# **ACCEPTED VERSION**

## This is the peer reviewed version of the following article:

Paskalis Glabadanidis **Timing the Market with a Combination of Moving Averages** International Review of Finance, 2017; 17(3):353-394 *which has been published in final form at* <u>http://dx.doi.org/10.1111/irfi.12107</u>

© 2016 International Review of Finance Ltd. 2016

# This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

## PERMISSIONS

https://authorservices.wiley.com/author-resources/Journal-Authors/licensing/self-archiving.html

# Wiley's Self-Archiving Policy

## Accepted (peer-reviewed) Version

The accepted version of an article is the version that incorporates all amendments made during the peer review process, but prior to the final published version (the Version of Record, which includes; copy and stylistic edits, online and print formatting, citation and other linking, deposit in abstracting and indexing services, and the addition of bibliographic and other material.

Self-archiving of the accepted version is subject to an embargo period of 12-24 months. The embargo period is 12 months for scientific, technical, and medical (STM) journals and 24 months for social science and humanities (SSH) journals following publication of the final article.

- the author's personal website
- the author's company/institutional repository or archive
- not for profit subject-based repositories such as PubMed Central

Articles may be deposited into repositories on acceptance, but access to the article is subject to the embargo period.

The version posted must include the following notice on the first page:

"This is the peer reviewed version of the following article: [FULL CITE], which has been published in final form at [Link to final article using the DOI]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."

The version posted may not be updated or replaced with the final published version (the Version of Record). Authors may transmit, print and share copies of the accepted version with colleagues, provided that there is no systematic distribution, e.g. a posting on a listserve, network or automated delivery.

There is no obligation upon authors to remove preprints posted to not for profit preprint servers prior to submission.

# 17 October 2019

*International Review of Finance,* 2016 DOI: 10.1111/irfi.12107

# Timing the Market with a Combination of Moving Averages\*

PASKALIS GLABADANIDIS

Accounting and Finance Business School, University of Adelaide, Adelaide, Australia

## ABSTRACT

A combination of simple moving average trading strategies with several window lengths delivers a greater average return and skewness as well as a lower variance and kurtosis compared with buying and holding the underlying asset using daily returns of value-weighted US decile portfolios sorted by market size, book-to-market, momentum, and standard deviation as well as more than 1000 individual US stocks. The combination moving average (CMA) strategy generates risk-adjusted returns of 2% to 16% per year before transaction costs. The performance of the CMA strategy is driven largely by the volatility of stock returns and resembles the payoffs of an at-the-money protective put on the underlying buy-and-hold return. Conditional factor models with macroeconomic variables, especially the market dividend yield, short-term interest rates, and market conditions, can explain some of the abnormal returns. Standard market timing tests reveal ample evidence regarding the timing ability of the CMA strategy.

JEL Codes: G11; G12; G14

## I. INTRODUCTION

Technical analysis involves the use of past and current market price, trading volume, and potentially, other publicly available information to predict future market prices. It is highly popular in practice with plentiful financial trading advice that is based largely, if not exclusively, on technical indicators. From the standpoint of classical economic and finance theory, it is not at all clear that technical analysis in general and moving averages in particular will have any role or power in predicting the returns of individual stocks as well as portfolios of stocks. Several potential reasons come to mind in terms of justifying the use of moving averages. First, investor heterogeneity as well as information asymmetry may lead to the persistent manifestation of behavioral biases in stock market prices. Prior studies that have touched upon these issues include Treynor and Ferguson (1985); Brown and Jennings (1989), and Hong and Stein (1999) among many others. Furthermore, the theoretical model in Wang (1993) shows explicitly

© 2016 International Review of Finance Ltd. 2016

<sup>\*</sup> I would like to thank the editor, Hong Yan, and one anonymous referee for their very detailed and thoughtful comments. Any remaining errors are my own responsibility.

how a rational economic agent inhabiting a classical model of choice under uncertainty and differential information will find signals based on average past prices quite useful, informative, and revealing of other agents' private information. Secondly, active investors in practice very often follow price trends which may lead to the continued persistence of trends, both upward as well as downward. These trends present other investors with the ability to follow them at least in the short-term. Academic work in this area is perhaps best exemplified by Fung and Hsieh (2001), and their construction of trend following indicators based on the returns of look back straddle options. Thirdly, the study by Brock et al. (1992) document the performance of various implementations of the moving average and conclude that it is the most popular strategy followed by investors who use technical analysis. More formally, Brock et al. (1992) find evidence that some technical indicators do have a significant predictive ability. Fourthly, Blume et al. (1994) present a theoretical framework using trading volume and price data leading to technical analysis being a part of a trader's learning process. A more thorough study of a large set of technical indicators by Lo et al. (2000) also found some predictive ability especially when moving averages are concerned. Zhu and Zhou (2009) provide a solid theoretical reason why technical indicators could be a potentially useful state variable in an environment where investors need to learn over time the fundamental value of the risky asset they invest in. More recently, Neely et al. (2010, 2011) find that technical analysis has as much forecasting power over the equity risk premium as the information provided by economic fundamentals. The practitioner's literature also includes Faber (2007) and Kilgallen (2012) who thoroughly document the risk-adjusted returns to the moving average strategy using various portfolios, commodities, and currencies. In addition, Huang and Zhou (2013) use the moving average indicator to predict the return on the US stock market while Goh et al. (2012) apply the same idea to government bond yields and risk premia. Motivated in part by the predictive power of the moving average indicator, Han et al. (2016) and Jiang (2013) construct a trend factor with considerable cross-sectional explanatory power and substantial historical performance. In a similar vein, Glabadanidis (2014, 2015a, 2015b) investigates and documents the performance of the simple moving average strategy with various US and international portfolios as well as individual US stocks.

The contribution of this paper is three-fold. First, I propose a novel strategy which is an equal-weighted average of simple moving average. The novelty here is that the investment or disinvestment in the underlying risky asset is proportional to the number of moving average windows that have generated a buy or sell signal, respectively. This is in stark contrast with trading signals generated by a single moving average window which involve either being completely invested in the risky asset or completely invested in the risk-free asset. Secondly, I report on the performance of the combination moving average strategy with a large number of portfolios and individual stocks. Finally, I provide a link between technical indicators and fundamental indicators by presenting evidence that the performance of the combination moving average strategy can be partially

explained by a conditional asset pricing model with the market's dividend yield, short-term interest rates, and a recession indicator.

This paper is similar in spirit to Glabadanidis (2014, 2015a, 2015b) and Han et al. (2013). However, several important differences stand out. First, I use daily value-weighted returns of decile portfolios constructed by various characteristics like size, book-to-market, momentum, and standard deviation of return. Valueweighted portfolios at a daily frequency have a much smaller amount of trading going on inside the portfolio compared with the daily equal-weighted portfolios investigated by Han et al. (2013). Secondly, the cross-sectional results in this study are just an artefact of the decile portfolios and not the main focus of this paper, while Han et al. (2013) is mostly concerned with the inability of standard empirical tests to account for the moving average strategy average returns differences across portfolios. I argue that this is largely due to using the wrong benchmark pricing model. Using a dynamic market-timing tests and conditional asset pricing models with macroeconomic state variables leads to mostly negative or statistically insignificant risk-adjusted returns for the moving average strategy. In light of this, my take on the performance of the combination moving average strategy is that it is not an anomaly, but instead a dynamic trading strategy that exposes investors to potential upside returns derived from risky assets via its market timing ability. Similarly, the combination moving average strategy manages to avoid substantial market downturns more often than not, thus, insulating investors from periods of sustained bear markets. This performance is more pronounced the more volatile the returns of the underlying risky assets are. A final caveat is that I assume the moving average trading has no price impact. Large investors using this strategy will necessarily experience an inferior performance. This is largely due to the adverse price impact of liquidating and initiating large positions, especially for less liquid assets with lower trading volumes.

The highlights of this study are the superior performance of the combination moving average portfolios relative to buying and holding the underlying portfolios, the fact that the switching strategy returns resemble an imperfect at-the-money protective put, and that cross-sectional differences are not a new anomaly as maintained in Han et al. (2013), but are due to volatility differences in the underlying portfolios and stocks as well as factor exposure differences to a few macroeconomicstate variables. The returns of the combination moving average strategy relative to the buy-and-hold strategy are quite convex with respect to the return of the buy-and-hold strategy and, hence, will be hard to explain using standard linear asset pricing models. The anomalous risk-adjusted performance relative to standard linear asset pricing models appears to be largely due to omitting market timing factors in a simple piece-wise linear framework that captures the moving average strategy's convexity. Furthermore, the moving average strategy appears to be antifragile in the sense of Taleb (2012) meaning that for securities with more volatile returns there is a greater improvement of the moving average returns relative to buy-and-hold returns.

#### **II. A COMBINATION OF SIMPLE MOVING AVERAGES**

I use daily value-weighted<sup>1</sup> returns of sets of 10 portfolios sorted by market capitalization, book-to-market, momentum, and standard deviation. The data is readily available from Ken French Data Library. The sample period starts on January 4, 1960 and ends on December 31, 2013.

The following exposition of the moving average strategy follows closely the presentation in Han et al. (2013). Let  $R_{jt}$  be the return on portfolio j at the end of month t and let  $P_{jt}$  be the respective price level of that portfolio. Define the moving average of portfolio  $j \bar{A}_{jt,L}$  at time t with length L periods as follows:

$$\overline{A}_{jt,L} = \frac{P_{jt-L+1} + P_{jt-L+2} + \dots + P_{jt-1} + P_{jt}}{L}$$
(1)

Throughout the paper, I use a combination moving average comprised of an equal-weighted combination of simple moving averages of length L=5, L=10, L=20, L=50, L=100, and L=200 days. The way I implement the simple moving average strategy in this paper is to compare the closing price  $P_{jt}$  at the end of every day to the running moving average  $\bar{A}_{jt,L}$ . If the price is above the moving average this triggers a signal to invest (or stay invested if already invested at t-1) in the portfolio in the next day t+1. If the price is below the moving average this triggers a signal to leave the risky portfolio (or stay invested in cash if not invested at t-1) in the following day t+1.<sup>2</sup> As a proxy for the risk-free rate, I use the daily return on the 30-day US Treasury Bill.

More formally, the returns of the moving average switching strategy can be expressed as follows:

$$\widetilde{R}_{jt,L} = \begin{cases} R_{jt}, & \text{if } P_{jt-1} > \overline{A}_{jt-1,L} \\ r_{ft}, & \text{otherwise}, \end{cases}$$
(2)

in the absence of any transaction costs imposed on the switches. For the rest of the paper and in all of the empirical results quoted, I consider returns after the imposition of a one-way transaction cost of  $\tau$ . Mathematically, this leads to the following four cases in the post-transaction cost returns:

<sup>1</sup> I use value-weighted portfolio returns to control for the amount of rebalancing trading inside the various portfolios. The empirical results in this paper are much stronger when equalweighted portfolios are used. However, this may understate the break-even transaction costs as equal weighted portfolios require a lot of trading to be replicated.

<sup>2</sup> An alternative version of the switching strategy involves investing in the market portfolio instead of the risk-free asset. This version of the switching strategy has a somewhat inferior performance compared with the baseline case investigated in the article. Nevertheless, it is an interesting case to consider, and I am grateful to an anonymous referee for suggesting this idea to me.

Combination of Moving Averages

$$\widetilde{R}_{jt,L} = \begin{cases} R_{jt}, & \text{if } P_{jt-1} > \overline{A}_{jt-1,L} & \text{and } P_{jt-2} > \overline{A}_{jt-2,L}, \\ R_{jt} - \tau, & \text{if } P_{jt-1} > \overline{A}_{jt-1,L} & \text{and } P_{jt-2} < \overline{A}_{jt-2,L}, \\ r_{ft}, & \text{if } P_{jt-1} < \overline{A}_{jt-1,L} & \text{and } P_{jt-2} < \overline{A}_{jt-2,L}, \\ r_{ft} - \tau, & \text{if } P_{jt-1} < \overline{A}_{jt-1,L} & \text{and } P_{jt-2} > \overline{A}_{jt-2,L}. \end{cases}$$
(3)

depending on whether the investor switches or not. Note that this imposes a cost on selling and buying the risky portfolio, but no cost is imposed on buying and selling the Treasury bill. This is consistent with prior studies like Balduzzi and Lynch (1999); Lynch and Balduzzi (2000), and Han (2006), among others. Regarding the appropriate size of the transaction cost, Balduzzi and Lynch (1999) propose using a value between 1 and 50 basis points. Lynch and Balduzzi (2000) use a mid-point value of 25-basis point. Instead of choosing a controversial value for the one-way transaction cost, I use  $\tau = 0$  and report the break-event one-way transaction cost that will completely eliminate any outperformance of the combination moving average strategy relative to the buy-and-hold strategy.

$$\widetilde{CR}_{jt} = \frac{\widetilde{R}_{jt,5} + \widetilde{R}_{jt,10} + \widetilde{R}_{jt,20} + \widetilde{R}_{jt,50} + \widetilde{R}_{jt,100} + \widetilde{R}_{jt,200}}{6}$$

$$\tag{4}$$

I construct excess returns as zero-cost portfolios that are long the combination moving average (CMA) switching strategy and short the underlying portfolio to determine the relative performance of the moving average strategy against the buy-and-hold strategy. Denote the resulting difference between the return of the CMA strategy for portfolio *j* at the end of month *t*,  $\widetilde{CR}_{jt} - R_{jt}$ , and the return of portfolio *j* at the end of month *t*,  $R_{it}$ , as follows:

$$CMAP_{jt} = CR_{jt} - R_{jt}, \quad j = 1, ..., N$$
(5)

The presence of significant abnormal returns can be interpreted as evidence in favor of superiority of the moving average switching strategy over the buy-and-hold strategy of the underlying portfolio. Naturally, the moving average switching strategy is a dynamic trading strategy, so it is perhaps unfair to compare its returns to the buy-and-hold returns of being long the underlying portfolio.

Table 1 presents the first four moments and the Sharpe ratio of the buy-andhold (BH) strategy, the CMA strategy and the combination moving average portfolio (CMAP) strategy for decile portfolio sorted by market capitalization, bookto-market, momentum, and standard deviation of return. The first strong finding that emerges for all portfolios is that the standard deviation of return is reduced by the CMA strategy relative to the BH strategy. Secondly, the risk-return trade-off is improved for all portfolios as evidenced by the increased Sharpe ratios for all portfolios. Thirdly, in the vast majority of cases the average return of the CMA strategy exceeds the average return of the BH strategy. The only exception are decile high sorted by size and decile eight sorted by momentum. Fourthly, the kurtosis of almost all portfolios is reduced as well with the exception of

| Panel.                          | Panel A: size sorted portfoli                                                                                              | ted portfc                                                                                                                  | olios                                                                                  |                                                                                        |                                                                                                   |                                                                                                                     |                                                                                       |                                                                                                 |                                                                                |                                                                                                          |                                                                                                   |                                                                                                     |                                                                                                   |                                                                                                                   |                                                                                                   |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| d                               | ή                                                                                                                          | α                                                                                                                           | S                                                                                      | k                                                                                      | SR                                                                                                | ή                                                                                                                   | σ                                                                                     | S                                                                                               | k                                                                              | SR                                                                                                       | ή                                                                                                 | α                                                                                                   | S                                                                                                 | k                                                                                                                 | SR                                                                                                |
|                                 |                                                                                                                            | BH                                                                                                                          | H portfolio                                                                            | os                                                                                     |                                                                                                   |                                                                                                                     | CM                                                                                    | CMA portfolio                                                                                   | SC                                                                             |                                                                                                          |                                                                                                   | CM                                                                                                  | CMAP portfolios                                                                                   | lios                                                                                                              |                                                                                                   |
|                                 |                                                                                                                            |                                                                                                                             |                                                                                        |                                                                                        |                                                                                                   |                                                                                                                     |                                                                                       |                                                                                                 |                                                                                |                                                                                                          |                                                                                                   |                                                                                                     |                                                                                                   |                                                                                                                   |                                                                                                   |
| Low                             | 11.88                                                                                                                      | 13.58                                                                                                                       | -0.90                                                                                  | 14.82                                                                                  | 0.52                                                                                              | 23.61                                                                                                               | 7.43                                                                                  | -0.34                                                                                           | 9.57                                                                           | 2.53                                                                                                     | 11.73                                                                                             | 9.47                                                                                                | 1.68                                                                                              | 42.24                                                                                                             | 1.24                                                                                              |
| 2                               | 11.82                                                                                                                      | 16.71                                                                                                                       | -0.46                                                                                  | 13.86                                                                                  | 0.42                                                                                              | 20.25                                                                                                               | 9.07                                                                                  | -0.50                                                                                           | 10.56                                                                          | 1.71                                                                                                     | 8.43                                                                                              | 11.65                                                                                               | 0.52                                                                                              | 36.55                                                                                                             | 0.72                                                                                              |
| ŝ                               | 12.90                                                                                                                      | 16.59                                                                                                                       | -0.48                                                                                  | 12.03                                                                                  | 0.49                                                                                              | 19.70                                                                                                               | 9.19                                                                                  | -0.41                                                                                           | 9.00                                                                           | 1.62                                                                                                     | 6.80                                                                                              | 11.38                                                                                               | 0.62                                                                                              | 32.86                                                                                                             | 0.60                                                                                              |
| 4                               | 12.10                                                                                                                      | 16.32                                                                                                                       | -0.48                                                                                  | 12.49                                                                                  | 0.45                                                                                              | 18.36                                                                                                               | 8.94                                                                                  | -0.44                                                                                           | 8.77                                                                           | 1.52                                                                                                     | 6.25                                                                                              | 11.29                                                                                               | 0.66                                                                                              | 35.91                                                                                                             | 0.55                                                                                              |
| 5                               | 12.62                                                                                                                      | 16.22                                                                                                                       | -0.47                                                                                  | 11.97                                                                                  | 0.48                                                                                              | 18.10                                                                                                               | 8.99                                                                                  | -0.45                                                                                           | 8.87                                                                           | 1.48                                                                                                     | 5.48                                                                                              | 11.19                                                                                               | 0.62                                                                                              | 34.38                                                                                                             | 0.49                                                                                              |
| 9                               | 12.16                                                                                                                      | 15.32                                                                                                                       | -0.53                                                                                  | 13.43                                                                                  | 0.48                                                                                              | 17.76                                                                                                               | 8.45                                                                                  | -0.40                                                                                           | 8.11                                                                           | 1.54                                                                                                     | 5.60                                                                                              | 10.61                                                                                               | 0.87                                                                                              | 41.62                                                                                                             | 0.53                                                                                              |
| 7                               | 12.19                                                                                                                      | 15.47                                                                                                                       | -0.55                                                                                  | 15.55                                                                                  | 0.48                                                                                              | 17.48                                                                                                               | 8.51                                                                                  | -0.34                                                                                           | 8.70                                                                           | 1.49                                                                                                     | 5.28                                                                                              | 10.72                                                                                               | 0.95                                                                                              | 48.95                                                                                                             | 0.49                                                                                              |
| 8                               | 11.91                                                                                                                      | 15.69                                                                                                                       | -0.51                                                                                  | 16.63                                                                                  | 0.45                                                                                              | 16.02                                                                                                               | 8.68                                                                                  | -0.30                                                                                           | 8.37                                                                           | 1.30                                                                                                     | 4.11                                                                                              | 10.82                                                                                               | 0.85                                                                                              | 54.89                                                                                                             | 0.38                                                                                              |
| 6                               | 11.48                                                                                                                      | 15.45                                                                                                                       | -0.59                                                                                  | 20.91                                                                                  | 0.43                                                                                              | 14.02                                                                                                               | 8.55                                                                                  | -0.23                                                                                           | 7.97                                                                           | 1.08                                                                                                     | 2.54                                                                                              | 10.68                                                                                               | 1.04                                                                                              | 72.40                                                                                                             | 0.24                                                                                              |
| High                            | 10.09                                                                                                                      | 15.99                                                                                                                       | -0.49                                                                                  | 21.64                                                                                  | 0.33                                                                                              | 9.74                                                                                                                | 8.88                                                                                  | -0.18                                                                                           | 7.74                                                                           | 0.56                                                                                                     | -0.34                                                                                             | 11.01                                                                                               | 0.94                                                                                              | 78.14                                                                                                             | -0.03                                                                                             |
| Panel                           | Panel B: book-to-market so                                                                                                 | -market s                                                                                                                   | orted portfolios                                                                       | tfolios                                                                                |                                                                                                   |                                                                                                                     |                                                                                       |                                                                                                 |                                                                                |                                                                                                          |                                                                                                   |                                                                                                     |                                                                                                   |                                                                                                                   |                                                                                                   |
| d                               | ή                                                                                                                          | α                                                                                                                           | S                                                                                      | k                                                                                      | SR                                                                                                | ή                                                                                                                   | α                                                                                     | S                                                                                               | k                                                                              | SR                                                                                                       | ή                                                                                                 | ο                                                                                                   | S                                                                                                 | k                                                                                                                 | SR                                                                                                |
|                                 |                                                                                                                            | BH                                                                                                                          | H portfolios                                                                           | os                                                                                     |                                                                                                   |                                                                                                                     | CM                                                                                    | CMA portfolio                                                                                   | SC                                                                             |                                                                                                          |                                                                                                   | CM                                                                                                  | CMAP portfolios                                                                                   | lios                                                                                                              |                                                                                                   |
| Low<br>5<br>6<br>8<br>8<br>High | $\begin{array}{c} 9.32\\ 10.89\\ 11.01\\ 11.02\\ 11.10\\ 11.77\\ 11.77\\ 12.43\\ 12.89\\ 13.82\\ 13.82\\ 14.90\end{array}$ | $\begin{array}{c} 17.52\\ 16.06\\ 15.42\\ 15.79\\ 15.61\\ 15.14\\ 15.14\\ 14.89\\ 15.81\\ 15.81\\ 15.99\\ 17.77\end{array}$ | -0.17<br>-0.39<br>-0.51<br>-0.71<br>-0.45<br>-0.44<br>-0.60<br>-0.60<br>-0.60<br>-0.60 | 13.47<br>16.38<br>20.71<br>20.94<br>23.03<br>16.96<br>22.73<br>30.17<br>20.85<br>15.87 | $\begin{array}{c} 0.26\\ 0.38\\ 0.40\\ 0.41\\ 0.41\\ 0.41\\ 0.51\\ 0.57\\ 0.57\\ 0.57\end{array}$ | $\begin{array}{c} 12.27\\ 12.44\\ 13.03\\ 13.25\\ 13.25\\ 13.24\\ 13.44\\ 14.15\\ 14.15\\ 15.45\\ 18.43\end{array}$ | 9.58<br>9.01<br>8.75<br>8.73<br>8.73<br>8.55<br>8.55<br>8.87<br>8.87<br>9.26<br>10.32 | -0.17<br>-0.13<br>-0.04<br>-0.20<br>-0.20<br>-0.23<br>-0.23<br>-0.23<br>-0.23<br>-0.23<br>-0.23 | 7.42<br>7.93<br>7.28<br>8.86<br>9.13<br>8.10<br>8.60<br>8.60<br>11.05<br>11.15 | $\begin{array}{c} 0.78\\ 0.85\\ 0.94\\ 0.96\\ 0.87\\ 0.87\\ 1.01\\ 1.01\\ 1.05\\ 1.15\\ 1.32\end{array}$ | $\begin{array}{c} 2.95\\ 1.55\\ 1.55\\ 2.02\\ 2.43\\ 1.67\\ 1.67\\ 1.65\\ 1.65\\ 3.53\end{array}$ | $\begin{array}{c} 12.21\\ 11.04\\ 10.47\\ 10.81\\ 10.75\\ 10.26\\ 10.02\\ 10.74\\ 11.87\end{array}$ | $\begin{array}{c} 0.05\\ 0.77\\ 1.06\\ 1.54\\ 0.59\\ 0.72\\ 0.72\\ 0.81\\ 1.04\\ 0.97\end{array}$ | 42.84<br>57.39<br>78.27<br>73.64<br>80.18<br>80.18<br>80.18<br>87.83<br>87.83<br>92.42<br>72.16<br>72.16<br>53.66 | $\begin{array}{c} 0.24\\ 0.19\\ 0.19\\ 0.12\\ 0.16\\ 0.16\\ 0.16\\ 0.15\\ 0.30\\ 0.30\end{array}$ |

