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Maximizing Excess Return Per Unit Variance:

A Novel Investment Management Objective

Abstract

I propose a novel investment objective for portfolios fully invested in risky assets only. The

new objective is based on achieving the highest possible excess return per unit of variance.

The optimal portfolio is a linear combination of the tangent portfolio and the minimum

variance portfolio where the weights are inversely proportional to the standard deviation

of the return of each portfolio. Using a standard factor model of securities’ returns, I

provide an empirical application of the optimal portfolio and show that it performs quite

well out-of-sample relative to the maximum Sharpe ratio portfolio as well as the minimum

variance portfolio.

Key Words: Risk premia, tracking error, active return, tangent portfolio weights, mini-

mum variance portfolio weights, factor models of expected returns.
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1 Introduction

The ground-breaking work of Markowitz (1952) and Sharpe (1964) has been instrumental

in establishing the first two moments of risky securities’ returns as well as the concept of

systematic risk as the crucible of both applied and theoretical finance.1 The importance of

the trade-off between return and systematic risk with the associated risk-return trade-off

in terms of the Sharpe ratio has come to dominate investment management performance

in both academia as well as practice. The market model of Sharpe (1964),2 in particular,

has proved very useful in terms of implementing the tangent portfolio by serendipitously

shrinking the estimates of securities’ first and second moments of returns using historical

data. More recently, practitioners have noted the excellent out-of-sample performance

of the minimum variance portfolio (see Clark et al (2013), among many others). From

the perspective of the mean-variance trade-off, in the sense of excess return per unit

variance, achieved by both the tangent and the minimum variance portfolio, it is well-

known that both portfolios offer the same excess return per unit variance. This is true

despite the obvious fact that ex ante the minimum variance portfolio necessarily has a

lower Sharpe ratio than the tangent portfolio. Nevertheless, the fact that both portfolios

offer the same excess return per unit variance implies that there is a portfolio located on

the mean-variance frontier somewhere between the minimum variance and the tangent

portfolio offering a greater excess return for the same amount of risk. This observation is

the starting point of the paper. Next, I present a simple motivating example, followed by

some analytical results and an empirical implementation of the optimal portfolio. Finally,

the last section of the articles offers some concluding thoughts as well as directions for

future research.

2 A Motivating Example

Consider a set of two risky assets offering excess returns of µ1 = 0.05 and µ2 = 0.10. The

standard deviations of the returns of the two assets are given by σ1 = 0.05 and σ2 = 0.10,

1Fully 60 years after Markowitz (1952), the optimality of mean and variance in the framework of
portfolio choice has been strongly reaffirmed even if securities returns are moderately non-Gaussian
(Markowitz (2012)).

2Numerous studies have raised concerns about the validity of the market model most recently in Chen
(2015).
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respectively. The correlation between the excess returns of the two assets if ρ12 = 0.5.

Note that the risk premium offered by asset one is equal to 0.05/(0.052) = 20 while

the risk premium offered by asset two is given by 0.1/(0.12) = 10. The global minimum

variance portfolio consists of 100% invested in the first asset and 0% invested in the second

asset. The tangent portfolio is comprised of 66.67% invested in the first asset and 33.33%

invested in the second asset. Both the minimum variance and the tangent portfolio have

an excess return per unit variance ratio, or a risk premium, of 20. A portfolio that is

designed to achieve the highest possible ratio of excess return per unit variance contains

84.53% invested in the first asset and 15.47% invested in the second asset. This maximum

risk premium portfolio has an excess return per unit variance of 21.547 which exceeds the

reward per unit variance of both the tangent and the minimum variance portfolios.

Figure 1 plots the mean-variance frontier along with the three portfolios just described

in mean-standard deviation space. It is clearly obvious that the maximal risk premium

portfolio has a Sharpe ratio that is lower than the Sharpe ratio of the tangent portfolio.

Similarly, the Sharpe ratio of the minimum variance portfolio is always lower than the

Sharpe ratio of the maximal risk premium portfolio.

Insert Figure 1 about here.

It is hard to picture the risk premium in mean-standard deviation space and, hence,

it is not immediately obvious that the reward per unit variance is higher for the proposed

portfolio compared to the tangent and the minimum variance portfolios. Figure 2 presents

the same frontier and the three portfolios in mean-variance space. The slopes of the lines

going through the origin are now risk premia rather than Sharpe ratios. Observing the

frontier and the relative positions of the three portfolios in this plot it is clear that the

maximal excess return per unit risk portfolio indeed offers a greater excess return for the

same amount of variance risk than either the minimum variance or the tangent portfolio.

