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SYSTEMS 
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Hsin Yeow Seah3, and Chan Lim Tan3 

 

 

ABSTRACT: 

 

During the last decade, evolutionary methods such as genetic algorithms have been used extensively for 

the optimal design and operation of water distribution systems.  More recently, ant colony optimization 

algorithms (ACOAs), which are evolutionary methods based on the foraging behavior of ants, have been 

successfully applied to a number of benchmark combinatorial optimization problems.  In this paper, a 

formulation is developed which enables ACOAs to be used for the optimal design of water distribution systems.  

This formulation is applied to two benchmark water distribution system optimization problems and the results 

are compared with those obtained using genetic algorithms.  The findings of this study indicate that ACOAs 

should be considered as an alternative to GAs for the optimal design of water distribution systems, as they 

outperformed GAs for the two case studies considered both in terms of computational efficiency and their ability 

to find near global optimal solutions. 
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INTRODUCTION 
 

Genetic algorithms (GAs) are an evolutionary optimization method based on the concept of survival of 

the fittest that have been used extensively for the optimal design and operation of water distribution systems 

(WDS) (e.g. Goldberg and Kuo 1987; Simpson et al. 1994; Halhal et al. 1997).  More recently, Dorigo et al. 

(1996) developed an evolutionary optimization algorithm based on the foraging behavior exhibited by ant 

colonies in their search for food.  Ant colony optimization algorithms (ACOAs) have been successfully applied 

to a number of benchmark combinatorial optimization problems, such as the traveling salesman and quadratic 

assignment problems (Dorigo et al. 2000), and have been shown to outperform other evolutionary optimization 

algorithms, including GAs (e.g. Dorigo and Gambardella 1997).  In the late 1990s, Dorigo and Di Caro (1999) 

introduced a general framework for developing ACOAs; the ant colony meta-heuristic.  This enables ACOAs to 

be applied to a range of combinatorial optimization problems, provided problem specific formulations can be 

developed (Stützle and Hoos 2000).  Thus far, the use of ACOAs in water resources has been limited 

(Abbaspour et al. 2001), and in this research, the utility of ACOAs for the optimal design of WDS is explored. 

 

The objectives of this paper are (i) to introduce ACOAs to the water resources community, (ii) to 

compare and contrast ACOAs with GAs, (iii) to develop a formulation for using ACOAs for the optimal design 

of WDS and (iv) to compare the performance of ACOAs and GAs for two benchmark WDS optimization case 

studies. 

 

ANT COLONY OPTIMIZATION 
 

ACOAs are inspired by the fact that ants are able to find the shortest route between their nest and a food 

source, even though they are almost blind.  This is accomplished by using pheromone (chemical) trails as a form 

of indirect communication.  Ants deposit pheromone trails whenever they travel.  The path taken by individual 

ants from the nest in search for a food source is essentially random (Dorigo et al. 1996).  However, when many 

ants are searching for a food source simultaneously, the paths taken are affected by the pheromone trails laid by 

other ants.  When ants encounter pheromone trails, there is a higher probability that trails with higher pheromone 

intensities will be chosen.  As more ants travel on paths with higher pheromone intensities, the pheromone on 

these paths builds up further, making it more likely to be chosen by other ants.  The way this form of positive 
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reinforcement can be used to find the shortest path between the nest and a food source can best be illustrated 

with an example. 

 

Consider the scenario shown in Fig. 1a, where an obstacle has been placed between the ants’ nest (A) 

and the food source (B) so that one route from the nest to the food source (AEDFB) is shorter than the other 

(AECFB).  In the example considered, the length of the shorter route is 4 unit distances (UDs), whereas the 

length of the longer route is 6 UDs (Fig. 1a).  Let us assume that 16 ants leave the nest at time T = 0, that the 

initial pheromone concentration (t) on each path segment is zero, that each ant moves one unit distance per unit 

time (T), and that each ant deposits one unit of pheromone after reaching the next node.  The numbers of ants 

(shown in brackets) and the pheromone concentrations on each path segment at times T = 0, 1, 2, 5, 7, 9 and 10 

are shown in Figs. 1b to 1h. 