6

 Table 1
 Summary statistics

© 2016 International Review of Finance Ltd. 2016

| Table 1                                                      |                                                                               | (continued)                                                                                                                                                                             |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                            |                                                               |                                                                                 |                                                                      |                                                                |                                                           |                                                            |                                                               |                                                                            |                                                               |                                                      |
|--------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------|
| Panel (                                                      | C: momer                                                                      | C: momentum sorted                                                                                                                                                                      | ed portfolios                                                                        | lios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                            |                                                               |                                                                                 |                                                                      |                                                                |                                                           |                                                            |                                                               |                                                                            |                                                               |                                                      |
| d                                                            | ή                                                                             | Ø                                                                                                                                                                                       | S                                                                                    | k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SR                                                         | ή                                                             | α                                                                               | S                                                                    | k                                                              | SR                                                        | ή                                                          | Q                                                             | S                                                                          | k                                                             | SR                                                   |
|                                                              |                                                                               | BH                                                                                                                                                                                      | H portfolios                                                                         | os                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                            |                                                               | CM                                                                              | CMA portfolios                                                       | SC                                                             |                                                           |                                                            | CM                                                            | CMAP portfolios                                                            | lios                                                          |                                                      |
|                                                              |                                                                               |                                                                                                                                                                                         |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                          |                                                               | 0                                                                               | ,<br>1<br>4                                                          |                                                                | 0                                                         |                                                            |                                                               | 0                                                                          |                                                               |                                                      |
| Low                                                          | 2.51                                                                          | 24.92<br>20 34                                                                                                                                                                          | 0.41                                                                                 | 25.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.09                                                      | 16.23<br>14.78                                                | 12.33<br>10 98                                                                  | -0.37                                                                | 41.68<br>34.60                                                 | 0.93                                                      | 13.72<br>6.86                                              | 18.28<br>14.30                                                | -0.58<br>-0.74                                                             | 46.59<br>51 81                                                | 0.75<br>0.48                                         |
| 1 ന                                                          | 10.21                                                                         | 17.58                                                                                                                                                                                   | 0.04                                                                                 | 17.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.31                                                       | 13.80                                                         | 9.70                                                                            | -0.09                                                                | 14.68                                                          | 0.93                                                      | 3.59                                                       | 12.17                                                         | -0.29                                                                      | 43.70                                                         | 0.29                                                 |
| 4                                                            | 10.15                                                                         | 16.60                                                                                                                                                                                   | -0.15                                                                                | 18.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.32                                                       | 13.08                                                         | 9.15                                                                            | 0.06                                                                 | 11.36                                                          | 0.91                                                      | 2.92                                                       | 11.43                                                         | 0.27                                                                       | 56.09                                                         | 0.26                                                 |
| 5                                                            | 10.00                                                                         | 15.89                                                                                                                                                                                   | 0.01                                                                                 | 21.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.33                                                       | 11.63                                                         | 8.86                                                                            | -0.10                                                                | 13.88                                                          | 0.77                                                      | 1.63                                                       | 10.93                                                         | -0.29                                                                      | 68.11                                                         | 0.15                                                 |
| 91                                                           | 10.84                                                                         | 15.35                                                                                                                                                                                   | -0.58                                                                                | 26.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.39                                                       | 12.19                                                         | 8.65                                                                            | -0.26                                                                | 10.04                                                          | 0.86                                                      | 1.35                                                       | 10.48                                                         | 1.21                                                                       | 99.19                                                         | 0.13                                                 |
| > 0                                                          | 10.76                                                                         | 15.19                                                                                                                                                                                   | -0.55                                                                                | 22.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.39                                                       | 12.51                                                         | 8.51                                                                            | -0.25                                                                | 7.45                                                           | 0.91                                                      | 1./6                                                       | 10.41                                                         | 1.08                                                                       | 86.63                                                         | 0.1/                                                 |
| 00                                                           | 12.66                                                                         | 16.46                                                                                                                                                                                   | -0.53                                                                                | 15.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.48                                                       | 13.92                                                         | 9.46                                                                            | -0.29                                                                | 7.35                                                           | 0.97                                                      | 1.26                                                       | 11.05                                                         | 0.90                                                                       | 56.48                                                         | 0.11                                                 |
| High                                                         | 17.71                                                                         | 20.36                                                                                                                                                                                   | -0.50                                                                                | 12.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.63                                                       | 19.69                                                         | 11.69                                                                           | -0.44                                                                | 7.57                                                           | 1.28                                                      | 1.98                                                       | 13.64                                                         | 0.64                                                                       | 45.42                                                         | 0.15                                                 |
| Panel I                                                      | ): standaı                                                                    | D: standard deviation                                                                                                                                                                   | on sorted                                                                            | sorted portfolios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |                                                               |                                                                                 |                                                                      |                                                                |                                                           |                                                            |                                                               |                                                                            |                                                               |                                                      |
| d                                                            | ή                                                                             | σ                                                                                                                                                                                       | S                                                                                    | k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SR                                                         | ή                                                             | a                                                                               | S                                                                    | k                                                              | SR                                                        | ή                                                          | a                                                             | S                                                                          | k                                                             | SR                                                   |
|                                                              |                                                                               | BH                                                                                                                                                                                      | H portfolios                                                                         | os                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                            |                                                               | CM                                                                              | CMA portfolios                                                       | sc                                                             |                                                           |                                                            | CM                                                            | CMAP portfolios                                                            | lios                                                          | ĺ                                                    |
| High                                                         | 40.03                                                                         | 20.26<br>19.20                                                                                                                                                                          | 0.10                                                                                 | 14.39<br>14.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.74                                                       | 49.35                                                         | 13.03                                                                           | 1.16                                                                 | 15.15                                                          | 3.42                                                      | 9.32<br>10.82                                              | 12.64                                                         | 0.33                                                                       | 50.77<br>41.93                                                | 0.74                                                 |
| m<br>۱                                                       | 15.14                                                                         | 18.25                                                                                                                                                                                   | -0.38                                                                                | 16.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.57                                                       | 24.73                                                         | 9.93                                                                            | -0.04                                                                | 11.51                                                          | 2.01                                                      | 9.59                                                       | 12.82                                                         | 0.78                                                                       | 47.10                                                         | 0.75                                                 |
| 4                                                            | 15.67                                                                         | 16.88                                                                                                                                                                                   | -0.47                                                                                | 18.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.64                                                       | 23.10                                                         | 9.19                                                                            | -0.12                                                                | 10.99                                                          | 1.99                                                      | 7.43                                                       | 11.88                                                         | 0.88                                                                       | 54.03                                                         | 0.63                                                 |
| 5                                                            | 15.60                                                                         | 15.51                                                                                                                                                                                   | -0.55                                                                                | 20.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.70                                                       | 22.41                                                         | 8.45                                                                            | -0.20                                                                | 10.74                                                          | 2.09                                                      | 6.81                                                       | 10.88                                                         | 0.90                                                                       | 60.56                                                         | 0.63                                                 |
| 1 0                                                          | 14.74                                                                         | 14.38                                                                                                                                                                                   | -0.67                                                                                | 24.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.69                                                       | 20.91                                                         | 7.81                                                                            | -0.27                                                                | 10.44                                                          | 2.07                                                      | 6.18                                                       | 10.11                                                         | 1.08                                                                       | 73.82                                                         | 0.61                                                 |
| <b>~</b> 0                                                   | 12.60                                                                         | 12.//                                                                                                                                                                                   | -0.00                                                                                | 28.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 01.U                                                       | 19.94<br>10 01                                                | 10.7                                                                            | -0.10                                                                | 7.05                                                           | 2.10                                                      | 5.04<br>10.7                                               | 7.00                                                          | 1.03                                                                       | 94.82<br>127.66                                               | 0.03                                                 |
| 00                                                           | 12.00                                                                         | 0 77                                                                                                                                                                                    | 0/.0-                                                                                | 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.83                                                       | 10.01                                                         | 21.0                                                                            | -0.00                                                                | 098                                                            | 2.27<br>2.53                                              | 2.07                                                       | 1.7U<br>6.68                                                  | 1.00                                                                       | 187.60                                                        | 00.00                                                |
| Low                                                          | 10.77                                                                         | 6.86                                                                                                                                                                                    | -0.47                                                                                | 71.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.87                                                       | 16.03                                                         | 3.72                                                                            | 0.51                                                                 | 10.76                                                          | 3.03                                                      | 5.25                                                       | 4.94                                                          | 0.73                                                                       | 245.31                                                        | 1.06                                                 |
| This ta<br>egy poo<br>dard d<br>annual<br>nualize<br>binatio | ble report<br>ttfolio ret<br>eviation<br>ized avera<br>d Sharpe<br>n of the s | This table reports summary<br>egy portfolio returns and th<br>dard deviation of return. "<br>annualized average return,<br>nualized Sharpe ratio. The l<br>bination of the six individ. | y statistic<br>the excess<br>The sarr<br>$, \sigma$ is ann<br>lengths c<br>fual movi | $\sigma$ statistics for the respective buy and hold (BH) portfolio returns, the combination moving average (CMA) switching strat-<br>ne excess return of CMA over BH (CMAP) using sets of 10 portfolios sorted by size, book-to-market, momentum and stan-<br>The sample period covers January 4, 1960 until December 31, 2013 with value-weighted portfolio returns. $\mu$ is the<br>$\sigma$ is annualized standarddeviation of returns, $s$ is the annualized skewness, $k$ is the annualized kurtosis, and SR is the an-<br>lengths of the moving average windows are 5, 10, 20, 50, 100, and 200 days. The CMA portfoliois an equal-weighted com-<br>ual moving average returns. | espective<br>CMA ove<br>d covers<br>indarddev<br>ing avera | buy and F<br>r BH (CM<br>January 4<br>riation of<br>ge windov | nold (BH)<br>AP) using<br>, 1960 un<br>returns, <i>s</i><br><i>w</i> s are 5, 1 | portfolio 1<br>(sets of 10<br>ntil Decer<br>is the anr<br>0, 20, 50, | returns, tj<br>portfolic<br>mber 31,<br>nualized s<br>100, and | he combi<br>os sorted<br>2013 wi<br>skewness,<br>200 days | nation m<br>by size, b<br>th value-<br>, k is the <i>i</i> | oving ave<br>ook-to-ma<br>weighted<br>annualize<br>A portfoli | rage (CM <i>L</i><br>arket, mor<br>portfolio<br>d kurtosis,<br>iois an equ | A) switchin ar nentum ar returns. $\mu$ and SR is all-weighte | g strat-<br>id stan-<br>is the<br>the an-<br>id com- |

## Combination of Moving Averages

© 2016 International Review of Finance Ltd. 2016

7

| Portfolio | α         | $\beta_m$ | $\beta_s$ | $\beta_h$ | $\beta_u$ | $\overline{R}^2$ |
|-----------|-----------|-----------|-----------|-----------|-----------|------------------|
| Low       | 16.111*** | -0.483*** | -0.497*** | -0.157*** | -0.012**  | 0.653            |
| 2         | 13.737*** | -0.625*** | -0.579*** | -0.190*** | 0.010*    | 0.705            |
| 3         | 11.706*** | -0.615*** | -0.531*** | -0.130*** | 0.010*    | 0.713            |
| 4         | 10.980*** | -0.613*** | -0.483*** | -0.096*** | 0.004     | 0.714            |
| 5         | 9.843***  | -0.608*** | -0.425*** | -0.068*** | 0.018***  | 0.708            |
| 6         | 9.603***  | -0.576*** | -0.306*** | -0.044*** | 0.005     | 0.691            |
| 7         | 9.346***  | -0.586*** | -0.246*** | -0.069*** | 0.009*    | 0.687            |
| 8         | 8.111***  | -0.597*** | -0.173*** | -0.072*** | 0.013**   | 0.697            |
| 9         | 6.447***  | -0.589*** | -0.062*** | -0.079*** | 0.004     | 0.699            |
| High      | 2.392***  | -0.579*** | 0.137***  | 0.036***  | 0.040***  | 0.718            |

**Table 2**Factor regressions results

Panel B: book-to-market sorted portfolios.

| Portfolio | α        | $\beta_m$ | $\beta_s$ | $\beta_h$      | $\beta_u$ | $\overline{R}^2$ |
|-----------|----------|-----------|-----------|----------------|-----------|------------------|
| Low       | 4.633*** | -0.595*** | 0.036***  | 0.307***       | 0.048***  | 0.703            |
| 2         | 4.569*** | -0.576*** | 0.017**   | 0.062***       | 0.009*    | 0.681            |
| 3         | 5.371*** | -0.549*** | 0.019***  | 0.012          | -0.023*** | 0.663            |
| 4         | 6.551*** | -0.589*** | -0.011    | -0.169***      | 0.018***  | 0.674            |
| 5         | 5.486*** | -0.577*** | -0.019*** | $-0.215^{***}$ | 0.021***  | 0.645            |
| 6         | 5.730*** | -0.555*** | -0.071*** | -0.195***      | 0.026***  | 0.652            |
| 7         | 6.201*** | -0.545*** | -0.030*** | -0.278***      | -0.002    | 0.647            |
| 8         | 6.464*** | -0.590*** | -0.066*** | -0.441***      | 0.047***  | 0.651            |
| 9         | 7.182*** | -0.591*** | -0.082*** | $-0.405^{***}$ | -0.011**  | 0.651            |
| High      | 9.581*** | -0.647*** | -0.181*** | -0.455***      | 0.013**   | 0.642            |

Panel C: momentum sorted portfolios

| Portfolio | α         | $\beta_m$      | $\beta_s$      | $\beta_h$      | $\beta_u$ | $\overline{R}^2$ |
|-----------|-----------|----------------|----------------|----------------|-----------|------------------|
| Low       | 14.460*** | -0.845***      | -0.310***      | -0.043***      | 0.596***  | 0.682            |
| 2         | 7.962***  | -0.691***      | -0.108***      | -0.050***      | 0.410***  | 0.689            |
| 3         | 5.155***  | -0.600***      | -0.037***      | $-0.086^{***}$ | 0.295***  | 0.684            |
| 4         | 5.621***  | -0.591***      | 0.004          | -0.118***      | 0.162***  | 0.672            |
| 5         | 4.603***  | -0.566***      | 0.001          | -0.079***      | 0.089***  | 0.650            |
| 6         | 5.043***  | -0.553***      | 0.024***       | -0.112***      | 0.006     | 0.643            |
| 7         | 5.836***  | -0.557***      | 0.013*         | -0.092***      | -0.046*** | 0.654            |
| 8         | 4.597***  | -0.544***      | 0.018***       | -0.124***      | -0.120*** | 0.645            |
| 9         | 6.708***  | $-0.602^{***}$ | -0.059***      | -0.082***      | -0.174*** | 0.669            |
| High      | 8.596***  | -0.696***      | $-0.192^{***}$ | 0.057***       | -0.301*** | 0.645            |

Panel D: standard deviation sorted portfolios

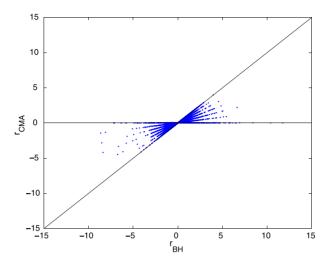
| Portfolio | α         | $\beta_m$ | $\beta_s$ | $\beta_h$      | $\beta_u$ | $\overline{R}^2$ |
|-----------|-----------|-----------|-----------|----------------|-----------|------------------|
| High      | 13.784*** | -0.569*** | -0.491*** | -0.133***      | 0.026***  | 0.496            |
| 2         | 15.651*** | -0.684*** | -0.474*** | -0.128***      | 0.057***  | 0.625            |
| 3         | 14.676*** | -0.680*** | -0.429*** | -0.179***      | 0.044***  | 0.652            |
| 4         | 12.321*** | -0.635*** | -0.370*** | $-0.215^{***}$ | 0.045***  | 0.651            |
| 5         | 11.445*** | -0.584*** | -0.300*** | -0.229***      | 0.036***  | 0.644            |

| Panel D: sta | ndard deviation | sorted portfolios | 5              |                |           |                  |
|--------------|-----------------|-------------------|----------------|----------------|-----------|------------------|
| Portfolio    | α               | $\beta_m$         | $\beta_s$      | $\beta_h$      | $\beta_u$ | $\overline{R}^2$ |
| 6            | 10.511***       | -0.545***         | -0.236***      | -0.224***      | 0.030***  | 0.642            |
| 7            | 9.459***        | -0.475***         | $-0.162^{***}$ | $-0.185^{***}$ | 0.008     | 0.612            |
| 8            | 8.531***        | -0.407***         | -0.111***      | $-0.152^{***}$ | -0.008*   | 0.574            |
| 9            | 7.756***        | -0.320***         | -0.071***      | -0.129***      | -0.013*** | 0.493            |
| Low          | 6.823***        | -0.179***         | -0.017***      | -0.055***      | -0.029*** | 0.284            |

Table 2(continued)

This table reports alphas, betas, and adjusted  $R^2$  of the regressions of the CMAP excess returns on the Carhart four-factors using portfolios sorted by size, book-to-market, momentum, and standard deviation of return. The alphas are annualized and in percent. The sample period covers January 4, 1960 until December 31, 2013 with value-weighted portfolio returns. The lengths of the moving average windows are 5, 10, 20, 50, 100, and 200 days. Newey and West (1987) standard errors with three lags are used in reporting statistical significance of a two-sided null hypothesis at the 1, 5, and 10% level is given by a \*\*\*, a \*\*, and a \*, respectively.

momentum deciles low and two as well as decile high of the standard deviation sorted portfolios. Finally, portfolio skewness increases for most of the portfolios with the exception of book-to-market decile eight and momentum deciles two, three, and five. Overall, the findings are that the CMA strategy improves all four of the first moments of all but a handful of portfolios relative to the BH strategy.


