Investigation and Development of a Real-Time On-Site Condition Monitoring System for Induction Motors

by

Syaiful Bakhri

Thesis submitted for the degree of

Master of Engineering Science

School of Electrical and Electronic Engineering Faculty of Engineering, Computer and Mathematical Science

> The University of Adelaide Australia

> > August 2008

Contents

Contents	ii
Declaration	vi
List of Figures	viii
List of Abbreviations and Symbols	xiv
List of Abbreviations	xiv
List of Symbols	xvi

Chapter 1

Overview of Condition Monitoring of Induction Motor1		
	1.1 Overview and Problem	. 1
	1.2 Outline of the Thesis	. 3

Chapter 2

literature Review	5
2.1 Introduction	5
2.2 Approaches used in Condition Monitoring Systems	5
2.3 Common Faults of Induction Motor	7
2.3 Monitoring techniques	8
2.2.1 Vibration Monitoring	16
2.2.2 Stator Current Monitoring	18
2.2.3 Stator Voltage Monitoring	20
2.2.4 Flux Leakage Monitoring	20
2.3 Data Analysis and Diagnostics	22
2.4 Condition Monitoring Devices	24
2.5 Conclusion	30

Chapter 3

Induction Motors and Fault Frequencies	
3.1 Introduction	
3.2 Brief Overview of Induction Motors	

3.2.1 Overview of Induction Motor Construction	33
3.2.2 Overview of the Principle of Operation	35
3.2.3 Overview of Synchronous Speed and Slip	36
3.3 Fault Frequencies of Induction Motor	38
3.3.1 Bearing Faults	38
3.3.2 Stator Faults	43
3.3.3 Rotor Faults	46
3.3.4 Eccentricity Faults	50
3.3.5 Other Faults	53
3.3 Sensor Parameters	57
3.4 Conclusion	59

Chapter 4

Development of a CompactRIO-Based Condition Monitoring System

	60
4.1 Introduction	60
4.2 Overview of CompactRIO and LabVIEW	60
4.2.1 CompactRIO Architecture	61
4.2.2 CompactRIO Base Unit	
4.2.3 CompactRIO Module Development Kit	
4.2.4 LabVIEW Programming	
4.2.5 CompactRIO Condition Monitoring Segmented Development	
4.3 The CompactRIO Indicator Module	
4.3.1 Basic requirements	
4.3.2 Module Development	
4.4 FPGA Development	
4.4.1. Digital Low-pass Filtering Development	
4.4.2 LED Driving Development	88
4.4.3 Compiling and Uploading FPGA	
4.5 Real-time Condition Monitoring Software Development	
4.5.1. Host to FPGA Synchronization and Data Transfer	
4.5.2. Frequency Analysis	
4.5.3. Fault Frequency Analysis	100

4.5.3.1 Fundamental Frequencies and Slip Calculation	. 103
4.5.3.2 Fault Frequency Predictors and The Sub VI	. 105
4.5.3.2.1 Eccentricity Fault	. 105
4.5.3.2.2 Broken Rotor Bar Fault	. 106
4.5.3.2.3 Stator Shorted Turn Fault	. 109
4.5.3.2.4 Set-up Related Fault	. 110
4.5.3.3 Limit Testing	. 111
4.5.4 Main Program	. 116
4.6 Conclusions	. 120

Chapter 5

Experimental Evaluation of the CompactRIO-Based Condition

Monitoring System		121
5.1	Introduction	
5.2	Execution Time Evaluation	
5.3	Frequency response evaluation	
5.4	Induction Motor Fault Evaluation	
5.5	Conclusion	

Chapter 6

Gene	General Conclusions and Suggestions144		
6.1	Conclusions		
6.2	Suggestions		
Refer	ences	148	
Appe	ndix	156	
A.1	The Details PCB of CompactRIO indicator module		

Abstract

This thesis presents an investigation and development of a real-time on-site condition monitoring system for induction motors. Induction motors are employed in various industries as an essential machine. In order to prevent catastrophic faults during its serviceable life, condition monitoring of induction motors is commonly used in industrial applications to maintain safety and reliability of plant operation. The current practice in condition monitoring primarily involves using various forms of mobile or portable devices, usually with a single sensor input to perform tests at regular intervals. However, such devices and monitoring services can be expensive and require an experienced operator for reliable decisions. Therefore, this thesis investigates an alternative low-cost solution for continuous condition monitoring of induction machines using multiple sensors, which can be located next to a machine under test and can provide condition information using indicator lights for quick diagnosis.