 

At T = 1 (Fig. 1c), 16 ants arrive at E and have deposited 16 units of pheromone on AE.  As there is no 

pheromone on EC and ED, there is an equal probability that the ants will choose either path.  Consequently, it is 

assumed that 8 ants choose EC and 8 ants choose ED.  At T = 2 (Fig. 1d), the 8 ants following path ED have 

reached D and have deposited 8 units of pheromone on ED.  Since path EC is twice as long as path ED, the ants 

following path EC have not yet reached C, and thus pheromone has not yet been deposited on EC (assuming that 

the pheromone is only deposited once EC has been traversed completely).  At T = 5 (Fig. 1e), the 8 ants 

travelling on the longer route are at F on their way to the food source (B) and have deposited 8 units of 

pheromone on EC and CF.  At the same time, the 8 ants travelling on the shorter route are also at F on their way 

back to the nest (A), having already reached the food source (B) at T = 4.  Consequently, they have deposited 8 

units of pheromone on DF and 16 units of pheromone on FB (8 units going from F to B and 8 units going from B 

to F).  At this stage, the pheromone intensities on FD and FC are 8 units each, and thus, by equal probability, it is 

assumed that 4 returning ants choose path FC and the other 4 choose path FD. 

 

At T = 7 (Fig. 1f), the 4 returning ants that have chosen the shorter route to the nest (FDEA) have 

reached E and have deposited an additional 4 units of pheromone on FD and DE.  In contrast, the 4 returning 

ants that have chosen the longer route to the nest (FCEA) have reached C and have deposited an additional 4 

units of pheromone on FC.  At the same time, the 8 ants that chose the longer route from the nest to the food 

source initially have returned to F, after reaching the food source (B) at T = 6.  Consequently, they have 
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deposited an additional 16 units of pheromone on BF (8 units going from F to B and 8 units going from B to F).  

At F, there is an equal probability that the 8 ants will choose paths FC and FD, as each has a pheromone intensity 

of 12 units.  Consequently, it is assumed that 4 ants travel on each of these paths on their way back to the nest 

(A). 

 

At T = 9 (Fig. 1g), 8 ants are at E on their way from the food source (B) back to the nest (A); 4 ants that 

took the long route to and the short route from the food source, and 4 ants that took the short route to and the 

long route from the food source.  The former have deposited an additional 4 units of pheromone on FD and DE, 

while the latter have deposited an additional 4 units of pheromone on CE.  At the same time, the 4 ants that took 

the long route to and from the nest have reached C on their way back to the nest (A), and have deposited an 

additional 4 units of pheromone on FC.  In addition, the first 4 returning ants (i.e. the ants that chose the shorter 

route to and from the food source) are at E, having reached the nest (A) at T = 8, and have deposited an 

additional 8 units of pheromone on EA (4 units going from E to A and 4 units going from A to E).  At E, there is 

now a greater probability that the ants will choose the shorter path (ED), as the pheromone concentration on ED 

is 16 units, compared with 12 units on EC.  Consequently, it is assumed that 3 ants choose ED, while only 1 ant 

chooses EC.  This further reinforces the shorter route, as shown in Fig. 1h.  At T = 10, the gap between the 

pheromone intensity on EC and ED has widened, increasing the probability that ED will be chosen by the 8 ants 

leaving the nest (A) at that time.  In this way, the probability that the shorter route is chosen increases with time. 

 

Ant Colony Optimization Algorithms 
 

The basic principle of positive reinforcement via the use of pheromone trails discussed above also 

underlies ACOAs.  In addition, ACOAs make use of a colony of cooperating individuals and adopt a stochastic 

decision-making policy using local information.  However, as the main purpose of artificial ant systems is to find 

solutions to combinatorial optimization problems, they also incorporate features that are not found in their 

natural counterparts.  For example, artificial ants generally have some memory, are not completely blind and live 

in an environment where time is discrete (Dorigo et al. 1996).  In addition, pheromone updates may only occur 

once one or more ants have completed their tour. 
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In order to implement ACOAs, the combinatorial optimization problem under consideration has to be 

able to be mapped onto a graph G = (D, L, C), where D = {d1, d2, …, dn} is a set of points at which decisions 

have to be made, L = {li(j)} is the set of options (j) available at each decision point (i), and C = {ci(j)} is the set of 

costs associated with options L = {li(j)}.  A set of finite constraints Ω (D, L) may be assigned over the elements 

of D and L.  A feasible path over G is called a solution (j) and a minimum cost path is an optimal solution (j*).  

The cost of a solution is denoted by f(j) and the cost of the optimal solution by f(j*) (Dorigo and Di Caro 

1999).  In the example in Fig. 2, there are four decision points, d1 to d4.  At d1, three options are available, 

denoted by l1(1), l1(2) and l1(3).  If it is assumed that the graph is traversed from d1 to d4, only one option (l2(1)) is 

available at d2, and two options (l3(1) and l3(2)) are available at d3.  It should be noted that the reference numbers 

for the various options (i.e. the numbers in brackets) are assigned arbitrarily.  A cost (e.g. c1(1)) is associated with 

each of the available options, as shown in Fig. 2.  For example, if the various options represent distances 

between cities, the costs associated with the various options would be the lengths of the respective paths.  