## A. Abnormal returns

The asset pricing model that I consider in this section is the four-factor Carhart  $(1997) \text{ model}^3$ :

$$CMAP_{jt,L} = \alpha_j + \beta_{j,m}r_{mkt,t} + \beta_{j,s}r_{smb,t} + \beta_{j,h}r_{hml,t} + \beta_{j,u}r_{umd,t} + \varepsilon_{jt}, \quad j = 1, \dots, N$$
(6)

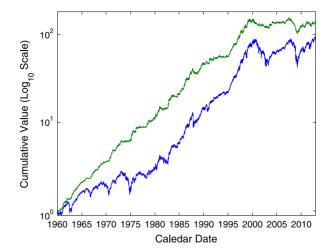
where  $r_{mkt,t}$  is the excess return on the market portfolio at the end of month t,  $r_{smb,t}$  is the return on the small minus big (SMB) factor at the end of month t,  $r_{hml,t}$  is the return on the high minus low (HML) factor at the end of month t, and  $r_{umd,t}$  is the return of the up minus down (UMD) factor at the end of month t. Note that all of the risk-adjusted alphas are highly statistically significant (see Table 2). Moreover, they are all still quite substantial economically ranging between 2.4% and 16.1% per year. The factor loadings on the market portfolio, SMB, and HML are largely unchanged across the three sets of decile portfolios while the loadings on the UMD factor are mostly positive and highly statistically significant (with only a few exceptions). This suggests that all four factors have a role to play in driving the performance of the CMAP returns. Nevertheless, the average adjusted  $R^2$  values indicate that only between one half and two thirds of the return variation

<sup>3</sup> Results for the CAPM and Fama–French three factor models yield very similar and, frequently, stronger than the results for the Carhart (1997) model. These additional findings are not reported in the paper in the interest of saving space. They are available from the author upon request.



**Figure 1** Scatter Plot of Buy-and-Hold returns versus the Combination Moving Average returns: High ME Decile Portfolio.

*Notes:* Figure 1 presents a scatter plot of the returns of the high ME decile buy-and-hold portfolio returns versus the combination moving average strategy returns. The sample contains 13,592 daily observations and the data covers the January 4, 1960 until December 31, 2013.


can be explained and accounted for by the market portfolio return, size, value, and momentum. This leaves a large portion of return variation that cannot be accounted for. Finally, it is worthwhile noting that all of  $\beta_m$  values are negative and statistically significant, indicating that the market beta of the CMA strategy significantly exceeds the market beta of the BH strategy. With some exceptions, this is also the case for  $\beta_s$  and  $\beta_h$ . The loadings on the momentum factor are both positive and negative indicating that for some portfolios, the momentum beta of the CMA strategy is exceeded by the momentum beta of the BH strategy, while for other portfolios; it is the other way around.

#### **B.** Explanation

Before making an attempt at explaining the reasons for the profitability of the moving average (MA) strategies performance, it is useful to inspect a scatter plot of the MA strategy returns versus the underlying BH strategy returns for the same portfolio. For ease of exposition, I provide a plot for a single portfolio only.<sup>4</sup> Figure 1 presents the scatter plot for the first decile of the market-capitalization sorted deciles.

The strategy is clearly triggering false positive signals, where we are told to stay invested or switch into the underlying asset with a subsequent negative return

<sup>4</sup> The scatter plots for the other portfolios sorted on the various characteristics are available from the author upon request.



**Figure 2** Time Series Plot of Cumulative Values of the Buy-and-Hold and the Combination Moving Average returns: High ME Decile Portfolio.

*Notes:* Figure 2 presents a time series plot of the cumulative values of the buy-and-hold portfolio returns versus the combination moving average strategy returns for the high ME decile. The sample contains 13,592 daily observations and the data covers the January 4, 1960 until December 31, 2013.

(negative quadrant of returns in the figure). Similarly, there are a few instances of a false negative signal where we switch into the risk-free asset, while the underlying risky asset has a positive excess return in the following period. Nevertheless, the signal is right about two out of every three times, and in those instances, the scatter plot resembles the payoff of an at-the-money put option combined with a long position in the underlying risky asset. This positive convexity is the driving factor for the relative outperformance of the moving average strategy relative to the buy-and-hold strategy (see Figure 2). Holding the signal success rate constant, risky assets with more volatile returns will experience a higher average outperformance, and this is evidenced in all of the previous tables.

### **III. ROBUSTNESS CHECKS**

In this section, I report my findings for several robustness checks performed on the performance of the CMA strategy versus the BH strategy for decile portfolios sorted on market capitalization, book-to-market ratios, momentum, and standard deviation.

## A. Subperiods

In this robustness check, I split the sample in two subperiods of roughly equal length. The first subperiod runs from January 4, 1960 to December 31, 1987.

The second subperiod goes from January 4, 1989 to December 31, 2013. For the sake of brevity. Table 3 reports the only the annualized abnormal returns and the goodness-of-fit using the CAPM, the Fama-French and Carhart models in either subperiod. The findings show robust and unaccounted for abnormal returns for portfolios sorted on market capitalization and standard deviation of return in both subperiods. For the book-to-market and momentum decile portfolios, there are only a few statistically significant abnormal returns in the second subperiod compared with statistical significance across the board in the first subperiod. Nevertheless, the second subperiod abnormal returns of the highest book-tomarket decile portfolio is significant using the CAPM, while book-to-market deciles 5-10 show significant abnormal returns using the Fama-French and Carhart model. Similarly, the second subperiod abnormal returns of momentum deciles 1-3 are positive and statistically significant using the CAPM. Using the Fama-French model, it appears that momentum decile portfolios 1-4 have positive and statistically significant abnormal returns in the second subperiod, while the Carhart model reveals that only the extreme momentum deciles (1-2 and 10) have positive and statistically significant abnormal returns in the second subperiod. Furthermore, the abnormal returns in both subperiods are lower for largecap portfolios, value portfolios, winner portfolios, and portfolios of stocks with high standard deviation of return in the past.

## B. Buy-and-hold as a benchmark

An alternative way of judging the performance of the CMA strategy is to use the BH strategy as a benchmark. One simple way of to do this is to regress the CMA return on a constant and the BH return. A positive and statistically significant intercept indicates a superior performance of the active CMA return relative to the passive BH benchmark.

$$CR_{i,t} = \alpha_i + \beta_{BH,i}R_{i,t} + \varepsilon_{i,t}$$
(7)

A modified version of this regression involves testing for any market timing ability of the active strategy by including the negative BH return in the regression along the lines of the market timing tests of Henriksson and Merton (1981)

$$\overline{CR}_{i,t} = \alpha_i + \beta_{BH,i}R_{i,t} + \gamma_{BH,i}max(-R_{i,t},0) + \varepsilon_{i,t}$$
(8)

Table 4 presents the findings of the simple regression of the active CMA return on the passive BH benchmark as well as the modified regression involving the negative component of the passive BH return. The most striking finding to emerge from these regression results is large and statistically as well as economically significant intercepts. Secondly, the exposure of the CMA return to the BH return ranges between 0.35 and 0.51 for the first regression specification in (7) and between 0.37 and 0.63 for the second regression specification in (8). Finally,

| <b>Table 3</b> |                                   | regressio                                              | Factor regressions results in subperiods | subperio                                               | spo                              |                         |                                                                          |                                                        |                                                         |                                                        |                                                          |                                                        |
|----------------|-----------------------------------|--------------------------------------------------------|------------------------------------------|--------------------------------------------------------|----------------------------------|-------------------------|--------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|
| Panel A        | A: size sorted portfoli           | ortfolios                                              |                                          |                                                        |                                  |                         |                                                                          |                                                        |                                                         |                                                        |                                                          | ĺ                                                      |
| d              | α                                 | $\overline{R}^2$                                       | α                                        | $\overline{R}^2$                                       | α                                | $\overline{R}^2$        | α                                                                        | $\overline{R}^2$                                       | α                                                       | $\overline{R}^2$                                       | α                                                        | $\overline{R}^2$                                       |
|                |                                   |                                                        | 1960/01/04-1987/12/31                    | 987/12/31                                              |                                  |                         |                                                                          |                                                        | 1988/01/04-2013/12/31                                   | 013/12/31                                              |                                                          |                                                        |
|                | CAPM                              | И                                                      | Fama-French                              | ench                                                   | Carhart                          | art                     | CAPM                                                                     | М                                                      | Fama-French                                             | ench                                                   | Carhart                                                  | rt                                                     |
| Low<br>2       | 17.449***<br>15.896***            | $0.447 \\ 0.511$                                       | 19.386***<br>17.566***                   | $0.700 \\ 0.711$                                       | $19.394^{***}$<br>$17.846^{***}$ | 0.700 0.711             | $10.570^{***}$<br>7.078^***                                              | 0.509<br>0.577                                         | 11.911***<br>8.760***                                   | $0.651 \\ 0.711 \\ 0.711$                              | 12.040***<br>8.585***                                    | $0.652 \\ 0.712$                                       |
| ω 4            | $14.707^{***}$<br>$14.165^{***}$  | 0.538<br>0.560                                         | $16.224^{***}$<br>$15.480^{***}$         | 0.717<br>0.712                                         | $16.585^{***}$<br>$15.963^{***}$ | $0.719 \\ 0.715$        | $5.008^{***}$<br>$4.536^{***}$                                           | 0.610<br>0.633                                         | $6.304^{***}$<br>$5.606^{***}$                          | $0.718 \\ 0.722$                                       | $6.057^{***}$<br>$5.363^{***}$                           | 0.719<br>0.723                                         |
| 5              | 13.352***                         | 0.578                                                  | 14.555***                                | 0.711                                                  | 15.023***                        | 0.714                   | 3.906**                                                                  | 0.653                                                  | 4.731***                                                | 0.714                                                  | 4.299***                                                 | 0.716                                                  |
| 10             | 13.095***                         | 0.611                                                  | 14.207***                                | 0.703                                                  | 14.778***                        | 0.707                   | $4.156^{***}$                                                            | 0.665                                                  | $4.658^{***}$                                           | 0.695                                                  | 4.295***                                                 | 0.696                                                  |
| ~ ∞            | 11.437***                         | 0.657                                                  | 12.237***                                | 0.693                                                  | 12.732***                        | 0.696                   | 4.204 ***                                                                | 0.700                                                  | 4.8/1"""<br>3.713***                                    | 0.708                                                  | 4.302***<br>3.305**                                      | 0.040                                                  |
| 9              | 10.206***                         | 0.675                                                  | 10.654***                                | 0.685                                                  | 11.108***                        | 0.687                   | 1.309                                                                    | 0.713                                                  | 1.702                                                   | 0.718                                                  | 1.448                                                    | 0.718                                                  |
| High           | 6.33/***                          | 0.685                                                  | 5.636***                                 | 0.696                                                  | 5.958***                         | 0.697                   | -0.126                                                                   | 0.725                                                  | -0.362                                                  | 0.735                                                  | -1.139                                                   | 0.741                                                  |
| Panel B        | B: book-to-market so              | rket sortec                                            | rted portfolios                          |                                                        |                                  |                         |                                                                          |                                                        |                                                         |                                                        |                                                          |                                                        |
| Ъ              | α                                 | $\overline{R}^2$                                       | α                                        | $\overline{R}^2$                                       | α                                | $\overline{R}^2$        | α                                                                        | $\overline{R}^2$                                       | α                                                       | $\overline{R}^2$                                       | α                                                        | $\overline{R}^2$                                       |
|                |                                   |                                                        | 1960/01/04-1987/12/31                    | 987/12/31                                              |                                  |                         |                                                                          | -                                                      | 1988/01/04-2013/12/31                                   | 013/12/31                                              |                                                          |                                                        |
|                | CAPM                              | И                                                      | Fama-French                              | ench                                                   | Carhart                          | art                     | CAPM                                                                     | М                                                      | Fama-French                                             | ench                                                   | Carhart                                                  | rt                                                     |
| Low<br>2<br>3  | 11.742***<br>9.687***<br>9.758*** | $\begin{array}{c} 0.684 \\ 0.673 \\ 0.660 \end{array}$ | 9.349***<br>8.892***<br>9.389***         | $\begin{array}{c} 0.708 \\ 0.681 \\ 0.665 \end{array}$ | 9.560***<br>9.318***<br>9.907*** | 0.708<br>0.683<br>0.667 | $   \begin{array}{c}     1.374 \\     0.039 \\     0.350   \end{array} $ | $\begin{array}{c} 0.677 \\ 0.690 \\ 0.672 \end{array}$ | $\begin{array}{c} 0.322 \\ -0.141 \\ 0.292 \end{array}$ | $\begin{array}{c} 0.706 \\ 0.693 \\ 0.675 \end{array}$ | $\begin{array}{c} -0.584 \\ -0.506 \\ 0.349 \end{array}$ | $\begin{array}{c} 0.713 \\ 0.694 \\ 0.675 \end{array}$ |
| 4 v            | 9.943***<br>8.662***              | 0.657<br>0.625                                         | $10.242^{***}$<br>$8.909^{***}$          | 0.660<br>0.628                                         | $10.552^{***}$<br>$9.530^{***}$  | 0.661<br>0.633          | 1.309 - 0.041                                                            | 0.667<br>0.628                                         | 2.153<br>1.065                                          | $0.694 \\ 0.672$                                       | 1.820<br>0.581                                           | 0.695<br>0.674                                         |
| 91             | 7.262***                          | 0.605                                                  | 8.101***                                 | 0.618                                                  | 8.454***                         | 0.620                   | 2.062                                                                    | 0.650                                                  | 3.015**                                                 | 0.680                                                  | 2.559*                                                   | 0.682                                                  |
| ~ 8            | 7.060***                          | 0.608                                                  | 9.170***                                 | 0.639                                                  | 9.690***                         | 0.643                   | 1.075 1.476                                                              | 0.545                                                  | 2.000<br>3.549**                                        | 0.664                                                  | 2.673*                                                   | 0.670                                                  |
| 9<br>High      | 7.685***<br>9.388***              | $0.579 \\ 0.582$                                       | 10.219***<br>11.959***                   | $0.621 \\ 0.632$                                       | $11.053^{***}$<br>$12.663^{***}$ | $0.630 \\ 0.637$        | 1.436<br>4.089**                                                         | 0.587<br>0.553                                         | 3.155**<br>6.288***                                     | $0.672 \\ 0.657$                                       | $2.914^{**}$<br>5.808***                                 | $0.673 \\ 0.659$                                       |