The thesis provides hardware and software implementation details using an FPGA based CompactRIO platform. The CompactRIO embedded reconfigurable platform incorporates an FPGA, an analog input module, a real-time host controller and a custom-made indicator module as an on-site monitoring system. The CompactRIO custom-made indicator module utilizes bi-colour LEDs and requirements of CompactRIO MDK to display each level fault. Furthermore, a data acquisition and monitoring system was developed under LabVIEW FPGA environment and LabVIEW Real Time software. The system that has been successfully designed has had its performances and capabilities evaluated through several tests. In addition, real faults are also introduced to demonstrate the system's performance. The results show that the CompactRIO system is capable of being implemented as condition monitoring system, especially as an early warning unit. The early warning information obtained from this system can be used as valuable data for further detailed fault assessment.

Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by any other person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

Signed : _____ Date : _____

Acknowledgement

Firstly, I wish to express sincere gratitude to my principal supervisor Associate Professor Dr. Nesimi Ertugrul for his guidance, inspiration, motivation, support and knowledge during my research. He has encouraged improvement and development. He has also given essential support by providing a CompactRIO base unit, LabVIEW software and CompactRIO MDK.

I would like to thank to Dr. Wen L. Soong and Dr. Said Al-Sarawi for the inspiration, guidance, and suggestion that have enriched this project.

I would like to thank all the technical staff for their help and assistance during my research in power laboratory. I would also like to thank the information technology support staff, Mr Mark Innes and Mr Anthony Schueller, and school store staff Mr Danny Di Giacomo, for their help. I would like especially to acknowledge Mr. Pavel Simcik for the PCB development.

I would like to thank and acknowledge Ms Ann Nobel for the editorial assistance during my thesis writing.

An AusAID Australian Development Scholarship provided me with support during my studies, for which I am grateful.

I am grateful to every member of the School of Electrical and Electronic Engineering, and staff of University of Adelaide International student centre, especially Ms Niranjala Seimon, who has helped me during my stay here.

Thanks to my family, my beloved wife, and my children, for their support, patience, encouragement, and understanding during my studies. Thanks also to my relatives in Indonesia for supporting me throughout my candidature.

Syaiful Bakhri

August 2008

List of Figures

Figure 1.1 Cut-away view of an induction motor	1
Figure 2.1 Monitoring Tasks	6
Figure 2.2 Distribution of common faults of electric motors according to	8
Figure 2.3 Condition monitoring of induction motors	9
Figure 2.4 (a) Accelerometer, (b) velocity, and (c) displacement transducers for	
vibration monitoring	17
Figure 2.5 An example of (a) Hall-effect sensor, (b) CT sensor, and (c) Rogowski	coil
for stator current monitoring	18
Figure 2.6 A differential voltage measurement device for voltage monitoring	20
Figure 2.7 Flux region which can be used to detect fault in induction motors	21
Figure 2.8 A commercial external flux coil for flux leakage monitoring	21
Figure 2.9 A complete structure of a condition monitoring device	24
Figure 2.10 Commercial handheld (MicroVibe-P), portable (DLI Watchman and	
OR35/36), and permanent on-line (VibroControl 4000 and VXI SO	
analyzer) condition monitoring devices	25
Figure 2.11 Example of a data processing board for condition monitoring (a) ISA	
DAS-8 Metrabyte Inc data acquisition card, (b) DSP TMS320C32 boa	ard,
(c) Altera NIOS II soft core and a Stratix FPGA board	27
Figure 2.12 A CompactRIO base unit	29
Figure 3.1 Cutaway of squirrel cage induction motor showing main parts	33
Figure 3.2 Stator construction: (a) laminations, (b) coil insertions, and (c) a complete	ete
stator	34
Figure 3.3 Cross-section of (a) a squirrel cage rotor, and (b) a complete arrangeme	nt
of the squirrel cage rotor	34
Figure 3.4 Wound-rotor	35
Figure 3.5 The induced voltage rotates the rotor	36
Figure 3.6 Magnetic fields in squirrel cage rotor	36
Figure 3.7 (a) Stator winding arrangement and (b) instantaneous value of currents	and
magnetic flux distribution produced	37
Figure 3.8 Cut-away of ball and roller bearing type shows main parts of bearing	39
Figure 3.9 Cause of failure in bearing of induction motor.	40