Solutions would consist of the different paths connecting d1 and d4 (e.g. l1(1) and l3(2) or l1(3) and l2(1)) and the costs 

of different solutions would be the total lengths of the paths. 

 

Once the problem has been defined in the terms set out above, the ACOA can be applied.  The 

discussion in this paper will be based on the Ant System algorithm developed by Dorigo et al. (1996), although 

alternatives have been proposed since that time (e.g. Stützle and Hoos 2000).  The main steps in the algorithm 

are shown in Fig. 3 and include  

(i) Trial solutions are constructed incrementally as artificial ants move from one decision point to the next 

until all decision points have been covered.  The generation of a trial solution is referred to as a cycle 

(k). 

(ii) The cost of the trial solution generated is calculated. 

(iii) Pheromone is updated after the completion of one iteration (t), which consists of m cycles (i.e. the 

construction of m trial solutions), where m is the number of ants used. 
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At each decision point, the component to be added to the trial solution is chosen stochastically in 

accordance with the following equation (Dorigo et al. 1996): 

 

∑ ⋅

⋅
=

i(j)l
i(j)i(j)

i(j)i(j)
i(j)

][](t)[

][](t)[
t)(k,

βα

βα

ηt

ηt
p  (1) 

 

where pi(j) (k,t) is the probability that option li(j) is chosen at cycle k and iteration t, ti(j) (t) is the concentration of 

pheromone associated with option li(j) at iteration t, ηi(j) = 1/ci(j) is a heuristic factor favoring options that have 

smaller “local” costs, and α and β are parameters that control the relative importance of pheromone and the local 

heuristic factor, respectively.  It should be noted that the addition of the local heuristic factor (ηi(j)) is analogous 

to providing real ants with sight, and is sometimes called “visibility” (Dorigo et al. 1996).  Artificial ants can 

also be provided with memory to ensure that each decision point is only visited once. 

 

Once an iteration has been completed, and m trial solutions have been constructed, the pheromone trails 

are updated in a way that reinforces good solutions.  The general form of the pheromone update equation is as 

follows (Dorigo et al. 1996): 

 

i(j)i(j)i(j) (t) 1)(t ttρt ∆+=+  (2) 

 

where ti(j) (t+1) is the concentration of pheromone associated with option li(j) at iteration t+1, ti(j) (t) is the 

concentration of pheromone associated with option li(j) at iteration t, ρ is a coefficient representing pheromone 

persistence, and ∆ti(j) is the change in pheromone concentration associated with option li(j) as a function of the 

trial solutions found at iteration t.  The pheromone persistence coefficient (ρ) has to be less than one and 

simulates pheromone evaporation.  This enables greater exploration of the search space and avoids premature 

convergence to sub-optimal solutions as it reduces the difference in pheromone concentration between options at 

each decision point.  In addition, evaporation reduces the likelihood that high cost solutions will be selected in 

future cycles. 

 

 6 



In this research, two alternative methods for calculating ∆ti(j) are considered.  In the first method, ∆ti(j) is given 

by (Dorigo et al. 1996): 

 

∑ ∆=∆
=

m

1k

k
i(j)i(j) ττ  (3) 

 

where ∆ti(j)
k is the change in the concentration of pheromone associated with option li(j) at cycle k during 

iteration t.  In the second method, ∆ti(j) is given by (Stützle and Hoos 2000): 

 

*k
i(j)i(j) ττ ∆=∆  (4) 

 

where k* is the cycle number that results in the best solution during iteration t. 

