></mdl<></td></mdl<></td></md1<></td></mdl<></td></mdl<>	5.2	9610	<mdl< td=""><td>0.25</td><td>1.3</td><td>3.1</td><td>0.59</td><td><md1< td=""><td>1.1</td><td>18</td><td><mdl< td=""><td>0.20</td><td><mdl< td=""><td>0.44</td><td>22</td><td>2.7</td><td><md1< td=""><td>0.16</td></md1<></td></mdl<></td></mdl<></td></md1<></td></mdl<>	0.25	1.3	3.1	0.59	<md1< td=""><td>1.1</td><td>18</td><td><mdl< td=""><td>0.20</td><td><mdl< td=""><td>0.44</td><td>22</td><td>2.7</td><td><md1< td=""><td>0.16</td></md1<></td></mdl<></td></mdl<></td></md1<>	1.1	18	<mdl< td=""><td>0.20</td><td><mdl< td=""><td>0.44</td><td>22</td><td>2.7</td><td><md1< td=""><td>0.16</td></md1<></td></mdl<></td></mdl<>	0.20	<mdl< td=""><td>0.44</td><td>22</td><td>2.7</td><td><md1< td=""><td>0.16</td></md1<></td></mdl<>	0.44	22	2.7	<md1< td=""><td>0.16</td></md1<>	0.16
72a j 24	4.0	0.48	<mdl< td=""><td>7.5</td><td>465000</td><td>33</td><td>158</td><td>608</td><td>14</td><td>0.47</td><td>6.3</td><td>5394</td><td>122</td><td>0.02</td><td>497</td><td>101</td><td>3.9</td><td>0.12</td><td>0.26</td><td>7459</td><td>4.5</td><td>0.16</td><td><mdl< td=""><td>14</td><td>651</td><td>586</td><td>2.6</td><td>0.12</td></mdl<></td></mdl<>	7.5	465000	33	158	608	14	0.47	6.3	5394	122	0.02	497	101	3.9	0.12	0.26	7459	4.5	0.16	<mdl< td=""><td>14</td><td>651</td><td>586</td><td>2.6</td><td>0.12</td></mdl<>	14	651	586	2.6	0.12
72a j 25	<mdl< td=""><td>0.39</td><td><mdl< td=""><td>93</td><td>465000</td><td>11</td><td>6.6</td><td>25</td><td>5.2</td><td>0.12</td><td>6.9</td><td>55820</td><td>6.5</td><td>0.01</td><td>12</td><td>7.3</td><td><mdl< td=""><td>0.08</td><td><mdl< td=""><td>1532</td><td>0.40</td><td><mdl< td=""><td>0.03</td><td>2.1</td><td>320</td><td>3</td><td>0.31</td><td>0.01</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.39	<mdl< td=""><td>93</td><td>465000</td><td>11</td><td>6.6</td><td>25</td><td>5.2</td><td>0.12</td><td>6.9</td><td>55820</td><td>6.5</td><td>0.01</td><td>12</td><td>7.3</td><td><mdl< td=""><td>0.08</td><td><mdl< td=""><td>1532</td><td>0.40</td><td><mdl< td=""><td>0.03</td><td>2.1</td><td>320</td><td>3</td><td>0.31</td><td>0.01</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	93	465000	11	6.6	25	5.2	0.12	6.9	55820	6.5	0.01	12	7.3	<mdl< td=""><td>0.08</td><td><mdl< td=""><td>1532</td><td>0.40</td><td><mdl< td=""><td>0.03</td><td>2.1</td><td>320</td><td>3</td><td>0.31</td><td>0.01</td></mdl<></td></mdl<></td></mdl<>	0.08	<mdl< td=""><td>1532</td><td>0.40</td><td><mdl< td=""><td>0.03</td><td>2.1</td><td>320</td><td>3</td><td>0.31</td><td>0.01</td></mdl<></td></mdl<>	1532	0.40	<mdl< td=""><td>0.03</td><td>2.1</td><td>320</td><td>3</td><td>0.31</td><td>0.01</td></mdl<>	0.03	2.1	320	3	0.31	0.01
Mean	232	6.6	11	41	465000	113	122	538	57	6.2	6.3	9370	76	1.4	535	128	2.2	0.14	1.2	3861	2.7	14	0.11	25	545	142	2.2	1.8
S.D	337	14	8.9	33	0.00	239	139	567	86	13	0.69	11388	77	1.8	587	85	1.0	0.10	1.7	1867	2.9	25	0.10	25	244	178	2.8	4.3
Min	1.3	0.11	2.8	2.2	465000	2.5	4.5	10	1.8	0.12	5.0	2781	6.5	0.01	1.3	3.1	0.59	0.05	0.23	18	0.40	0.14	0.03	0.44	22	3	0.16	0.01
Max	1298	56	36	136	465000	1121	547	2293	317	57	7.9	55820	368	6.8	2864	327	5.5	0.45	7.1	8309	12	111	0.44	120	1244	771	8.9	21

Ti(ppm) V(ppm) Cr(ppm) Mn(ppm) Fe(ppm) Co(ppm) Ni(ppm) Cu(ppm) Zn(ppm) Ga(ppm) Ga(ppm) As(ppm) Se(ppm) Nb(ppm) Mo(ppm) Cd(ppm) In(ppm) Sn(ppm) Te(ppm) W(ppm) Re(ppm) Au(ppm) Ti(ppm) Pb(ppm) Bi(ppm) U(ppm)

	Ti(ppm)	V(ppm)	Cr(ppm)	Mn(ppm))Fe(ppm)C	Co(ppm)	Ni(ppm)	Cu(ppm)	Zn(ppm)	Ga(ppm)	Ge(ppm)	As (ppm)	Se(ppm)	Nb(ppm)	Mo(ppm)	Ag(ppm)	Cd(ppm)	In(ppm)	Sn(ppm)	Sb(ppm)	Te(ppm)	W(ppm)	Re(ppm)	Au(ppm)	TI (ppm)	Pb(ppm)	Bi(ppm)	U(ppm)
163	.3 mts	-																										
76aj1	22	6.5	13	115	465000	42	56	108	75	2.5	9.3	13486	<mdl< td=""><td>0.09</td><td>1011</td><td>32</td><td><mdl< td=""><td>0.12</td><td>1.3</td><td>82</td><td><mdl< td=""><td>2.6</td><td><mdl< td=""><td>11</td><td>8.7</td><td>125</td><td>3.0</td><td>2.4</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.09	1011	32	<mdl< td=""><td>0.12</td><td>1.3</td><td>82</td><td><mdl< td=""><td>2.6</td><td><mdl< td=""><td>11</td><td>8.7</td><td>125</td><td>3.0</td><td>2.4</td></mdl<></td></mdl<></td></mdl<>	0.12	1.3	82	<mdl< td=""><td>2.6</td><td><mdl< td=""><td>11</td><td>8.7</td><td>125</td><td>3.0</td><td>2.4</td></mdl<></td></mdl<>	2.6	<mdl< td=""><td>11</td><td>8.7</td><td>125</td><td>3.0</td><td>2.4</td></mdl<>	11	8.7	125	3.0	2.4
76a j 2	105	11	12	24	465000	14	17	72	18	3.0	6.4	1879	7.6	0.64	1594	29	<mdl< th=""><th>0.13</th><th>9.1</th><th>83</th><th>0.43</th><th>4.5</th><th>0.11</th><th>0.58</th><th>26</th><th>156</th><th>1.2</th><th>13</th></mdl<>	0.13	9.1	83	0.43	4.5	0.11	0.58	26	156	1.2	13
76a j 3	7.9	0.08	<mdl< th=""><th>46</th><th>465000</th><th>54</th><th>70</th><th>118</th><th>6.0</th><th>0.18</th><th>6.3</th><th>3391</th><th>3.6</th><th>0.02</th><th>5.2</th><th>1.9</th><th><mdl< th=""><th>0.03</th><th>0.22</th><th>249</th><th>0.91</th><th><mdl< th=""><th><mdl< th=""><th>0.35</th><th>45</th><th>229</th><th>3.1</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	46	465000	54	70	118	6.0	0.18	6.3	3391	3.6	0.02	5.2	1.9	<mdl< th=""><th>0.03</th><th>0.22</th><th>249</th><th>0.91</th><th><mdl< th=""><th><mdl< th=""><th>0.35</th><th>45</th><th>229</th><th>3.1</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	0.03	0.22	249	0.91	<mdl< th=""><th><mdl< th=""><th>0.35</th><th>45</th><th>229</th><th>3.1</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>0.35</th><th>45</th><th>229</th><th>3.1</th><th><mdl< th=""></mdl<></th></mdl<>	0.35	45	229	3.1	<mdl< th=""></mdl<>
76a j 4	25	0.58	5.9	120	465000	10	16	238	62	0.13	10	5588	<mdl< th=""><th>0.12</th><th>135</th><th>53</th><th><mdl< th=""><th><mdl< th=""><th>0.42</th><th>112</th><th>0.54</th><th>12</th><th><mdl< th=""><th>4.8</th><th>13</th><th>83</th><th>1.6</th><th>0.02</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	0.12	135	53	<mdl< th=""><th><mdl< th=""><th>0.42</th><th>112</th><th>0.54</th><th>12</th><th><mdl< th=""><th>4.8</th><th>13</th><th>83</th><th>1.6</th><th>0.02</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>0.42</th><th>112</th><th>0.54</th><th>12</th><th><mdl< th=""><th>4.8</th><th>13</th><th>83</th><th>1.6</th><th>0.02</th></mdl<></th></mdl<>	0.42	112	0.54	12	<mdl< th=""><th>4.8</th><th>13</th><th>83</th><th>1.6</th><th>0.02</th></mdl<>	4.8	13	83	1.6	0.02
76a j 5	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>96</th><th>465000</th><th>1.7</th><th>2.4</th><th>22</th><th>7.5</th><th><mdl< th=""><th>4.5</th><th>520</th><th><mdl< th=""><th>0.06</th><th>70</th><th>1.1</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>40</th><th>0.85</th><th>1.0</th><th><mdl< th=""><th>0.60</th><th>93</th><th>54</th><th>0.31</th><th>0.07</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>96</th><th>465000</th><th>1.7</th><th>2.4</th><th>22</th><th>7.5</th><th><mdl< th=""><th>4.5</th><th>520</th><th><mdl< th=""><th>0.06</th><th>70</th><th>1.1</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>40</th><th>0.85</th><th>1.0</th><th><mdl< th=""><th>0.60</th><th>93</th><th>54</th><th>0.31</th><th>0.07</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>96</th><th>465000</th><th>1.7</th><th>2.4</th><th>22</th><th>7.5</th><th><mdl< th=""><th>4.5</th><th>520</th><th><mdl< th=""><th>0.06</th><th>70</th><th>1.1</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>40</th><th>0.85</th><th>1.0</th><th><mdl< th=""><th>0.60</th><th>93</th><th>54</th><th>0.31</th><th>0.07</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	96	465000	1.7	2.4	22	7.5	<mdl< th=""><th>4.5</th><th>520</th><th><mdl< th=""><th>0.06</th><th>70</th><th>1.1</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>40</th><th>0.85</th><th>1.0</th><th><mdl< th=""><th>0.60</th><th>93</th><th>54</th><th>0.31</th><th>0.07</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	4.5	520	<mdl< th=""><th>0.06</th><th>70</th><th>1.1</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>40</th><th>0.85</th><th>1.0</th><th><mdl< th=""><th>0.60</th><th>93</th><th>54</th><th>0.31</th><th>0.07</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	0.06	70	1.1	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>40</th><th>0.85</th><th>1.0</th><th><mdl< th=""><th>0.60</th><th>93</th><th>54</th><th>0.31</th><th>0.07</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>40</th><th>0.85</th><th>1.0</th><th><mdl< th=""><th>0.60</th><th>93</th><th>54</th><th>0.31</th><th>0.07</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>40</th><th>0.85</th><th>1.0</th><th><mdl< th=""><th>0.60</th><th>93</th><th>54</th><th>0.31</th><th>0.07</th></mdl<></th></mdl<>	40	0.85	1.0	<mdl< th=""><th>0.60</th><th>93</th><th>54</th><th>0.31</th><th>0.07</th></mdl<>	0.60	93	54	0.31	0.07
76a j 6	170	6.1	<mdl< th=""><th>328</th><th>465000</th><th>50</th><th>87</th><th>154</th><th>9.2</th><th>0.93</th><th>7.1</th><th>6645</th><th>36</th><th>0.28</th><th>5312</th><th>79</th><th>0.32</th><th><mdl< th=""><th>0.53</th><th>287</th><th>0.41</th><th>6.5</th><th>0.19</th><th>2.9</th><th>60</th><th>87</th><th>1.0</th><th>0.5</th></mdl<></th></mdl<>	328	465000	50	87	154	9.2	0.93	7.1	6645	36	0.28	5312	79	0.32	<mdl< th=""><th>0.53</th><th>287</th><th>0.41</th><th>6.5</th><th>0.19</th><th>2.9</th><th>60</th><th>87</th><th>1.0</th><th>0.5</th></mdl<>	0.53	287	0.41	6.5	0.19	2.9	60	87	1.0	0.5
76a j 7	3.5	0.13	<mdl< th=""><th>135</th><th>465000</th><th>0.63</th><th>11</th><th>45</th><th>14</th><th>0.18</th><th>6.9</th><th>5487</th><th>16</th><th><mdl< th=""><th>107</th><th>8.5</th><th>0.21</th><th><mdl< th=""><th>0.29</th><th>617</th><th><mdl< th=""><th>0.77</th><th><mdl< th=""><th>1.0</th><th>94</th><th>10</th><th>0.05</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	135	465000	0.63	11	45	14	0.18	6.9	5487	16	<mdl< th=""><th>107</th><th>8.5</th><th>0.21</th><th><mdl< th=""><th>0.29</th><th>617</th><th><mdl< th=""><th>0.77</th><th><mdl< th=""><th>1.0</th><th>94</th><th>10</th><th>0.05</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	107	8.5	0.21	<mdl< th=""><th>0.29</th><th>617</th><th><mdl< th=""><th>0.77</th><th><mdl< th=""><th>1.0</th><th>94</th><th>10</th><th>0.05</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	0.29	617	<mdl< th=""><th>0.77</th><th><mdl< th=""><th>1.0</th><th>94</th><th>10</th><th>0.05</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	0.77	<mdl< th=""><th>1.0</th><th>94</th><th>10</th><th>0.05</th><th><mdl< th=""></mdl<></th></mdl<>	1.0	94	10	0.05	<mdl< th=""></mdl<>
76a j 8	577	0.09	<mdl< th=""><th>6.7</th><th>465000</th><th>129</th><th>5.8</th><th>17</th><th>2.6</th><th>0.12</th><th>6.5</th><th>366</th><th><mdl< th=""><th>2.2</th><th>6.4</th><th>4.2</th><th><mdl< th=""><th><mdl< th=""><th>0.27</th><th>68</th><th>0.75</th><th>0.34</th><th><mdl< th=""><th><mdl< th=""><th>0.87</th><th>350</th><th>2.8</th><th>0.30</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	6.7	465000	129	5.8	17	2.6	0.12	6.5	366	<mdl< th=""><th>2.2</th><th>6.4</th><th>4.2</th><th><mdl< th=""><th><mdl< th=""><th>0.27</th><th>68</th><th>0.75</th><th>0.34</th><th><mdl< th=""><th><mdl< th=""><th>0.87</th><th>350</th><th>2.8</th><th>0.30</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	2.2	6.4	4.2	<mdl< th=""><th><mdl< th=""><th>0.27</th><th>68</th><th>0.75</th><th>0.34</th><th><mdl< th=""><th><mdl< th=""><th>0.87</th><th>350</th><th>2.8</th><th>0.30</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>0.27</th><th>68</th><th>0.75</th><th>0.34</th><th><mdl< th=""><th><mdl< th=""><th>0.87</th><th>350</th><th>2.8</th><th>0.30</th></mdl<></th></mdl<></th></mdl<>	0.27	68	0.75	0.34	<mdl< th=""><th><mdl< th=""><th>0.87</th><th>350</th><th>2.8</th><th>0.30</th></mdl<></th></mdl<>	<mdl< th=""><th>0.87</th><th>350</th><th>2.8</th><th>0.30</th></mdl<>	0.87	350	2.8	0.30