Insert Figure 2 about here.

Furthermore, there are at least two economic reasons to consider excess return per

unit variance as an alternative investment management objective. First, the certainty

equivalent return to an investor with a constant absolute risk aversion of Γ is CER =

µ − 1
2
Γσ2. This quantity will be positive whenever the excess return per unit variance,
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µ/σ2, exceeds 1
2
Γ. Secondly, in deciding how much to allocate to a portfolio consisting of

risky assets, an investor with a constant relative risk aversion of γ will invest a fraction

of their total wealth equal to µ

γσ2 . Once again, the level of overall exposure to risky assets

will be determined by the relative magnitude of the excess return per unit variance and

the coefficient of constant relative risk aversion.

3 Model

Consider a set of N risky assets with a vector of excess mean returns of µ and a variance-

covariance matrix of V . Standard mean-variance portfolio theory provides the exact

portfolio weights of the tangent portfolio, wtg, and the minimum variance portfolio, wmv,

as follows:

wtg =
V −1µ

1′NV
−1µ

, (1)

wmv =
V −11N

1′NV
−11N

, (2)

where 1N is an (N × 1) column vector of ones.

The expected excess return of the tangent portfolio, µtg, and the minimum variance

portfolio, µmv, are, respectively:

µtg =
µ′V −1µ

1′NV
−1µ

, (3)

µmv =
µ′V −11N
1′NV

−11N
. (4)

Similarly, the variance of the excess return of the tangent portfolio, σ2
tg, and the

variance of the excess return of the minimum variance portfolio, σ2
mv, are given by:

σ2
tg =

µ′V −1µ

(1′NV
−1µ)2

, (5)

σ2
mv =

1

1′NV
−11N

. (6)

Given (3)-(4) and (5)-(6), it is straightforward to show that the risk premia of the

tangent portfolio, πtg, and the risk premium of the minimum variance portfolio, πmv, are
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equal and given by the following:

πtg ≡
(

µtg

σ2
tg

)

=
(

µ′V −11N
)

, (7)

πmv ≡
(

µmv

σ2
mv

)

=
(

µ′V −11N
)

. (8)

However, as the motivating example from the previous section demonstrates, there is a

portfolio on the mean-variance frontier that achieves a higher risk premium than the risk

premium of the tangent and minimum variance portfolios. In order to derive explicitly

the optimal portfolio weights of the maximum risk premium portfolio, we need to solve

the following problem:

max
w

(

w′µ

w′V w

)

(9)

s.t. w′1N = 1.

The solution to the above problem is given by the following:

w⋆ = a× wtg + (1− a)× wmv, (10)

where

a =
(µ′V −11N)

(µ′V −11N) +
√

(µ′V −1µ) (1′NV
−11N)

, (11)

with the details of the derivation provided in the Appendix.

In order to get further intuition regarding the parameter a we can express it equiva-

lently as follows:3

a =

(

1
σtg

)

(

1
σtg

)

+
(

1
σmv

) =

(

σmv

σmv + σtg

)

. (12)

This clearly shows that the weight on the MV and TG portfolios is inversely proportional

to the standard deviation of return of the MV and TG portfolios, respectively. The

3Recalling that (µ′V −11N ) = µtg/σ
2
tg, (µ

′V −1µ) = µ2
tg/σ

2
tg as well as σ2

mv = 1/(1′NV −11N ) we can

simplify the previous expression as a = 1

1+(
σtg

σmv
)
which simplifies to the stated expression.
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more risky the TG portfolio is relative to the MV portfolio, the closer the maximum risk

premium portfolio will be to the MV portfolio. And, vice versa, the closer σtg is to σmv

the closer the optimal portfolio will be to an equal-weighted portfolio of MV and TG (as

a will get close to 1
2
).

An alternative expression relating a to the mean excess returns4 of the tangent and

minimum variance portfolios is as follows:

a =
1

1 +
√

µtg

µmv

=

√
µmv√

µmv +
√
µtg

. (13)

A final verification that we do have the portfolio with the highest possible risk premium

involves deriving the risk premium, π⋆, of the optimal portfolio w⋆. It is straightforward

to show that:

π⋆ = π
(

σtg + σmv

2σmv

)

, (14)

where π = πtg = πmv. It is clear that as long as σtg > σmv then we have π⋆ > π. In

the degenerate case where the tangent portfolio coincides with the minimum variance

portfolio we have π⋆ = π.5

4 Factor Models of Security Returns

The inferior out-of-sample performance of mean-variance portfolios calculated using his-

torical means and variances is well-known in both the practitioner and the academic

literature. One particular avenue of improvement that has proved fruitful in the past

involves the use of factor models for the first and second moments of securities’ returns