 

Dorigo et al. (1996) investigated three different ways of calculating ∆ti(j)
k.  The discussion in this paper 

is restricted to the ant-cycle algorithm, as it performs significantly better than the other two algorithms (Dorigo 

et al. 1996).  When the ant-cycle algorithm is used, ∆ti(j)
k is given by (Dorigo et al. 1996): 

 










=∆

                                    otherwise           0

k cycleat chosen  is loption   if             
)(f

R
i(j)kk

i(j)
jt  (5) 

 

where R is the pheromone reward factor, and f(j)k is the cost of the trial solution generated at cycle k.  It should 

be noted that the amount of pheromone added to each of the options chosen during a cycle is a function of the 

cost of the trial solution obtained; the better the trial solution, and hence the lower the cost, the larger the amount 

of pheromone added.  Consequently, solution components (options) that are used by many ants and form part of 

lower cost solutions receive more pheromone and are more likely to be chosen in future cycles (Stützle and Hoos 

2000).  The steps of generating trial solutions, calculating the costs of the chosen solutions and updating the 

pheromone concentrations is repeated until certain stopping criteria are met (Fig. 3).  The stopping criterion 

generally used is the completion of a certain number of cycles. 
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Comparison with Genetic Algorithms 
 

Both genetic algorithms (GAs) and ACOAs are global optimization methods that belong to the class of 

evolutionary algorithms in the sense that they generate a population of trial solutions.  In GAs, the number of 

trial solutions generated is a function of population size, whereas the number of trial solutions generated by 

ACOAs is a function of the number of ants.  Consequently, the population size in GAs is equivalent to the 

number of ants in ACOAs.  In addition, one generation in GAs is equivalent to an iteration in ACOAs and one 

cycle in ACOAs is equivalent to the evaluation of an individual member of a population in GAs. 

 

In both GAs and ACOAs, trial solutions are generated using biologically inspired methods.  GAs utilize 

the principle of survival of the fittest, whereas ACOAs are based on the foraging behavior of ant colonies.  Both 

algorithms construct trial solutions in a probabilistic manner.  In GAs, this process is governed by the 

probabilities of crossover and mutation and in ACOAs, by pheromone intensities and local heuristic information.  

Both GAs and ACOAs have a mechanism for encouraging wider exploration of the search space.  In GAs, this is 

facilitated by the mutation operator, whereas ACOAs use pheromone evaporation to achieve the same goal.  

However, it should be noted that pheromone evaporation in ACOAs is deterministic, whereas mutation in GAs is 

stochastic. 

 

The main difference between GAs and ACOAs is in the way the trial solutions are generated.  In GAs, 

trial solutions are represented as strings of genetic material, and new solutions are obtained by modifying 

previous solutions.  Consequently, the memory of the system is embedded in the actual trial solutions.  In 

ACOAs, system memory is contained in the environment, rather than the trial solutions.  As ants step through 

this environment, trial solutions are constructed incrementally based on the information contained in the 

environment.  Improved trial solutions are obtained by modifying the environment via a form of indirect 

communication called stigmergy (Dorigo et al. 2000).  As a result of this difference, ACOAs may have 

advantages over GAs in certain types of applications.  For example, ACOAs may be more useful in an 

operational setting, where the system is dynamically changing (e.g. pipe breakages, valve blockages, pump 

failures etc.).  By maintaining pheromone trails and continuously exploring different options, ants 

serendipitously set up backup plans and are therefore prepared to respond to changes in their environment 

(Bonabeau and Theraulaz 2000).  Once a disruption to the system occurs, weak links can be reinforced quickly 

and used to replace missing or damaged links (Bonabeau et al. 2000).  These concepts have already been 

 8 



successfully used in telecommunications routing problems (Bonabeau and Theraulaz 2000).  ACOAs may also 

have an advantage in situations where sequential decisions have to be made in order to construct a trial solution, 

and the selection of some component solutions restricts subsequent choices.  In such instances, the graph G = (D, 

L, C) may take the form of a decision tree, and IF … THEN operators may be incorporated into the algorithm to 

restrict the available choices at each decision point. 

 

Application to Water Distribution Systems 
 

As pointed out by Dorigo and Gambardella (1997), the key to the application of ACOAs to new 

problems is to identify an appropriate representation of the problem in terms of a graph G = (D, L, C).  In order 

to apply ACOAs to WDS optimization problems, the graph G = (D, L, C) needs to take the form shown in Fig. 

4.  One decision point is associated with each pipe.  In the example in Fig. 4, there are 5 pipes and hence 5 

decisions points (d1, d2, …, d5).  At each decision point, there are a number of options, corresponding to the 

available pipe diameters (f j).  In the example shown in Fig. 4, there are 8 possible pipe diameters (f1, f2, …, f8), 

corresponding to eight choices at each decision point (li(1), li(2), …, li(8),  i = 1, 2, …, 5).  The costs corresponding 

to each of these choices (ci(1), ci(2), …, ci(8),  i = 1, 2, …, 5) are the product of the unit cost per meter length of 

each of the pipe diameters (UCfj) and the length of the pipe segment under consideration (LEi).  The cost 

associated with a particular trial solution (f(j)) is therefore given by: 

