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Abstract 

Microfluidic systems are of tremendous technological interest as demonstrated by their use 

in chemical analysis (so called ‘lab-on-a-chip’) and biochemical analysis (e.g. to detect 

biomarkers for disease), and in process intensification. Packed beds of micro-sized 

particles possibly utilized for enhancing heat and mass transfer in microfluidic devices, 

where the flow regime is normally laminar, as well as provide significant increases in 

surface area per unit volume for analytical chemistry and biochemistry, and for separation 

and purification. Whilst macro-scale packed beds have long been well understood, the 

same is not true of their microfluidic counterparts, which we term micro-packed beds or 

µPBs. Of particular concern is the effect that the small bed-to-particle diameter ratio has on 

the nature of the bed packing and the hydrodynamics of the flow within them. This lack of 

understanding stems in part from the challenges that are faced in experimentally assessing 

µPBs and the flow through to them. The study reported in this thesis addresses these 

concerns through a two developments. In the first body of work, a new method is proposed 

for the accurate reconstruction of the structure of a µPB from X-ray micro-computed 

tomography data for such beds. The porosity obtained from µPB was, within statistical 

uncertainty, the same as that determined via a direct method whilst use of a commonly 

used technique yielded a result that was nearly 10% adrift, well beyond the experimental 

uncertainty. This work particularly addresses the significant issues that arise from the 

limited spatial resolution of the tomography technique in this context. In the second part of 

the work reported here, a meshless computational fluid dynamics technique is used to 

study Newtonian fluid flow through µPBs, including determination of their permeability 

and the by-pass fraction due to wall effects, which are important in these beds. This use of 

a CFD allows determination of parameters that are difficult to determine experimentally 

because of the challenges faced in measuring the small pressure drops involved and the 

absence of the limited spatial and temporal resolutions of various imaging techniques. The 

meshless method used here also overcomes the challenges normally faced when seeking to 

discretise the complex three-dimensional pore space of the packed bed. The developments 

here open the way to studying more complex µPB configurations, and other processes 

within them such as non-Newtonian flows and mass and heat transfer. 
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