(see Glabadanidis (2014)). Consider the following version of the market model:

µ = βµm, (15)

V = ββ ′σ2
m +D, (16)

4Assuming that µmv > 0 and µtg > 0.
5To see how (14) comes about we can evaluate the ratio of excess return to volatility for the op-

timal portfolio which leads to π⋆ = 1

2

(

√

(µ′V −1µ)
√

(1′NV −11N) + (1′NV −1µ)
)

= 1

2

(

π +
µtg

σtgσmv

)

=

π
2

(

1 +
σtg

σmv

)

. The latter simplifies to the stated result.
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where

D =





























σ2
ǫ,1 0 0 0 0

0 σ2
ǫ,2 0 0 0

0 0
. . . 0 0

0 0 0 σ2
ǫ,N−1 0

0 0 0 0 σ2
ǫ,N





























. (17)

This version of the market model is particularly useful in that it simplifies the tangent

portfolio weights considerably.6 Using the Woodbury (1950) matrix inverse formula,7 we

can conveniently express V −1 in terms of D−1 as follows:

V −1 = D−1 −D−1β

(

1

σ2
m

+
(

β ′D−1β
)

)

−1

β ′D−1. (18)

Using the results in Glabadanidis (2014) we know that the tangent portfolio weights

are proportional to the ratio of factor loadings to the idiosyncratic variance:

wtg,i ∝

(

βi

σ2

ǫ,i

)

(

µm

σ2
m

)

[

(

1
σ2
m

)

+
∑j=N

j=1

(

β2

j

σ2

ǫ,j

)] ∝
(

βi

σ2
ǫ,i

)

, (19)

where the last step follows from the fact that the market risk premium, µm/σ
2
m, is common

for all stocks as is, similarly, the term inside the square brackets in the denominator. Note

that this ratio can be interpreted as a signal-to-noise ratio. The numerator contains a

component (beta) that is proportional to the future expected return of the risky asset

while the denominator contains a component that is related to idiosyncratic or security-

specific risk. The lower the last quantity to higher the signal-to-noise ratio is. Similarly,

the higher the beta of the risky asset, the greater the signal-to-noise ratio. Nevertheless,

it is the ratio of beta to idiosyncratic variance that matters rather then either beta or

idiosyncratic variance on their own.

In the same spirit, using the Woodbury (1950) matrix inverse formula leads to a

6Note that in general D does not need to be diagonal. Nevertheless, I adopt this modeling feature in
order to supply more explicit expressions for the individual portfolio weights.

7For a matrix A = bxx′ +C, where b is a scalar, x is a vector, and C is a square, invertible matrix, we

have that A−1 = C−1 − C−1x
((

1

b

)

+
(

x′C−1x
))

−1
x′C−1. The stated result obtains by setting C = D,

x = β and b = σ2
m.
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slightly more involved expression for the minimum variance portfolio weights:

wmv,i ∝
(

1

σ2
ǫ,i

)















1−

(

β2

i

σ2

ǫ,i

)

[

(

1
σ2
m

)

+
∑j=N

j=1

(

β2

j

σ2

ǫ,j

)]















. (20)

Unfortunately, the above expression for the minimum variance portfolio weights does not

simplify as nicely as the one for the tangent portfolio weights. Nevertheless, it is useful

to ponder the intuition behind the above result. First, it is clear that securities with

lower idiosyncratic variances will have larger weights in the minimum variance portfolios.

Secondly, because the factor structure is present in both the first and second moments

of securities’ returns, we have terms relating to the mean appear in the formula for the

minimum variance portfolio weights. In particular, note the appearance of the signal-to-

noise ratio which works here in the opposite way that it does for the tangent portfolio.

Finally, note that for large portfolios, i.e., asN → ∞, then the minimum variance portfolio

weight is approximately proportional to the inverse of the idiosyncratic variance. The

intuition behind this is that in the limit the minimum variance portfolio approximates

a portfolio that equalizes the idiosyncratic risk contribution of each security. This is

reminiscent of the equal-risk contribution portfolio literature in, for example, Lee (2011),

Roncalli (2014) and Roncalli and Weisang (2015), among others.

5 Empirical Investigation

5.1 Industry Portfolios

In the section I present the distribution of out-of-sample performance of the three port-

folios discussed previously over a very long time period using thirty industry portfolios.