76a j 9	18	3.9	12	220	465000	57	63	158	25	1.2	5.3	1375	59	0.06	153	59	0.24	0.03	1.5	117	0.48	1.3	<mdl< td=""><td>3.4</td><td>5.6</td><td>71</td><td>1.5</td><td><mdl< td=""></mdl<></td></mdl<>	3.4	5.6	71	1.5	<mdl< td=""></mdl<>
76aj10	29	3.3	<mdl< td=""><td>36</td><td>465000</td><td>25</td><td>45</td><td>190</td><td>33</td><td>0.93</td><td>6.9</td><td>1986</td><td>8.8</td><td>0.38</td><td>453</td><td>71</td><td>0.65</td><td>0.04</td><td>1.7</td><td>251</td><td>0.63</td><td>1.2</td><td><mdl< td=""><td>2.5</td><td>29</td><td>176</td><td>1.2</td><td>0.12</td></mdl<></td></mdl<>	36	465000	25	45	190	33	0.93	6.9	1986	8.8	0.38	453	71	0.65	0.04	1.7	251	0.63	1.2	<mdl< td=""><td>2.5</td><td>29</td><td>176</td><td>1.2</td><td>0.12</td></mdl<>	2.5	29	176	1.2	0.12
76aj11	65	0.39	3.8	511	465000	38	24	274	14	0.34	6.8	387	<mdl< th=""><th>0.20</th><th>14</th><th>14</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>14</th><th><mdl< th=""><th>0.07</th><th><mdl< th=""><th>0.05</th><th>2.1</th><th>8.3</th><th>0.11</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	0.20	14	14	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>14</th><th><mdl< th=""><th>0.07</th><th><mdl< th=""><th>0.05</th><th>2.1</th><th>8.3</th><th>0.11</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>14</th><th><mdl< th=""><th>0.07</th><th><mdl< th=""><th>0.05</th><th>2.1</th><th>8.3</th><th>0.11</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>14</th><th><mdl< th=""><th>0.07</th><th><mdl< th=""><th>0.05</th><th>2.1</th><th>8.3</th><th>0.11</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	14	<mdl< th=""><th>0.07</th><th><mdl< th=""><th>0.05</th><th>2.1</th><th>8.3</th><th>0.11</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	0.07	<mdl< th=""><th>0.05</th><th>2.1</th><th>8.3</th><th>0.11</th><th><mdl< th=""></mdl<></th></mdl<>	0.05	2.1	8.3	0.11	<mdl< th=""></mdl<>
Mean	102	3.2	9.4	149	465000	38	36	127	24	1.0	6.9	3737	22	0.40	805	32	0.36	0.07	1.7	175	0.63	3.0	0.15	2.7	34	123	1.4	2.4
S.D	175	3.7	4.3	153	0.00	37	29	85	24	1.0	1.5	3939	22	0.66	1578	29	0.20	0.05	2.8	173	0.19	3.8	0.06	3.2	35	101	1.1	4.8
Min	3.5	0.08	3.8	6.7	465000	0.63	2.4	17	2.6	0.12	4.5	366	3.6	0.02	5.2	1.1	0.21	0.03	0.22	14	0.41	0.07	0.11	0.05	0.87	8.3	0.05	0.02
Max	577	11	13	511	465000	129	87	274	75	3.0	10	13486	59	2.2	5312	79	0.65	0.13	9.1	617	0.91	12	0.19	11	94	350	3.1	13
тыр	021																											
191	3 mts																											
19ai1	<mdl< td=""><td>0.07</td><td><mdl< td=""><td>12</td><td>465000</td><td>1.4</td><td>2.6</td><td>4.9</td><td>13</td><td>0.05</td><td>5.9</td><td>160</td><td>4.9</td><td>0.01</td><td>0.30</td><td>0.75</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.36</td><td><mdl< td=""><td>0.27</td><td><mdl< td=""><td><mdl< td=""><td>17</td><td>5.6</td><td>0.05</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.07	<mdl< td=""><td>12</td><td>465000</td><td>1.4</td><td>2.6</td><td>4.9</td><td>13</td><td>0.05</td><td>5.9</td><td>160</td><td>4.9</td><td>0.01</td><td>0.30</td><td>0.75</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.36</td><td><mdl< td=""><td>0.27</td><td><mdl< td=""><td><mdl< td=""><td>17</td><td>5.6</td><td>0.05</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	12	465000	1.4	2.6	4.9	13	0.05	5.9	160	4.9	0.01	0.30	0.75	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.36</td><td><mdl< td=""><td>0.27</td><td><mdl< td=""><td><mdl< td=""><td>17</td><td>5.6</td><td>0.05</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>0.36</td><td><mdl< td=""><td>0.27</td><td><mdl< td=""><td><mdl< td=""><td>17</td><td>5.6</td><td>0.05</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>0.36</td><td><mdl< td=""><td>0.27</td><td><mdl< td=""><td><mdl< td=""><td>17</td><td>5.6</td><td>0.05</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.36	<mdl< td=""><td>0.27</td><td><mdl< td=""><td><mdl< td=""><td>17</td><td>5.6</td><td>0.05</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.27	<mdl< td=""><td><mdl< td=""><td>17</td><td>5.6</td><td>0.05</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>17</td><td>5.6</td><td>0.05</td><td><mdl< td=""></mdl<></td></mdl<>	17	5.6	0.05	<mdl< td=""></mdl<>
19ai2	1.8	0.10	<mdl< td=""><td>11</td><td>465000</td><td>2.4</td><td>5.8</td><td>60</td><td>4.9</td><td><mdl< td=""><td>5.9</td><td>270</td><td>2.3</td><td><mdl< td=""><td>14</td><td>5.4</td><td><mdl< td=""><td><mdl< td=""><td>0.57</td><td>27</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.27</td><td>38</td><td>71</td><td>0.37</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	11	465000	2.4	5.8	60	4.9	<mdl< td=""><td>5.9</td><td>270</td><td>2.3</td><td><mdl< td=""><td>14</td><td>5.4</td><td><mdl< td=""><td><mdl< td=""><td>0.57</td><td>27</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.27</td><td>38</td><td>71</td><td>0.37</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	5.9	270	2.3	<mdl< td=""><td>14</td><td>5.4</td><td><mdl< td=""><td><mdl< td=""><td>0.57</td><td>27</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.27</td><td>38</td><td>71</td><td>0.37</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	14	5.4	<mdl< td=""><td><mdl< td=""><td>0.57</td><td>27</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.27</td><td>38</td><td>71</td><td>0.37</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>0.57</td><td>27</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.27</td><td>38</td><td>71</td><td>0.37</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.57	27	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.27</td><td>38</td><td>71</td><td>0.37</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>0.27</td><td>38</td><td>71</td><td>0.37</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>0.27</td><td>38</td><td>71</td><td>0.37</td><td><mdl< td=""></mdl<></td></mdl<>	0.27	38	71	0.37	<mdl< td=""></mdl<>
19ai3	11	2.1	<mdl< td=""><td>25</td><td>465000</td><td>11</td><td>14</td><td>54</td><td>9.3</td><td>1.0</td><td>7.5</td><td>548</td><td><mdl< td=""><td>0.07</td><td>241</td><td>14</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>20</td><td><mdl< td=""><td>0.31</td><td><mdl< td=""><td>1.5</td><td>7.3</td><td>42</td><td>0.71</td><td>0.12</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	25	465000	11	14	54	9.3	1.0	7.5	548	<mdl< td=""><td>0.07</td><td>241</td><td>14</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>20</td><td><mdl< td=""><td>0.31</td><td><mdl< td=""><td>1.5</td><td>7.3</td><td>42</td><td>0.71</td><td>0.12</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.07	241	14	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>20</td><td><mdl< td=""><td>0.31</td><td><mdl< td=""><td>1.5</td><td>7.3</td><td>42</td><td>0.71</td><td>0.12</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>20</td><td><mdl< td=""><td>0.31</td><td><mdl< td=""><td>1.5</td><td>7.3</td><td>42</td><td>0.71</td><td>0.12</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>20</td><td><mdl< td=""><td>0.31</td><td><mdl< td=""><td>1.5</td><td>7.3</td><td>42</td><td>0.71</td><td>0.12</td></mdl<></td></mdl<></td></mdl<>	20	<mdl< td=""><td>0.31</td><td><mdl< td=""><td>1.5</td><td>7.3</td><td>42</td><td>0.71</td><td>0.12</td></mdl<></td></mdl<>	0.31	<mdl< td=""><td>1.5</td><td>7.3</td><td>42</td><td>0.71</td><td>0.12</td></mdl<>	1.5	7.3	42	0.71	0.12
19ai4	<mdl< td=""><td>0.34</td><td>6.6</td><td>6.2</td><td>465000</td><td>8.4</td><td>14</td><td>63</td><td>3.9</td><td>0.29</td><td>8.1</td><td>3215</td><td>19</td><td><mdl< td=""><td>34</td><td>10</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>11</td><td><mdl< td=""><td>0.19</td><td><mdl< td=""><td>7.2</td><td>4.2</td><td>42</td><td>0.51</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.34	6.6	6.2	465000	8.4	14	63	3.9	0.29	8.1	3215	19	<mdl< td=""><td>34</td><td>10</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>11</td><td><mdl< td=""><td>0.19</td><td><mdl< td=""><td>7.2</td><td>4.2</td><td>42</td><td>0.51</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	34	10	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>11</td><td><mdl< td=""><td>0.19</td><td><mdl< td=""><td>7.2</td><td>4.2</td><td>42</td><td>0.51</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>11</td><td><mdl< td=""><td>0.19</td><td><mdl< td=""><td>7.2</td><td>4.2</td><td>42</td><td>0.51</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>11</td><td><mdl< td=""><td>0.19</td><td><mdl< td=""><td>7.2</td><td>4.2</td><td>42</td><td>0.51</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	11	<mdl< td=""><td>0.19</td><td><mdl< td=""><td>7.2</td><td>4.2</td><td>42</td><td>0.51</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	0.19	<mdl< td=""><td>7.2</td><td>4.2</td><td>42</td><td>0.51</td><td><mdl< td=""></mdl<></td></mdl<>	7.2	4.2	42	0.51	<mdl< td=""></mdl<>
19a j 5	5.2	3.0	<mdl< td=""><td>47</td><td>465000</td><td>18</td><td>16</td><td>30</td><td>1501</td><td>0.94</td><td>8.4</td><td>609</td><td><mdl< td=""><td><mdl< td=""><td>1.6</td><td>6.8</td><td>1.3</td><td>2.5</td><td>3.6</td><td>14</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.40</td><td>6.7</td><td>29</td><td>0.42</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	47	465000	18	16	30	1501	0.94	8.4	609	<mdl< td=""><td><mdl< td=""><td>1.6</td><td>6.8</td><td>1.3</td><td>2.5</td><td>3.6</td><td>14</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.40</td><td>6.7</td><td>29</td><td>0.42</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>1.6</td><td>6.8</td><td>1.3</td><td>2.5</td><td>3.6</td><td>14</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.40</td><td>6.7</td><td>29</td><td>0.42</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1.6	6.8	1.3	2.5	3.6	14	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.40</td><td>6.7</td><td>29</td><td>0.42</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>0.40</td><td>6.7</td><td>29</td><td>0.42</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>0.40</td><td>6.7</td><td>29</td><td>0.42</td><td><mdl< td=""></mdl<></td></mdl<>	0.40	6.7	29	0.42	<mdl< td=""></mdl<>
19aj6	2.9	0.46	2.6	25	465000	10	15	53	25	0.19	6.6	2876	11	<mdl< td=""><td>90</td><td>11</td><td><mdl< td=""><td>0.03</td><td>0.90</td><td>13</td><td><mdl< td=""><td>0.41</td><td><mdl< td=""><td>5.0</td><td>5.6</td><td>29</td><td>0.25</td><td>0.04</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	90	11	<mdl< td=""><td>0.03</td><td>0.90</td><td>13</td><td><mdl< td=""><td>0.41</td><td><mdl< td=""><td>5.0</td><td>5.6</td><td>29</td><td>0.25</td><td>0.04</td></mdl<></td></mdl<></td></mdl<>	0.03	0.90	13	<mdl< td=""><td>0.41</td><td><mdl< td=""><td>5.0</td><td>5.6</td><td>29</td><td>0.25</td><td>0.04</td></mdl<></td></mdl<>	0.41	<mdl< td=""><td>5.0</td><td>5.6</td><td>29</td><td>0.25</td><td>0.04</td></mdl<>	5.0	5.6	29	0.25	0.04