 

∑=
=

n

1i
ij   LE  *  UC)( f fj  (6) 

 

The problem formulation required for the optimization of WDS is different from that used for other 

combinatorial optimization problems, such as the traveling salesman problem, in the way the problem is 

constrained.  For example, in the traveling salesman problem, the only constraints are that each city must be 

visited only once and that the finishing point must be the same as the starting point.  In this situation, tabu lists 

are used to ensure that only feasible solutions are generated (see Dorigo et al. 1996).  However, the constraints 

that need to be satisfied in the optimal design of WDS are of a different nature.  The feasibility of a particular 
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trial solution (e.g. whether minimum pressure constraints have been satisfied) can only be assessed after it has 

been constructed in its entirety, and consequently, the constraints cannot be taken into account explicitly during 

the construction of trial solutions.  The approach taken in this research to deal with this problem is to modify Eq. 

(5) so as to give negative reinforcement to pipe diameter options that result in solutions that violate the pressure 

constraints: 

 









 ∆
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                                    otherwise  0
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)(f
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k
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where Ppher is a pheromone penalty factor and ∆Hmax is the maximum pressure deficit in the WDS, which is 

obtained using a hydraulic solver for each trial solution (i.e. combination of pipes) generated.  This approach has 

not been used previously in ACOA applications. 

 

In order to calculate ∆ti(j) using Eq. (4), Eq. (6) was modified as follows in order to determine which 

cycle results in the best solution: 
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where PC is a penalty cost multiplier ($/m head violated). 
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CASE STUDIES 
 

In order to test the utility of ACOAs for the optimization of WDS, they were applied to two benchmark 

case studies to which GAs have been applied previously, thus providing a direct basis of comparison between the 

two approaches.  The first case study is the 14-pipe network expansion problem studied by Simpson et al. 

(1994).  This case study was chosen as it is relatively simple and because the global optimum solution to the 

problem is known.  The second case study is the New York City Water Supply Tunnels (NYCWST) problem.  

This case study was chosen as it is more complex than the 14-pipe network expansion problem and because it 

has been used as a benchmark for a number of optimization algorithms in previous studies (e.g. Schaake and Lai 

1969; Morgan and Goulter 1985; Murphy et al. 1993; Dandy et al. 1996; Savic and Walters 1997; Lippai et al. 

1999; Wu et al. 2001). 

 

The software code required to implement the ACOA was developed in Fortran 77.  This code was 

linked with the code for the hydraulic solver WADISO in order to calculate the maximum pressure deficit for 

each trial solution generated.  All final solutions obtained were also checked using EPANET version 2.0. 

 

14-Pipe Problem 

 

This case study network is shown in Fig. 5. The system has a total of 14 pipes supplied by two water 

sources – a tank and a reservoir. Both water supplies are assumed to be at a constant elevation. Eight pipes are 

existing while there are five new pipes to be sized (with at least the minimum size pipe). Three of the existing 

pipes may be duplicated with a new pipe in parallel (not necessarily of the same diameter as the existing pipe). 

Three water demand loading cases need to be considered – a peak hour case and two fire loading cases as 

tabulated for each of the nodes in Fig. 5. The associated minimum allowable heads for each of the water demand 

loading cases are shown in Fig. 5. The possible pipe choices are shown in Table 1. 

 

It should be noted that the size of the search space used in this research is different from that used by 

Simpson et al. (1994).  The reason for this is that Simpson et al. (1994) did not consider the two largest available 

pipe diameter options for the rehabilitation of the existing pipes, in order that the available rehabilitation options 

could be represented by a three-bit binary substring.  As a result, the search space in the problem studied by 

Simpson et al. (1994) consisted of 16,777,216 possible pipe rehabilitation options, whereas the search space 
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considered in this study is 32,768,000.  The fact that the search space is not confined to a predetermined set of 

sizes is one advantage ACOAs have over GAs in which the decision variables are represented by binary strings.  

However, this potential limitation of GAs can be overcome by real number coding, for example. 