I use daily industry portfolio and market factor returns which are available for download

from Ken French’s online Data Library.8 The data covers the period between July 1, 1926

until December 31, 2014. I use the historical daily return data from 1926 to estimate

the market model and compute the optimal tangent, minimum variance, and maximal

risk premium portfolio weights. I then track the out-of-sample performance of the three

8I am grateful to Ken French for making the portfolios and factors historical returns available on his
website.
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portfolios during 1927. I repeat this exercise one more time using 1927 as the in-sample

parameter estimation period and using 1928 as the out-of-sample test period. This exer-

cise is repeated until the last available out-of-sample period in 2014. This leaves us with

88 out of sample periods which cover a very significant range of bullish and bearish stock

market periods. I keep track of the top 10%, median 50% and bottom 10% performance

indicators for various sizes of the tangent portfolio ranging from one all the way up to 30.

Figure 3 plots these three quantiles across different number of securities included in the

tangent portfolio regarding the correlation between the portfolio and the market return,

the annualized tracking error in per cent, the annualized Sharpe ratio, the realized active

return in per cent, the annualized α in per cent, as well as the β of tangent portfolio.

Insert Figure 3 about here.

Several key findings emerge from the plots. First, the more securities we add to the

tangent portfolio the higher the ex post correlation between the market return and the

tangent portfolio return. Second, the tracking errors declines very quickly as we add more

securities to the tangent portfolio and, furthermore, the range of possible outcomes (top

10% to bottom 10%) shrinks in size as well. Third, the median ex post annualized Sharpe

ratio is approximately equal to one though the range of possible outcomes tends to be

rather large, from −1 all the way up to 2.5. Similarly, the ex post median cumulative

active return is positive for most portfolio sizes but hovering close to zero with a wide range

of possible outcome. However, the range of possible outcomes does indeed decrease in size

as we add more securities to the tangent portfolio. Next, the ex post median annualized

α of the tangent portfolio is mostly positive though close to zero with a shrinking range of

possible outcomes as the number of securities in the tangent portfolio increases. Finally,

the ex post median β of the tangent portfolio does increase in value as we add more

securities to the tangent portfolio getting very close to 1 once all 30 industry portfolios

are included in the tangent portfolio. The range of possible outcomes for the ex post beta

also shrinks as we add more securities to the tangent portfolio. However, the bottom 10%

of outcomes do have β values that are quite a bit lower than 1 reaching 0.8 once all 30

industry portfolio have been included in the tangent portfolio.

Insert Figure 4 about here.
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Figure 4 plots the three quantiles of the same out-of-sample performance indicators for

the minimum variance portfolio constructed using the same 30 industry portfolios and the

short-cut formula using the market model from Section 4. The ex post performance of the

minimum variance portfolio is quite similar to the performance of the tangent portfolio

reported in Figure 3 previously. The only significant difference is the lower ex post β of

the portfolio with median values starting around 0.8 when only a few industry portfolios

are included in the minimum variance portfolio going all the way up a little over 0.9 when

all 30 industries are included. If anything, this is a testament to how well the factor

models works in terms of describing securities’ returns. Furthermore, from a statistical

point of view, the factor model provides a kind of a shrinkage estimator of securities’

means, variances and covariances. These shrunk estimates provide a less noisy estimate

of both the tangent as well as the minimum variance portfolio weights.

Insert Figure 5 about here.

Finally, Figure 5 presents the out-of-sample performance indicators for the optimal

maximum risk premium portfolio proposed in Section 3 with the factor model short-cut

from Section 4. Since the maximum risk premium portfolio is a weighted average combi-

nation of the tangent portfolio and the minimum variance portfolio, it is not surprising

that the plots in Figure 5 mirror the plots in Figures 3 and 4. The optimal portfolio

achieves a very high ex post correlation with the market portfolio very quickly as more

industries are added to it. Similarly, the ex post annualized tracking error recedes quickly

as we add more industries to the optimal portfolio. The ex post median Sharpe ratio is

relatively insensitive to the number of assets included in the portfolio and has a similarly

wide possible range of values. The ex post median realized active return is quite close

to zero but still positive, especially as we add more industries to the optimal portfolio.