19aj7	<mdl< td=""><td>0.16</td><td><mdl< td=""><td>2.8</td><td>465000</td><td>7.1</td><td>10</td><td>66</td><td>4.6</td><td>0.07</td><td>5.2</td><td>2423</td><td>16</td><td><mdl< td=""><td>81</td><td>8.9</td><td><mdl< td=""><td><mdl< td=""><td>2.3</td><td>31</td><td><mdl< td=""><td>0.27</td><td><mdl< td=""><td>10</td><td>3.6</td><td>40</td><td>0.41</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.16	<mdl< td=""><td>2.8</td><td>465000</td><td>7.1</td><td>10</td><td>66</td><td>4.6</td><td>0.07</td><td>5.2</td><td>2423</td><td>16</td><td><mdl< td=""><td>81</td><td>8.9</td><td><mdl< td=""><td><mdl< td=""><td>2.3</td><td>31</td><td><mdl< td=""><td>0.27</td><td><mdl< td=""><td>10</td><td>3.6</td><td>40</td><td>0.41</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	2.8	465000	7.1	10	66	4.6	0.07	5.2	2423	16	<mdl< td=""><td>81</td><td>8.9</td><td><mdl< td=""><td><mdl< td=""><td>2.3</td><td>31</td><td><mdl< td=""><td>0.27</td><td><mdl< td=""><td>10</td><td>3.6</td><td>40</td><td>0.41</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	81	8.9	<mdl< td=""><td><mdl< td=""><td>2.3</td><td>31</td><td><mdl< td=""><td>0.27</td><td><mdl< td=""><td>10</td><td>3.6</td><td>40</td><td>0.41</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>2.3</td><td>31</td><td><mdl< td=""><td>0.27</td><td><mdl< td=""><td>10</td><td>3.6</td><td>40</td><td>0.41</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	2.3	31	<mdl< td=""><td>0.27</td><td><mdl< td=""><td>10</td><td>3.6</td><td>40</td><td>0.41</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	0.27	<mdl< td=""><td>10</td><td>3.6</td><td>40</td><td>0.41</td><td><mdl< td=""></mdl<></td></mdl<>	10	3.6	40	0.41	<mdl< td=""></mdl<>
19aj8	2.4	0.22	<mdl< td=""><td>14</td><td>465000</td><td>11</td><td>10</td><td>30</td><td>13</td><td><mdl< td=""><td>6.3</td><td>143</td><td>5.2</td><td><mdl< td=""><td>2.4</td><td>3.2</td><td><mdl< td=""><td>0.06</td><td>7.4</td><td>5.4</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.17</td><td>12</td><td>56</td><td>0.58</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	14	465000	11	10	30	13	<mdl< td=""><td>6.3</td><td>143</td><td>5.2</td><td><mdl< td=""><td>2.4</td><td>3.2</td><td><mdl< td=""><td>0.06</td><td>7.4</td><td>5.4</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.17</td><td>12</td><td>56</td><td>0.58</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	6.3	143	5.2	<mdl< td=""><td>2.4</td><td>3.2</td><td><mdl< td=""><td>0.06</td><td>7.4</td><td>5.4</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.17</td><td>12</td><td>56</td><td>0.58</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	2.4	3.2	<mdl< td=""><td>0.06</td><td>7.4</td><td>5.4</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.17</td><td>12</td><td>56</td><td>0.58</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.06	7.4	5.4	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.17</td><td>12</td><td>56</td><td>0.58</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>0.17</td><td>12</td><td>56</td><td>0.58</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>0.17</td><td>12</td><td>56</td><td>0.58</td><td><mdl< td=""></mdl<></td></mdl<>	0.17	12	56	0.58	<mdl< td=""></mdl<>
19a j9	<mdl< td=""><td>0.26</td><td><mdl< td=""><td>12</td><td>465000</td><td>10</td><td>10</td><td>27</td><td>14</td><td>0.06</td><td>6.2</td><td>377</td><td>6.1</td><td><mdl< td=""><td>18</td><td>4.8</td><td><mdl< td=""><td><mdl< td=""><td>4.2</td><td>7.0</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.1</td><td>8.8</td><td>42</td><td>0.65</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.26	<mdl< td=""><td>12</td><td>465000</td><td>10</td><td>10</td><td>27</td><td>14</td><td>0.06</td><td>6.2</td><td>377</td><td>6.1</td><td><mdl< td=""><td>18</td><td>4.8</td><td><mdl< td=""><td><mdl< td=""><td>4.2</td><td>7.0</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.1</td><td>8.8</td><td>42</td><td>0.65</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	12	465000	10	10	27	14	0.06	6.2	377	6.1	<mdl< td=""><td>18</td><td>4.8</td><td><mdl< td=""><td><mdl< td=""><td>4.2</td><td>7.0</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.1</td><td>8.8</td><td>42</td><td>0.65</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	18	4.8	<mdl< td=""><td><mdl< td=""><td>4.2</td><td>7.0</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.1</td><td>8.8</td><td>42</td><td>0.65</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>4.2</td><td>7.0</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.1</td><td>8.8</td><td>42</td><td>0.65</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	4.2	7.0	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.1</td><td>8.8</td><td>42</td><td>0.65</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>1.1</td><td>8.8</td><td>42</td><td>0.65</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>1.1</td><td>8.8</td><td>42</td><td>0.65</td><td><mdl< td=""></mdl<></td></mdl<>	1.1	8.8	42	0.65	<mdl< td=""></mdl<>
19ai10	3.3	0.68	2.9	34	465000	20	22	41	6.6	0.18	5.8	1414	13	<mdl< td=""><td>81</td><td>7.8</td><td><mdl< td=""><td><mdl< td=""><td>0.40</td><td>16</td><td><mdl< td=""><td>0.10</td><td><mdl< td=""><td>3.4</td><td>4.0</td><td>29</td><td>0.41</td><td>0.01</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	81	7.8	<mdl< td=""><td><mdl< td=""><td>0.40</td><td>16</td><td><mdl< td=""><td>0.10</td><td><mdl< td=""><td>3.4</td><td>4.0</td><td>29</td><td>0.41</td><td>0.01</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>0.40</td><td>16</td><td><mdl< td=""><td>0.10</td><td><mdl< td=""><td>3.4</td><td>4.0</td><td>29</td><td>0.41</td><td>0.01</td></mdl<></td></mdl<></td></mdl<>	0.40	16	<mdl< td=""><td>0.10</td><td><mdl< td=""><td>3.4</td><td>4.0</td><td>29</td><td>0.41</td><td>0.01</td></mdl<></td></mdl<>	0.10	<mdl< td=""><td>3.4</td><td>4.0</td><td>29</td><td>0.41</td><td>0.01</td></mdl<>	3.4	4.0	29	0.41	0.01
19ai11	2.7	0.79	<mdl< th=""><th>119</th><th>465000</th><th>11</th><th>11</th><th>50</th><th>46</th><th>0.24</th><th>6.5</th><th>120</th><th>4.7</th><th><mdl< th=""><th>1.1</th><th>7.3</th><th><mdl< th=""><th>0.03</th><th>3.4</th><th>4.0</th><th><mdl< th=""><th>0.08</th><th><mdl< th=""><th>0.23</th><th>18</th><th>36</th><th>0.28</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	119	465000	11	11	50	46	0.24	6.5	120	4.7	<mdl< th=""><th>1.1</th><th>7.3</th><th><mdl< th=""><th>0.03</th><th>3.4</th><th>4.0</th><th><mdl< th=""><th>0.08</th><th><mdl< th=""><th>0.23</th><th>18</th><th>36</th><th>0.28</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	1.1	7.3	<mdl< th=""><th>0.03</th><th>3.4</th><th>4.0</th><th><mdl< th=""><th>0.08</th><th><mdl< th=""><th>0.23</th><th>18</th><th>36</th><th>0.28</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	0.03	3.4	4.0	<mdl< th=""><th>0.08</th><th><mdl< th=""><th>0.23</th><th>18</th><th>36</th><th>0.28</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	0.08	<mdl< th=""><th>0.23</th><th>18</th><th>36</th><th>0.28</th><th><mdl< th=""></mdl<></th></mdl<>	0.23	18	36	0.28	<mdl< th=""></mdl<>
19ai12	2.3	0.56	<mdl< th=""><th>48</th><th>465000</th><th>22</th><th>26</th><th>33</th><th>17</th><th>0.10</th><th>6.0</th><th>591</th><th>16</th><th><mdl< th=""><th>10</th><th>7.3</th><th><mdl< th=""><th><mdl< th=""><th>0.65</th><th>7.7</th><th><mdl< th=""><th>0.14</th><th><mdl< th=""><th>1.0</th><th>2.3</th><th>41</th><th>0.63</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	48	465000	22	26	33	17	0.10	6.0	591	16	<mdl< th=""><th>10</th><th>7.3</th><th><mdl< th=""><th><mdl< th=""><th>0.65</th><th>7.7</th><th><mdl< th=""><th>0.14</th><th><mdl< th=""><th>1.0</th><th>2.3</th><th>41</th><th>0.63</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	10	7.3	<mdl< th=""><th><mdl< th=""><th>0.65</th><th>7.7</th><th><mdl< th=""><th>0.14</th><th><mdl< th=""><th>1.0</th><th>2.3</th><th>41</th><th>0.63</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>0.65</th><th>7.7</th><th><mdl< th=""><th>0.14</th><th><mdl< th=""><th>1.0</th><th>2.3</th><th>41</th><th>0.63</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	0.65	7.7	<mdl< th=""><th>0.14</th><th><mdl< th=""><th>1.0</th><th>2.3</th><th>41</th><th>0.63</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	0.14	<mdl< th=""><th>1.0</th><th>2.3</th><th>41</th><th>0.63</th><th><mdl< th=""></mdl<></th></mdl<>	1.0	2.3	41	0.63	<mdl< th=""></mdl<>
Mean	4.0	0.73	4.0	30	465000	11	13	43	138	0.31	6.5	1062	10	0.04	48	7.2	1.3	0.67	2.6	13	-	0.22	-	2.8	11	39	0.44	0.06
S.D	3.1	0.91	2.2	32	0.00	6.4	6.4	18	429	0.36	1.0	1138	5.9	0.04	70	3.5	-	1.3	2.3	9.2	-	0.11	-	3.3	10	16	0.19	0.06
Min	1.8	0.07	2.6	2.8	465000	1.4	2.6	4.9	3.9	0.05	5.2	120	2.3	0.01	0.30	0.75	1.3	0.03	0.40	0.36	0.00	0.08	0.00	0.17	2.3	5.6	0.05	0.01
Max	11	3.0	6.6	119	465000	22	26	66	1501	1.0	8.4	3215	19	0.07	241	14	1.3	2.5	7.4	31	0.00	0.41	0.00	10	38	71	0.71	0.12

	Ti(ppm)	V(ppm)	Cr(ppm)	Mn(ppm)	Fe(ppm)	Co(ppm)	Ni(ppm)	Cu(ppm)	Zn(ppm)	Ga(ppm)	Ge(ppm)	As (ppm)	Se(ppm)	Nb(ppm)	Mo(ppm)	Ag(ppm)	Cd(ppm)	In(ppm)	Sn(ppm)	Sb(ppm)	Te(ppm)	W(ppm)	Re(ppm)	Au(ppm) Tl	(ppm)	Pb(ppm)	Bi(ppm)	U(ppm)
THRCD	925																											
143.5	mts																											
6aj1	11	1.2	<mdl< th=""><th><mdl< th=""><th>465000</th><th>33</th><th>72</th><th>36</th><th>2.1</th><th>0.82</th><th><mdl< th=""><th>7488</th><th>8.4</th><th>0.08</th><th>2.3</th><th>27</th><th><mdl< th=""><th><mdl< th=""><th>0.79</th><th>65</th><th><mdl< th=""><th>0.51</th><th><mdl< th=""><th>2.2</th><th>1.3</th><th>82</th><th>1.4</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>465000</th><th>33</th><th>72</th><th>36</th><th>2.1</th><th>0.82</th><th><mdl< th=""><th>7488</th><th>8.4</th><th>0.08</th><th>2.3</th><th>27</th><th><mdl< th=""><th><mdl< th=""><th>0.79</th><th>65</th><th><mdl< th=""><th>0.51</th><th><mdl< th=""><th>2.2</th><th>1.3</th><th>82</th><th>1.4</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	465000	33	72	36	2.1	0.82	<mdl< th=""><th>7488</th><th>8.4</th><th>0.08</th><th>2.3</th><th>27</th><th><mdl< th=""><th><mdl< th=""><th>0.79</th><th>65</th><th><mdl< th=""><th>0.51</th><th><mdl< th=""><th>2.2</th><th>1.3</th><th>82</th><th>1.4</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	7488	8.4	0.08	2.3	27	<mdl< th=""><th><mdl< th=""><th>0.79</th><th>65</th><th><mdl< th=""><th>0.51</th><th><mdl< th=""><th>2.2</th><th>1.3</th><th>82</th><th>1.4</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>0.79</th><th>65</th><th><mdl< th=""><th>0.51</th><th><mdl< th=""><th>2.2</th><th>1.3</th><th>82</th><th>1.4</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	0.79	65	<mdl< th=""><th>0.51</th><th><mdl< th=""><th>2.2</th><th>1.3</th><th>82</th><th>1.4</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	0.51	<mdl< th=""><th>2.2</th><th>1.3</th><th>82</th><th>1.4</th><th><mdl< th=""></mdl<></th></mdl<>	2.2	1.3	82	1.4	<mdl< th=""></mdl<>
6aj2	28	16	26	662	465000	122	103	152	17	1.4	6.1	4037	24	0.16	1570	38	<mdl< th=""><th>0.06</th><th>0.69</th><th>111</th><th>1.4</th><th>8.6</th><th><mdl< th=""><th>10</th><th>11</th><th>225</th><th>3.9</th><th>3.2</th></mdl<></th></mdl<>	0.06	0.69	111	1.4	8.6	<mdl< th=""><th>10</th><th>11</th><th>225</th><th>3.9</th><th>3.2</th></mdl<>	10	11	225	3.9	3.2