Figure 3.10 Bearing dimension and frequencies of bearing-related faults	41
Figure 3.11 Stator-related fault frequencies of vibration monitoring	46
Figure 3.12 Broken rotor bar, bad joint and shorted lamination fault frequencies of	
vibration monitoring	49
Figure 3.13 Loose rotor bar fault frequencies of vibration monitoring	50
Figure 3.14 Types of Eccentricity	50
Figure 3.15 Eccentricity fault frequencies of vibration monitoring	52
Figure 3.16 Types of mechanical unbalance	53
Figure 3.17 Fault frequency of mechanical unbalance.	54
Figure 3.18 Misaligned bearing	54
Figure 3.19 Misalignment fault frequencies using vibration monitoring	55
Figure 3.20 Three types of fault frequencies of looseness using vibration monitoring.	56
Figure 3.21 Supply phasing problem fault frequencies	57
Figure 3.22 Potential position of sensors to gain comprehensive result of condition	
monitoring when a motor is coupled with a load	58
Figure 4.1 Four types of CompactRIO configuration: (a) embedded modular, (b)	
embedded integrated, (c) R-series expansion, and (d) remote high-speed	
	61
Figure 4.2 CompactRIO embedded architecture	62
Figure 4.3 CompactRIO Module Development Kit shows empty custom module	
shells, and development software	65
Figure 4.4 LabVIEW programming components	67
Figure 4.5 Segmented development of CompactRIO embedded condition monitoring	5
	68
Figure 4.6 Input circuitry of NI 9201	69
Figure 4.7 CompactRIO communication mode	71
Figure 4.8 CompactRIO basic block diagram	73
Figure 4.9 Schematic diagram of the CompactRIO indicator module	73
Figure 4.10 The LED drive technique	74
Figure 4.11 The SPI drive technique	75
Figure 4.12 (a). CompactRIO indicator circuit, (b) CompactRIO indicator module, an	nd
(c) CompactRIO indicator module attached on CompactRIO base unit7	76
Figure 4.13 FPGA flowchart	78

Figure 4.14	(a) Simulation results of the low pass filter design and (b) the zoom
	frequency response around the edge of the pass band showing the cut-off
	frequency
Figure 4.15	(a) Calculated pole-zero plots and (b) calculated step response of the low
	pass filter
Figure 4.16	(a) Frequency spectra of simulation input random signals and (b)
	frequency spectra after low pass floating-point Butterworth filter
Figure 4.17	Comparison of floating-point and fixed-point frequency response
Figure 4.18	A fixed-point model of low pass filter which has quantizers
Figure 4.19	Comparison of floating-point and fixed-point simulation result of 86
Figure 4.20	Comparison of floating-point and fixed-point simulation result of random
	input signal
Figure 4.21	Low Pass Butterworth Filter
Figure 4.22	Timing diagram of NLSF 595 LED driver
Figure 4.23	FPGA indicator module
Figure 4.24	Block diagram VI of the indicator module
Figure 4.25	(a) Compiling process of an FPGA VI, and (b) uploading a bit file to the
	FPGA target
Figure 4.26	Flowchart of condition monitoring software in the real-time host
	controller
Figure 4.27	Basic data transfer and synchronization
Figure 4.28	Data synchronization between CompactRIO FPGA and main program
	CompactRIO Real-Time Host
Figure 4.29	Sub VI of frequency analysis : (a) A sub VI of scaling voltage to Specific
	Engineering Unit (SVL Scale Voltage to EU) and (b) A sub VI of
	computing FFT spectrum (SVFA FFT Spectrum (Mag-Phase))
Figure 4.30	A sub VI of harmonic analysis (SVT THD and Harmonics Components)
Figure 4.31	Sub VI of slip frequency calculation (a) icon and connector pane and (b)
	block diagram104
Figure 4.32	Waveform graphs of (a) fundamental line frequency captured by voltage
	monitoring, and (b) fundamental rotor frequency captured by vibration
	monitoring