There is a very respectable ex post median α of between 1% and 2% depending on how

many industries we add. Finally, the ex post median optimal portfolio β starts off a bit

higher than the minimum variance portfolio at around 0.8 and reaches upwards of 0.9

(though still less than 1) when all 30 industries are included.
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5.2 Individual Stocks

In this section, I present the findings regarding the performance of all three portfolios

using a 1,000 individual US stocks. The stock return data is obtained from the Center for

Research in Security Prices (CRSP) at the University of Chicago and covers the period

between January 4, 1988 and December 30, 2011. The selection criterion employed selects

the stocks with the largest market capitalization as of December 30, 2011. I repeat the

same portfolio construction and evaluation process as in the previous subsection. The

findings are largely consistent both quantitatively and qualitatively with the findings

reported previously. Both the TG and the MV portfolios very quickly achieve returns that

are very highly correlated with the US stock market return as the number of individual

stocks increases. Similarly, both portfolios tracking errors are reduced dramatically as

soon as the portfolio size increases beyond 50 to 100 stocks. The Sharpe ratio of both

portfolio levels off early on and asymptotes to a value of around 1.25 on an annualized

basis.

Figure 6 presents a few more variables of interest regarding the out-of-sample perfor-

mance of the TG portfolio. The median annualized realized active return is quite stable

across various portfolio sizes and around 1 to 2%. At the same time, the median annu-

alized α is the neighbourhood of 3% to 5%. Finally, the portfolio median β increases

slightly for Nsecurities ≈ 50 and then levels off to a value of approximately 0.75. Never-

theless, the 80% interval between the top 10% β and the bottom 10% β across the entire

sample period is quite wide at between 0.5 and 1.

Insert Figure 6 about here.

Next, Figure 7 plots the performance metrics and their distribution for the MV port-

folio. The first notable difference between the behavior of the the MV portfolio and the

TG portfolio is that the median annualized realized active return increases gradually as

Nsecurities increases reaching a value of about 3%. The second notable difference is that

the median annualized α is not reduced for large portfolio sizes and, indeed, stabilizes

at a value around 6% to 7%. Finally, and most interestingly, the median market β only

increases up to a value of 0.6 when all 1,000 stocks are included in the MV portfolio.

Nevertheless, the 80% range of possible outcomes is still wide and betwen 0.35 and 0.95.
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These findings reinforce the reputation of the MV as a perhars even more desirable port-

folio than the TG portfolio. Clearly, the MV portfolio tracks the stock market index very

well and delivers a slightly higher realized active return, higher alpha and lower beta on

average in comparison with the TG portfolio.

Insert Figure 7 about here.

Finally, turning to Figure 8 we can explore the performance of the optimal portfolio

which is simply a combination of the MV and the TG portfolio. The evidence presented

in the previous two figures will hint at the fact the optimal portfolio will share many of

the features of the MV and the TG portfolio themselves. In fact, the performance of the

optimal portfolio is a little better for very large Nsecurities as can be seen from the last three

panels in Figure 8. First, the median annualized realized active return is slightly higher at

around 4% for Nsecurities = 1000. Secondly, the median annualized α peters off at around

8% for Nsecurities = 1000. Thirdly, the median β peaks when Nsecurities ≈ 800 and comes

down to around 0.6 for Nsecurities = 1000. Still, the range of actual βs is between around

0.35 and 0.95. The abnormal performance of all three portfolios appears to not be driven

away on average as the universe of stocks expands. This phenomenon is largely consistent

with the theoretical model in Dybvig (2005) where equity portfolio abnormal returns do

not necessarily disappear as the number of risky assets in the portfolio increases.

Insert Figure 8 about here.

5.3 Notes on the Performance of New Investment Objective

In Figure 9 I present a summary of the performance of the TG, MV and the optimal

portfolio relative to the new investment management objective as well as the values of the

excess return per unit variance out-of-sample during the time period under consideration

when 30 industry portfolios are used in constructing the TG, MV and optimal portfolios.

Note that the returns I use are expressed in percent leading to a value for µ/σ2 that will

be off by two orders of magnitude (i.e., a factor of 100) relative to the case when returns

are expressed as a decimal. In order to compare these values to investors’ coefficient of

absolute risk aversion the values reported in the Figure will need to be multiplied by a

factor of 100. The upper-left panel of Figure 9 reports the top 10%, median, and bottom
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10% values of realized out-of-sample excess return per unit variance for the TG portfolio.

The upper-right panel plots those values for the MV portfolio while the lower-left panel

plots the realized out-of-sample excess return per unit variance for the optimal portfolio

proposed in the article. Finally, the lower-right panel of Figure 9 plots the median risk-

return measure for all three portfolios. What is evident from the last panel is that the

new measure can result in larger realized values of excess return per unit variance for the

optimal portfolio than the ones for the TG and MV portfolios even though the optimal

portfolio is a self-financed linear combination of the latter two. The way to interpret these

findings is that an investor with absolute risk aversion of 6, for example, will invest fully

in all three portfolios but only as long as Nsecurities ≥ 3 since smaller portfolios deliver a

lower risk-return trade-off. The same hypothetical investor will only allocate portion of

her funds into portfolios with Nsecurities < 3.