6aj3	54	11	8.2	21	465000	7.3	11	130	3.2	6.5	6.8	5868	6.3	0.23	9.1	22	<mdl< th=""><th><mdl< th=""><th>0.76</th><th>75</th><th><mdl< th=""><th>8.5</th><th><mdl< th=""><th>1.0</th><th>4.4</th><th>85</th><th>3.0</th><th>0.08</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>0.76</th><th>75</th><th><mdl< th=""><th>8.5</th><th><mdl< th=""><th>1.0</th><th>4.4</th><th>85</th><th>3.0</th><th>0.08</th></mdl<></th></mdl<></th></mdl<>	0.76	75	<mdl< th=""><th>8.5</th><th><mdl< th=""><th>1.0</th><th>4.4</th><th>85</th><th>3.0</th><th>0.08</th></mdl<></th></mdl<>	8.5	<mdl< th=""><th>1.0</th><th>4.4</th><th>85</th><th>3.0</th><th>0.08</th></mdl<>	1.0	4.4	85	3.0	0.08
6aj4	39	0.83	<mdl< th=""><th>17</th><th>465000</th><th>12</th><th>30</th><th>227</th><th>10</th><th>1.3</th><th>8.3</th><th>11309</th><th>17</th><th>0.33</th><th>97</th><th>42</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>251</th><th><mdl< th=""><th>1.1</th><th><mdl< th=""><th>3.2</th><th>28</th><th>135</th><th>1.7</th><th>0.16</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	17	465000	12	30	227	10	1.3	8.3	11309	17	0.33	97	42	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>251</th><th><mdl< th=""><th>1.1</th><th><mdl< th=""><th>3.2</th><th>28</th><th>135</th><th>1.7</th><th>0.16</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>251</th><th><mdl< th=""><th>1.1</th><th><mdl< th=""><th>3.2</th><th>28</th><th>135</th><th>1.7</th><th>0.16</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>251</th><th><mdl< th=""><th>1.1</th><th><mdl< th=""><th>3.2</th><th>28</th><th>135</th><th>1.7</th><th>0.16</th></mdl<></th></mdl<></th></mdl<>	251	<mdl< th=""><th>1.1</th><th><mdl< th=""><th>3.2</th><th>28</th><th>135</th><th>1.7</th><th>0.16</th></mdl<></th></mdl<>	1.1	<mdl< th=""><th>3.2</th><th>28</th><th>135</th><th>1.7</th><th>0.16</th></mdl<>	3.2	28	135	1.7	0.16
6a j 5	111	2.5	8.2	899	465000	3.4	4.1	131	12	1.7	6.0	3910	22	0.71	166	70	<mdl< th=""><th>0.07</th><th>2.6</th><th>108</th><th><mdl< th=""><th>0.80</th><th><mdl< th=""><th>5.5</th><th>13</th><th>102</th><th>1.6</th><th>0.55</th></mdl<></th></mdl<></th></mdl<>	0.07	2.6	108	<mdl< th=""><th>0.80</th><th><mdl< th=""><th>5.5</th><th>13</th><th>102</th><th>1.6</th><th>0.55</th></mdl<></th></mdl<>	0.80	<mdl< th=""><th>5.5</th><th>13</th><th>102</th><th>1.6</th><th>0.55</th></mdl<>	5.5	13	102	1.6	0.55
6aj6	51	1.4	5.2	336	465000	1.4	1.8	73	4.9	0.90	6.3	6056	54	0.47	172	18	<mdl< th=""><th>0.04</th><th>2.0</th><th>77</th><th><mdl< th=""><th>0.38</th><th><mdl< th=""><th>7.6</th><th>8.1</th><th>53</th><th>0.84</th><th>0.92</th></mdl<></th></mdl<></th></mdl<>	0.04	2.0	77	<mdl< th=""><th>0.38</th><th><mdl< th=""><th>7.6</th><th>8.1</th><th>53</th><th>0.84</th><th>0.92</th></mdl<></th></mdl<>	0.38	<mdl< th=""><th>7.6</th><th>8.1</th><th>53</th><th>0.84</th><th>0.92</th></mdl<>	7.6	8.1	53	0.84	0.92
6a j 7	118	2.4	7.4	423	465000	4.2	4.5	121	8.6	1.1	5.9	7865	35	0.8	171	46	0.39	0.07	4.7	120	<mdl< td=""><td>1.0</td><td>0.05</td><td>6.3</td><td>10</td><td>85</td><td>1.6</td><td>2.0</td></mdl<>	1.0	0.05	6.3	10	85	1.6	2.0
6a j 8	401	15	6.2	35	465000	47	138	97	4.1	0.20	5.9	3414	148	3.9	5.6	29	0.36	0.07	2.4	24	<mdl< th=""><th>21</th><th><mdl< th=""><th>5.1</th><th>1.0</th><th>77</th><th>0.79</th><th>10</th></mdl<></th></mdl<>	21	<mdl< th=""><th>5.1</th><th>1.0</th><th>77</th><th>0.79</th><th>10</th></mdl<>	5.1	1.0	77	0.79	10
6a j 9	73	0.63	<mdl< th=""><th>350</th><th>465000</th><th>57</th><th>59</th><th>203</th><th>15</th><th>0.28</th><th>8.8</th><th>3063</th><th><mdl< th=""><th>0.41</th><th>36</th><th>11</th><th><mdl< th=""><th><mdi< th=""><th>2.9</th><th>118</th><th><mdl< th=""><th>1.1</th><th><mdl< th=""><th>0.59</th><th>7.6</th><th>129</th><th>2.6</th><th>0.13</th></mdl<></th></mdl<></th></mdi<></th></mdl<></th></mdl<></th></mdl<>	350	465000	57	59	203	15	0.28	8.8	3063	<mdl< th=""><th>0.41</th><th>36</th><th>11</th><th><mdl< th=""><th><mdi< th=""><th>2.9</th><th>118</th><th><mdl< th=""><th>1.1</th><th><mdl< th=""><th>0.59</th><th>7.6</th><th>129</th><th>2.6</th><th>0.13</th></mdl<></th></mdl<></th></mdi<></th></mdl<></th></mdl<>	0.41	36	11	<mdl< th=""><th><mdi< th=""><th>2.9</th><th>118</th><th><mdl< th=""><th>1.1</th><th><mdl< th=""><th>0.59</th><th>7.6</th><th>129</th><th>2.6</th><th>0.13</th></mdl<></th></mdl<></th></mdi<></th></mdl<>	<mdi< th=""><th>2.9</th><th>118</th><th><mdl< th=""><th>1.1</th><th><mdl< th=""><th>0.59</th><th>7.6</th><th>129</th><th>2.6</th><th>0.13</th></mdl<></th></mdl<></th></mdi<>	2.9	118	<mdl< th=""><th>1.1</th><th><mdl< th=""><th>0.59</th><th>7.6</th><th>129</th><th>2.6</th><th>0.13</th></mdl<></th></mdl<>	1.1	<mdl< th=""><th>0.59</th><th>7.6</th><th>129</th><th>2.6</th><th>0.13</th></mdl<>	0.59	7.6	129	2.6	0.13
6aj10	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.68</td><td>465000</td><td>4.3</td><td>8.8</td><td>23</td><td>0.64</td><td><mdl< td=""><td>6.3</td><td>1533</td><td>12</td><td><mdl< td=""><td>34</td><td>15</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>29</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.2</td><td>1.9</td><td>26</td><td>0.60</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>0.68</td><td>465000</td><td>4.3</td><td>8.8</td><td>23</td><td>0.64</td><td><mdl< td=""><td>6.3</td><td>1533</td><td>12</td><td><mdl< td=""><td>34</td><td>15</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>29</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.2</td><td>1.9</td><td>26</td><td>0.60</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>0.68</td><td>465000</td><td>4.3</td><td>8.8</td><td>23</td><td>0.64</td><td><mdl< td=""><td>6.3</td><td>1533</td><td>12</td><td><mdl< td=""><td>34</td><td>15</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>29</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.2</td><td>1.9</td><td>26</td><td>0.60</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.68	465000	4.3	8.8	23	0.64	<mdl< td=""><td>6.3</td><td>1533</td><td>12</td><td><mdl< td=""><td>34</td><td>15</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>29</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.2</td><td>1.9</td><td>26</td><td>0.60</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	6.3	1533	12	<mdl< td=""><td>34</td><td>15</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>29</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.2</td><td>1.9</td><td>26</td><td>0.60</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	34	15	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>29</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.2</td><td>1.9</td><td>26</td><td>0.60</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>29</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.2</td><td>1.9</td><td>26</td><td>0.60</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>29</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.2</td><td>1.9</td><td>26</td><td>0.60</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	29	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.2</td><td>1.9</td><td>26</td><td>0.60</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>1.2</td><td>1.9</td><td>26</td><td>0.60</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>1.2</td><td>1.9</td><td>26</td><td>0.60</td><td><mdl< td=""></mdl<></td></mdl<>	1.2	1.9	26	0.60	<mdl< td=""></mdl<>
6aj11	457	1.0	<mdl< td=""><td>1245</td><td>465000</td><td>182</td><td>311</td><td>139</td><td>121</td><td>0.28</td><td>6.2</td><td>7933</td><td>8.5</td><td>1.6</td><td>32</td><td>7.0</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>18</td><td><mdl< td=""><td>1.3</td><td><mdl< td=""><td>1.4</td><td>3.0</td><td>42</td><td>0.38</td><td>1.7</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1245	465000	182	311	139	121	0.28	6.2	7933	8.5	1.6	32	7.0	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>18</td><td><mdl< td=""><td>1.3</td><td><mdl< td=""><td>1.4</td><td>3.0</td><td>42</td><td>0.38</td><td>1.7</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>18</td><td><mdl< td=""><td>1.3</td><td><mdl< td=""><td>1.4</td><td>3.0</td><td>42</td><td>0.38</td><td>1.7</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>18</td><td><mdl< td=""><td>1.3</td><td><mdl< td=""><td>1.4</td><td>3.0</td><td>42</td><td>0.38</td><td>1.7</td></mdl<></td></mdl<></td></mdl<>	18	<mdl< td=""><td>1.3</td><td><mdl< td=""><td>1.4</td><td>3.0</td><td>42</td><td>0.38</td><td>1.7</td></mdl<></td></mdl<>	1.3	<mdl< td=""><td>1.4</td><td>3.0</td><td>42</td><td>0.38</td><td>1.7</td></mdl<>	1.4	3.0	42	0.38	1.7
6aj12	3.1	0.11	6.5	63	465000	24	56	80	6.5	0.24	6.3	337	<mdl< td=""><td><mdl< td=""><td>10</td><td>21</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>8.0</td><td><mdl< td=""><td>0.32</td><td><mdl< td=""><td>0.84</td><td>3.6</td><td>67</td><td>0.17</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>10</td><td>21</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>8.0</td><td><mdl< td=""><td>0.32</td><td><mdl< td=""><td>0.84</td><td>3.6</td><td>67</td><td>0.17</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	10	21	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>8.0</td><td><mdl< td=""><td>0.32</td><td><mdl< td=""><td>0.84</td><td>3.6</td><td>67</td><td>0.17</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>8.0</td><td><mdl< td=""><td>0.32</td><td><mdl< td=""><td>0.84</td><td>3.6</td><td>67</td><td>0.17</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>8.0</td><td><mdl< td=""><td>0.32</td><td><mdl< td=""><td>0.84</td><td>3.6</td><td>67</td><td>0.17</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	8.0	<mdl< td=""><td>0.32</td><td><mdl< td=""><td>0.84</td><td>3.6</td><td>67</td><td>0.17</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	0.32	<mdl< td=""><td>0.84</td><td>3.6</td><td>67</td><td>0.17</td><td><mdl< td=""></mdl<></td></mdl<>	0.84	3.6	67	0.17	<mdl< td=""></mdl<>
6aj13	134	3.4	6.9	97	465000	34	49	203	11	0.44	6.1	1266	3.8	0.69	13	19	<mdl< td=""><td>0.05</td><td>0.79</td><td>64</td><td><mdl< td=""><td>2.8</td><td><mdl< td=""><td>0.49</td><td>20</td><td>126</td><td>0.89</td><td>0.23</td></mdl<></td></mdl<></td></mdl<>	0.05	0.79	64	<mdl< td=""><td>2.8</td><td><mdl< td=""><td>0.49</td><td>20</td><td>126</td><td>0.89</td><td>0.23</td></mdl<></td></mdl<>	2.8	<mdl< td=""><td>0.49</td><td>20</td><td>126</td><td>0.89</td><td>0.23</td></mdl<>	0.49	20	126	0.89	0.23
6aj14	1.9	0.15	<mdl< td=""><td>215</td><td>465000</td><td>13</td><td>55</td><td>170</td><td>19</td><td><mdl< td=""><td>6.4</td><td>1628</td><td>23</td><td><mdl< td=""><td>35</td><td>13</td><td><mdl< td=""><td>0.05</td><td>1.3</td><td>12</td><td><mdl< td=""><td>1.0</td><td><mdl< td=""><td>3.7</td><td>5.8</td><td>21</td><td>0.92</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	215	465000	13	55	170	19	<mdl< td=""><td>6.4</td><td>1628</td><td>23</td><td><mdl< td=""><td>35</td><td>13</td><td><mdl< td=""><td>0.05</td><td>1.3</td><td>12</td><td><mdl< td=""><td>1.0</td><td><mdl< td=""><td>3.7</td><td>5.8</td><td>21</td><td>0.92</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	6.4	1628	23	<mdl< td=""><td>35</td><td>13</td><td><mdl< td=""><td>0.05</td><td>1.3</td><td>12</td><td><mdl< td=""><td>1.0</td><td><mdl< td=""><td>3.7</td><td>5.8</td><td>21</td><td>0.92</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	35	13	<mdl< td=""><td>0.05</td><td>1.3</td><td>12</td><td><mdl< td=""><td>1.0</td><td><mdl< td=""><td>3.7</td><td>5.8</td><td>21</td><td>0.92</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.05	1.3	12	<mdl< td=""><td>1.0</td><td><mdl< td=""><td>3.7</td><td>5.8</td><td>21</td><td>0.92</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1.0	<mdl< td=""><td>3.7</td><td>5.8</td><td>21</td><td>0.92</td><td><mdl< td=""></mdl<></td></mdl<>	3.7	5.8	21	0.92	<mdl< td=""></mdl<>