Figure 4.33 Sub VI of mix eccentricity calculation: (a) icon and connector pane and
(b) block diagram
Figure 4.34 Sub VI of broken rotor bar calculation using Equation 3.16: (a) icon and
connector pane and (b) block diagram 107
Figure 4.35 Sub VI of broken rotor bar calculation using Equation 3.17: (a) icon and
connector pane and (b) block diagram
Figure 4.36 Sub VI of interturn fault calculation: (a) icon and connector pane, and (b)
block diagram109
Figure 4.37 Icon of set-up related faults Sub VI 110
Figure 4.38 Block diagram of set-up related faults Sub VI 111
Figure 4.39 Sub VI of peak searching 112
Figure 4.40 Peak search technique of the sub VI in Figure 4.38 112
Figure 4.41 Sub VI of limit creator
Figure 4.42 Sub VI of limit testing
Figure 4.43 Sub VI of three limit thresholds of severity level 114
Figure 4.44 Example of limit testing result 115
Figure 4.45 Sub VI of conversion from severity level to LED colours
Figure 4.46 First part of main program of real-time condition monitoring 117
Figure 4.47 Second part of main program of real-time condition monitoring 118
Figure 5.1 Execution Trace Tool VIs (see arrows)
Figure 5.2 Execution Trace Tool front panel
Figure 5.3 Zoom view of thread event of Execution Trace Tool demonstrates length of
execution time
Figure 5.4 Zoom view of VIs event of Execution Trace Tool shows execution time of
main and sub VIs125
Figure 5.5 Zoom view of VIs event of Execution Trace Tool shows execution time of
algorithms of frequency analysis
Figure 5.6 Real-time system manager shows memory usage and CPU usage during a
measurement
Figure 5.7 Frequency response of monitoring system without low pass filter and using
low pass filter
Figure 5.8 Zoom view of specific peak with : (a) 512 lines (b) 1024 lines (c) 2048
lines and (d) 4096 lines 133
Figure 5.9 Examples of various windowing techniques can be performed 134

Figure 5.10	User interface of the CompactRIO based condition monitoring system 13	6
Figure 5.11	A zoomed section of the frequency spectrum indicating the sidebands in	
	circles, under a broken rotor bar fault 13	7
Figure 5.12	A zoomed section of the stator current frequency spectrum indicating the	•
	sidebands in circles, under an eccentricity13	7
Figure 5.13	A zoomed section of the frequency spectrum of flux leakage and	
	vibration under a shorted turn 13	8
Figure 5.14	Real-time current/voltage waveforms and their frequency spectra under	
	eccentricity fault	9
Figure 5.15	Zoom of real-time three axis vibration and axial flux leakage signals with	ı
	corresponding zoom of frequency spectra under a multiple fault 14	0
Figure A.1 l	PCB layout of CompactRIO MDK LED indicator module (a) top view and	d
(b) bottom view15	6