# Combination of Moving Averages

© 2016 International Review of Finance Ltd. 2016

| Panel C                                                          | C: momentum sorted portfolios                                                                                                                                                                                                  | 1 sorted pc                                                                         | ortfolios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                              |                                                                                                           |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                       |                                                                                                              |                                                                                       |                                                                                                        |                                                                                    |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Р                                                                | α                                                                                                                                                                                                                              | $\overline{R}^2$                                                                    | α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\overline{R}^2$                                                                             | α                                                                                                         | $\overline{R}^2$                                                                | α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\overline{R}^2$                                                                      | α                                                                                                            | $\overline{R}^2$                                                                      | α                                                                                                      | $\overline{R}^2$                                                                   |
|                                                                  |                                                                                                                                                                                                                                |                                                                                     | 1960/01/04-1987/12/31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 987/12/31                                                                                    |                                                                                                           |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                     | 1988/01/04-2013/12/31                                                                                        | 013/12/31                                                                             |                                                                                                        |                                                                                    |
|                                                                  | CAPM                                                                                                                                                                                                                           | М                                                                                   | Fama-French                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ench                                                                                         | Carhart                                                                                                   | art                                                                             | CAPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | И                                                                                     | Fama-French                                                                                                  | ench                                                                                  | Carhart                                                                                                | rt                                                                                 |
|                                                                  |                                                                                                                                                                                                                                |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                              |                                                                                                           |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                       |                                                                                                              |                                                                                       |                                                                                                        |                                                                                    |
| Low                                                              | $20.051^{***}$<br>14 169***                                                                                                                                                                                                    | 0.622                                                                               | $19.904^{***}$<br>14 102***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.649                                                                                        | $16.822^{***}$<br>11 818***                                                                               | 0.703                                                                           | 17.511***<br>7 669***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.535                                                                                 | 19.209***<br>8 693***                                                                                        | 0.559                                                                                 | 12.067***<br>3 905**                                                                                   | 0.688                                                                              |
| 1 00                                                             | 9.627***                                                                                                                                                                                                                       | 0.621                                                                               | 9 532***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.628                                                                                        | 7.767***                                                                                                  | 0.661                                                                           | 4.376**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.619                                                                                 | 5 284***                                                                                                     | 0.642                                                                                 | 1.929                                                                                                  | 0.710                                                                              |
| 94                                                               | 9.927***                                                                                                                                                                                                                       | 0.648                                                                               | 9.791***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.650                                                                                        | 9.114 ***                                                                                                 | 0.655                                                                           | 2.493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.641                                                                                 | 3.362**                                                                                                      | 0.669                                                                                 | 1.393                                                                                                  | 0.698                                                                              |
| 5                                                                | 9.389***                                                                                                                                                                                                                       | 0.656                                                                               | 9.509***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.659                                                                                        | 9.439***                                                                                                  | 0.659                                                                           | 0.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.634                                                                                 | 0.609                                                                                                        | 0.647                                                                                 | -0.642                                                                                                 | 0.660                                                                              |
| 9                                                                | 9.554***                                                                                                                                                                                                                       | 0.640                                                                               | 9.704***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.640                                                                                        | $10.101^{***}$                                                                                            | 0.642                                                                           | -0.978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.644                                                                                 | -0.426                                                                                                       | 0.661                                                                                 | -0.728                                                                                                 | 0.662                                                                              |
|                                                                  | 9.387***                                                                                                                                                                                                                       | 0.653                                                                               | $9.644^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.655                                                                                        | $10.485^{***}$                                                                                            | 0.662                                                                           | 0.186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.655                                                                                 | 0.538                                                                                                        | 0.664                                                                                 | 0.773                                                                                                  | 0.665                                                                              |
| xσ                                                               | 7.509***<br>8 080***                                                                                                                                                                                                           | 0.631                                                                               | 7.999***<br>9.338***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.633                                                                                        | 9.534***<br>11 367***                                                                                     | 0.657                                                                           | -2.066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.654                                                                                 | -1./18                                                                                                       | 0.655                                                                                 | -0./50                                                                                                 | 0.677                                                                              |
| High                                                             | 9.689***                                                                                                                                                                                                                       | 0.582                                                                               | 9.781***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.605                                                                                        | 12.898***                                                                                                 | 0.664                                                                           | 1.844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.567                                                                                 | 1.334                                                                                                        | 0.590                                                                                 | 4.221**                                                                                                | 0.638                                                                              |
| Panel D                                                          | ): standard de                                                                                                                                                                                                                 | sviation so                                                                         | D: standard deviation sorted portfolios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S                                                                                            |                                                                                                           |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                       |                                                                                                              |                                                                                       |                                                                                                        |                                                                                    |
| Р                                                                | α                                                                                                                                                                                                                              | $\overline{R}^2$                                                                    | α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\overline{R}^2$                                                                             | α                                                                                                         | $\overline{R}^2$                                                                | α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\overline{R}^2$                                                                      | α                                                                                                            | $\overline{R}^2$                                                                      | α                                                                                                      | $\overline{R}^2$                                                                   |
|                                                                  |                                                                                                                                                                                                                                |                                                                                     | 1960/01/04-1987/12/31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 987/12/31                                                                                    |                                                                                                           |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                     | 1988/01/04-2013/12/31                                                                                        | 013/12/31                                                                             |                                                                                                        |                                                                                    |
|                                                                  | CAPM                                                                                                                                                                                                                           | X                                                                                   | Fama-French                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ench                                                                                         | Carhart                                                                                                   | art                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                       | Fama-French                                                                                                  | ench                                                                                  | Carhart                                                                                                | rt                                                                                 |
| High<br>2                                                        | 15.596***<br>18.273***                                                                                                                                                                                                         | $0.416 \\ 0.523$                                                                    | 17.447***<br>20.032***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.596 \\ 0.677$                                                                             | $16.860^{***}$<br>$19.937^{***}$                                                                          | 0.598<br>0.677                                                                  | 8.085***<br>10.333***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.410 \\ 0.574$                                                                      | 9.475***<br>11.672***                                                                                        | 0.483<br>0.631                                                                        | 9.168***<br>10.721***                                                                                  | $0.484 \\ 0.637$                                                                   |
| 3                                                                | 17.547***                                                                                                                                                                                                                      | 0.550                                                                               | $19.262^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.694                                                                                        | 19.398***                                                                                                 | 0.694                                                                           | 8.468***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.608                                                                                 | 9.962***                                                                                                     | 0.669                                                                                 | 9.150***                                                                                               | 0.674                                                                              |
| 4,                                                               | 15.135***                                                                                                                                                                                                                      | 0.552                                                                               | $16.800^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.692                                                                                        | 16.893***                                                                                                 | 0.693                                                                           | 5.976***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.602                                                                                 | 7.518***                                                                                                     | 0.664                                                                                 | 6.785***                                                                                               | 0.668                                                                              |
| s 4                                                              | 14.080***<br>12 100***                                                                                                                                                                                                         | 0.561                                                                               | 1.4.650***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.690                                                                                        | 15.890***<br>14 601***                                                                                    | 0.691                                                                           | 5.285***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.505                                                                                 | 6.//4***<br>5 007***                                                                                         | 0.662                                                                                 | 6.120***<br>5 161***                                                                                   | 0.665                                                                              |
| 0 1-                                                             | 12.037***                                                                                                                                                                                                                      | 0.585                                                                               | 13.356***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.670                                                                                        | 13.533***                                                                                                 | 0.670                                                                           | 3.881***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.575                                                                                 | 4.903***                                                                                                     | 0.62.2                                                                                | 4.662***                                                                                               | 0.623                                                                              |
| . ∞                                                              | 10.705***                                                                                                                                                                                                                      | 0.584                                                                               | 11.955***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.653                                                                                        | 12.161***                                                                                                 | 0.653                                                                           | 3.623***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.534                                                                                 | 4.405***                                                                                                     | 0.574                                                                                 | $4.306^{***}$                                                                                          | 0.574                                                                              |
| 6                                                                | 9.000***                                                                                                                                                                                                                       | 0.572                                                                               | $10.167^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.628                                                                                        | $10.241^{***}$                                                                                            | 0.628                                                                           | $4.184^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.419                                                                                 | 4.831***                                                                                                     | 0.462                                                                                 | $4.814^{***}$                                                                                          | 0.462                                                                              |
| Low                                                              | 7.933***                                                                                                                                                                                                                       | 0.527                                                                               | 9.053***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.579                                                                                        | 9.022***                                                                                                  | 0.579                                                                           | 4.163***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.145                                                                                 | 4.369***                                                                                                     | 0.164                                                                                 | 4.515***                                                                                               | 0.165                                                                              |
| This tal<br>Carharl<br>annual<br>two suk<br>errors w<br>respecti | This table reports alphas an<br>Carhart four-factors in two<br>annualized and in percent.<br>two sub-periods of equal le<br>errors with 24 lags are used<br>respectively. <i>a</i> is the interce<br>the factor loading on UMD | bhas and a<br>in two sub<br>ercent. Th<br>qual lengt<br>re used in 1<br>intercept o | This table reports alphas and adjusted $R^2$ of the regressions of the CMAP excess returns on the market factor, the Fama-French three-factors, and the Carhart four-factors in two subperiods using portfolios sorted by size, book-to-market, momentum, and standard deviation of return. The alphas are annualized and in percent. The sample period covers January 4, 1960 until December 31, 2013 with value-weighted portfolio returns and is split in two sub-periods of equal length. The lengths of the moving average windows are 5, 10, 20, 50, 100, and 200 days. Newey and West (1987) standard errors with 24 lags are used in reporting statistical significance of a two-sided null hypothesis at the 1, 5, and 10% level is given by a ***, a **, and a *, respectively. <i>a</i> is the intercept of the regression, $\beta_m$ is the factor loading on MKT, $\beta_s$ os the factor loading on SMB, $\beta_h$ is the factor loading on HML, $\beta_u$ is the factor loading on UMD, and $\overline{R}$ | the regress<br>portfolios<br>od covers J<br>$\circ$ of the mo<br>stical signi<br>insted R-so | ions of the C<br>sorted by size<br>anuary 4, 19(<br>oving average<br>fifcance of a the<br>e factor loadin | MAP exces<br>e, book-to-<br>50 until De<br>2 windows<br>wo-sided n<br>ng on MKT | s returns on the market, momentative states and the states state states states and states states and hypothesis $\beta_{12}$ , $\beta_{23}$ os the fact the states s | ne market f<br>entum, and<br>013 with v<br>50, 100, an<br>s at the 1, 5<br>or loading | actor, the Fan<br>d standard de<br>alue-weightec<br>nd 200 days. N<br>5, and 10% lev<br>on SMB, $\beta_h$ is | na-French<br>viation of r<br>l portfolio<br>Jewey and<br>vel is given<br>the factor l | three-factors,<br>eturn. The all<br>returns and is<br>West (1987) s<br>by a ***, a **,<br>oading on HN | and the obtained the split in split in and $a^*$ , and $a^*$ , $AL$ , $\beta_u$ is |
|                                                                  | 2                                                                                                                                                                                                                              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                              |                                                                                                           | 5                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                       |                                                                                                              |                                                                                       |                                                                                                        |                                                                                    |

14

Table 3(continued)

© 2016 International Review of Finance Ltd. 2016

| Panel A: si | ze sorted por | tfolios       |                  |           |              |          |                  |
|-------------|---------------|---------------|------------------|-----------|--------------|----------|------------------|
| Portfolio   | α             | $\beta_{BH}$  | $\overline{R}^2$ | α         | $\beta_{BH}$ | γвн      | $\overline{R}^2$ |
| Low         | 18.781***     | 0.406***      | 0.551            | 7.654***  | 0.493***     | 0.155*** | 0.563            |
| 2           | 15.472***     | 0.404***      | 0.554            | 12.446*** | 0.423***     | 0.035*** | 0.555            |
| 3           | 14.306***     | 0.418***      | 0.570            | 11.405*** | 0.435***     | 0.033*** | 0.570            |
| 4           | 13.383***     | 0.411***      | 0.563            | 10.999*** | 0.425***     | 0.027*** | 0.563            |
| 5           | 12.857***     | 0.415***      | 0.562            | 10.521*** | 0.430***     | 0.027*** | 0.563            |
| 6           | 12.744***     | 0.412***      | 0.559            | 8.964***  | 0.436***     | 0.046*** | 0.560            |
| 7           | 12.465***     | 0.411***      | 0.558            | 7.801***  | 0.441***     | 0.056*** | 0.560            |
| 8           | 11.074***     | 0.415***      | 0.563            | 7.553***  | 0.437***     | 0.042*** | 0.564            |
| 9           | 9.263***      | 0.414***      | 0.561            | 6.319***  | 0.433***     | 0.036*** | 0.561            |
| High        | 5.538***      | 0.417***      | 0.564            | 5.116***  | 0.419***     | 0.005    | 0.564            |
| Panel B: b  | ook-to-marke  | et sorted por | tfolios          |           |              |          |                  |
| Portfolio   | α             | $\beta_{BH}$  | $\overline{R}^2$ | α         | $\beta_{BH}$ | γвн      | $\overline{R}^2$ |
| Low         | 8.482***      | 0.407***      | 0.554            | 8.005***  | 0.409***     | 0.005    | 0.554            |
| 2           | 7.849***      | 0.421***      | 0.564            | 4.740***  | 0.439***     | 0.036*** | 0.565            |
| 3           | 8.293***      | 0.430***      | 0.575            | 3.717***  | 0.458***     | 0.055*** | 0.576            |
| 4           | 8.669***      | 0.423***      | 0.569            | 4.123***  | 0.451***     | 0.054*** | 0.570            |
| 5           | 7.687***      | 0.420***      | 0.562            | 6.587***  | 0.426***     | 0.013    | 0.562            |
| 6           | 8.381***      | 0.430***      | 0.579            | 6.446***  | 0.442***     | 0.024*** | 0.579            |
| 7           | 8.640***      | 0.438***      | 0.583            | 5.795***  | 0.456***     | 0.036*** | 0.583            |
| 8           | 8.760***      | 0.418***      | 0.556            | 9.216***  | 0.415***     | -0.006   | 0.556            |
| 9           | 9.344***      | 0.442***      | 0.583            | 7.621***  | 0.453***     | 0.020**  | 0.583            |
| High        | 11.792***     | 0.446***      | 0.589            | 6.039***  | 0.476***     | 0.061*** | 0.591            |
| Panel C: n  | nomentum so   | orted portfol | lios             |           |              |          |                  |
| Portfolio   | α             | $\beta_{BH}$  | $\overline{R}^2$ | α         | $\beta_{BH}$ | γвн      | $\overline{R}^2$ |
| Low         | 15.343***     | 0.353***      | 0.509            | 9.854***  | 0.375***     | 0.046*** | 0.511            |
| 2           | 11.648***     | 0.396***      | 0.537            | 10.259*** | 0.402***     | 0.014*   | 0.537            |
| 3           | 9.588***      | 0.413***      | 0.559            | 7.415***  | 0.424***     | 0.024*** | 0.559            |
| 4           | 8.867***      | 0.415***      | 0.567            | 4.933***  | 0.437***     | 0.046*** | 0.568            |
| 5           | 7.442***      | 0.419***      | 0.564            | 7.061***  | 0.421***     | 0.005    | 0.564            |
| 6           | 7.573***      | 0.426***      | 0.570            | 5.782***  | 0.437***     | 0.022**  | 0.571            |
| 7           | 7.973***      | 0.422***      | 0.568            | 5.750***  | 0.436***     | 0.027*** | 0.568            |
| 8           | 7.091***      | 0.460***      | 0.607            | 4.042***  | 0.479***     | 0.036*** | 0.607            |
| 9           | 8.354***      | 0.440***      | 0.586            | 6.568***  | 0.450***     | 0.020**  | 0.586            |
| High        | 11.891***     | 0.440***      | 0.589            | 12.480*** | 0.438***     | -0.005   | 0.589            |
| Panel D: st | tandard devia | ation sorted  | portfolio        | S         |              |          |                  |
| Portfolio   | α             | $\beta_{BH}$  | $\overline{R}^2$ | α         | $\beta_{BH}$ | γвн      | $\overline{R}^2$ |
| High        | 28.846***     | 0.512***      | 0.634            | 0.407     | 0.633***     | 0.265*** | 0.657            |
| 2           | 21.177***     | 0.415***      | 0.555            | 6.039***  | 0.491***     | 0.148*** | 0.565            |
| 3           | 18.652***     | 0.401***      | 0.544            | 8.735***  | 0.455***     | 0.103*** | 0.549            |
| 4           | 16.815***     | 0.401***      | 0.542            | 8.785***  | 0.433        | 0.092*** | 0.546            |
| 5           | 16.134***     | 0.401         | 0.545            | 8.599***  | 0.451***     | 0.092    | 0.549            |
|             |               |               |                  |           |              |          |                  |

 Table 4
 Regression of CMA returns on BH returns

| Panel D: st      | tandard devia                                    | ation sorted                                 | portfolios                       | 5                                            |                                              |                                              |                                                                 |
|------------------|--------------------------------------------------|----------------------------------------------|----------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------------------------------------|
| Portfolio        | α                                                | $\beta_{BH}$                                 | $\overline{R}^2$                 | α                                            | $\beta_{BH}$                                 | γвн                                          | $\overline{R}^2$                                                |
| 6<br>7<br>8<br>9 | 15.014***<br>14.155***<br>13.378***<br>12.701*** | 0.400***<br>0.404***<br>0.400***<br>0.388*** | 0.543<br>0.542<br>0.530<br>0.508 | 8.145***<br>7.401***<br>4.958***<br>4.759*** | 0.449***<br>0.458***<br>0.476***<br>0.476*** | 0.093***<br>0.102***<br>0.145***<br>0.168*** | $\begin{array}{c} 0.547 \\ 0.547 \\ 0.540 \\ 0.522 \end{array}$ |
| 9<br>Low         | 12.701***<br>11.851***                           | 0.388***                                     | 0.508                            | 4.762***                                     | 0.476***                                     | 0.168***<br>0.210***                         | 0.522<br>0.534                                                  |

This table reports alphas, betas, and adjusted  $R^2$  of the regressions of the CMA returns on the BH returns as well as the negative component of the BH return using portfolios sorted by size, book-to-market, momentum, and standard deviation of return. The alphas are annualized and in percent. The sample period covers January 4, 1960 until December 31, 2013 with value-weighted portfolio returns. The lengths of the moving average windows are 5, 10, 20, 50, 100, and 200 days. Newey and West (1987) standard errors with three lags are used in reporting statistical significance of a two-sided null hypothesis at the 1, 5, and 10% level is given by a \*\*\*, a \*\*, and a \*, respectively.

the market timing coefficient,  $\gamma_{BH}$  is almost always positive and statistically significant, especially for portfolios sorted on market capitalization and standard deviation of return.

# C. Statistical significance, trading intensity, and break-even transaction costs

Table 5 reports the statistical significance in the improvement of the average return  $\Delta \mu$  of the CMA portfolio over the BH portfolio as well as the reduction in the return standard deviation  $\Delta \sigma$ . The evidence points towards a substantial improvement in a mean-variance sense for all sets of portfolios under consideration with the exception of the highest market cap decile and momentum decile eight. The annualized improvement in the average return ranges from over 1% to just under 14% per annum, while the reduction in the standard deviation is between approximately 3% to over 12%. The CMA strategy is active more often than not ranging between 54% and 71% of the sample. Yet, the number of transactions, number of trades (NT), is never above 6000 and can be as little as under 4000 for decile 10 of standard deviation sorted portfolios. In a sample of 13,592 days this translates into average holding periods of between 2 and 3 days between transactions. Next, I report the break-even transaction costs, break-even transaction costs (BETC), calculated as the level of one-way proportional transaction cost in percent that would eliminate completely the average CMAP portfolio return. The values of the BETC for the various sets of portfolio range between almost 0.00% and as high as 0.15%. Finally, the last two columns report the fraction of months that the CMA strategy generates a positive return  $(p_1)$  as well as a return that is in excess of the risk-free rate  $(p_2)$ . With the exception of three momentum, all the reported fractions range from 68% to 75% success rate of the CMA strategy delivering a positive return and 51% to 60% probability of the

| Panel A: size | e sorted port | folios          |           |      |       |       |       |
|---------------|---------------|-----------------|-----------|------|-------|-------|-------|
| Portfolio     | $\Delta \mu$  | $\Delta \sigma$ | $p_A$     | NT   | BETC  | $p_1$ | $p_2$ |
| Low           | 11.73         | 6.15            | 0.62      | 4247 | 0.15  | 0.75  | 0.58  |
| 2             | 8.43          | 7.64            | 0.62      | 4656 | 0.10  | 0.73  | 0.56  |
| 3             | 6.80          | 7.40            | 0.64      | 4740 | 0.08  | 0.72  | 0.56  |
| 4             | 6.25          | 7.38            | 0.64      | 4882 | 0.07  | 0.72  | 0.56  |
| 5             | 5.48          | 7.23            | 0.64      | 4906 | 0.06  | 0.71  | 0.56  |
| 6             | 5.60          | 6.87            | 0.65      | 4935 | 0.06  | 0.71  | 0.56  |
| 7             | 5.28          | 6.96            | 0.65      | 4950 | 0.06  | 0.71  | 0.55  |
| 8             | 4.11          | 7.01            | 0.65      | 5080 | 0.04  | 0.70  | 0.55  |
| 9             | 2.54          | 6.90            | 0.65      | 5332 | 0.03  | 0.70  | 0.54  |
| High          | -0.34         | 7.12            | 0.64      | 5655 | -0.00 | 0.68  | 0.53  |
| Panel B: boo  | ok-to-market  | sorted port     | folios    |      |       |       |       |
| Portfolio     | $\Delta \mu$  | $\Delta \sigma$ | $p_A$     | NT   | BETC  | $p_1$ | $p_2$ |
| Low           | 2.95          | 7.94            | 0.61      | 5559 | 0.03  | 0.70  | 0.53  |
| 2             | 1.55          | 7.06            | 0.63      | 5495 | 0.02  | 0.69  | 0.53  |
| 3             | 2.02          | 6.67            | 0.64      | 5513 | 0.02  | 0.69  | 0.53  |
| 4             | 2.43          | 6.93            | 0.64      | 5376 | 0.02  | 0.69  | 0.54  |
| 5             | 1.24          | 6.87            | 0.64      | 5509 | 0.01  | 0.68  | 0.53  |
| 6             | 1.67          | 6.58            | 0.65      | 5256 | 0.02  | 0.68  | 0.54  |
| 7             | 1.65          | 6.34            | 0.65      | 5313 | 0.02  | 0.69  | 0.54  |
| 8             | 1.26          | 6.94            | 0.66      | 5312 | 0.01  | 0.68  | 0.54  |
| 9             | 1.64          | 6.73            | 0.66      | 5209 | 0.02  | 0.68  | 0.54  |
| High          | 3.53          | 7.46            | 0.65      | 5175 | 0.04  | 0.69  | 0.54  |
| Panel C: mo   | omentum sor   | ted portfoli    | OS        |      |       |       |       |
| Portfolio     | $\Delta \mu$  | $\Delta \sigma$ | $p_A$     | NT   | BETC  | $p_1$ | $p_2$ |
| Low           | 13.72         | 12.59           | 0.54      | 5217 | 0.14  | 0.73  | 0.51  |
| 2             | 6.86          | 9.36            | 0.58      | 5391 | 0.07  | 0.71  | 0.51  |
| 3             | 3.59          | 7.88            | 0.62      | 5458 | 0.04  | 0.69  | 0.52  |
| 4             | 2.92          | 7.46            | 0.62      | 5420 | 0.03  | 0.69  | 0.53  |
| 5             | 1.63          | 7.03            | 0.63      | 5493 | 0.02  | 0.69  | 0.53  |
| 6             | 1.35          | 6.70            | 0.64      | 5478 | 0.01  | 0.69  | 0.53  |
| 7             | 1.76          | 6.68            | 0.64      | 5423 | 0.02  | 0.69  | 0.54  |
| 8             | -0.15         | 6.33            | 0.66      | 5532 | -0.00 | 0.69  | 0.55  |
| 9             | 1.26          | 7.00            | 0.65      | 5445 | 0.01  | 0.69  | 0.54  |
| High          | 1.98          | 8.68            | 0.65      | 5201 | 0.02  | 0.70  | 0.56  |
| Panel D: star | ndard deviat  | ion sorted p    | ortfolios |      |       |       |       |
| Portfolio     | $\Delta \mu$  | $\Delta \sigma$ | $p_A$     | NT   | BETC  | $p_1$ | $p_2$ |
| High          | 9.32          | 7.23            | 0.67      | 4316 | 0.12  | 0.72  | 0.58  |
| 2             | 10.82         | 8.55            | 0.62      | 4738 | 0.12  | 0.73  | 0.56  |
| 3             | 9.59          | 8.32            | 0.63      | 4715 | 0.11  | 0.73  | 0.56  |
| 4             | 7.43          | 7.69            | 0.65      | 4711 | 0.09  | 0.72  | 0.57  |
| 5             | 6.81          | 7.05            | 0.66      | 4641 | 0.08  | 0.72  | 0.57  |
|               |               |                 |           |      |       |       |       |

**Table 5** Trading frequency and break-even transaction cost

| Panel D: star | ndard deviati | ion sorted p    | ortfolios |      |      |       |       |
|---------------|---------------|-----------------|-----------|------|------|-------|-------|
| Portfolio     | $\Delta \mu$  | $\Delta \sigma$ | $p_A$     | NT   | BETC | $p_1$ | $p_2$ |
| 6             | 6.18          | 6.57            | 0.67      | 4630 | 0.07 | 0.71  | 0.57  |
| 7             | 5.64          | 5.76            | 0.68      | 4603 | 0.07 | 0.72  | 0.58  |
| 8             | 5.21          | 5.03            | 0.69      | 4612 | 0.06 | 0.71  | 0.58  |
| 9             | 5.07          | 4.22            | 0.70      | 4441 | 0.06 | 0.72  | 0.59  |
| Low           | 5.25          | 3.14            | 0.71      | 3961 | 0.07 | 0.73  | 0.60  |

| Table 5 | (continued) |
|---------|-------------|
|---------|-------------|

This table reports the results for the improvement delivered by the MA switching strategy over the buy-and-hold strategy, the trading frequency as well as the break-even transaction cost using 10 decile portfolios sorted by size, book-to-market, momentum, and standard deviation of return. The sample period covers January 4, 1960 until December 31, 2013 with value-weighted portfolio returns.  $\Delta \mu$  is the annualized improvement in the average in-sample daily return,  $\Delta \sigma$  is the annualized improvement in the average in-sample daily return,  $\Delta \sigma$  is the annualized improvement in the return standard deviation,  $p_A$  is the proportion of days during which there is a hold signal, NT is the number of transactions (buy or sell) over the entire sample period, BETC is the break-even one-sided transaction cost in percent,  $p_1$  is the proportion of days during which a buy signal was followed by a positive return of the underlying portfolio and  $p_2$  is the proportion of days during which a buy signal was followed by a portfolio return in excess of the risk-free rate. The lengths of the moving average windows are 5, 10, 20, 50, 100, and 200 days. The moving average portfolio is an equal-weighted combination of the six individual moving average returns.