Mean	114	4.2	9.3	336	465000	39	65	128	17	1.3	6.6	4693	30	0.85	168	27	0.38	0.06	1.9	77	1.4	3.7	0.05	3.5	8.5	90	1.5	1.9
S.D	147	5.7	6.7	388	0.00	52	82	62	31	1.7	0.93	3172	40	1.1	409	17	0.02	0.01	1.3	64	-	5.9	-	3.0	7.7	53	1.1	3.0
Min	1.9	0.11	5.2	0.68	465000	1.4	1.8	23	0.64	0.20	5.9	337	3.8	0.08	2.3	7.0	0.36	0.04	0.69	8.0	1.4	0.32	0.05	0.49	1.0	21	0.17	0.08
Max	457	16	26	1245	465000	182	311	227	121	6.5	8.8	11309	148	3.9	1570	70	0.39	0.07	4.7	251	1.4	21	0.05	10	28	225	3.9	10
THRCD	076																											
140.6	mts																											
36baj1	<mdl< td=""><td>0.14</td><td><mdl< td=""><td>11</td><td>465000</td><td><mdl< td=""><td><mdl< td=""><td>4.1</td><td>1.3</td><td>0.24</td><td>7.3</td><td>27027</td><td><mdl< td=""><td><mdl< td=""><td>15</td><td>5.3</td><td><mdl< td=""><td>0.04</td><td><mdl< td=""><td>113</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>17</td><td>6.8</td><td>2.8</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.14	<mdl< td=""><td>11</td><td>465000</td><td><mdl< td=""><td><mdl< td=""><td>4.1</td><td>1.3</td><td>0.24</td><td>7.3</td><td>27027</td><td><mdl< td=""><td><mdl< td=""><td>15</td><td>5.3</td><td><mdl< td=""><td>0.04</td><td><mdl< td=""><td>113</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>17</td><td>6.8</td><td>2.8</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	11	465000	<mdl< td=""><td><mdl< td=""><td>4.1</td><td>1.3</td><td>0.24</td><td>7.3</td><td>27027</td><td><mdl< td=""><td><mdl< td=""><td>15</td><td>5.3</td><td><mdl< td=""><td>0.04</td><td><mdl< td=""><td>113</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>17</td><td>6.8</td><td>2.8</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>4.1</td><td>1.3</td><td>0.24</td><td>7.3</td><td>27027</td><td><mdl< td=""><td><mdl< td=""><td>15</td><td>5.3</td><td><mdl< td=""><td>0.04</td><td><mdl< td=""><td>113</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>17</td><td>6.8</td><td>2.8</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	4.1	1.3	0.24	7.3	27027	<mdl< td=""><td><mdl< td=""><td>15</td><td>5.3</td><td><mdl< td=""><td>0.04</td><td><mdl< td=""><td>113</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>17</td><td>6.8</td><td>2.8</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>15</td><td>5.3</td><td><mdl< td=""><td>0.04</td><td><mdl< td=""><td>113</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>17</td><td>6.8</td><td>2.8</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	15	5.3	<mdl< td=""><td>0.04</td><td><mdl< td=""><td>113</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>17</td><td>6.8</td><td>2.8</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.04	<mdl< td=""><td>113</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>17</td><td>6.8</td><td>2.8</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	113	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>17</td><td>6.8</td><td>2.8</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>17</td><td>6.8</td><td>2.8</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>17</td><td>6.8</td><td>2.8</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	17	6.8	2.8	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
36baj2	<mdl< td=""><td>3.4</td><td><mdl< td=""><td>282</td><td>465000</td><td>0.94</td><td>10</td><td>15</td><td>4.8</td><td>0.29</td><td>6.5</td><td>24411</td><td><mdl< td=""><td><mdl< td=""><td>2.3</td><td>6.0</td><td><mdl< td=""><td>0.06</td><td><mdl< td=""><td>63</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>32</td><td>4.7</td><td>10</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	3.4	<mdl< td=""><td>282</td><td>465000</td><td>0.94</td><td>10</td><td>15</td><td>4.8</td><td>0.29</td><td>6.5</td><td>24411</td><td><mdl< td=""><td><mdl< td=""><td>2.3</td><td>6.0</td><td><mdl< td=""><td>0.06</td><td><mdl< td=""><td>63</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>32</td><td>4.7</td><td>10</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	282	465000	0.94	10	15	4.8	0.29	6.5	24411	<mdl< td=""><td><mdl< td=""><td>2.3</td><td>6.0</td><td><mdl< td=""><td>0.06</td><td><mdl< td=""><td>63</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>32</td><td>4.7</td><td>10</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>2.3</td><td>6.0</td><td><mdl< td=""><td>0.06</td><td><mdl< td=""><td>63</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>32</td><td>4.7</td><td>10</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	2.3	6.0	<mdl< td=""><td>0.06</td><td><mdl< td=""><td>63</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>32</td><td>4.7</td><td>10</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.06	<mdl< td=""><td>63</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>32</td><td>4.7</td><td>10</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	63	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>32</td><td>4.7</td><td>10</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>32</td><td>4.7</td><td>10</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>32</td><td>4.7</td><td>10</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	32	4.7	10	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
36baj3	<mdl< td=""><td>0.17</td><td><mdl< td=""><td>31</td><td>465000</td><td>3.0</td><td>22</td><td>19</td><td><mdl< td=""><td><mdl< td=""><td>7.6</td><td>30456</td><td>19</td><td><mdl< td=""><td>15</td><td>15</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>64</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>41</td><td>14</td><td>15</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.17	<mdl< td=""><td>31</td><td>465000</td><td>3.0</td><td>22</td><td>19</td><td><mdl< td=""><td><mdl< td=""><td>7.6</td><td>30456</td><td>19</td><td><mdl< td=""><td>15</td><td>15</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>64</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>41</td><td>14</td><td>15</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	31	465000	3.0	22	19	<mdl< td=""><td><mdl< td=""><td>7.6</td><td>30456</td><td>19</td><td><mdl< td=""><td>15</td><td>15</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>64</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>41</td><td>14</td><td>15</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>7.6</td><td>30456</td><td>19</td><td><mdl< td=""><td>15</td><td>15</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>64</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>41</td><td>14</td><td>15</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	7.6	30456	19	<mdl< td=""><td>15</td><td>15</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>64</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>41</td><td>14</td><td>15</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	15	15	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>64</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>41</td><td>14</td><td>15</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>64</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>41</td><td>14</td><td>15</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>64</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>41</td><td>14</td><td>15</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	64	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>41</td><td>14</td><td>15</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>41</td><td>14</td><td>15</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>41</td><td>14</td><td>15</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	41	14	15	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
36baj4	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>465000</td><td>2.9</td><td>11</td><td>43</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>18500</td><td><mdl< td=""><td><mdl< td=""><td>343</td><td>26</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>77</td><td><mdl< td=""><td>2.0</td><td><mdl< td=""><td>46</td><td>5.0</td><td>32</td><td><mdl< td=""><td>0.47</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>465000</td><td>2.9</td><td>11</td><td>43</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>18500</td><td><mdl< td=""><td><mdl< td=""><td>343</td><td>26</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>77</td><td><mdl< td=""><td>2.0</td><td><mdl< td=""><td>46</td><td>5.0</td><td>32</td><td><mdl< td=""><td>0.47</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>465000</td><td>2.9</td><td>11</td><td>43</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>18500</td><td><mdl< td=""><td><mdl< td=""><td>343</td><td>26</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>77</td><td><mdl< td=""><td>2.0</td><td><mdl< td=""><td>46</td><td>5.0</td><td>32</td><td><mdl< td=""><td>0.47</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>465000</td><td>2.9</td><td>11</td><td>43</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>18500</td><td><mdl< td=""><td><mdl< td=""><td>343</td><td>26</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>77</td><td><mdl< td=""><td>2.0</td><td><mdl< td=""><td>46</td><td>5.0</td><td>32</td><td><mdl< td=""><td>0.47</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	465000	2.9	11	43	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>18500</td><td><mdl< td=""><td><mdl< td=""><td>343</td><td>26</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>77</td><td><mdl< td=""><td>2.0</td><td><mdl< td=""><td>46</td><td>5.0</td><td>32</td><td><mdl< td=""><td>0.47</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>18500</td><td><mdl< td=""><td><mdl< td=""><td>343</td><td>26</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>77</td><td><mdl< td=""><td>2.0</td><td><mdl< td=""><td>46</td><td>5.0</td><td>32</td><td><mdl< td=""><td>0.47</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>18500</td><td><mdl< td=""><td><mdl< td=""><td>343</td><td>26</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>77</td><td><mdl< td=""><td>2.0</td><td><mdl< td=""><td>46</td><td>5.0</td><td>32</td><td><mdl< td=""><td>0.47</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	18500	<mdl< td=""><td><mdl< td=""><td>343</td><td>26</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>77</td><td><mdl< td=""><td>2.0</td><td><mdl< td=""><td>46</td><td>5.0</td><td>32</td><td><mdl< td=""><td>0.47</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>343</td><td>26</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>77</td><td><mdl< td=""><td>2.0</td><td><mdl< td=""><td>46</td><td>5.0</td><td>32</td><td><mdl< td=""><td>0.47</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	343	26	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>77</td><td><mdl< td=""><td>2.0</td><td><mdl< td=""><td>46</td><td>5.0</td><td>32</td><td><mdl< td=""><td>0.47</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>77</td><td><mdl< td=""><td>2.0</td><td><mdl< td=""><td>46</td><td>5.0</td><td>32</td><td><mdl< td=""><td>0.47</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>77</td><td><mdl< td=""><td>2.0</td><td><mdl< td=""><td>46</td><td>5.0</td><td>32</td><td><mdl< td=""><td>0.47</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	77	<mdl< td=""><td>2.0</td><td><mdl< td=""><td>46</td><td>5.0</td><td>32</td><td><mdl< td=""><td>0.47</td></mdl<></td></mdl<></td></mdl<>	2.0	<mdl< td=""><td>46</td><td>5.0</td><td>32</td><td><mdl< td=""><td>0.47</td></mdl<></td></mdl<>	46	5.0	32	<mdl< td=""><td>0.47</td></mdl<>	0.47