Insert Figure 9 about here.

Finally, I present the distribution of the realized excess return per unit variance out-

of-sample for all three portfolios when 1,000 individual stocks are used to construct all

portfolios. Figure 10 is similar in spirit in the way the realized risk-return values are

presented. Note the difference in out-of-sample performance with respect to the excess

return per unit variance between the TG and the MV portfolio for up to 100 stocks.

Around Nsecurities ≈ 100 the risk-return measure stabilizes at roughly the same values for

both portfolios. For larger portfolios the performance of both the TG and MV portfolios

track each other very closely although the MV and the optimal portfolios offer consistently

greater excess returns per unit of variance. Note that for certain value of the absolute risk

aversion parameter, an investor with constant absolute risk aversion will prefer to invest

her entire wealth into the MV or the optimal portfolio. At the same time she will prefer

to invest only a fraction of her wealth into the TG portfolio.

Insert Figure 10 about here.

The evidence regarding the out-of-sample performance of all three portfolios presented

in Figures 9 and 10 concurs with the mathematical derivation of the properties of the three

portfolios. Note that the excess return per unit variance measure for the TG portfolio

closely follows the one for the MV portfolio. Nevertheless, their magnitudes are quite
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close to each other. Similarly, the excess return per unit variance measure for the optimal

portfolio frequently exceeds the respective values for the TG and MV portfolio. Once

again, this is not always the case and does not happen for portfolios with differing number

of securities. Due to parameter drift, estimation errors related to the use of daily data with

the single-factor model and the nature of the portfolio implementation (buy-and-hold) the

two measures are not perfectly aligned out-of-sample.

6 Concluding Remarks

The standard mean-variance prescriptive focus on maximizing the Sharpe ratio and the

associated tangent portfolio have long been the workhorse of finance theory and has had

an important impact on practitioners’ asset management policies. One particular feature

of the Sharpe ratio is its lack of sensitivity the leverage while an important downside is

that the Sharpe ratio is horizon-dependent.9 At the same time, the risk premium or the

excess return per unit variance, is sensitive to leverage but independent of the investment

management horizon. This downside limits the applicability of this investment objective

to all-equity portfolios only. Recognizing the fact that investors can improve on the risk

premium offered by the tangent and the minimum variance portfolios, I have developed the

optimal maximal risk premium portfolio which happens to be a linear combination of the

two portfolios. In addition, I demonstrate how factor models of securities’ returns can be

used to improve on the calculation of the optimal portfolio weights of all three portfolios.

Finally, I present evidence regarding the out-of-sample performance of the maximal risk

premium portfolio using 30 industry portfolios as well as 1,000 individual US stocks and

the market model as the choice of a single-factor model of securities’ returns. The optimal

portfolio shares many of the desirable features of the minimum variance portfolio while

retaining the upside risk-return potential of the tangent portfolio with regards to tracking

error, ex post active return (in the sense of Grinold and Kahn (1999)), risk-return trade-off

as well as abnormal ex post return (α) and ex post level of systematic risk (β).

The implementation of the maximal risk premium portfolio can be extended to use-

supplied forecasts of abnormal returns (α) as well as multiple factors, e.g., Fama and

9An annualized Sharpe ratio of 1 is equivalent to a Sharpe ratio of about 3.16 over the course of the
next decade and a Sharpe ratio of 10 over the course of the next century. The general formula for the
Shapre ratio over the next k years, sk, can be obtained from the one-year Sharpe ratio, s1, as sk =

√
ks1.
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Fench (1992) or Carhart (1997) empirical asset pricing models. Furthermore, the impor-

tant question of re-balancing and re-estimation frequency still remain largely unexplored.

Future work in this area would not only be of great interest to the academic finance lit-

erature but would add tremendous value in terms of informing practitioners’ decisions in

actively managed equity portfolios.

Appendix

In order to derive Equation (1) it is helpful to solve the following:

min
w

(w′V w) (21)

s.t. w′µ = µ0, (22)

w′1N = 1.