 

The impact of using the trial solutions found by all ants (Eq. (3)), as well as only using the trial solution 

found by the "iteration best" ant (Eq. (4)) in the pheromone updating process was investigated.  Some 

preliminary trials on the sensitivity of the results obtained to the parameters that control the ACOA were 

conducted for both cases.  As a result of these trials, the following model parameters were adopted for the case 

where the trial solutions found by all ants were used in the pheromone updating process: α = 5, β = 3.5, ρ = 0.8, 

m = 100, R = 200,000, P = 0.005, and PC = 70,000.  Additional information on these sensitivity analyses are 

given in Simpson et al. (2001).  The model parameters that were found to be optimal for the case when only the 

trial solution produced by the iteration best ant was used in the pheromone updating process were identical to 

those given above with the following exceptions: β = 1.5, and P = 0.01.  In addition, a "virtual" unit cost of 

$20/meter was assigned to zero pipe options for both cases for the purpose of calculating ηi(j). 

 

To be consistent with Simpson et al. (1994), the number of trial solutions generated was 50,000.  

Consequently, the number of iterations used was 500, as m = 100.  The analysis was repeated for 10 different 

random number seeds, which is in agreement with Simpson et al. (1994). 

 

New York City Water Supply Tunnels Problem 

 

The New York Tunnels network, as first considered by Schaake and Lai (1969), consists of twenty 

nodes connected via twenty-one tunnels (Fig. 6).  The system is formed into two primary tunnels, City Tunnel 

No. 1 and City Tunnel No. 2.  Details of the network including tunnel lengths, diameters, and nodal elevations 

are given in Dandy et al. (1996).  Only a single demand loading case supplied by Hillview Reservoir is 

considered. 

 

As of 1969, increased demands were required to cater for an increase in population growth.  Details of 

the demand pattern and minimum head constraints are given in Dandy et al. (1996).  The network in its original 

state has pressure violations at nodes 16, 17, 18, 19 and 20.  In order to meet the minimum allowable total head 
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requirements, the network is to be modified using duplicate tunnels in parallel with the existing tunnels.  The 

objective of the optimization is to decide on which of the 21 tunnels need to be duplicated, and if so, what 

diameter of tunnels should be constructed.  For each duplicate tunnel there are sixteen allowable options; fifteen 

different diameter sizes and the option of no tunnel, as shown in Table 2.  The search space for this problem is 

1621 (1.934 ×  1025) possible combinations. 

 

 Only the "iteration best" ant pheromone updating scheme (Eq. (4)) was used for this case study as a 

result of its superior performance on the 14-pipe problem (see "Results and Discussion").  As a result of 

preliminary sensitivity analyses, the following model parameters were adopted: α = 3.5, β = 0.5, ρ = 0.95, m = 

100, R = 15,000,000, P = 0.1 and PC = 500,000,000.  A "virtual" unit cost of $70/meter was assigned to zero 

pipe options for the purpose of calculating ηi(j).  As for the 14-pipe problem, 500 iterations were used (i.e. a total 

of 50,000 evaluations).  The analyses were repeated with different random number seeds. 

 

RESULTS AND DISCUSSION 
 

14-Pipe Problem 

 

The results obtained using the two different forms of the ACOA are given in Table 3.  It can be seen 

that the "iteration best" algorithm performed significantly better than the algorithm that used all trial solutions 

found during one iteration in the pheromone updating process.  When the former algorithm was used, the global 

optimum solution of $1.750 Million, which was obtained by Simpson et al. (1994) by complete enumeration, 

was found for all of the 10 random number seeds used, whereas when the latter algorithm was used, the global 

optimum was only found in 7 out of 10 trials.  In addition, the "iteration best" algorithm was computationally 

more efficient, using 8,509 evaluations on average to find the global optimum compared with 12,455 evaluations 

when Eq. (3) was used in the pheromone updating process. 

 

Table 3 also indicates that the performance of the ACOA in which all trial solutions found during one 

iteration were used in the pheromone updating process performed similar to the GA in which proportionate 

selection was used.  The GA was able to find the global optimum solution for 8 of the 10 random number seeds 

tried, compared with 7 out of 10 when the ACOA was used.  On average, the least cost solution found by the GA 
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was $1.756 Million, which is slightly less than the optimal solution of $1.769 Million obtained using the ACOA.  

However, the ACOA was able to reach the global optimum more quickly than the GA.  On average, the ACOA 

found the optimum solution within 12,455 function evaluations, whereas the GA required 20,790 function calls 

to the hydraulic solver.  This is despite the larger space searched by the ACOA. 

 

The results in Table 3 also indicate that the performance of the ACOA using the "iteration best" 

algorithm was very similar to that of the GA using tournament selection.  Both algorithms were able to find the 

global optimum solution irrespective of the random number seed used with an average number of evaluations of 

just under 9,000.  This indicates that ACOAs appear to be a suitable method for the optimal design of WDS. 