36ba j 5	8.1	5.5	<mdl< td=""><td><mdl< td=""><td>465000</td><td>0.32</td><td>3.1</td><td>22</td><td>4.5</td><td>1.8</td><td>5.7</td><td>25517</td><td><mdl< td=""><td><mdl< td=""><td>38</td><td>9.3</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>60</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>85</td><td>2.9</td><td>6.9</td><td>0.12</td><td>0.08</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>465000</td><td>0.32</td><td>3.1</td><td>22</td><td>4.5</td><td>1.8</td><td>5.7</td><td>25517</td><td><mdl< td=""><td><mdl< td=""><td>38</td><td>9.3</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>60</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>85</td><td>2.9</td><td>6.9</td><td>0.12</td><td>0.08</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	465000	0.32	3.1	22	4.5	1.8	5.7	25517	<mdl< td=""><td><mdl< td=""><td>38</td><td>9.3</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>60</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>85</td><td>2.9</td><td>6.9</td><td>0.12</td><td>0.08</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>38</td><td>9.3</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>60</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>85</td><td>2.9</td><td>6.9</td><td>0.12</td><td>0.08</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	38	9.3	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>60</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>85</td><td>2.9</td><td>6.9</td><td>0.12</td><td>0.08</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>60</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>85</td><td>2.9</td><td>6.9</td><td>0.12</td><td>0.08</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>60</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>85</td><td>2.9</td><td>6.9</td><td>0.12</td><td>0.08</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	60	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>85</td><td>2.9</td><td>6.9</td><td>0.12</td><td>0.08</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>85</td><td>2.9</td><td>6.9</td><td>0.12</td><td>0.08</td></mdl<></td></mdl<>	<mdl< td=""><td>85</td><td>2.9</td><td>6.9</td><td>0.12</td><td>0.08</td></mdl<>	85	2.9	6.9	0.12	0.08
Mean	8.1	2.3	-	108	465000	1.8	11	21	3.5	0.79	6.8	25182	19	-	83	12	-	0.05	-	75	-	2.0	-	44	6.7	13	0.12	0.27
S.D	-	2.6	-	151	0.00	1.4	7.6	14	2.0	0.91	0.85	4375	-	-	146	8.7	-	0.02	-	22	-	#DIV/0!	-	25	4.4	11	-	0.28
Min	8.1	0.14	0.00	11	465000	0.32	3.1	4.1	1.3	0.24	5.7	18500	19	0.00	2.3	5.3	0.00	0.04	0.00	60	0.00	2.0	0.00	17	2.9	2.8	0.12	0.08
Max	8.1	5.5	0.00	282	465000	3.0	22	43	4.8	1.8	7.6	30456	19	0.00	343	26	0.00	0.06	0.00	113	0.00	2.0	0.00	85	14	32	0.12	0.47

	Ti(ppm)	V(ppm)	Cr(ppm)	Mn(ppm)	Fe(ppm)	Co(ppm)	Ni(ppm)	Cu(ppm)	Zn(ppm)	Ga(ppm)	Ge(ppm)	As (ppm)	Se(ppm)	Nb(ppm)	Mo(ppm) A	g(ppm)	Cd(ppm)	In(ppm)	Sn(ppm)	Sb(ppm)	Te(ppm) \	V(ppm)	Re(ppm)	Au(ppm)	TI (ppm)	Pb(ppm)	Bi(ppm)	U(ppm)
141.	2 mts																											
38aj1	1.5	2.3	3.0	351	465000	0.09	0.57	4.1	2.2	0.29	5.9	16765	<mdl< th=""><th><mdl< th=""><th>2.4</th><th>3.5</th><th><mdl< th=""><th>0.03</th><th><mdl< th=""><th>127</th><th><mdl< th=""><th>0.33</th><th><mdl< th=""><th>0.14</th><th>12</th><th>1.5</th><th><md1< th=""><th>0.03</th></md1<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>2.4</th><th>3.5</th><th><mdl< th=""><th>0.03</th><th><mdl< th=""><th>127</th><th><mdl< th=""><th>0.33</th><th><mdl< th=""><th>0.14</th><th>12</th><th>1.5</th><th><md1< th=""><th>0.03</th></md1<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	2.4	3.5	<mdl< th=""><th>0.03</th><th><mdl< th=""><th>127</th><th><mdl< th=""><th>0.33</th><th><mdl< th=""><th>0.14</th><th>12</th><th>1.5</th><th><md1< th=""><th>0.03</th></md1<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	0.03	<mdl< th=""><th>127</th><th><mdl< th=""><th>0.33</th><th><mdl< th=""><th>0.14</th><th>12</th><th>1.5</th><th><md1< th=""><th>0.03</th></md1<></th></mdl<></th></mdl<></th></mdl<>	127	<mdl< th=""><th>0.33</th><th><mdl< th=""><th>0.14</th><th>12</th><th>1.5</th><th><md1< th=""><th>0.03</th></md1<></th></mdl<></th></mdl<>	0.33	<mdl< th=""><th>0.14</th><th>12</th><th>1.5</th><th><md1< th=""><th>0.03</th></md1<></th></mdl<>	0.14	12	1.5	<md1< th=""><th>0.03</th></md1<>	0.03
38a j 2	1.4	0.10	<mdl< td=""><td>6.0</td><td>465000</td><td>0.61</td><td>4.1</td><td>10</td><td>2.0</td><td><mdl< td=""><td>5.7</td><td>14169</td><td><mdl< td=""><td><mdl< td=""><td>64</td><td>8.5</td><td><mdl< td=""><td>0.03</td><td><mdl< td=""><td>100</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.9</td><td>10</td><td>8.6</td><td>0.23</td><td>0.03</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	6.0	465000	0.61	4.1	10	2.0	<mdl< td=""><td>5.7</td><td>14169</td><td><mdl< td=""><td><mdl< td=""><td>64</td><td>8.5</td><td><mdl< td=""><td>0.03</td><td><mdl< td=""><td>100</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.9</td><td>10</td><td>8.6</td><td>0.23</td><td>0.03</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	5.7	14169	<mdl< td=""><td><mdl< td=""><td>64</td><td>8.5</td><td><mdl< td=""><td>0.03</td><td><mdl< td=""><td>100</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.9</td><td>10</td><td>8.6</td><td>0.23</td><td>0.03</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>64</td><td>8.5</td><td><mdl< td=""><td>0.03</td><td><mdl< td=""><td>100</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.9</td><td>10</td><td>8.6</td><td>0.23</td><td>0.03</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	64	8.5	<mdl< td=""><td>0.03</td><td><mdl< td=""><td>100</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.9</td><td>10</td><td>8.6</td><td>0.23</td><td>0.03</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.03	<mdl< td=""><td>100</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.9</td><td>10</td><td>8.6</td><td>0.23</td><td>0.03</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	100	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1.9</td><td>10</td><td>8.6</td><td>0.23</td><td>0.03</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>1.9</td><td>10</td><td>8.6</td><td>0.23</td><td>0.03</td></mdl<></td></mdl<>	<mdl< td=""><td>1.9</td><td>10</td><td>8.6</td><td>0.23</td><td>0.03</td></mdl<>	1.9	10	8.6	0.23	0.03
38a j 3	<mdl< td=""><td>0.35</td><td><mdl< td=""><td>49</td><td>465000</td><td>0.25</td><td><mdl< td=""><td>3.2</td><td>0.79</td><td><mdl< td=""><td>5.7</td><td>20061</td><td><mdl< td=""><td><mdl< td=""><td>2.8</td><td>5.4</td><td><mdl< td=""><td>0.03</td><td><mdl< td=""><td>121</td><td><mdl< td=""><td>0.12</td><td><mdl< td=""><td>0.08</td><td>7.7</td><td>2.8</td><td>0.05</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.35	<mdl< td=""><td>49</td><td>465000</td><td>0.25</td><td><mdl< td=""><td>3.2</td><td>0.79</td><td><mdl< td=""><td>5.7</td><td>20061</td><td><mdl< td=""><td><mdl< td=""><td>2.8</td><td>5.4</td><td><mdl< td=""><td>0.03</td><td><mdl< td=""><td>121</td><td><mdl< td=""><td>0.12</td><td><mdl< td=""><td>0.08</td><td>7.7</td><td>2.8</td><td>0.05</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	49	465000	0.25	<mdl< td=""><td>3.2</td><td>0.79</td><td><mdl< td=""><td>5.7</td><td>20061</td><td><mdl< td=""><td><mdl< td=""><td>2.8</td><td>5.4</td><td><mdl< td=""><td>0.03</td><td><mdl< td=""><td>121</td><td><mdl< td=""><td>0.12</td><td><mdl< td=""><td>0.08</td><td>7.7</td><td>2.8</td><td>0.05</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	3.2	0.79	<mdl< td=""><td>5.7</td><td>20061</td><td><mdl< td=""><td><mdl< td=""><td>2.8</td><td>5.4</td><td><mdl< td=""><td>0.03</td><td><mdl< td=""><td>121</td><td><mdl< td=""><td>0.12</td><td><mdl< td=""><td>0.08</td><td>7.7</td><td>2.8</td><td>0.05</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	5.7	20061	<mdl< td=""><td><mdl< td=""><td>2.8</td><td>5.4</td><td><mdl< td=""><td>0.03</td><td><mdl< td=""><td>121</td><td><mdl< td=""><td>0.12</td><td><mdl< td=""><td>0.08</td><td>7.7</td><td>2.8</td><td>0.05</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>2.8</td><td>5.4</td><td><mdl< td=""><td>0.03</td><td><mdl< td=""><td>121</td><td><mdl< td=""><td>0.12</td><td><mdl< td=""><td>0.08</td><td>7.7</td><td>2.8</td><td>0.05</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	2.8	5.4	<mdl< td=""><td>0.03</td><td><mdl< td=""><td>121</td><td><mdl< td=""><td>0.12</td><td><mdl< td=""><td>0.08</td><td>7.7</td><td>2.8</td><td>0.05</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.03	<mdl< td=""><td>121</td><td><mdl< td=""><td>0.12</td><td><mdl< td=""><td>0.08</td><td>7.7</td><td>2.8</td><td>0.05</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	121	<mdl< td=""><td>0.12</td><td><mdl< td=""><td>0.08</td><td>7.7</td><td>2.8</td><td>0.05</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	0.12	<mdl< td=""><td>0.08</td><td>7.7</td><td>2.8</td><td>0.05</td><td><mdl< td=""></mdl<></td></mdl<>	0.08	7.7	2.8	0.05	<mdl< td=""></mdl<>
38a j3b	1.7	0.21	<mdl< td=""><td>13</td><td>465000</td><td><mdl< td=""><td>1.9</td><td>5.8</td><td>0.82</td><td><mdl< td=""><td>6.2</td><td>16673</td><td><mdl< td=""><td><mdl< td=""><td>2.0</td><td>6.1</td><td><mdl< td=""><td>0.03</td><td><mdl< td=""><td>108</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.32</td><td>8.0</td><td>6.2</td><td>0.17</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	13	465000	<mdl< td=""><td>1.9</td><td>5.8</td><td>0.82</td><td><mdl< td=""><td>6.2</td><td>16673</td><td><mdl< td=""><td><mdl< td=""><td>2.0</td><td>6.1</td><td><mdl< td=""><td>0.03</td><td><mdl< td=""><td>108</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.32</td><td>8.0</td><td>6.2</td><td>0.17</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1.9	5.8	0.82	<mdl< td=""><td>6.2</td><td>16673</td><td><mdl< td=""><td><mdl< td=""><td>2.0</td><td>6.1</td><td><mdl< td=""><td>0.03</td><td><mdl< td=""><td>108</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.32</td><td>8.0</td><td>6.2</td><td>0.17</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	6.2	16673	<mdl< td=""><td><mdl< td=""><td>2.0</td><td>6.1</td><td><mdl< td=""><td>0.03</td><td><mdl< td=""><td>108</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.32</td><td>8.0</td><td>6.2</td><td>0.17</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>2.0</td><td>6.1</td><td><mdl< td=""><td>0.03</td><td><mdl< td=""><td>108</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.32</td><td>8.0</td><td>6.2</td><td>0.17</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	2.0	6.1	<mdl< td=""><td>0.03</td><td><mdl< td=""><td>108</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.32</td><td>8.0</td><td>6.2</td><td>0.17</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.03	<mdl< td=""><td>108</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.32</td><td>8.0</td><td>6.2</td><td>0.17</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	108	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>0.32</td><td>8.0</td><td>6.2</td><td>0.17</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>0.32</td><td>8.0</td><td>6.2</td><td>0.17</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>0.32</td><td>8.0</td><td>6.2</td><td>0.17</td><td><mdl< td=""></mdl<></td></mdl<>	0.32	8.0	6.2	0.17	<mdl< td=""></mdl<>