CMA strategy having a positive excess return. These values indicate that, more often than not, the CMA strategy is on the right side of the market. These considerably favorable odds are in line with the evidence reported previously regarding the superior performance of the CMA switching strategy.

### **IV. DRIVERS OF ABNORMAL RETURNS**

In this section, I investigate the reasons for the superior returns of the CMAP portfolios. To this end, I control the CMAP performance for economic expansions and contractions as well as other state contingencies like the sign of the lagged market return. Furthermore, I investigate the conditional performance of the CMAP returns while controlling for three instrumental variables with documented predictive power over stock returns.

### A. Market timing

The first approach towards testing for market timing ability is the quadratic regression of Treynor and Mazuy (1966)

$$CMAP_{jt,L} = \alpha_j + \beta_{j,m} r_{mkt,t} + \beta_{j,m^2} r_{mkt,t}^2 + \varepsilon_{jt}, \quad j = 1, \dots, N$$
(9)

where statistically significant evidence of a positive  $\beta_{j,m^2}$  can be interpreted as evidence in favor of market timing ability. The second approach is to allow for a

state-contingent  $\beta_{j,m}$  based on the direction of move of the market return as in Henriksson and Merton (1981)

$$CMAP_{jt,L} = \alpha_j + \beta_{j,m} r_{mkt,t} + \gamma_{j,m} r_{mkt,t} I_{\{r_{mkt,t} > 0\}} + \varepsilon_{jt}, \quad j = 1, \dots, N$$
(10)

where  $I_{\{r_{mkt,i}>0\}}$  is an indicator function of the event of a positive market return. A statistically significant value of  $\gamma_{j,m}$  is usually interpreted as evidence of successful market timing ability.

Table 6 presents the results of the two market timing regressions for various sets of value-weighted decile portfolios. Panel TM presents the empirical results from the Treynor and Mazuy (1966) quadratic regression while Panel HM presents the results for the state-contingent beta regression of Henriksson and Merton (1981). In both regressions, both  $\beta_{j,m^2}$  and  $\gamma_{j,m}$  are highly statistically significant, indicating there is strong evidence of market timing ability of the switching moving average strategy. Nevertheless, a few portfolios have negative or insignificant values of  $\beta_{m^a}$  and  $\gamma_m$  suggesting that the market timing ability of the CMA strategy does not apply for all of the portfolios under consideration. This finding suggests that market timing alone is not the sole driver of the abnormal returns generated by the combination moving average strategy.

## B. Business cycles and market states

Following Han et al. (2013), I investigate the performance of the CMAP portfolio returns conditional on the dividend yield of the stock market as well as the short-term risk-free rate. Table 7 presents the results for the various sets of portfolio deciles. The evidence overwhelmingly indicates that CMAP abnormal returns are higher small-cap portfolios, high book-to-market portfolio, loser portfolios as well as both high and low risk portfolios sorted on standard deviation of return.

The first notable finding in Table 7 is the reduced statistical significance of the abnormal returns. The  $\alpha$  s are reduced in value as well, occasionally turning negative and, for the most part, not statistically significant. This is an indication that this conditional model is capable of capturing some of the apparent abnormal performance detected by the unconditional models presented previously in the paper.

The majority of CMAP portfolios experience an increase in average return when the market dividend yield increases. Similarly, for most portfolios there is an increase in average returns when the short-term risk-free rate rises. In term of the time-varying factor loadings, most market betas of the CMAP portfolios become less negative when the market's dividend yield increases. The impact of the risk-free rate on the market betas is the opposite. A less consistent pattern emerges for the time-varying SMB loading. The SMB beta of the CMAP spread increases with  $DP_m$  for portfolios sorted on market capitalization is mixed for portfolios sorted on book-to-market and decreases with  $DP_m$  for portfolios sorted on momentum and standard deviation of return. The effect of the risk-free rate on

| Panel A: size sorted portfoli | ted portfolios  |                |               |                  |               |                |                |                  |
|-------------------------------|-----------------|----------------|---------------|------------------|---------------|----------------|----------------|------------------|
| Portfolio                     | α               | $\beta_m$      | $eta_{m^2}$   | $\overline{R}^2$ | α             | $\beta_m$      | ут             | $\overline{R}^2$ |
|                               |                 | MT             |               |                  |               | МН             |                |                  |
| Low                           | 11.499***       | -0.419***      | 0.011***      | 0.488            | 3.257**       | -0.355***      | 0.133***       | 0.489            |
| 2                             | $10.661^{***}$  | $-0.555^{***}$ | $0.004^{***}$ | 0.551            | $6.084^{***}$ | $-0.522^{***}$ | $0.068^{***}$  | 0.552            |
| ŝ                             | 9.370***        | -0.558***      | 0.003***      | 0.581            | 6.131***      | -0.534***      | $0.048^{***}$  | 0.581            |
| 4                             | 8.861***        | -0.564***      | 0.003***      | 0.604            | 6.620***      | $-0.546^{***}$ | 0.036***       | 0.604            |
| 5                             | 8.252***        | $-0.568^{***}$ | 0.002**       | 0.622            | 6.113***      | $-0.552^{***}$ | 0.033***       | 0.622            |
| 9                             | 7.783***        | $-0.546^{***}$ | $0.004^{***}$ | 0.642            | 5.484***      | -0.527***      | $0.041^{***}$  | 0.642            |
| 7                             | 7.375***        | -0.557***      | 0.005***      | 0.656            | 5.045***      | -0.537***      | $0.043^{***}$  | 0.655            |
| 8                             | 6.242***        | -0.573***      | 0.005***      | 0.681            | 4.278***      | $-0.555^{***}$ | 0.039***       | 0.680            |
| 6                             | 4.311***        | -0.571 ***     | 0.007***      | 0.696            | 3.706***      | $-0.560^{***}$ | 0.027***       | 0.695            |
| High                          | $1.881^{**}$    | -0.595***      | 0.005***      | 0.709            | 3.550***      | -0.600***      | -0.004         | 0.708            |
| Panel B: book-to-market sor   | market sorted p | ted portfolios |               |                  |               |                |                |                  |
| Portfolio                     | α               | $\beta_m$      | $eta_{m^2}$   | $\overline{R}^2$ | α             | $\beta_m$      | ут             | $\overline{R}^2$ |
|                               |                 | MT             |               |                  |               | ΜH             |                |                  |
| Low                           | 7.119***        | $-0.646^{***}$ | -0.001        | 0.673            | 9.258***      | $-0.661^{***}$ | $-0.030^{***}$ | 0.673            |
| 2                             | 4.021***        | $-0.585^{***}$ | $0.004^{***}$ | 0.680            | 5.087***      | -0.587***      | -0.001         | 0.680            |
| 3                             | 3.728***        | -0.547***      | 0.006***      | 0.664            | 3.797***      | -0.540***      | $0.018^{*}$    | 0.663            |
| 4                             | 3.225***        | -0.561***      | $0.010^{***}$ | 0.664            | 2.248*        | -0.544***      | $0.043^{***}$  | 0.661            |
| 5                             | 3.427***        | $-0.545^{***}$ | $0.004^{***}$ | 0.624            | $4.633^{***}$ | $-0.548^{***}$ | -0.002         | 0.623            |
| 9                             | 3.506***        | -0.522***      | 0.005***      | 0.631            | 3.521***      | -0.517***      | 0.015          | 0.630            |
| 7                             | 2.638***        | $-0.500^{***}$ | 0.008***      | 0.610            | $2.004^{*}$   | -0.487***      | 0.032***       | 0.608            |
| 8                             | 2.853***        | -0.524***      | 0.006***      | 0.560            | 3.087**       | -0.519***      | 0.016          | 0.559            |
| 9                             | 2.803***        | -0.523***      | 0.008***      | 0.581            | 2.601**       | $-0.513^{***}$ | $0.026^{**}$   | 0.579            |
| High                          | 4.914***        | -0.56/***      | 0.008***      | 0.559            | 4.149***      | -0.554***      | 0.033***       | 0.557            |

20

Table 6Market timing Regressions

© 2016 International Review of Finance Ltd. 2016

|                                                                                                       | (                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   |                                                                                                                                            |                                                                                                                           |                                                                                                                                             |                                                                                                                                 |                                                                                  |
|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Panel C: mor                                                                                          | Panel C: momentum sorted portfolios                                                                                                                                                                                                                   | rtfolios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                   |                                                                                                                                            |                                                                                                                           |                                                                                                                                             |                                                                                                                                 |                                                                                  |
| Portfolio                                                                                             | α                                                                                                                                                                                                                                                     | $\beta_m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\beta_{m^2}$                                                                                                                                                     | $\overline{R}^2$                                                                                                                           | α                                                                                                                         | $\beta_m$                                                                                                                                   | лт                                                                                                                              | $\overline{R}^2$                                                                 |
|                                                                                                       |                                                                                                                                                                                                                                                       | TM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                   |                                                                                                                                            |                                                                                                                           | ΗM                                                                                                                                          |                                                                                                                                 |                                                                                  |
| Low                                                                                                   | 21.010***                                                                                                                                                                                                                                             | $-0.874^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.009***                                                                                                                                                         | 0.546                                                                                                                                      | 23.220***                                                                                                                 | -0.898***                                                                                                                                   | -0.053***                                                                                                                       | 0.545                                                                            |
| 2                                                                                                     | $13.002^{***}$                                                                                                                                                                                                                                        | $-0.716^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-0.008^{***}$                                                                                                                                                    | 0.592                                                                                                                                      | $16.258^{***}$                                                                                                            | $-0.745^{***}$                                                                                                                              | -0.063***                                                                                                                       | 0.591                                                                            |
| 3                                                                                                     | 8.981***                                                                                                                                                                                                                                              | $-0.615^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-0.007^{***}$                                                                                                                                                    | 0.610                                                                                                                                      | $11.261^{***}$                                                                                                            | -0.637***                                                                                                                                   | -0.049***                                                                                                                       | 0.609                                                                            |
| 4                                                                                                     | $6.017^{***}$                                                                                                                                                                                                                                         | -0.588***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.002*                                                                                                                                                            | 0.638                                                                                                                                      | 6.966***                                                                                                                  | $-0.592^{***}$                                                                                                                              | -0.007                                                                                                                          | 0.638                                                                            |
| 5                                                                                                     | 5.339***                                                                                                                                                                                                                                              | -0.564***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.002*                                                                                                                                                           | 0.638                                                                                                                                      | 7.862***                                                                                                                  | $-0.581^{***}$                                                                                                                              | -0.035***                                                                                                                       | 0.638                                                                            |
| 9                                                                                                     | 3.015***                                                                                                                                                                                                                                              | $-0.536^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.006***                                                                                                                                                          | 0.638                                                                                                                                      | 4.725***                                                                                                                  | $-0.540^{***}$                                                                                                                              | -0.002                                                                                                                          | 0.637                                                                            |
| 7                                                                                                     | 3.502***                                                                                                                                                                                                                                              | -0.538***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.006***                                                                                                                                                          | 0.651                                                                                                                                      | 3.749***                                                                                                                  | -0.533***                                                                                                                                   | 0.015                                                                                                                           | 0.650                                                                            |
| 8                                                                                                     | 0.358                                                                                                                                                                                                                                                 | $-0.513^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.010^{***}$                                                                                                                                                     | 0.631                                                                                                                                      | -0.304                                                                                                                    | -0.497***                                                                                                                                   | 0.039***                                                                                                                        | 0.627                                                                            |
| 9<br>Hiah                                                                                             | 2.847***<br>2 5.12***                                                                                                                                                                                                                                 | -0.567***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.007***                                                                                                                                                          | 0.643                                                                                                                                      | 2.071***<br>1.684                                                                                                         | -0.554***<br>0.627***                                                                                                                       | 0.031***                                                                                                                        | 0.641                                                                            |
| 111811                                                                                                | 0.10.0                                                                                                                                                                                                                                                | CC0.0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0100                                                                                                                                                              | 7/0.0                                                                                                                                      | 1.001                                                                                                                     | 100.0-                                                                                                                                      | 1000                                                                                                                            | 0/0.0                                                                            |
| Panel D: stan                                                                                         | Panel D: standard deviation sor                                                                                                                                                                                                                       | n sorted portfolios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                   |                                                                                                                                            |                                                                                                                           |                                                                                                                                             |                                                                                                                                 |                                                                                  |
| Portfolio                                                                                             | α                                                                                                                                                                                                                                                     | $\beta_m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $eta_{m^2}$                                                                                                                                                       | $\overline{R}^2$                                                                                                                           | α                                                                                                                         | $\beta_m$                                                                                                                                   | γm                                                                                                                              | $\overline{R}^2$                                                                 |
|                                                                                                       |                                                                                                                                                                                                                                                       | TM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                   |                                                                                                                                            |                                                                                                                           | ΜH                                                                                                                                          |                                                                                                                                 |                                                                                  |
| High                                                                                                  | $11.014^{***}$                                                                                                                                                                                                                                        | $-0.515^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.006***                                                                                                                                                          | 0.404                                                                                                                                      | 5.661***                                                                                                                  | -0.475***                                                                                                                                   | 0.081***                                                                                                                        | 0.405                                                                            |
| 2                                                                                                     | 12.659***                                                                                                                                                                                                                                             | $-0.633^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.008***                                                                                                                                                          | 0.547                                                                                                                                      | 6.690***                                                                                                                  | -0.587***                                                                                                                                   | 0.096***                                                                                                                        | 0.547                                                                            |
| 3                                                                                                     | 12.054***                                                                                                                                                                                                                                             | $-0.625^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.005***                                                                                                                                                          | 0.578                                                                                                                                      | 8.706***                                                                                                                  | -0.599***                                                                                                                                   | 0.056***                                                                                                                        | 0.578                                                                            |
| 4                                                                                                     | 9.650***                                                                                                                                                                                                                                              | $-0.580^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.005***                                                                                                                                                          | 0.578                                                                                                                                      | 7.071***                                                                                                                  | -0.558***                                                                                                                                   | 0.046***                                                                                                                        | 0.578                                                                            |
| 5                                                                                                     | 8.674***                                                                                                                                                                                                                                              | $-0.531^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.005***                                                                                                                                                          | 0.579                                                                                                                                      | 5.550***                                                                                                                  | $-0.506^{***}$                                                                                                                              | 0.054***                                                                                                                        | 0.579                                                                            |
| 9                                                                                                     | 7.449***                                                                                                                                                                                                                                              | $-0.496^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.007***                                                                                                                                                          | 0.588                                                                                                                                      | 4.258***                                                                                                                  | $-0.468^{***}$                                                                                                                              | 0.059***                                                                                                                        | 0.587                                                                            |
| 7                                                                                                     | 6.669***                                                                                                                                                                                                                                              | $-0.435^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.006***                                                                                                                                                          | 0.576                                                                                                                                      | $4.304^{***}$                                                                                                             | $-0.413^{***}$                                                                                                                              | $0.048^{***}$                                                                                                                   | 0.575                                                                            |
| 8                                                                                                     | 5.274***                                                                                                                                                                                                                                              | -0.373***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.009***                                                                                                                                                          | 0.552                                                                                                                                      | 2.153**                                                                                                                   | $-0.343^{***}$                                                                                                                              | $0.064^{***}$                                                                                                                   | 0.549                                                                            |
| 6                                                                                                     | $4.617^{***}$                                                                                                                                                                                                                                         | $-0.291^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.009***                                                                                                                                                          | 0.478                                                                                                                                      | 0.986                                                                                                                     | -0.259***                                                                                                                                   | $0.071^{***}$                                                                                                                   | 0.474                                                                            |
| Low                                                                                                   | 4.149***                                                                                                                                                                                                                                              | -0.163***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.009***                                                                                                                                                          | 0.288                                                                                                                                      | 0.730                                                                                                                     | -0.133***                                                                                                                                   | 0.067***                                                                                                                        | 0.282                                                                            |
| This table represented by size (1966) quadred pression with folio returns. combination icance of a tv | This table reports alphas, betas,<br>sorted by size, book-to-market<br>(1966) quadratic regression with<br>gression with option-like returr<br>folio returns. The lengths of th<br>combination of the six individu<br>icance of a two-sided null hypo | This table reports alphas, betas, and adjusted $\mathbb{R}^2$ of the market timing regressions of the CMAP excess returns on the market factor using portfolios sorted by size, book-to-market, momentum and standard deviation of return. The TM panel reports the results using the Treynor and Mazuy (1966) quadratic regression with the squared market factor $(\beta_{m^2})$ while the HM panel reports the results using the Henriksson and Merton (1981) regression with option-like returns on the market factor $(\beta_{m^2})$ while the HM panel reports the results using the Henriksson and Merton (1981) regression with option-like returns on the market factor $(\beta_{m^2})$ while the HM panel reports the results using the Henriksson and Merton (1981) regression with option-like returns on the market $(\gamma_m)$ . The sample period covers January 4, 1960 until December 31, 2013 with value-weighted portfolio returns. The lengths of the moving average windows are 5, 10, 20, 50, 100, and 200 days. The moving average portfolio is an equal-weighted combination of the six individual moving average returns. Newey and West (1987) standard errors with 3 lags are used in reporting statistical significance of a two-sided null hypothesis at the 1, 5, and 10% level is given by a ***, a **, and a *, respectively. | the market timin<br>standard deviatic<br>et factor $(\beta_{m^2})$ wh<br><i>n</i> ). The sample pe<br>vindows are 5, 10<br>returns. Newey ai<br>nd 10% level is g | ng regressions c<br>on of return. The<br>life the HM pan-<br>triod covers Jan-<br>1, 20, 50, 100, a<br>nd West (1987)<br>given by a ***, a | f the CMAP excent<br>of TM panel rep<br>el reports the resultary 4, 1960 until<br>nd 200 days. The<br>**, and a *, resper | is returns on the morts the results using the Henrih Its using the Henrih December 31, 201 moving average potth 3 lags are used it trively. | narket factor using<br>mg the Treynor a<br>ksson and Merton<br>3 with value-weig<br>ortfolio is an equa<br>in reporting statist | portfolios<br>nd Mazuy<br>(1981) re-<br>hted port-<br>l-weighted<br>ical signif- |