List of Tables

Table 2.1 Off line condition monitoring techniques	10
Table 2.2 On-line condition monitoring techniques	11
Table 2.3 Studies of common faults in induction motors using vibration, stator	
current, stator voltage and flux leakage monitoring	15
Table 2.4 Advantages and disadvantages types of condition monitoring devices	26
Table 3.1 Sensor parameters and positions	58
Table 4.1 Modules of CompactRIO embedded system	64
Table 4.2 Key pins of the SPI template in Operation Mode of CompactRIO custor	n
module development	72
Table 4.3 Low pass floating-point Butterworth filter specification	80
Table 4.4 IIR low pass Butterworth filter fixed-point structure setting	83
Table 4.5 IIR low pass Butterworth filter fixed-point modeling coefficients	85
Table 4.6 Statistic simulation of each quantizer	87
Table 4.7 Function table NLSF595	88
Table 4.8 LabVIEW VI functions used for frequency analysis	96
Table 4.9 LabVIEW VI functions used for frequency analysis (continued)	97
Table 4.10 Summary of frequency analysis	99
Table 4.11 Custom and built-in VIs implemented for fault frequency analysis	100
Table 4.12 Fault frequency predictor of broken rotor bar using Equation 3.16	107
Table 4.13 Fault frequency predictor of broken rotor bar using Equation 3.17	109
Table 4.14 Fault frequency predictor of stator interturn fault	110
Table 4.15 Relation of the limit mask with the severity level area	115
Table 5.1 Description of several thread events	127
Table 5.2 Average execution times of the various sections of the signal processing	5
algorithms	129
Table 5.3 Average execution times of the CompactRIO fault analysis stage	129
Table 5.4 The comparison of the width windows at certain amplitude	134
Table 5.5 Performance of peak detection under twenty consecutive tests	141

List of Abbreviations and Symbols

List of Abbreviations

AC	Alternating Current
ADC	Analog to Digital Converter
AlBar	Aluminum Bars
BNC	Bayonette Neil-Concelman (connector)
CAN	Controller Access Network
CompactRIO	Compact Reconfigurable Input Output
СТ	Clip on Transformer
CuDC	Copper Die Cast
CuBar	Copper Bar
DMA	Direct Memory Access
DRAM	Dynamic Random Access Memory
DSP	Digital Signal Processor
EEPROM	Electrically Erasable Programmable Read-Only Memory
EPRI	Electric Power Research Institute
FFT	Fast Fourier Transform
FIFO	First In First Out
FIR	Finite Impulse Response
FTP	File Transfer Protocol
FPGA	Field Programmable Gate Array
GND	Ground
IEEE-IAS	Institute of Electrical and Electronic Engineering-Industry
	Application Society
IIR	Infinite Impulse Response
I/O	Input/Output
НТТР	Hypertext Transfer Protocol
IR	Insulation Resistance
ISA	Industry Standard Architecture
LAN	Local Area Network
LED	Light Emitting Diode

LCD	Liquid Crystal Display
LabVIEW	Laboratory Virtual Instrumentation Engineering Workbench
MCSA	Motor Current Stator Analysis
MDK	Module Development Kit
MISO	Master-In Slave-Out
MOSI	Master-Out Slave-Input
MSE	Mean Square Error
NI	National Instrument
OE	Output Enable
PDA	Personal Data Assistant
PI	Polarization Index
PC	Personal Computer
PCI	Peripheral Component Interconnect
PXI	PCI Extension for Instrumentation
RCK	Register Clock
SCK	Serial Clock
SI	Serial Input
SQH	Serial Output
SPI	Serial Peripheral Interface
SPI_CLK	SPI Clock
SPI_CS	SPI Chip Select
TCP/IP	Transmission Control Protocol/ Internet Protocol
RAM	Random Access Memory
RMS	Root Mean Square
VI	Virtual Instrument
VXI	VME eXtensions for Instrumentation

List of Symbols

Ball contact angle
Ball diameter
Pitch diameter
Frequency of the source
Ball fault frequency
Detectable broken rotor bar frequency
Cage fault frequency
Eccentricity fault frequency
Outer race fault frequency
Inner race fault frequency
Power supply line frequency
Pole pass frequency
Rotor or shaft frequency
Rotor bar pass frequency
Stator fault frequency
Slot and eccentricity fault frequency
Maximum current to be allowed
Number of pole pairs
Number of rotor slots
Resistor centre value
Slip
Tolerance of resistor
Number of balls
Rotor speed
Synchronous speed of the motor
Maximum power supply voltage
Minimum LED forward voltage at $I_{OL,MAX}$
Minimum output low voltage from the LED driver at $I_{\rm OL,MAX}$