38a j4	1.5	0.43	2.8	34	465000	0.54	8.3	14	1.3	<mdl< td=""><td>5.9</td><td>24386</td><td>2.8</td><td><mdl< td=""><td>3.1</td><td>17</td><td><mdl< td=""><td>0.04</td><td><mdl< td=""><td>161</td><td><mdl< td=""><td>0.08</td><td><mdl< td=""><td>2.5</td><td>10</td><td>11</td><td>0.26</td><td>0.04</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	5.9	24386	2.8	<mdl< td=""><td>3.1</td><td>17</td><td><mdl< td=""><td>0.04</td><td><mdl< td=""><td>161</td><td><mdl< td=""><td>0.08</td><td><mdl< td=""><td>2.5</td><td>10</td><td>11</td><td>0.26</td><td>0.04</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	3.1	17	<mdl< td=""><td>0.04</td><td><mdl< td=""><td>161</td><td><mdl< td=""><td>0.08</td><td><mdl< td=""><td>2.5</td><td>10</td><td>11</td><td>0.26</td><td>0.04</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.04	<mdl< td=""><td>161</td><td><mdl< td=""><td>0.08</td><td><mdl< td=""><td>2.5</td><td>10</td><td>11</td><td>0.26</td><td>0.04</td></mdl<></td></mdl<></td></mdl<>	161	<mdl< td=""><td>0.08</td><td><mdl< td=""><td>2.5</td><td>10</td><td>11</td><td>0.26</td><td>0.04</td></mdl<></td></mdl<>	0.08	<mdl< td=""><td>2.5</td><td>10</td><td>11</td><td>0.26</td><td>0.04</td></mdl<>	2.5	10	11	0.26	0.04
38a j4b	2.6	0.43	<mdl< td=""><td>1.8</td><td>465000</td><td>0.52</td><td>0.82</td><td>7.4</td><td>0.92</td><td>0.10</td><td>5.5</td><td>15544</td><td><mdl< td=""><td><mdl< td=""><td>2.4</td><td>6.3</td><td><mdl< td=""><td><mdl< td=""><td>0.24</td><td>91</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>3.0</td><td>7.3</td><td>3.8</td><td>0.08</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1.8	465000	0.52	0.82	7.4	0.92	0.10	5.5	15544	<mdl< td=""><td><mdl< td=""><td>2.4</td><td>6.3</td><td><mdl< td=""><td><mdl< td=""><td>0.24</td><td>91</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>3.0</td><td>7.3</td><td>3.8</td><td>0.08</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>2.4</td><td>6.3</td><td><mdl< td=""><td><mdl< td=""><td>0.24</td><td>91</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>3.0</td><td>7.3</td><td>3.8</td><td>0.08</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	2.4	6.3	<mdl< td=""><td><mdl< td=""><td>0.24</td><td>91</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>3.0</td><td>7.3</td><td>3.8</td><td>0.08</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>0.24</td><td>91</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>3.0</td><td>7.3</td><td>3.8</td><td>0.08</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.24	91	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>3.0</td><td>7.3</td><td>3.8</td><td>0.08</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>3.0</td><td>7.3</td><td>3.8</td><td>0.08</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>3.0</td><td>7.3</td><td>3.8</td><td>0.08</td><td><mdl< td=""></mdl<></td></mdl<>	3.0	7.3	3.8	0.08	<mdl< td=""></mdl<>
38a j 5	2.3	0.10	<mdl< td=""><td>14</td><td>465000</td><td>0.36</td><td>0.75</td><td>16</td><td>0.93</td><td><mdl< td=""><td>5.3</td><td>6464</td><td><mdl< td=""><td><mdl< td=""><td>2.0</td><td>14</td><td><mdl< td=""><td><md1< td=""><td><mdl< td=""><td>96</td><td><mdl< td=""><td>0.12</td><td><mdl< td=""><td>0.55</td><td>17</td><td>17</td><td>0.42</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	14	465000	0.36	0.75	16	0.93	<mdl< td=""><td>5.3</td><td>6464</td><td><mdl< td=""><td><mdl< td=""><td>2.0</td><td>14</td><td><mdl< td=""><td><md1< td=""><td><mdl< td=""><td>96</td><td><mdl< td=""><td>0.12</td><td><mdl< td=""><td>0.55</td><td>17</td><td>17</td><td>0.42</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	5.3	6464	<mdl< td=""><td><mdl< td=""><td>2.0</td><td>14</td><td><mdl< td=""><td><md1< td=""><td><mdl< td=""><td>96</td><td><mdl< td=""><td>0.12</td><td><mdl< td=""><td>0.55</td><td>17</td><td>17</td><td>0.42</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>2.0</td><td>14</td><td><mdl< td=""><td><md1< td=""><td><mdl< td=""><td>96</td><td><mdl< td=""><td>0.12</td><td><mdl< td=""><td>0.55</td><td>17</td><td>17</td><td>0.42</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></md1<></td></mdl<></td></mdl<>	2.0	14	<mdl< td=""><td><md1< td=""><td><mdl< td=""><td>96</td><td><mdl< td=""><td>0.12</td><td><mdl< td=""><td>0.55</td><td>17</td><td>17</td><td>0.42</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></md1<></td></mdl<>	<md1< td=""><td><mdl< td=""><td>96</td><td><mdl< td=""><td>0.12</td><td><mdl< td=""><td>0.55</td><td>17</td><td>17</td><td>0.42</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></md1<>	<mdl< td=""><td>96</td><td><mdl< td=""><td>0.12</td><td><mdl< td=""><td>0.55</td><td>17</td><td>17</td><td>0.42</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	96	<mdl< td=""><td>0.12</td><td><mdl< td=""><td>0.55</td><td>17</td><td>17</td><td>0.42</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	0.12	<mdl< td=""><td>0.55</td><td>17</td><td>17</td><td>0.42</td><td><mdl< td=""></mdl<></td></mdl<>	0.55	17	17	0.42	<mdl< td=""></mdl<>
38a j 6	13	1.0	<mdl< td=""><td>67</td><td>465000</td><td>0.36</td><td>10</td><td>13</td><td>1.3</td><td><mdl< td=""><td>5.9</td><td>27954</td><td><mdl< td=""><td>0.03</td><td>5.1</td><td>12</td><td><mdl< td=""><td>0.03</td><td><mdl< td=""><td>231</td><td><mdl< td=""><td>0.17</td><td><mdl< td=""><td>1.1</td><td>14</td><td>7.2</td><td>0.11</td><td>0.03</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	67	465000	0.36	10	13	1.3	<mdl< td=""><td>5.9</td><td>27954</td><td><mdl< td=""><td>0.03</td><td>5.1</td><td>12</td><td><mdl< td=""><td>0.03</td><td><mdl< td=""><td>231</td><td><mdl< td=""><td>0.17</td><td><mdl< td=""><td>1.1</td><td>14</td><td>7.2</td><td>0.11</td><td>0.03</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	5.9	27954	<mdl< td=""><td>0.03</td><td>5.1</td><td>12</td><td><mdl< td=""><td>0.03</td><td><mdl< td=""><td>231</td><td><mdl< td=""><td>0.17</td><td><mdl< td=""><td>1.1</td><td>14</td><td>7.2</td><td>0.11</td><td>0.03</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.03	5.1	12	<mdl< td=""><td>0.03</td><td><mdl< td=""><td>231</td><td><mdl< td=""><td>0.17</td><td><mdl< td=""><td>1.1</td><td>14</td><td>7.2</td><td>0.11</td><td>0.03</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.03	<mdl< td=""><td>231</td><td><mdl< td=""><td>0.17</td><td><mdl< td=""><td>1.1</td><td>14</td><td>7.2</td><td>0.11</td><td>0.03</td></mdl<></td></mdl<></td></mdl<>	231	<mdl< td=""><td>0.17</td><td><mdl< td=""><td>1.1</td><td>14</td><td>7.2</td><td>0.11</td><td>0.03</td></mdl<></td></mdl<>	0.17	<mdl< td=""><td>1.1</td><td>14</td><td>7.2</td><td>0.11</td><td>0.03</td></mdl<>	1.1	14	7.2	0.11	0.03
38a j 7	5.2	0.19	<mdl< td=""><td>10</td><td>465000</td><td>0.79</td><td>14</td><td>23</td><td>3.0</td><td><mdl< td=""><td>5.8</td><td>33596</td><td>3.5</td><td>0.02</td><td>12</td><td>22</td><td><mdl< td=""><td>0.03</td><td><mdl< td=""><td>317</td><td><mdl< td=""><td>0.14</td><td><mdl< td=""><td>1.3</td><td>15</td><td>14</td><td>0.32</td><td>0.12</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	10	465000	0.79	14	23	3.0	<mdl< td=""><td>5.8</td><td>33596</td><td>3.5</td><td>0.02</td><td>12</td><td>22</td><td><mdl< td=""><td>0.03</td><td><mdl< td=""><td>317</td><td><mdl< td=""><td>0.14</td><td><mdl< td=""><td>1.3</td><td>15</td><td>14</td><td>0.32</td><td>0.12</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	5.8	33596	3.5	0.02	12	22	<mdl< td=""><td>0.03</td><td><mdl< td=""><td>317</td><td><mdl< td=""><td>0.14</td><td><mdl< td=""><td>1.3</td><td>15</td><td>14</td><td>0.32</td><td>0.12</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.03	<mdl< td=""><td>317</td><td><mdl< td=""><td>0.14</td><td><mdl< td=""><td>1.3</td><td>15</td><td>14</td><td>0.32</td><td>0.12</td></mdl<></td></mdl<></td></mdl<>	317	<mdl< td=""><td>0.14</td><td><mdl< td=""><td>1.3</td><td>15</td><td>14</td><td>0.32</td><td>0.12</td></mdl<></td></mdl<>	0.14	<mdl< td=""><td>1.3</td><td>15</td><td>14</td><td>0.32</td><td>0.12</td></mdl<>	1.3	15	14	0.32	0.12
38a j 8	111	0.68	<mdl< td=""><td>1.8</td><td>465000</td><td>6.0</td><td>13</td><td>17</td><td><mdl< td=""><td>0.21</td><td>7.4</td><td>22610</td><td>15</td><td>1.8</td><td>4.7</td><td>15</td><td><mdl< td=""><td><md1< td=""><td><mdl< td=""><td>96</td><td><mdl< td=""><td>1.2</td><td><mdl< td=""><td>2.9</td><td>10</td><td>12</td><td><md1< td=""><td>0.30</td></md1<></td></mdl<></td></mdl<></td></mdl<></td></md1<></td></mdl<></td></mdl<></td></mdl<>	1.8	465000	6.0	13	17	<mdl< td=""><td>0.21</td><td>7.4</td><td>22610</td><td>15</td><td>1.8</td><td>4.7</td><td>15</td><td><mdl< td=""><td><md1< td=""><td><mdl< td=""><td>96</td><td><mdl< td=""><td>1.2</td><td><mdl< td=""><td>2.9</td><td>10</td><td>12</td><td><md1< td=""><td>0.30</td></md1<></td></mdl<></td></mdl<></td></mdl<></td></md1<></td></mdl<></td></mdl<>	0.21	7.4	22610	15	1.8	4.7	15	<mdl< td=""><td><md1< td=""><td><mdl< td=""><td>96</td><td><mdl< td=""><td>1.2</td><td><mdl< td=""><td>2.9</td><td>10</td><td>12</td><td><md1< td=""><td>0.30</td></md1<></td></mdl<></td></mdl<></td></mdl<></td></md1<></td></mdl<>	<md1< td=""><td><mdl< td=""><td>96</td><td><mdl< td=""><td>1.2</td><td><mdl< td=""><td>2.9</td><td>10</td><td>12</td><td><md1< td=""><td>0.30</td></md1<></td></mdl<></td></mdl<></td></mdl<></td></md1<>	<mdl< td=""><td>96</td><td><mdl< td=""><td>1.2</td><td><mdl< td=""><td>2.9</td><td>10</td><td>12</td><td><md1< td=""><td>0.30</td></md1<></td></mdl<></td></mdl<></td></mdl<>	96	<mdl< td=""><td>1.2</td><td><mdl< td=""><td>2.9</td><td>10</td><td>12</td><td><md1< td=""><td>0.30</td></md1<></td></mdl<></td></mdl<>	1.2	<mdl< td=""><td>2.9</td><td>10</td><td>12</td><td><md1< td=""><td>0.30</td></md1<></td></mdl<>	2.9	10	12	<md1< td=""><td>0.30</td></md1<>	0.30