## Combination of Moving Averages

© 2016 International Review of Finance Ltd. 2016

 Table 6
 (continued)

21

| raner  | A: size sorted    | portfolios      |                |                     |                |                |                |                   |
|--------|-------------------|-----------------|----------------|---------------------|----------------|----------------|----------------|-------------------|
| Р      | α                 | $DP_m$          | r <sub>f</sub> | $\beta_m$           | $\beta_s$      | $\beta_h$      | $\beta_u$      | $r_m \times DP_m$ |
| Low    | 13.443***         | -0.007          | 1.478***       | -0.582***           | -0.393***      | -0.523***      | -0.042***      | 0.059***          |
| 2      | 6.037**           | 0.001           | 1.289***       | -0.853***           | -0.592***      | -0.638***      | 0.051***       | 0.101***          |
| 3      | 0.719             | 0.009***        | 0.733*         | -0.867***           | -0.551***      | -0.545***      | 0.077***       | 0.115***          |
| 4      | -0.352            | 0.009**         | 0.754**        | -0.881***           | -0.501***      | -0.487***      | 0.079***       | 0.125***          |
| 5      | -2.668            | 0.013***        | 0.345          | -0.893***           | -0.418***      | $-0.426^{***}$ | 0.107***       | 0.132***          |
| 6      | -1.724            | 0.012***        | 0.428          | -0.813***           | -0.232***      | -0.335***      | 0.098***       | 0.116***          |
| 7      | 0.180             | 0.009**         | 0.356          | -0.826***           | -0.168***      | -0.417***      | 0.061***       | 0.110***          |
| 8      | -2.056            | 0.010**         | 0.378          | -0.860***           | -0.110***      | -0.392***      | 0.095***       | 0.119***          |
| 9      | -4.844 **         | 0.014***        | 0.061          | -0.833***           | 0.042**        | -0.390***      | 0.049***       | 0.105***          |
| High   | -3.076            | 0.011***        | -0.599*        | -0.796***           | 0.154***       | -0.132***      | 0.138***       | 0.092***          |
| Panel  | B: book-to-ma     | arket sorted po | ortfolios      |                     |                |                |                |                   |
| Р      | α                 | $DP_m$          | r <sub>f</sub> | $\beta_m$           | $\beta_s$      | $\beta_h$      | $\beta_u$      | $r_m \times DP_m$ |
| Low    | -9.240***         | 0.021***        | -0.401         | -0.706***           | 0.144***       | 0.149***       | 0.108***       | 0.049***          |
| 2      | -6.610**          | 0.016***        | -0.269         | -0.798***           | 0.129***       | -0.291***      | 0.102***       | 0.090***          |
| 3      | -5.211**          | 0.011***        | 0.358          | -0.757***           | 0.140***       | -0.367***      | 0.037***       | 0.093***          |
| 4      | -2.494            | 0.011***        | 0.041          | -0.809***           | 0.085***       | -0.567***      | 0.034***       | 0.090***          |
| 5      | -0.746            | 0.005           | 0.317          | -0.864***           | -0.012         | -0.759***      | 0.100***       | 0.120***          |
| 6      | -0.849            | 0.008*          | 0.042          | -0.835***           | -0.018         | -0.583***      | 0.096***       | 0.108***          |
| 7      | -0.288            | 0.006           | 0.360          | -0.770***           | 0.032*         | -0.672***      | 0.071***       | 0.087***          |
| 8      | 0.393             | 0.007           | 0.005          | -0.756***           | -0.006         | -0.780***      | 0.118***       | 0.062***          |
| 9      | 1.567             | 0.007*          | -0.035         | -0.830***           | -0.037*        | -0.722***      | 0.117***       | 0.087***          |
| High   | 2.134             | 0.012**         | -0.392         | -0.828***           | -0.086***      | -0.871***      | 0.153***       | 0.066***          |
| Panel  | C: momentun       | n sorted portfo | olios          |                     |                |                |                |                   |
| Р      | α                 | $DP_m$          | r <sub>f</sub> | $\beta_m$           | $\beta_s$      | $\beta_h$      | $\beta_u$      | $r_m \times DP_m$ |
| Low    | 12.035***         | -0.004          | 0.838          | -1.174***           | -0.452***      | -0.534***      | 0.975***       | 0.167***          |
| 2      | 0.395             | 0.008           | 0.151          | -1.019***           | -0.120***      | -0.448***      | 0.634***       | 0.131***          |
| 3      | -1.453            | 0.010**         | -0.363         | -0.874***           | 0.064***       | -0.487***      | 0.404***       | 0.107***          |
| 4      | -2.238            | 0.009**         | 0.125          | -0.809***           | 0.131***       | -0.507***      | 0.242***       | 0.082***          |
| 5      | $-6.022^{**}$     | 0.012***        | 0.242          | -0.728***           | 0.164***       | -0.333***      | 0.156***       | 0.058***          |
| 6      | -7.755***         | 0.015***        | 0.257          | -0.709***           | 0.166***       | -0.418***      | 0.052***       | 0.054***          |
| 7      | -3.062            | 0.007           | 0.744**        | -0.733***           | 0.183***       | -0.369***      | -0.000         | 0.073***          |
| 8      | -7.007***         | 0.013***        | 0.360          | -0.706***           | 0.170***       | -0.380***      | -0.071***      | 0.063***          |
| 9      | -3.984            | 0.013***        | 0.088          | -0.765***           | 0.099***       | -0.318***      | -0.125***      | 0.071***          |
| High   | -4.622            | 0.019***        | -0.398         | -0.871***           | -0.033         | -0.063**       | -0.322***      | 0.085***          |
| Panel  | D: standard de    | eviation sorte  | d portfolios   |                     |                |                |                |                   |
| Р      | α                 | $DP_m$          | r <sub>f</sub> | $\beta_m$           | $\beta_s$      | $\beta_h$      | $\beta_u$      | $r_m \times DP_m$ |
| High   | 11.674***         | 0.006           | -0.644         | -0.554***           | -0.182***      | -0.508***      | 0.012          | 0.006             |
| 2      | 6.758*            | 0.010*          | 0.208          | -0.768***           | -0.218***      | -0.636***      | 0.171***       | 0.054***          |
| 3      | 3.590             | 0.013**         | 0.282          | -0.755***           | $-0.132^{***}$ | -0.669***      | 0.139***       | 0.039***          |
| 4      | 0.744             | 0.014***        | 0.155          | -0.753***           | -0.095***      | -0.683***      | 0.117***       | 0.046***          |
| 5      | 0.480             | 0.013***        | 0.234          | -0.701***           | -0.013         | -0.681***      | 0.113***       | 0.044***          |
| 6      | 0.405             | 0.011***        | 0.279          | -0.687***           | 0.009          | -0.664***      | 0.085***       | 0.055***          |
| 7      | 0.867             | 0.007*          | 0.606*         | -0.602***           | 0.068***       | -0.583***      | 0.047***       | 0.055***          |
|        | 1.508             | 0.006*          | 0.427          | -0.494***           | 0.095***       | -0.479***      | 0.022**        | 0.040***          |
| 8      |                   |                 | 0.354          | -0.363***           | 0.081***       | -0.405***      | 0.010          | 0.031***          |
| 8<br>9 | 3.678*            | 0.003           | 0.334          | -0.303              |                |                | 0.010          |                   |
|        | 3.678*<br>4.102** | 0.003<br>0.003  | 0.334<br>0.216 | -0.303<br>-0.082*** | 0.142***       | -0.107***      | $-0.034^{***}$ | -0.024***         |

**Table 7** Conditional regressions with market dividend yield and treasury bill rate

| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 298** 0.7<br>325 0.7<br>325 0.7<br>392 0.7<br>076 0.7<br>103 0.7<br>103 0.7<br>087 0.7<br>120 0.7<br>623*** 0.7<br>523<br>523<br>523<br>523<br>523<br>523<br>523<br>523    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 325 0.7;<br>392 0.7;<br>076 0.7;<br>373*** 0.7<br>103 0.7<br>087 0.7<br>120 0.7;<br>623*** 0.7                                                                             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 392 0.73<br>076 0.73<br>373*** 0.7<br>103 0.70<br>087 0.7<br>120 0.7<br>623*** 0.7                                                                                         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .076 0.73<br>.373*** 0.7<br>.103 0.70<br>.087 0.7<br>.120 0.7<br>.623*** 0.73                                                                                              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .076 0.73<br>.373*** 0.7<br>.103 0.70<br>.087 0.7<br>.120 0.7<br>.623*** 0.73                                                                                              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .373*** 0.7<br>103 0.70<br>.087 0.7<br>120 0.7<br>.623*** 0.73                                                                                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 103 0.7(<br>087 0.7)<br>120 0.7<br>623*** 0.7                                                                                                                              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .087 0.7<br>.120 0.7<br>.623*** 0.7                                                                                                                                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .120 0.73                                                                                                                                                                  |
| High       0.010       0.059*** $-0.060^{***}$ $-1.897^{***}$ $-1.964^{***}$ $-0.474$ 2.         Panel B: book-to-market sorted portfolios $r_n \times DP_m$ $r_n \times r_f$ $r_s \times r_f$ $r_h \times r_f$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .623*** 0.73                                                                                                                                                               |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $u \times r_f \qquad \overline{R}^2$                                                                                                                                       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $u \times r_f \qquad \overline{R}^2$                                                                                                                                       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | u × If K                                                                                                                                                                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 272*** 0.7                                                                                                                                                                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .373*** 0.7                                                                                                                                                                |
| $4 \qquad -0.014^{\star} \qquad 0.210^{\star\star\star} \qquad 0.010^{\star} \qquad -1.919^{\star\star\star} \qquad -3.679^{\star\star\star} \qquad -7.680^{\star\star\star} \qquad -2.680^{\star\star\star} \qquad -2.680^{\star\star} \qquad -2.680^$ | .329*** 0.70                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .319*** 0.68                                                                                                                                                               |
| 5 0042*** 0262*** 0022*** 2717*** 7027*** 7051*** 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .873*** 0.69                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .847*** 0.62                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .287 0.62                                                                                                                                                                  |
| $7 	 0.007 	 0.215^{***} 	 -0.033^{***} 	 -1.688^{***} 	 -5.249^{***} 	 -9.403^{***} 	 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .417 0.60                                                                                                                                                                  |
| 8 0.031*** 0.160*** -0.004 0.546 -7.492*** -2.411*** -4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .656*** 0.60                                                                                                                                                               |
| 9 0.000 0.192*** -0.052*** -0.353 -2.673*** -9.501*** -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .439 0.62                                                                                                                                                                  |
| High $-0.002$ $0.212^{***}$ $-0.048^{***}$ $-0.129$ $-5.446^{***}$ $-6.070^{***}$ $-1.29$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .751*** 0.60                                                                                                                                                               |
| Panel C: momentum sorted portfolios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                            |
| $P r_s \times DP_m r_h \times DP_m r_u \times DP_m r_m \times r_f r_s \times r_f r_h \times r_f r_h$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $r_u \times r_f = \overline{R}^2$                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .324*** 0.7                                                                                                                                                                |
| $2  0.066^{***}  0.150^{***}  -0.132^{***}  -1.847^{***}  -8.611^{***}  -1.126  5.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .374*** 0.70                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .068*** 0.70                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .174 0.69                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .672*** 0.60                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .636*** 0.60                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .549 0.62                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .564 0.60                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .581 0.68<br>.478 0.65                                                                                                                                                     |
| Panel D: standard deviation sorted portfolios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $r_u \times r_f = \overline{R}^2$                                                                                                                                          |
| $Y = I_s \times DY_m = I_h \times DY_m = I_m \times I_f = I_s \times I_f = I_h \times I_f = I_h$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .597*** 0.52                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                            |
| High $-0.017$ $0.145^{***}$ $-0.006$ $-4.074^{***}$ $-16.779^{***}$ $-2.224^{*}$ $2.24^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                            |
| High $-0.017$ $0.145^{***}$ $-0.006$ $-4.074^{***}$ $-16.779^{***}$ $-2.224^{*}$ $2.224^{*}$ $2$ $-0.016$ $0.226^{***}$ $-0.057^{***}$ $-6.076^{***}$ $-14.611^{***}$ $-7.389^{***}$ $2.224^{**}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .584*** 0.6                                                                                                                                                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .584*** 0.63<br>.871*** 0.68                                                                                                                                               |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .584*** 0.68<br>.871*** 0.68<br>.285 0.68                                                                                                                                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .584*** 0.65<br>.871*** 0.68<br>.285 0.68<br>.406 0.65                                                                                                                     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .584*** 0.65<br>.871*** 0.65<br>.285 0.66<br>.406 0.67<br>.147 0.65                                                                                                        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .584***         0.63           .871***         0.64           .285         0.64           .406         0.65           .147         0.65           .089**         0.65      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .584***       0.63         .871***       0.64         .285       0.64         .406       0.65         .147       0.66         .089**       0.66         .836***       0.66 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .584***         0.63           .871***         0.64           .285         0.64           .406         0.65           .147         0.65           .089**         0.65      |

**Table 7** (continued)

This table reports alphas, betas, and adjusted  $R^2$  of the market timing regressions of the CMAP excess returns on the C4 factors along with two instrumental variables and interaction terms of the instrumental variables with the C4 factors using portfolios sorted by various characteristics. Alphas are annualized and in percent. The sample period covers 1960/01/04 until 2013/12/31. The lengths of the moving average windows are 5, 10, 20, 50, 100, and 200 days. Newey and West (1987) standard errors with 3 lags are used in reporting statistical significance of a two–sided null hypothesis at the 1, 5, and 10% level is given by a \*\*\*, a \*\*, and a \*\*, respectively.

the SMB loading of the CMAP portfolios is uniformly negative. A much more consistent pattern emerges for the HML time-varying loading. All HML betas of the CMAP spreads increase with  $DP_m$  and decrease with  $r_f$ . Furthermore, these effects are very highly statistically significant. Finally, the UMD loadings of the CMAP portfolios uniformly increase with  $DP_m$  but have a mixed reaction to  $r_f$ . The risk-free rate has a mixed effect on the UMD loadings of CMAP portfolio sorted on market capitalization and book-to-market and, largely, a positive impact for portfolios sorted on momentum and standard deviation of return.

## C. Conditional models with macroeconomic variables

Ferson and Schadt (1996) make a strong case for using predetermined variables in controlling for changes in economic conditions while evaluating investment performance. I augment the four-factor Carhart (1997) model with an intercept that is a linear function of a set of instruments as well as cross-products of the instrumental variables with the market return to allow for state-dependent betas with the market factor. In this conditional model, the state variables  $Z_t$  consist of a recession indicator taking on value of one during economic contractions, and a value of zero during economic expansions as well as a down market dummy variable taking on a value of one when the portfolio return is negative and a value of zero otherwise

$$CMAP_{jt,L} = \alpha_j + \beta_{j,m}r_{mkt,t} + \beta_{j,s}r_{smb,t} + \beta_{j,h}r_{hml,t} + \beta_{j,u}r_{umd,t} + \gamma_{j,Z}(Z_{t-1}\otimes[1_T, r_{mkt,t}, r_{smb,t}, r_{hml,t}, r_{umd,t}]) + \varepsilon_{jt}, \quad j = 1, \dots, N.$$

Table 8 presents the results of the conditional model estimation. The most notable result that emerges is that the abnormal returns increase in magnitude and are uniformly statistically significant. Despite this disconcerting finding, it is still of interest to note the response of the CMAP returns and factor loadings to the two state variables. First, it is notable that the abnormal returns of all CMAP spread portfolios are larger during economic recessions though the coefficients are statistically significant mostly for portfolios sorted on market capitalization and standard deviation of return. Secondly, the abnormal returns of the CMAP portfolios are uniformly reduced during down markets with all of the coefficients highly statistically significant. Furthermore, the CMAP portfolio loadings on all four factors are reduced during recessions, while the same effect in down markets is only apparent for loadings on the SMB factor. Conversely, the loadings on the momentum factor appear to increase during down markets though this finding is statistically significant mostly for the CMAP portfolios sorted on market capitalization and book-to-market with only a handful of momentum and standard deviation portfolios exhibiting statistical significance for this coefficient.

Finally, I consider estimating a conditional model using the market's dividend yield and a recession indicator as the two state variables with the four Carhart (1997) factors as well as interactions between the instrumental variables and the factor returns. Table 9 presents the empirical findings of this conditional