 

New York City Water Supply Tunnels Problem 

 

The results obtained using the ACOA and those previously reported in the literature are shown in Table 

4.  It should be noted that the combinations of pipes shown in Table 4 are attributed to the authors who reported 

the lowest number of evaluations to find the optimal solutions.  For example, the $38.80 million solution found 

by Dandy et al. (1996) was also originally reported by Murphy et al. (1993) at approximately 200,000 

evaluations, while the $37.13 million solution found by Wu et al. (2001) was originally reported by Savic and 

Waters (1997) at approximately 1,000,000 evaluations.  It should also be noted that another optimal design that 

has been reported in the literature but is not included in Table 4 is the $37.83 million solution first reported by 

Lippai et al. (1999) and then by Wu et al. (2001).  The reason for its exclusion is that it is not a discrete solution 

to the NYCWST problem (as defined by Table 2), as it includes a tunnel at pipe no. [7] with a diameter of 124 

inches. 

 

As can be seen in Table 4, the least cost feasible solution found by the ACOA was $38.64 million, 

compared with optimal costs of $38.80, $38.13, and $37.13 million found by Dandy et al. (1996), Lippai et al. 

(1999), and Wu et al. (2001), respectively.  However, a rigorous hydraulic analysis of all networks in Table 4 

using EPANET version 2.0 revealed that the two solutions that were cheaper than that obtained using the ACOA 

were infeasible, as shown in Table 5.  It can be seen that whereas the solutions obtained by Dandy et al. (1996) 

and the ACOA have minimum pressure excesses of 0.11 ft and 0.05 ft, respectively, the solutions obtained by 

Lippai et al. (1999) and Wu et al. (2001) have maximum pressure deficits of 0.02 ft and 0.22 ft, respectively.  
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The infeasible solutions of Lippai et al. (1999) and Wu et al. (2001) are based on inaccurate coefficients relative 

to the original formulation of  the Hazen-Williams head loss equation as shown in Eq. (9) (Brater and King 

1976): 

 

54.063.0       318.1 fHHW SRCV =  (9) 

 

where V = velocity (fps), CHW = Hazen-Williams coefficient, RH = hydraulics radius (ft), Sf = friction slope (hf 

/LE, where hf = head loss (ft) and LE =length of pipe (ft)).  Solving for the head loss in Eq. (9) in terms of the 

discharge gives: 

 

871.4852.1

852.1  7279.4
PHW

f
DC

QLEh =  (10) 

 

where Q = discharge (cfs) and DP = pipe diameter (ft).  This equation is implemented in EPANET 2.0.  If the 

coefficients in the Hazen-Williams equation are not carried to the enough significant figures or are incorrect, 

then losses through the network may be calculated to be less than what is calculated when coefficients associated 

with the original Hazen-Williams formula are used.  Clearly, if comparable versions of the Hazen-William 

equation are not used, then it is difficult to fairly compare the results of different optimization studies. 

 

The results in Table 4 show that the solution found by the ACOA belongs to the family of solutions that 

duplicates tunnels [7], [16], [17], [18], [19] and [21] (see Lippai et al. 1999; Wu et al. 2001), as opposed to the 

family that duplicates tunnels [15], [16], [17], [18], [19] and [21] (see Dandy et al. 1996).  Table 4 also shows 

that the results obtained in this study compare favorably with those obtained in previous studies in terms of 

computational efficiency.  The optimal solution obtained using the ACOA was reached with an average number 

of evaluations of 13,938 from three runs.  This compares with evaluation numbers of 96,750, 46,016 and 37,186 

reported by Dandy et al. (1996), Lippai et al. (1999), and Wu et al. (2001), respectively.  The ACOA was also 

able to find the $38.0 million solution found by Dandy et al. (1996), which is the cheapest feasible solution 

reported in the literature thus far, with an average number of evaluations of 13,273, which is less than 14% of the 

number of evaluations taken by the GA used by Dandy et al. (1996). 
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CONCLUSIONS AND RECOMMENDATIONS 
 

A formulation for applying ACOAs to the optimal design of WDS has been presented in this paper. In 

order to apply ACOAs to the optimal design of WDS, a decision point was placed on each potential pipe in the 

system.  At each decision point, the available choices corresponded to the available pipe diameters (or pipe 

rehabilitation options).  Pheromone intensities and heuristic values were associated with each of these choices.  

The heuristic value was taken as the inverse of the cost of each choice.  Pheromone intensities were modified in 

a way that favors choices that result in smaller total network costs.  In addition, the pheromone levels associated 

with choices that result in systems that violate the required pressure constraints were decreased. 