38a j9	<mdl< td=""><td>9.4</td><td>15</td><td>286</td><td>465000</td><td>0.57</td><td>14</td><td>38</td><td>6.2</td><td><mdl< td=""><td><mdl< td=""><td>30558</td><td><mdl< td=""><td><mdl< td=""><td>22</td><td>21</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>208</td><td><mdl< td=""><td>0.66</td><td><mdl< td=""><td>5.5</td><td>12</td><td>19</td><td>0.34</td><td>0.71</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	9.4	15	286	465000	0.57	14	38	6.2	<mdl< td=""><td><mdl< td=""><td>30558</td><td><mdl< td=""><td><mdl< td=""><td>22</td><td>21</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>208</td><td><mdl< td=""><td>0.66</td><td><mdl< td=""><td>5.5</td><td>12</td><td>19</td><td>0.34</td><td>0.71</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>30558</td><td><mdl< td=""><td><mdl< td=""><td>22</td><td>21</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>208</td><td><mdl< td=""><td>0.66</td><td><mdl< td=""><td>5.5</td><td>12</td><td>19</td><td>0.34</td><td>0.71</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	30558	<mdl< td=""><td><mdl< td=""><td>22</td><td>21</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>208</td><td><mdl< td=""><td>0.66</td><td><mdl< td=""><td>5.5</td><td>12</td><td>19</td><td>0.34</td><td>0.71</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>22</td><td>21</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>208</td><td><mdl< td=""><td>0.66</td><td><mdl< td=""><td>5.5</td><td>12</td><td>19</td><td>0.34</td><td>0.71</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	22	21	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>208</td><td><mdl< td=""><td>0.66</td><td><mdl< td=""><td>5.5</td><td>12</td><td>19</td><td>0.34</td><td>0.71</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>208</td><td><mdl< td=""><td>0.66</td><td><mdl< td=""><td>5.5</td><td>12</td><td>19</td><td>0.34</td><td>0.71</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>208</td><td><mdl< td=""><td>0.66</td><td><mdl< td=""><td>5.5</td><td>12</td><td>19</td><td>0.34</td><td>0.71</td></mdl<></td></mdl<></td></mdl<>	208	<mdl< td=""><td>0.66</td><td><mdl< td=""><td>5.5</td><td>12</td><td>19</td><td>0.34</td><td>0.71</td></mdl<></td></mdl<>	0.66	<mdl< td=""><td>5.5</td><td>12</td><td>19</td><td>0.34</td><td>0.71</td></mdl<>	5.5	12	19	0.34	0.71
38aj10	29	0.11	2.8	4.9	465000	0.19	4.5	18	0.86	0.06	6.6	13332	<mdl< td=""><td>2.2</td><td>4.3</td><td>16</td><td><mdl< td=""><td>0.03</td><td><mdl< td=""><td>99</td><td><mdl< td=""><td>0.21</td><td><mdl< td=""><td>0.77</td><td>12</td><td>18</td><td>0.35</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	2.2	4.3	16	<mdl< td=""><td>0.03</td><td><mdl< td=""><td>99</td><td><mdl< td=""><td>0.21</td><td><mdl< td=""><td>0.77</td><td>12</td><td>18</td><td>0.35</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.03	<mdl< td=""><td>99</td><td><mdl< td=""><td>0.21</td><td><mdl< td=""><td>0.77</td><td>12</td><td>18</td><td>0.35</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	99	<mdl< td=""><td>0.21</td><td><mdl< td=""><td>0.77</td><td>12</td><td>18</td><td>0.35</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	0.21	<mdl< td=""><td>0.77</td><td>12</td><td>18</td><td>0.35</td><td><mdl< td=""></mdl<></td></mdl<>	0.77	12	18	0.35	<mdl< td=""></mdl<>
38aj11	9.3	4.0	10	51	465000	0.66	8.5	38	6.2	3.1	6.6	16454	6.0	0.02	5.6	24	<mdl< th=""><th>0.04</th><th>1.0</th><th>90</th><th><mdl< th=""><th>0.12</th><th><mdl< th=""><th>3.0</th><th>7.1</th><th>25</th><th>0.47</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	0.04	1.0	90	<mdl< th=""><th>0.12</th><th><mdl< th=""><th>3.0</th><th>7.1</th><th>25</th><th>0.47</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	0.12	<mdl< th=""><th>3.0</th><th>7.1</th><th>25</th><th>0.47</th><th><mdl< th=""></mdl<></th></mdl<>	3.0	7.1	25	0.47	<mdl< th=""></mdl<>
Mean	16	1.5	6.6	68	465000	0.91	6.7	16	2.2	0.75	6.0	19890	6.9	0.81	10	13	-	0.03	0.62	142	-	0.31	-	1.8	11	11	0.25	0.18
S.D	32	2.6	5.4	114	-	1.6	5.3	11	2.0	1.3	0.57	7644	5.9	1.1	17	6.9	-	0.00	0.54	70	-	0.36	-	1.6	3.1	7.1	0.14	0.25
Min	1.4	0.10	2.8	1.8	465000	0.09	0.57	3.2	0.79	0.06	5.3	6464	2.8	0.02	2.0	3.5	0.00	0.03	0.24	90	0.00	0.08	0.00	0.08	7.1	1.5	0.05	0.03
Max	111	9.4	15	351	465000	6.0	14	38	6.2	3.1	7.4	33596	15	2.2	64	24	0.00	0.04	1.0	317	0.00	1.2	0.00	5.5	17	25	0.47	0.71

APPENDIX V Electrum analysis

(full dataset)

	APPENDIX	X V ELECTI	RUM ANA	LYSIS (EPI	MA) Total	Dataset			Au/(Ag+Au)2		
Sample/EPM	A point	Au	Ag	Cu	Hg	Bi	Те	Total	a.p.f.u	Host of Electrum	Size (µm)
64aj3		58.17	44.01	0.00	0.30	0.30	0.03	102.8	0.42		50
64aj4		58.03	43.12	0.00	0.59	0.17	0.07	102.0	0.42	Stylolites, Weak	60
64aj5	TH 917: 155.3	57.54	43.83	0.03	0.17	0.36	0.03	102.0	0.42	ginguro	60
64aj6		58.10	43.93	0.00	0.33	0.19	0.10	102.6	0.42	mineralisation	25
64aj11		58.25	43.51	0.12	0.62	0.00	0.04	102.5	0.42		25
Mean		58.02	43.68	0.03	0.40	0.20	0.05	102.39	0.42		
66aj2		61.26	40.56	0.00	0.00	0.22	0.08	102.1	0.45	Chalcedonic silica,	
66aj3	TH 917: 163.5	58.67	42.73	0.00	0.21	0.21	0.03	101.8	0.43	carbonate blade	
66aj4		59.52	41.66	0.00	0.61	0.11	0.04	101.9	0.44	replacement	
Mean		59.82	41.648	0.00143	0.2707	0.1803	0.05123	101.969	0.44		
75aj14		68.51	30.75	0.02	0.47	0.28	0.02	100.0	0.55		25
75aj15		70.71	31.66	0.00	0.00	0.00	0.00	102.4	0.55	With Pyrite, in	25
75aj16	TH 920 182 3	69.28	31.87	0.00	0.23	0.25	0.10	101.7	0.54	quartz	25
75aj17	111 920. 182.5	73.97	27.41	0.04	0.32	0.15	0.05	101.9	0.60	infill, secondary	25
75aj19		69.44	31.24	0.00	0.28	0.07	0.00	101.0	0.55	breccia	25
75aj20		70.33	31.45	0.03	0.39	0.28	0.11	102.6	0.55		25
Mean		70.37	30.73	0.02	0.28	0.17	0.05	101.62	0.56		
6aj1	TH 025, 142 5	66.16	34.24	0.00	0.00	0.14	0.09	100.6	0.51	In silica, fluorite	30
6aj2	1 H 925: 145.5	66.35	35.32	0.02	0.24	0.15	0.04	102.1	0.51	crackle breccia	30
Mean		66.25	<i>34</i> .78	0.01	0.12	0.14	0.06	101.36	0.51		
62aj(5)*		65.51	34.49					100.00		Silica band, calcite blade replacement	10
64aj(20)*		63.95	36.05					100.00			30
64aj(50)*		62.01	37.99					100.00		Stylolites, Weak	25
64aj(54)*		59.28	38.31			1.6		100.00		ginguro	5
64aj(58)*		61.90	36.50			1.61		100.00		mineralisation	15
64aj(62)*		60.35	32.82			5.53		100.00			20
66aj(2)*		64.99	35.01					100.00		Chalcedonic silica, calcite blade replacement	50
74aj(13)*		62.3	29.13					100.00		Stylolite, hydrothermal crackle breccia	15
75aj(13)*		75.25	24.75					100.00		With Pyrite, in	20
75aj(15)*		77.13	22.87					100.00		quartz	10
75aj(17)*		76.24	23.76					100.00		infill,secondary breccia	6

* denotes electrum analysis by SEM with EDAX. Phillips XL30-counts @ 55 Lsecs.

APPENDIX VI

LA-ICPMS analysis of Molybdenite

(full dataset)

			API	PENDIX V	I LAICPMS N	IOLYBDEN	IUM total da	ataset																				
Molybde	num																											
AJ 16	i																											
THRCD	925																											
179.9 n	nts	-																										
Analysis Spot	Ti (ppm)	V (ppm)	Cr (ppm)	Vn (ppm)) Fe (ppm)	Co (ppm)	Ni (ppm)	Cu (ppm)	Zn (ppm)	Ga (ppm)	Ge (ppm)	As (ppm)	Se (ppm)	Nb (ppm) Mo (ppm)	Ag (ppm)	Cd (ppm)	In (ppm)	Sn (ppm)	Sb (ppm)	Te (ppm)	W (ppm)	Re (ppm)	Au (ppm)	Tl (ppm)	Pb (ppm)	Bi (ppm)	U (ppm)
16aj1	472	444	69	81	128122	19	30	188	52	40	18	6890	295	0.52	599400	9552	<mdl< th=""><th>0.33</th><th>15</th><th>5101</th><th>10</th><th>688</th><th>18</th><th>1.4</th><th>5163</th><th>2134</th><th>8.2</th><th>13</th></mdl<>	0.33	15	5101	10	688	18	1.4	5163	2134	8.2	13
16a j 2	527	470	140	29	83494	9.1	20	145	50	47	<mdl< th=""><th>5134</th><th>253</th><th>0.79</th><th>599400</th><th>7878</th><th><mdl< th=""><th>0.38</th><th>16</th><th>5002</th><th>7.8</th><th>605</th><th>17</th><th>0.49</th><th>4792</th><th>2070</th><th>6.9</th><th>7.1</th></mdl<></th></mdl<>	5134	253	0.79	599400	7878	<mdl< th=""><th>0.38</th><th>16</th><th>5002</th><th>7.8</th><th>605</th><th>17</th><th>0.49</th><th>4792</th><th>2070</th><th>6.9</th><th>7.1</th></mdl<>	0.38	16	5002	7.8	605	17	0.49	4792	2070	6.9	7.1
16aj3	11838	466	136	37	86289	10	21	156	50	51	<mdl< th=""><th>5121</th><th>265</th><th>51</th><th>599400</th><th>7875</th><th><mdl< th=""><th>0.62</th><th>26</th><th>4984</th><th>6.3</th><th>629</th><th>17</th><th><mdl< th=""><th>4691</th><th>1946</th><th>6.9</th><th>10</th></mdl<></th></mdl<></th></mdl<>	5121	265	51	599400	7875	<mdl< th=""><th>0.62</th><th>26</th><th>4984</th><th>6.3</th><th>629</th><th>17</th><th><mdl< th=""><th>4691</th><th>1946</th><th>6.9</th><th>10</th></mdl<></th></mdl<>	0.62	26	4984	6.3	629	17	<mdl< th=""><th>4691</th><th>1946</th><th>6.9</th><th>10</th></mdl<>	4691	1946	6.9	10
16a j 4	112	384	31	20	71862	7.6	16	128	31	9.5	6.1	4934	254	0.23	599400	7888	3.4	0.13	4.4	4445	6.6	967	14	0.45	5385	2086	7.8	7.0
16a j 5	2314	437	51	32	82255	13	17	158	56	20	4.9	5019	238	11	599400	8378	2.4	0.25	13	4470	8.2	937	15	0.43	5427	1953	7.5	8.1
16a j 6	2206	591	151	56	87421	12	19	156	73	84	<mdl< td=""><td>5117</td><td>225</td><td>7.0</td><td>599400</td><td>7724</td><td>3.6</td><td>0.66</td><td>25</td><td>5173</td><td>7.1</td><td>506</td><td>15</td><td><mdl< td=""><td>4793</td><td>2187</td><td>6.4</td><td>5.2</td></mdl<></td></mdl<>	5117	225	7.0	599400	7724	3.6	0.66	25	5173	7.1	506	15	<mdl< td=""><td>4793</td><td>2187</td><td>6.4</td><td>5.2</td></mdl<>	4793	2187	6.4	5.2
16aj7	2119	793	252	48	99084	12	<mdl< td=""><td>161</td><td>88</td><td>149</td><td><mdl< td=""><td>4974</td><td>226</td><td>1.8</td><td>599400</td><td>8331</td><td><mdl< td=""><td><mdl< td=""><td>29</td><td>5683</td><td><mdl< td=""><td>479</td><td>23</td><td><mdl< td=""><td>4540</td><td>1663</td><td>6.9</td><td>12</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	161	88	149	<mdl< td=""><td>4974</td><td>226</td><td>1.8</td><td>599400</td><td>8331</td><td><mdl< td=""><td><mdl< td=""><td>29</td><td>5683</td><td><mdl< td=""><td>479</td><td>23</td><td><mdl< td=""><td>4540</td><td>1663</td><td>6.9</td><td>12</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	4974	226	1.8	599400	8331	<mdl< td=""><td><mdl< td=""><td>29</td><td>5683</td><td><mdl< td=""><td>479</td><td>23</td><td><mdl< td=""><td>4540</td><td>1663</td><td>6.9</td><td>12</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>29</td><td>5683</td><td><mdl< td=""><td>479</td><td>23</td><td><mdl< td=""><td>4540</td><td>1663</td><td>6.9</td><td>12</td></mdl<></td></mdl<></td></mdl<>	29	5683	<mdl< td=""><td>479</td><td>23</td><td><mdl< td=""><td>4540</td><td>1663</td><td>6.9</td><td>12</td></mdl<></td></mdl<>	479	23	<mdl< td=""><td>4540</td><td>1663</td><td>6.9</td><td>12</td></mdl<>	4540	1663	6.9	12
16a j 8	387	379	23	20	67161	13	17	178	63	8.1	6.4	5590	236	0.56	599400	8374	1.9	0.15	3.7	4631	8.8	746	7.2	0.29	5349	2772	8.7	3.3
16a j 9	112	386	15	15	66567	12	17	159	64	5.9	5.0	5359	225	0.26	599400	8120	3.1	0.10	3.3	4362	9.2	782	6.6	0.34	5260	2648	8.2	2.8
16aj10	203	448	44	31	70018	12	17	155	62	18	4.9	5344	216	0.31	599400	7769	3.6	0.20	6.8	4518	8.3	618	8.1	0.35	4969	2487	7.8	2.7
16aj11	105	339	15	14	61446	11	15	149	43	9.2	4.3	4969	218	0.23	599400	7439	2.6	0.12	3.3	4116	7.9	934	10	0.34	5330	2460	7.7	2.6
16aj12	1124	381	50	25	73969	29	30	258	159	8.3	5.6	5643	198	4.3	599400	5985	3.6	0.13	4.7	4550	11	643	23	0.41	3632	2013	10	5.5
16aj13	5504	382	203	246	144974	33	55	175	53	47	10	5099	186	22	599400	6895	1.6	0.35	12	4929	8.1	1037	17	0.68	5676	2046	8.9	13
16aj14	81	303	24	13	61935	15	15	185	66	5.1	5.0	5009	213	0.16	599400	7433	2.3	0.07	3.1	4132	8.0	964	15	0.42	5499	2151	7.7	2.0
16aj15	150	388	37	24	63388	11	17	146	54	12	4.3	5167	191	0.24	599400	10175	4.2	0.21	4.5	4195	7.7	852	12	0.43	5152	2530	7.9	4.0
Mean	1817	439	83	46	83199	15	22	166	64	34	6.7	5291	229	6.8	599400	7988	2.9	0.26	11	4686	8.2	759	15	0.50	5044	2210	7.8	6.6
S.D	3135.72	119	75	58	24428	7.0	11	30	29	39	3.9	493	29	14	0.00	987	0.81	0.19	9.2	446	1.2	180	5.1	0.31	509	304	0.89	3.9
Min	81	303	15	13	61446	7.6	15	128	31	5.1	4.3	4934	186	0.16	599400	5985	1.6	0.07	3.1	4116	6.3	479	6.6	0.29	3632	1663	6.4	2.0
Max	11838	793	252	246	144974	33	55	258	159	149	18	6890	295	51	599400	10175	4.2	0.66	29	5683	11	1037	23	1.4	5676	2772	10	13