| Panel | A: size sorted | portfolios   |                 |                |                |                |                |                 |
|-------|----------------|--------------|-----------------|----------------|----------------|----------------|----------------|-----------------|
| Р     | α              | RI           | DN              | $\beta_m$      | $\beta_s$      | $\beta_h$      | $\beta_u$      | $r_m \times RI$ |
| Low   | 29.089***      | 0.044***     | -0.167***       | -0.462***      | -0.444***      | -0.128***      | -0.036***      | -0.181***       |
| 2     | 40.610***      | 0.030***     | $-0.226^{***}$  | -0.658***      | -0.527***      | $-0.164^{***}$ | $-0.032^{***}$ | -0.241***       |
| 3     | 40.359***      | 0.030***     | -0.231***       | -0.663***      | -0.477***      | $-0.102^{***}$ | -0.028***      | $-0.215^{***}$  |
| 4     | 42.304***      | 0.029***     | -0.249***       | -0.681***0     | -0.441***      | -0.078***      | -0.031***      | $-0.175^{***}$  |
| 5     | 41.313***      | 0.031***     | -0.256***       | -0.663***      | -0.383***      | -0.026**       | -0.025***      | -0.193***       |
| 6     | 39.200***      | 0.027***     | -0.256***       | -0.625***      | -0.264***      | -0.020*        | -0.028***      | $-0.166^{***}$  |
| 7     | 38.067***      | 0.030***     | -0.256***       | -0.614***      | -0.215***      | -0.026**       | -0.037***      | -0.203***       |
| 8     | 38.550***      | 0.025***     | -0.273***       | $-0.632^{***}$ | -0.137***      | -0.030***      | -0.033***      | $-0.195^{***}$  |
| 9     | 37.909***      | 0.023***     | -0.280***       | -0.625***      | -0.020**       | $-0.045^{***}$ | -0.049***      | -0.198***       |
| High  | 32.747***      | 0.012        | -0.271***       | -0.616***      | 0.177***       | 0.047***       | -0.008         | -0.171***       |
| Panel | B: book-to-m   | arket sorted | portfolios      |                |                |                |                |                 |
| Р     | α              | RI           | DN              | $\beta_m$      | $\beta_s$      | $\beta_h$      | $\beta_u$      | $r_m \times RI$ |
| Low   | 32.447***      | 0.027***     | -0.237***       | -0.631***      | 0.070***       | 0.274***       | -0.022**       | -0.186***       |
| 2     | 34.914***      | 0.019**      | -0.261***       | -0.640***      | 0.063***       | 0.035***       | -0.007         | -0.150***       |
| 3     | 33.586***      | 0.014        | -0.253***       | -0.590***      | 0.053***       | -0.021*        | -0.041***      | -0.190***       |
| 4     | 34.116***      | 0.020**      | -0.261***       | -0.599***      | 0.043***       | $-0.112^{***}$ | -0.040***      | -0.211***       |
| 5     | 36.038***      | 0.009        | -0.253***       | -0.607***      | 0.013          | $-0.154^{***}$ | -0.018**       | -0.227***       |
| 6     | 35.112***      | 0.026***     | -0.251***       | -0.607***      | -0.032***      | -0.157***      | -0.008         | -0.157***       |
| 7     | 31.625***      | 0.017*       | -0.227***       | -0.573***      | 0.035***       | -0.253***      | -0.031***      | -0.165***       |
| 8     | 33.432***      | 0.007        | -0.228***       | -0.577***      | 0.013          | -0.309***      | -0.043***      | $-0.254^{***}$  |
| 9     | 36.562***      | 0.009        | $-0.246^{***}$  | -0.648***      | -0.034***      | -0.376***      | -0.019**       | -0.148***       |
| High  | 35.316***      | 0.022*       | -0.215***       | -0.673***      | -0.117***      | -0.398***      | -0.025**       | -0.213***       |
| Panel | C: momentu     | m sorted po  | rtfolios        |                |                |                |                |                 |
| Р     | α              | RI           | DN              | $\beta_m$      | $\beta_s$      | $\beta_h$      | $\beta_u$      | $r_m \times RI$ |
| Low   | 43.575***      | 0.032*       | -0.249***       | -0.836***      | -0.273***      | 0.056***       | 0.410***       | -0.224***       |
| 2     | 37.441***      | 0.043***     | -0.247***       | -0.705***      | -0.045***      | 0.002          | 0.325***       | -0.267***       |
| 3     | 30.378***      | 0.041***     | -0.211***       | -0.604***      | 0.022**        | -0.018         | 0.224***       | -0.251***       |
| 4     | 32.462***      | 0.022**      | -0.239***       | -0.592***      | 0.057***       | -0.089***      | 0.080***       | -0.260***       |
| 5     | 35.722***      | 0.019*       | -0.252***       | -0.605***      | 0.037***       | -0.058***      | 0.049***       | -0.226***       |
| 6     | 33.913***      | 0.027***     | -0.250***       | -0.588***      | 0.076***       | -0.114***      | -0.018**       | -0.202***       |
| 7     | 35.198***      | 0.011        | -0.255***       | -0.603***      | 0.058***       | -0.098***      | -0.069***      | -0.166***       |
| 8     | 31.968***      | 0.015        | -0.248***       | -0.584***      | 0.059***       | $-0.131^{***}$ | -0.149***      | -0.136***       |
| 9     | 37.478***      | 0.021**      | -0.259***       | -0.647***      | -0.023**       | -0.031**       | -0.217***      | -0.161***       |
| High  | 45.521***      | 0.020        | -0.303***       | -0.762***      | -0.161***      | 0.147***       | -0.340***      | -0.140***       |
| Panel | D: standard d  | leviation so | rted portfolios | 5              |                |                |                |                 |
| Р     | α              | RI           | DN              | $\beta_m$      | $\beta_s$      | $\beta_h$      | $\beta_u$      | $r_m \times RI$ |
| High  | 38.434***      | 0.024        | -0.226***       | -0.596***      | -0.440***      | -0.129***      | -0.002         | -0.172***       |
| 2     | 42.732***      | 0.033**      | -0.261***       | -0.703***      | -0.411***      | -0.139***      | 0.012          | -0.231***       |
| 3     | 44.202***      | 0.040***     | $-0.255^{***}$  | -0.709***      | -0.371***      | $-0.176^{***}$ | -0.018*        | -0.267***       |
| 4     | 43.082***      | 0.036***     | $-0.264^{***}$  | $-0.656^{***}$ | -0.317***      | $-0.172^{***}$ | -0.009         | -0.300***       |
| 5     | 38.868***      | 0.037***     | -0.248***       | -0.592***      | -0.244***      | $-0.184^{***}$ | -0.009         | -0.296***       |
| 6     | 36.464***      | 0.038***     | $-0.245^{***}$  | -0.541***      | $-0.176^{***}$ | $-0.166^{***}$ | -0.021**       | -0.296***       |
| 7     | 32.819***      | 0.035***     | -0.220***       | $-0.482^{***}$ | $-0.116^{***}$ | -0.153***      | -0.020**       | $-0.246^{***}$  |
| 8     | 27.828***      | 0.030***     | -0.200***       | -0.408***      | -0.091***      | -0.128***      | -0.023***      | $-0.194^{***}$  |
| 9     | 20.571***      | 0.026***     | -0.153***       | $-0.295^{***}$ | -0.053***      | -0.094***      | -0.027***      | $-0.186^{***}$  |
| Low   | 9.808***       | 0.020***     | $-0.072^{***}$  | $-0.141^{***}$ | -0.001         | -0.030***      | -0.031***      | -0.109***       |
|       |                |              |                 |                |                |                |                |                 |