 

Based on the results obtained in this research, in which ACOAs were applied to two benchmark WDS 

optimization problems, ACOAs should be considered as an alternative to GAs for the optimal design of WDS.  

For a simple 14-pipe network expansion problem, the performance of ACOAs and GAs was very similar, both in 

terms of their ability to find the global optimum solution of $1.750 Million from different starting positions in 

decision variable space and in terms of computational efficiency (~9,000 evaluations).  However, for the New 

York City Water Supply Tunnels (NYCWST) problem, the ACOA found a feasible solution of $38.64 Million, 

which is cheaper than the cheapest feasible solution of 38.80 Million reported in the literature obtained using a 

GA.  In addition, the ACOA was found to be significantly more computationally efficient, taking 13,928 

evaluations on average to find its best solution compared with 96,750 evaluations for the GA.  It should be noted 

that cheaper solutions to this problem have been reported in the literature.  However, these solutions are 

infeasible as they violate the minimum pressure constraints when analyzed using EPANET version 2.0. 

 

Future research efforts in this field should focus on (i) the application of ACOAs to other WDS 

optimization problems, (ii) investigations into of the sensitivity of ACOAs to the parameters that control their 

operation (e.g. α, β), with the aim of developing guidelines for users, (iii) investigations into the effect of 

alternative penalty cost formulations, (iv) the development of formulations that enable ACOAs to be applied to 

other water resources optimization problems, (v) the determination of which problems can be efficiently solved 

by ACOAs (Stützle and Hoos 2000) and under what circumstances ACOAs should be used in preference to GAs 

and vice versa, and (vi) the evaluation of the effectiveness of algorithmic improvements to ACOAs (e.g. Stützle 

and Hoos 2000) for water resources problems. 
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APPENDIX II. NOTATION 

 

The following symbols are used in this paper: 

 

ci(j) = Cost associated with option li(j) 

CHW = Hazen-Williams coefficient 

C = Set of costs associated with each decision made 

di = Decision point i 

D = Set of points at which decisions have to be made 

DP = Pipe Diameter 

f(j) = Cost of trial solution 

f(j)k = Cost of trial solution generated at cycle k 

f(j*) = Cost of optimal solution 

G = Graph 

hf  = Head loss 

k = Cycle number 

k* = Cycle that results in best solution during iteration t 

li(j) = Option j at decision point i 

L = Set of options available at each decision point 

LE = Length of pipe 

LEi = Length of pipe segment i 

n = Number of decision points, number of pipes 

pi(j) (k,t) = Probability that option li(j) is chosen at cycle k and iteration t 

Ppher = Pheromone penalty factor 

PC = Penalty cost multiplier 

R = Pheromone reward factor 

RH = Hydraulics radius 

Sf = Friction slope 

t = Iteration number 

T = Time 
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UCfj = Unit cost per meter length for pipe with diameter f j 

UD = Unit distance 

V = Velocity 

α = Parameter controlling the relative importance of pheromone 

β = Parameter controlling the relative importance of the local heuristic factor 

∆Hmax = Maximum pressure deficit 

∆ti(j) = Change in pheromone concentration associated with option li(j) 

∆ti(j)
k = Change in pheromone concentration associated with option li(j) at cycle k 

f j = Available pipe diameters 

ηi(j) = Heuristic factor favoring options that have smaller “local” costs 

j = Trial solution, feasible path over G 

j* = Optimal solution, optimal path over G 

ρ = Pheromone persistence coefficient 

t = Pheromone concentration 

ti(j) (t) = Pheromone concentration associated with option li(j) at iteration t 

ti(j) (k+1) = Pheromone concentration associated with option li(j) at iteration t+1 

Ω (D, L) = Set of finite constraints assigned over the elements of D and L 
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APPENDIX III. NOMENCLATURE 
 

 

The following nomenclature is used in this paper: 

 

ACOA = Ant colony optimization algorithm 

GA = Genetic algorithm 

NYCWST = New York City Water Supply Tunnels 

WDS = Water distribution systems 
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FIGURE CAPTIONS: 

 

Fig. 1: Example of reinforcement of shorter routes as ants travel from their nest to a food source and back 

Fig. 2: Typical representation of optimization problems in terms of a graph 

Fig. 3: Steps in ACOA 

Fig. 4: Representation of WDS optimization problems in terms of a graph 

Fig. 5: 14-pipe network expansion problem (after Simpson et al. 1994) 

Fig. 6: New York City water supply tunnels problem 
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