The Lagrangian for this program is given by:

L = (w′V w) + λ1 (µ0 − w′µ) + λ2

(

1− w′

tg1N
)

, (23)

with the following solution:

w⋆(µ0) =

(

λ1

2

)

V −1µ+

(

λ1

2

)

V −11N , (24)

where

(

λ1

2

)

=
µ0(1

′

NV
−11N)− (µ′V −11N)

∆
, (25)

(

λ2

2

)

=
(µ′V −1µ)− µ0(µ

′V −11)N)

∆
, (26)

∆ = (µ′V −1µ)(1′NV
−11N)− (µ′V −11N)

2. (27)

The last step involves finding the right value for µ0 which maximizes the Sharpe ratio,

s⋆(µ0), associated with w⋆(µ0). To ease the analytical derivation it is easier to minimize

14



the inverse of the squared Sharpe ratio, 1
(s⋆(µ0))2

, which is given as follows:

1

(s⋆(µ0))2
=

1

∆

[

(1′NV
−11N)−

2(1′NV
−1µ)

µ0
+

µ′V −1µ

µ2
0

]

, (28)

which has as a solution

µ⋆
0 =

µ′V −1µ

1′NV
−1µ

, (29)

leading to the equation provided in the text, namely, wtg =
V −1µ

1′
N
V −1µ

.

Equation (2) is derived as the solution to the following problem:

min
wmv

w′

mvV wmv (30)

s.t. w′

mv1N = 1.

The Lagrangian for this program is given by:

L = w′

mvV wmv + λ2 (1− w′

mv1N) , (31)

with the associated first order condition:

2V wmv − λ21N = 0N , (32)

which leads to:

w⋆
mv =

(

λ2

2

)

V −11N . (33)

The final step involved substituting the above equation into the budget constraint and

solving for
(

λ2

2

)

:
(

λ2

2

)

=
1

1′NV
−11N

, (34)

leading to the stated result by plugging
(

λ2

2

)

into the prior expression for w⋆
mv.

10

To obtain Equation (3), simply multiply the optimal tangent portfolio weight vector,

w⋆
tg, by the vector of excess returns, µ. Similarly, Equation (4) obtains by multiplying the

optimal minimum variance portfolio weight vector, w⋆
mv, by the vector of excess returns,

10The second order sufficient condition for this to be the objective-minimizing solution is 2V > 0 which
is fulfilled by any positive definite variance-covariance matrix V .
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µ.

Equations (5) and (6) obtain using the following relations along with w⋆
tg and w⋆

mv:

σ2
tg = w⋆′

tgV w⋆
tg, (35)

σ2
mv = w⋆′

mvV w⋆
mv. (36)

Finally, to obtain Equations (10) it is best to make use of the supplementary prob-

lem solved previously in this appendix in Equation (24) but this time we will focus on

minimizing the ratio of (σ⋆(µ0))
2 to µ0

11 which leads to:

µ⋆
0 =

√

√

√

√

(µ′V −1µ)

1′NV
−11N

. (37)

Substituting the above in (24) above produces the following:

w⋆ =
1

∆

{(

√

(µ′V −1µ)
√

(1′NV
−11N)− (µ′V −11N)

2
)

wtg+
(

(µ′V −1µ)(1′NV
−11N)−

√

(µ′V −1µ)
√

(1′NV
−11N)(1

′

NV
−1µ)

)

wmv

}

.

Recognizing that the two terms multiplying wtg and wmv add up to one we can use

that simpler representation in the paper:

w⋆ = awtg + (1− a)wmv, (38)

where

a =
(µ′V −11N)

[√

(µ′V −1µ)
√

(1′NV
−11N)− (µ′V −11N)

]

(µ′V −1µ)(1′NV
−11N)− (µ′V −11N)2

. (39)

The latter simplifies to the expression supplied in the article after realizing that

(µ′V −1µ)(1′NV
−11N)− (µ′V −11N)

2 can represented as:

[

√

(µ′V −1µ)
√

(1′NV
−11N)− (µ′V −11N)

] [

√

(µ′V −1µ)
√

(1′NV
−11N) + (µ′V −11N)

]

. (40)

11This is mathematically equivalent to maximizing the ratio of excess return to return variance and
less unwieldy to work with analytically.
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Figure 1. MV Example in µ− σ Space

This figure presents the tangent portfolio TG (square), the minimum variance portfolio

MV (diamond) and the optimal risk-reward portfolio (circle) in mean-standard deviation

space.
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Figure 2. MV Example in µ− σ2 Space

This figure presents the tangent portfolio TG (square), the minimum variance portfolio

MV (diamond) and the optimal risk-reward portfolio (circle) in mean-variance space.
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Figure 3. Out-of-sample performance of the Tangent Portfolio:

30 Industry Portfolios

This figure plots the summary of the of the top 10% (top line), median (middle line),

and bottom 10% (bottom line) of the TG portfolio return correlation with the VWRETD

market return, the annualized tracking error in percent, the annualized Sharpe ratio, the

annualized realized active return, RAR = Πt=T
t=1 (1 + rp,t) − Πt=T

t=1 (1 + rb,t), as well as the

annualized alpha, α = rp − βprb, and the market beta, β, as a function of the number of

industry portfolios, Nsecurities, included in the TG portfolio.
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Figure 4. Out-of-sample performance of the Minimum Variance Portfolio:

30 Industry Portfolios

This figure plots the summary of the of the top 10% (top line), median (middle line), and

bottom 10% (bottom line) of the MV portfolio return correlation with the VWRETD

market return, the annualized tracking error in percent, the annualized Sharpe ratio, the

annualized realized active return, RAR = Πt=T
t=1 (1 + rp,t) − Πt=T

t=1 (1 + rb,t), as well as the

annualized alpha, α = rp − βprb, and the market beta, β, as a function of the number of

industry portfolios, Nsecurities, included in the MV portfolio.
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Figure 5. Out-of-sample performance of the Optimal Portfolio:

30 Industry Portfolios

This figure plots the summary of the of the top 10% (top line), median (middle line), and

bottom 10% (bottom line) of the optimal portfolio return correlation with the VWRETD

market return, the annualized tracking error in percent, the annualized Sharpe ratio, the

annualized realized active return, RAR = Πt=T
t=1 (1 + rp,t) − Πt=T

t=1 (1 + rb,t), as well as the

annualized alpha, α = rp − βprb, and the market beta, β, as a function of the number of

industry portfolios, Nsecurities, included in the optimal portfolio.
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Figure 6. Out-of-sample performance of the Tangent Portfolio:

1000 Individual Stocks

This figure plots the summary of the of the top 10% (top line), median (middle line),

and bottom 10% (bottom line) of TG portfolio return correlation with the VWRETD

market return, the annualized tracking error in percent, the annualized Sharpe ratio, the

annualized realized active return, RAR = Πt=T
t=1 (1 + rp,t) − Πt=T

t=1 (1 + rb,t), as well as the

annualized alpha, α = rp − βprb, and the market beta, β, as a function of the number of

individual stocks, Nsecurities, included in the TG portfolio.
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Figure 7. Out-of-sample performance of the Minimum Variance Portfolio:

1000 Individual Stocks

This figure plots the summary of the of the top 10% (top line), median (middle line),

and bottom 10% (bottom line) of MV portfolio return correlation with the VWRETD

market return, the annualized tracking error in percent, the annualized Sharpe ratio, the

annualized realized active return, RAR = Πt=T
t=1 (1 + rp,t) − Πt=T

t=1 (1 + rb,t), as well as the

annualized alpha, α = rp − βprb, and the market beta, β, as a function of the number of

individual stocks, Nsecurities, included in the MV portfolio.
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Figure 8. Out-of-sample performance of the Optimal Portfolio:

1000 Individual Stocks

This figure plots the summary of the of the top 10% (top line), median (middle line), and

bottom 10% (bottom line) of optimal portfolio return correlation with the VWRETD

market return, the annualized tracking error in percent, the annualized Sharpe ratio, the

annualized realized active return, RAR = Πt=T
t=1 (1 + rp,t) − Πt=T

t=1 (1 + rb,t), as well as the

annualized alpha, α = rp − βprb, and the market beta, β, as a function of the number of

individual stocks, Nsecurities, included in the optimal portfolio.
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Figure 9. Comparison of realized excess returns per unit variance:

30 Industry Portfolios

This figure plots the summary of the of the top 10% (top line), median (middle line), and

bottom 10% (bottom line) of realized out-of-sample excess return per unit variance for

the TG (upper left panel), MV (upper right panel), and the optimal portfolio (lower left

panel) as well as a superimposed plot of the median values for all three portfolios as a

function of the number of industry portfolios, Nsecurities.
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Figure 10. Comparison of realized excess returns per unit variance:

1000 Individual Stocks

This figure plots the summary of the of the top 10% (top line), median (middle line), and

bottom 10% (bottom line) of realized out-of-sample excess return per unit variance for

the TG (upper left panel), MV (upper right panel), and the optimal portfolio (lower left

panel) as well as a superimposed plot of the median values for all three portfolios as a

function of the number of individual stocks, Nsecurities.
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