**Table 8** Conditional regressions with recession indicator and down market indicator

| 1 unci 7                                                                                                | A: size sorted J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | portfolios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Р                                                                                                       | $r_s \times RI$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $r_h \times RI$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $r_u \times RI$                                                                                                                                                                                                                                                                                                                       | $r_m \times DN$                                                                                                                                                                                                                               | $r_s \times DN$                                                                                                                                                                                                                                                                                                                         | $r_h \times DN$                                                                                                                                                                                                                                             | $r_u \times DN$                                                                                                                                                                                                                                                   | $\overline{R}^2$                                                                                                                                                                                                                        |
| Low                                                                                                     | -0.171***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.069***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.063***                                                                                                                                                                                                                                                                                                                             | -0.052***                                                                                                                                                                                                                                     | -0.026*                                                                                                                                                                                                                                                                                                                                 | 0.027*                                                                                                                                                                                                                                                      | -0.008                                                                                                                                                                                                                                                            | 0.683                                                                                                                                                                                                                                   |
| 2                                                                                                       | -0.225***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.099***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.123***                                                                                                                                                                                                                                                                                                                             | 0.030***                                                                                                                                                                                                                                      | -0.019                                                                                                                                                                                                                                                                                                                                  | 0.047***                                                                                                                                                                                                                                                    | 0.034***                                                                                                                                                                                                                                                          | 0.737                                                                                                                                                                                                                                   |
| 3                                                                                                       | -0.216***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.092***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.124***                                                                                                                                                                                                                                                                                                                             | 0.040***                                                                                                                                                                                                                                      | -0.033**                                                                                                                                                                                                                                                                                                                                | 0.033**                                                                                                                                                                                                                                                     | 0.039***                                                                                                                                                                                                                                                          | 0.744                                                                                                                                                                                                                                   |
| 4                                                                                                       | -0.175***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.066***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.105***                                                                                                                                                                                                                                                                                                                             | 0.045***                                                                                                                                                                                                                                      | -0.025*                                                                                                                                                                                                                                                                                                                                 | 0.032**                                                                                                                                                                                                                                                     | 0.036***                                                                                                                                                                                                                                                          | 0.743                                                                                                                                                                                                                                   |
| 5                                                                                                       | $-0.126^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.095***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.099***                                                                                                                                                                                                                                                                                                                             | 0.034***                                                                                                                                                                                                                                      | -0.044***                                                                                                                                                                                                                                                                                                                               | 0.009                                                                                                                                                                                                                                                       | 0.043***                                                                                                                                                                                                                                                          | 0.741                                                                                                                                                                                                                                   |
| 6                                                                                                       | -0.097***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.057***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.086***                                                                                                                                                                                                                                                                                                                             | 0.009                                                                                                                                                                                                                                         | -0.054***                                                                                                                                                                                                                                                                                                                               | 0.020                                                                                                                                                                                                                                                       | 0.028***                                                                                                                                                                                                                                                          | 0.724                                                                                                                                                                                                                                   |
| 7                                                                                                       | -0.028*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.063***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.073***                                                                                                                                                                                                                                                                                                                             | -0.003                                                                                                                                                                                                                                        | -0.058***                                                                                                                                                                                                                                                                                                                               | -0.004                                                                                                                                                                                                                                                      | 0.029***                                                                                                                                                                                                                                                          | 0.725                                                                                                                                                                                                                                   |
| 8                                                                                                       | -0.045***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.077***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.078***                                                                                                                                                                                                                                                                                                                             | -0.007                                                                                                                                                                                                                                        | -0.061***                                                                                                                                                                                                                                                                                                                               | 0.007                                                                                                                                                                                                                                                       | 0.036***                                                                                                                                                                                                                                                          | 0.735                                                                                                                                                                                                                                   |
| 9                                                                                                       | -0.061***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.032**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.068***                                                                                                                                                                                                                                                                                                                             | -0.009                                                                                                                                                                                                                                        | -0.070***                                                                                                                                                                                                                                                                                                                               | -0.003                                                                                                                                                                                                                                                      | 0.039***                                                                                                                                                                                                                                                          | 0.742                                                                                                                                                                                                                                   |
| High                                                                                                    | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.060***                                                                                                                                                                                                                                                                                                                             | -0.015*                                                                                                                                                                                                                                       | $-0.103^{***}$                                                                                                                                                                                                                                                                                                                          | 0.014                                                                                                                                                                                                                                                       | 0.045***                                                                                                                                                                                                                                                          | 0.755                                                                                                                                                                                                                                   |
| Panel I                                                                                                 | B: book-to-ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rket sorted po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rtfolios                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                         |
| Р                                                                                                       | $r_s \times RI$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $r_h \times RI$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $r_u \times RI$                                                                                                                                                                                                                                                                                                                       | $r_m \times DN$                                                                                                                                                                                                                               | $r_s \times DN$                                                                                                                                                                                                                                                                                                                         | $r_h \times DN$                                                                                                                                                                                                                                             | $r_u \times DN$                                                                                                                                                                                                                                                   | $\overline{R}^2$                                                                                                                                                                                                                        |
| Low                                                                                                     | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.069***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.019                                                                                                                                                                                                                                                                                                                                | 0.019*                                                                                                                                                                                                                                        | -0.081***                                                                                                                                                                                                                                                                                                                               | 0.062***                                                                                                                                                                                                                                                    | 0.046***                                                                                                                                                                                                                                                          | 0.732                                                                                                                                                                                                                                   |
| 2                                                                                                       | -0.079***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.085***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.126***                                                                                                                                                                                                                                                                                                                             | 0.003                                                                                                                                                                                                                                         | -0.087***                                                                                                                                                                                                                                                                                                                               | 0.013                                                                                                                                                                                                                                                       | 0.042***                                                                                                                                                                                                                                                          | 0.714                                                                                                                                                                                                                                   |
| 3                                                                                                       | -0.066***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.113***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.123***                                                                                                                                                                                                                                                                                                                             | -0.012                                                                                                                                                                                                                                        | -0.064***                                                                                                                                                                                                                                                                                                                               | 0.014                                                                                                                                                                                                                                                       | 0.022**                                                                                                                                                                                                                                                           | 0.704                                                                                                                                                                                                                                   |
| 4                                                                                                       | -0.078***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.078***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.054***                                                                                                                                                                                                                                                                                                                             | -0.032***                                                                                                                                                                                                                                     | -0.079***                                                                                                                                                                                                                                                                                                                               | -0.011                                                                                                                                                                                                                                                      | 0.036***                                                                                                                                                                                                                                                          | 0.715                                                                                                                                                                                                                                   |
| 5                                                                                                       | -0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.131***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.106***                                                                                                                                                                                                                                                                                                                             | 0.015                                                                                                                                                                                                                                         | -0.074***                                                                                                                                                                                                                                                                                                                               | 0.004                                                                                                                                                                                                                                                       | 0.027**                                                                                                                                                                                                                                                           | 0.686                                                                                                                                                                                                                                   |
| 6                                                                                                       | -0.092***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.053***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.091***                                                                                                                                                                                                                                                                                                                             | 0.008                                                                                                                                                                                                                                         | -0.052***                                                                                                                                                                                                                                                                                                                               | -0.015                                                                                                                                                                                                                                                      | 0.042***                                                                                                                                                                                                                                                          | 0.685                                                                                                                                                                                                                                   |
| 7                                                                                                       | -0.076***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.081***                                                                                                                                                                                                                                                                                                                             | -0.015                                                                                                                                                                                                                                        | -0.115***                                                                                                                                                                                                                                                                                                                               | -0.009                                                                                                                                                                                                                                                      | 0.026***                                                                                                                                                                                                                                                          | 0.681                                                                                                                                                                                                                                   |
| 8                                                                                                       | -0.094***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.336***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.007                                                                                                                                                                                                                                                                                                                                 | 0.010                                                                                                                                                                                                                                         | -0.103***                                                                                                                                                                                                                                                                                                                               | 0.030*                                                                                                                                                                                                                                                      | 0.021**                                                                                                                                                                                                                                                           | 0.702                                                                                                                                                                                                                                   |
| 9                                                                                                       | -0.110***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.065***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.126***                                                                                                                                                                                                                                                                                                                             | 0.009                                                                                                                                                                                                                                         | -0.068***                                                                                                                                                                                                                                                                                                                               | 0.004                                                                                                                                                                                                                                                       | 0.019*                                                                                                                                                                                                                                                            | 0.679                                                                                                                                                                                                                                   |
| High                                                                                                    | -0.201***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.122***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.120<br>-0.100***                                                                                                                                                                                                                                                                                                                   | 0.017                                                                                                                                                                                                                                         | $-0.054^{***}$                                                                                                                                                                                                                                                                                                                          | 0.004                                                                                                                                                                                                                                                       | 0.023*                                                                                                                                                                                                                                                            | 0.669                                                                                                                                                                                                                                   |
|                                                                                                         | C: momentum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                       | 01017                                                                                                                                                                                                                                         | 01001                                                                                                                                                                                                                                                                                                                                   | 01002                                                                                                                                                                                                                                                       | 01020                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                         |
|                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                       | DM                                                                                                                                                                                                                                            | DM                                                                                                                                                                                                                                                                                                                                      | DM                                                                                                                                                                                                                                                          | DM                                                                                                                                                                                                                                                                | -2                                                                                                                                                                                                                                      |
| Р                                                                                                       | $r_s \times RI$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $r_h \times RI$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $r_u \times RI$                                                                                                                                                                                                                                                                                                                       | $r_m \times DN$                                                                                                                                                                                                                               | $r_s \times DN$                                                                                                                                                                                                                                                                                                                         | $r_h \times DN$                                                                                                                                                                                                                                             | $r_u \times DN$                                                                                                                                                                                                                                                   | $\overline{R}^2$                                                                                                                                                                                                                        |
|                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                         |
| Low                                                                                                     | 0.095***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.319***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.172***                                                                                                                                                                                                                                                                                                                              | 0.032*                                                                                                                                                                                                                                        | -0.079***                                                                                                                                                                                                                                                                                                                               | 0.119***                                                                                                                                                                                                                                                    | 0.103***                                                                                                                                                                                                                                                          | 0.708                                                                                                                                                                                                                                   |
| 2                                                                                                       | -0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $-0.149^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.041***                                                                                                                                                                                                                                                                                                                             | 0.031**                                                                                                                                                                                                                                       | $-0.131^{***}$                                                                                                                                                                                                                                                                                                                          | 0.052***                                                                                                                                                                                                                                                    | 0.048***                                                                                                                                                                                                                                                          | 0.719                                                                                                                                                                                                                                   |
| 2<br>3                                                                                                  | $-0.011 \\ -0.004$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $-0.149^{***}$<br>$-0.133^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $-0.041^{***}$<br>$-0.055^{***}$                                                                                                                                                                                                                                                                                                      | 0.031**<br>0.021*                                                                                                                                                                                                                             | $-0.131^{***}$<br>$-0.132^{***}$                                                                                                                                                                                                                                                                                                        | 0.052***<br>0.002                                                                                                                                                                                                                                           | 0.048***<br>0.046***                                                                                                                                                                                                                                              | 0.719<br>0.718                                                                                                                                                                                                                          |
| 2<br>3<br>4                                                                                             | -0.011<br>-0.004<br>-0.032*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.149***<br>-0.133***<br>-0.057***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-0.041^{***}$<br>$-0.055^{***}$<br>$-0.047^{***}$                                                                                                                                                                                                                                                                                    | 0.031**<br>0.021*<br>-0.002                                                                                                                                                                                                                   | $-0.131^{***}$<br>$-0.132^{***}$<br>$-0.103^{***}$                                                                                                                                                                                                                                                                                      | 0.052***<br>0.002<br>0.034**                                                                                                                                                                                                                                | 0.048***<br>0.046***<br>0.056***                                                                                                                                                                                                                                  | 0.719<br>0.718<br>0.715                                                                                                                                                                                                                 |
| 2<br>3                                                                                                  | -0.011<br>-0.004<br>-0.032*<br>-0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.149***<br>-0.133***<br>-0.057***<br>-0.069***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $-0.041^{***}$<br>$-0.055^{***}$<br>$-0.047^{***}$<br>$-0.082^{***}$                                                                                                                                                                                                                                                                  | 0.031**<br>0.021*<br>-0.002<br>0.032***                                                                                                                                                                                                       | -0.131***<br>-0.132***<br>-0.103***<br>-0.077***                                                                                                                                                                                                                                                                                        | 0.052***<br>0.002                                                                                                                                                                                                                                           | 0.048***<br>0.046***<br>0.056***<br>0.008                                                                                                                                                                                                                         | 0.719<br>0.718<br>0.715<br>0.690                                                                                                                                                                                                        |
| 2<br>3<br>4<br>5<br>6                                                                                   | -0.011<br>-0.004<br>-0.032*<br>-0.022<br>-0.075***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.149***<br>-0.133***<br>-0.057***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.041***<br>-0.055***<br>-0.047***<br>-0.082***<br>-0.073***                                                                                                                                                                                                                                                                         | 0.031**<br>0.021*<br>-0.002                                                                                                                                                                                                                   | -0.131***<br>-0.132***<br>-0.103***<br>-0.077***<br>-0.087***                                                                                                                                                                                                                                                                           | 0.052***<br>0.002<br>0.034**<br>0.044***<br>0.007                                                                                                                                                                                                           | 0.048***<br>0.046***<br>0.056***                                                                                                                                                                                                                                  | 0.719<br>0.718<br>0.715<br>0.690<br>0.684                                                                                                                                                                                               |
| 2<br>3<br>4<br>5                                                                                        | -0.011<br>-0.004<br>-0.032*<br>-0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.149***<br>-0.133***<br>-0.057***<br>-0.069***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $-0.041^{***}$<br>$-0.055^{***}$<br>$-0.047^{***}$<br>$-0.082^{***}$                                                                                                                                                                                                                                                                  | 0.031**<br>0.021*<br>-0.002<br>0.032***                                                                                                                                                                                                       | -0.131***<br>-0.132***<br>-0.103***<br>-0.077***                                                                                                                                                                                                                                                                                        | 0.052***<br>0.002<br>0.034**<br>0.044***                                                                                                                                                                                                                    | 0.048***<br>0.046***<br>0.056***<br>0.008                                                                                                                                                                                                                         | 0.719<br>0.718<br>0.715<br>0.690                                                                                                                                                                                                        |
| 2<br>3<br>4<br>5<br>6                                                                                   | -0.011<br>-0.004<br>-0.032*<br>-0.022<br>-0.075***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.149***<br>-0.133***<br>-0.057***<br>-0.069***<br>0.049***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.041***<br>-0.055***<br>-0.047***<br>-0.082***<br>-0.073***                                                                                                                                                                                                                                                                         | 0.031**<br>0.021*<br>-0.002<br>0.032***<br>0.004                                                                                                                                                                                              | -0.131***<br>-0.132***<br>-0.103***<br>-0.077***<br>-0.087***                                                                                                                                                                                                                                                                           | 0.052***<br>0.002<br>0.034**<br>0.044***<br>0.007                                                                                                                                                                                                           | 0.048***<br>0.046***<br>0.056***<br>0.008<br>-0.015                                                                                                                                                                                                               | 0.719<br>0.718<br>0.715<br>0.690<br>0.684                                                                                                                                                                                               |
| 2<br>3<br>4<br>5<br>6<br>7                                                                              | -0.011<br>-0.004<br>-0.032*<br>-0.022<br>-0.075***<br>-0.058***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.149***<br>-0.133***<br>-0.057***<br>-0.069***<br>0.049***<br>0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.041***<br>-0.055***<br>-0.047***<br>-0.082***<br>-0.073***                                                                                                                                                                                                                                                                         | 0.031**<br>0.021*<br>-0.002<br>0.032***<br>0.004<br>-0.001                                                                                                                                                                                    | -0.131***<br>-0.132***<br>-0.103***<br>-0.077***<br>-0.087***                                                                                                                                                                                                                                                                           | 0.052***<br>0.002<br>0.034**<br>0.044***<br>0.007<br>0.032**                                                                                                                                                                                                | 0.048***<br>0.046***<br>0.056***<br>0.008<br>-0.015<br>0.011                                                                                                                                                                                                      | 0.719<br>0.718<br>0.715<br>0.690<br>0.684<br>0.690                                                                                                                                                                                      |
| 2<br>3<br>4<br>5<br>6<br>7<br>8                                                                         | -0.011<br>-0.004<br>-0.032*<br>-0.022<br>-0.075***<br>-0.058***<br>-0.051***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.149***<br>-0.133***<br>-0.057***<br>-0.069***<br>0.049***<br>0.013<br>0.055***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.041***<br>-0.055***<br>-0.047***<br>-0.082***<br>-0.073***<br>-0.087***<br>-0.037***                                                                                                                                                                                                                                               | 0.031**<br>0.021*<br>-0.002<br>0.032***<br>0.004<br>-0.001<br>-0.016*                                                                                                                                                                         | -0.131***<br>-0.132***<br>-0.103***<br>-0.077***<br>-0.087***<br>-0.080***<br>-0.067***                                                                                                                                                                                                                                                 | 0.052***<br>0.002<br>0.034**<br>0.044***<br>0.007<br>0.032**<br>0.014                                                                                                                                                                                       | 0.048***<br>0.046***<br>0.056***<br>0.008<br>-0.015<br>0.011<br>-0.000                                                                                                                                                                                            | 0.719<br>0.718<br>0.715<br>0.690<br>0.684<br>0.690<br>0.678                                                                                                                                                                             |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>High                                                            | -0.011<br>-0.004<br>-0.032*<br>-0.022<br>-0.075***<br>-0.058***<br>-0.051***<br>-0.066***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.149***<br>-0.133***<br>-0.057***<br>-0.069***<br>0.049***<br>0.013<br>0.055***<br>-0.056***<br>-0.131***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.041***<br>-0.055***<br>-0.047***<br>-0.082***<br>-0.073***<br>-0.087***<br>-0.037***<br>-0.041***<br>-0.048***                                                                                                                                                                                                                     | 0.031**<br>0.021*<br>-0.002<br>0.032***<br>0.004<br>-0.001<br>-0.016*<br>0.008                                                                                                                                                                | -0.131***<br>-0.132***<br>-0.103***<br>-0.077***<br>-0.087***<br>-0.080***<br>-0.067***<br>-0.049***                                                                                                                                                                                                                                    | 0.052***<br>0.002<br>0.034**<br>0.044***<br>0.007<br>0.032**<br>0.014<br>-0.026*                                                                                                                                                                            | 0.048***<br>0.046***<br>0.056***<br>0.008<br>-0.015<br>0.011<br>-0.000<br>0.015                                                                                                                                                                                   | 0.719<br>0.718<br>0.715<br>0.690<br>0.684<br>0.690<br>0.678<br>0.700                                                                                                                                                                    |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>High                                                            | -0.011<br>-0.004<br>-0.032*<br>-0.022<br>-0.075***<br>-0.058***<br>-0.051***<br>-0.066***<br>0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.149***<br>-0.133***<br>-0.057***<br>-0.069***<br>0.049***<br>0.013<br>0.055***<br>-0.056***<br>-0.131***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.041***<br>-0.055***<br>-0.047***<br>-0.082***<br>-0.073***<br>-0.087***<br>-0.037***<br>-0.041***<br>-0.048***                                                                                                                                                                                                                     | 0.031**<br>0.021*<br>-0.002<br>0.032***<br>0.004<br>-0.001<br>-0.016*<br>0.008                                                                                                                                                                | -0.131***<br>-0.132***<br>-0.103***<br>-0.077***<br>-0.087***<br>-0.080***<br>-0.067***<br>-0.049***                                                                                                                                                                                                                                    | 0.052***<br>0.002<br>0.034**<br>0.044***<br>0.007<br>0.032**<br>0.014<br>-0.026*                                                                                                                                                                            | 0.048***<br>0.046***<br>0.056***<br>0.008<br>-0.015<br>0.011<br>-0.000<br>0.015                                                                                                                                                                                   | 0.719<br>0.718<br>0.715<br>0.690<br>0.684<br>0.690<br>0.678<br>0.700                                                                                                                                                                    |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>High<br>Panel I                                                 | -0.011<br>-0.032*<br>-0.032*<br>-0.075***<br>-0.058***<br>-0.051***<br>-0.066***<br>0.019<br>D: standard de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.149***<br>-0.133***<br>-0.057***<br>-0.069***<br>0.049***<br>0.013<br>0.055***<br>-0.056***<br>-0.131***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.041***<br>-0.055***<br>-0.047***<br>-0.082***<br>-0.073***<br>-0.087***<br>-0.037***<br>-0.041***<br>-0.048***                                                                                                                                                                                                                     | 0.031**<br>0.021*<br>-0.002<br>0.032***<br>0.004<br>-0.001<br>-0.016*<br>0.008<br>0.013                                                                                                                                                       | -0.131***<br>-0.132***<br>-0.007***<br>-0.087***<br>-0.087***<br>-0.067***<br>-0.049***<br>-0.049***                                                                                                                                                                                                                                    | 0.052***<br>0.002<br>0.034**<br>0.044***<br>0.007<br>0.032**<br>0.014<br>-0.026*<br>-0.055***                                                                                                                                                               | 0.048***<br>0.046***<br>0.056***<br>0.008<br>-0.015<br>0.011<br>-0.000<br>0.015<br>0.022                                                                                                                                                                          | 0.719<br>0.718<br>0.715<br>0.690<br>0.684<br>0.690<br>0.678<br>0.700<br>0.670                                                                                                                                                           |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>High<br>Panel I<br>P<br>High                                    | $-0.011 \\ -0.032* \\ -0.032* \\ -0.075*** \\ -0.058*** \\ -0.051*** \\ -0.066*** \\ 0.019$<br>D: standard de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} -0.149^{***} \\ -0.133^{***} \\ -0.057^{***} \\ -0.069^{***} \\ 0.049^{***} \\ 0.013 \\ 0.055^{***} \\ -0.056^{***} \\ -0.131^{***} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} -0.041^{***} \\ -0.055^{***} \\ -0.047^{***} \\ -0.082^{***} \\ -0.073^{***} \\ -0.087^{***} \\ -0.037^{***} \\ -0.041^{***} \\ -0.048^{***} \\ \end{array}$                                                                                                                                                        | $\begin{array}{c} 0.031^{**} \\ 0.021^{*} \\ -0.002 \\ 0.032^{***} \\ 0.004 \\ -0.001 \\ -0.016^{*} \\ 0.008 \\ 0.013 \end{array}$                                                                                                            | $\begin{array}{c} -0.131^{***} \\ -0.132^{***} \\ -0.03^{***} \\ -0.087^{***} \\ -0.087^{***} \\ -0.067^{***} \\ -0.067^{***} \\ -0.049^{***} \\ -0.078^{***} \\ \end{array}$                                                                                                                                                           | $\begin{array}{c} 0.052^{***}\\ 0.002\\ 0.034^{**}\\ 0.044^{***}\\ 0.007\\ 0.032^{**}\\ 0.014\\ -0.026^{*}\\ -0.055^{***}\\ \end{array}$                                                                                                                    | $\begin{array}{c} 0.048^{***}\\ 0.046^{***}\\ 0.008\\ -0.015\\ 0.011\\ -0.000\\ 0.015\\ 0.022\\ \end{array}$                                                                                                                                                      | $\overline{R}^{2}$                                                                                                                                                                                                                      |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>High<br>Panel I<br>P<br>High<br>2                               | $\begin{array}{c} -0.011 \\ -0.004 \\ -0.032* \\ -0.022 \\ -0.075*** \\ -0.058*** \\ -0.051*** \\ -0.066*** \\ 0.019 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ r_s \times RI \\ \hline \\ -0.122^{***} \\ -0.177^{***} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $-0.149^{***} -0.133^{***} -0.057^{***} -0.057^{***} -0.069^{***} 0.013 0.055^{***} -0.056^{***} -0.131^{***} -0.056^{***} -0.131^{***}$ eviation sorted $r_h \times RI -0.054^{**} 0.054^{**} -0.099^{***} -0.099^{***} -0.099^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{**} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{**} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{**} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{***} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -0.09^{**} -$ | $\begin{array}{c} -0.041^{***} \\ -0.055^{***} \\ -0.047^{***} \\ -0.082^{***} \\ -0.087^{***} \\ -0.037^{***} \\ -0.041^{***} \\ -0.041^{***} \\ \hline \\ r_{u} \times RI \\ \hline \\ \hline \\ -0.070^{***} \\ -0.100^{***} \\ \end{array}$                                                                                       | $\begin{array}{c} 0.031^{**}\\ 0.021^{*}\\ -0.002\\ 0.032^{***}\\ 0.004\\ -0.001\\ -0.016^{*}\\ 0.008\\ 0.013\\ \hline \\ \hline \\ r_m \times DN\\ \hline \\ -0.016\\ -0.030^{**}\\ \end{array}$                                             | $\begin{array}{c} -0.131^{***}\\ -0.132^{***}\\ -0.03^{***}\\ -0.087^{***}\\ -0.087^{***}\\ -0.067^{***}\\ -0.049^{***}\\ -0.078^{***}\\ \hline \\ \hline \\ r_s \times DN\\ \hline \\ -0.061^{***}\\ -0.068^{***}\\ \end{array}$                                                                                                       | $\begin{array}{c} 0.052^{***}\\ 0.002\\ 0.034^{**}\\ 0.044^{***}\\ 0.007\\ 0.032^{**}\\ 0.014\\ -0.026^{*}\\ -0.055^{***}\\ \hline \\ \hline \\ r_h \times DN\\ \hline \\ -0.013\\ -0.006\\ \end{array}$                                                    | $\begin{array}{c} 0.048^{***}\\ 0.046^{***}\\ 0.056^{***}\\ 0.008\\ -0.015\\ 0.011\\ -0.000\\ 0.015\\ 0.022\\ \hline \\ \hline \\ r_u \times DN\\ \hline \\ 0.009\\ 0.037^{**}\\ \end{array}$                                                                     | $\begin{array}{c} 0.719\\ 0.718\\ 0.715\\ 0.690\\ 0.684\\ 0.690\\ 0.678\\ 0.700\\ 0.670\\ \hline \hline R^2\\ \hline R^2\\ \hline 0.518\\ 0.656\\ \end{array}$                                                                          |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>High<br>Panel I<br>P<br>High<br>2<br>3                          | $-0.011 \\ -0.004 \\ -0.032* \\ -0.022 \\ -0.075*** \\ -0.058*** \\ -0.051*** \\ -0.066*** \\ 0.019 \\ \hline \\ D: \text{ standard def} \\ \hline r_s \times RI \\ -0.122*** \\ -0.177*** \\ -0.214*** \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} -0.149^{***} \\ -0.133^{***} \\ -0.057^{***} \\ -0.069^{***} \\ 0.049^{***} \\ 0.013 \\ 0.055^{***} \\ -0.056^{***} \\ -0.131^{***} \\ \hline \\ \hline \\ r_h \times RI \\ \hline \\ \hline \\ 0.054^{**} \\ 0.099^{***} \\ 0.049^{**} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} -0.041^{***}\\ -0.055^{***}\\ -0.047^{***}\\ -0.082^{***}\\ -0.087^{***}\\ -0.037^{***}\\ -0.041^{***}\\ -0.048^{***}\\ \hline portfolios\\ \hline r_u \times RI\\ \hline -0.070^{***}\\ -0.100^{***}\\ -0.099^{***}\\ \hline \end{array}$                                                                          | $\begin{array}{c} 0.031^{**}\\ 0.021^{*}\\ -0.002\\ 0.032^{***}\\ 0.004\\ -0.001\\ -0.016^{*}\\ 0.013\\ \hline \\ r_m \times DN\\ \hline \\ -0.016\\ -0.030^{**}\\ 0.015\\ \end{array}$                                                       | $\begin{array}{c} -0.131^{***}\\ -0.132^{***}\\ -0.077^{***}\\ -0.087^{***}\\ -0.087^{***}\\ -0.067^{***}\\ -0.078^{***}\\ \hline r_s \times DN\\ \hline r_s \times DN\\ -0.061^{***}\\ -0.068^{***}\\ -0.043^{**}\\ \end{array}$                                                                                                       | $\begin{array}{c} 0.052^{***}\\ 0.002\\ 0.034^{**}\\ 0.044^{***}\\ 0.007\\ 0.032^{**}\\ 0.014\\ -0.026^{*}\\ -0.055^{****}\\ \hline \\ \hline \\ r_h \times DN\\ -0.013\\ -0.006\\ 0.002\\ \end{array}$                                                     | $\begin{array}{c} 0.048^{***}\\ 0.046^{***}\\ 0.056^{***}\\ 0.008\\ -0.015\\ 0.011\\ -0.000\\ 0.015\\ 0.022\\ \hline \\ \hline \\ r_u \times DN\\ \hline \\ 0.009\\ 0.037^{**}\\ 0.045^{***}\\ \end{array}$                                                       | $\begin{array}{c} 0.719\\ 0.718\\ 0.715\\ 0.690\\ 0.690\\ 0.678\\ 0.700\\ 0.670\\ \hline \hline R^2\\ \hline 0.518\\ 0.656\\ 0.688\\ \end{array}$                                                                                       |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>High<br>Panel I<br>P<br>High<br>2<br>3<br>4                     | $\begin{array}{c} -0.011\\ -0.004\\ -0.032*\\ -0.022\\ -0.075***\\ -0.058***\\ -0.051***\\ -0.066***\\ 0.019\\ \hline \end{array}$ D: standard define the second se    | $-0.149^{***} -0.133^{***} -0.057^{***} -0.057^{***} -0.069^{***} 0.049^{***} 0.013 0.055^{***} -0.131^{***} -0.056^{***} -0.131^{***}$ eviation sorted $\overline{r_h \times RI} = 0.054^{***} 0.059^{***} -0.058^{***} -0.058^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} -0.041^{***} \\ -0.055^{***} \\ -0.047^{***} \\ -0.082^{***} \\ -0.087^{***} \\ -0.037^{***} \\ -0.041^{***} \\ -0.048^{***} \\ \hline portfolios \\ \hline r_u \times RI \\ \hline -0.070^{***} \\ -0.100^{***} \\ -0.125^{***} \\ \hline \end{array}$                                                             | $\begin{array}{c} 0.031^{**}\\ 0.021^{*}\\ -0.002\\ 0.032^{***}\\ 0.004\\ -0.001\\ -0.016^{*}\\ 0.008\\ 0.013\\ \end{array}$ $r_m \times DN\\ \hline \\ -0.016\\ -0.030^{**}\\ 0.015\\ 0.016\\ \end{array}$                                   | $\begin{array}{c} -0.131^{***}\\ -0.132^{***}\\ -0.103^{***}\\ -0.087^{***}\\ -0.087^{***}\\ -0.067^{***}\\ -0.067^{***}\\ -0.078^{***}\\ \hline \\ \hline \\ r_s \times DN\\ -0.061^{***}\\ -0.068^{***}\\ -0.043^{**}\\ -0.033^{**}\\ \end{array}$                                                                                    | $\begin{array}{c} 0.052^{***}\\ 0.002\\ 0.034^{**}\\ 0.044^{***}\\ 0.007\\ 0.032^{**}\\ 0.014\\ -0.026^{*}\\ -0.055^{***}\\ \hline \\ \hline \\ r_h \times DN\\ \hline \\ -0.013\\ -0.006\\ 0.002\\ -0.003\\ \end{array}$                                   | $\begin{array}{c} 0.048^{***}\\ 0.046^{***}\\ 0.056^{***}\\ 0.008\\ -0.015\\ 0.011\\ -0.000\\ 0.015\\ 0.022\\ \hline \\ \hline \\ r_u \times DN\\ \hline \\ 0.009\\ 0.037^{**}\\ 0.045^{***}\\ 0.031^{**}\\ \end{array}$                                          | $\begin{array}{c} 0.719\\ 0.718\\ 0.715\\ 0.690\\ 0.684\\ 0.690\\ 0.678\\ 0.700\\ 0.670\\ \hline \hline R^2\\ \hline \hline R^2\\ \hline 0.518\\ 0.658\\ 0.688\\ 0.696\\ \hline \end{array}$                                            |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>High<br>Panel I<br>P<br>High<br>2<br>3<br>4<br>5                | $\begin{array}{c} -0.011\\ -0.004\\ -0.032*\\ -0.022\\ -0.075***\\ -0.058***\\ -0.051***\\ -0.066***\\ 0.019\\ \hline \end{array}$ D: standard det $\overline{r_s \times RI}$ $\begin{array}{c} -0.122***\\ -0.177***\\ -0.214***\\ -0.201***\\ -0.199***\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} -0.149^{***} \\ -0.133^{***} \\ -0.057^{***} \\ -0.069^{***} \\ 0.049^{***} \\ 0.013 \\ 0.055^{***} \\ -0.056^{***} \\ -0.131^{***} \\ \hline \\ \hline \\ r_h \times RI \\ \hline \\ \hline \\ 0.054^{**} \\ 0.099^{***} \\ 0.049^{**} \\ -0.058^{***} \\ -0.058^{***} \\ -0.079^{***} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} -0.041^{***}\\ -0.055^{***}\\ -0.047^{***}\\ -0.082^{***}\\ -0.073^{***}\\ -0.037^{***}\\ -0.041^{***}\\ -0.048^{***}\\ \hline portfolios\\ \hline r_{u} \times RI\\ -0.070^{***}\\ -0.100^{***}\\ -0.105^{***}\\ -0.125^{***}\\ -0.131^{***}\\ \end{array}$                                                        | $\begin{array}{c} 0.031^{**} \\ 0.021^{*} \\ -0.002 \\ 0.032^{***} \\ 0.004 \\ -0.001 \\ -0.016^{*} \\ 0.008 \\ 0.013 \end{array}$ $\overline{r_m \times DN}$ $\begin{array}{c} -0.016 \\ -0.030^{**} \\ 0.015 \\ 0.016 \\ 0.001 \end{array}$ | $\begin{array}{c} -0.131^{***}\\ -0.132^{***}\\ -0.103^{***}\\ -0.087^{***}\\ -0.087^{***}\\ -0.067^{***}\\ -0.049^{***}\\ -0.078^{***}\\ \hline \\ \hline \\ r_s \times DN\\ \hline \\ -0.061^{***}\\ -0.068^{***}\\ -0.063^{***}\\ -0.043^{**}\\ -0.041^{***}\\ \hline \end{array}$                                                   | $\begin{array}{c} 0.052^{***}\\ 0.002\\ 0.034^{**}\\ 0.044^{***}\\ 0.007\\ 0.032^{**}\\ 0.014\\ -0.026^{*}\\ -0.055^{***}\\ \hline \\ \hline \\ r_h \times DN\\ \hline \\ -0.013\\ -0.006\\ 0.002\\ -0.003\\ 0.007\\ \end{array}$                           | $\begin{array}{c} 0.048^{***}\\ 0.046^{***}\\ 0.056^{***}\\ 0.008\\ -0.015\\ 0.011\\ -0.000\\ 0.015\\ 0.022\\ \end{array}$ $\begin{array}{c} r_{u} \times DN\\ \hline \\ 0.009\\ 0.037^{**}\\ 0.031^{**}\\ 0.031^{**}\\ 0.020^{*}\\ \end{array}$                  | $\begin{array}{c} 0.719\\ 0.718\\ 0.715\\ 0.690\\ 0.684\\ 0.690\\ 0.678\\ 0.700\\ 0.670\\ \hline \hline $\overline{R}^2$\\ \hline \hline $\overline{R}^2$\\ \hline \hline $0.518$\\ 0.656\\ 0.698\\ 0.696\\ 0.694\\ \hline \end{array}$ |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>High<br>Panel I<br>P<br>High<br>2<br>3<br>4<br>5<br>6           | $\begin{array}{c} -0.011 \\ -0.032* \\ -0.032* \\ -0.022 \\ -0.075*** \\ -0.051*** \\ -0.066*** \\ 0.019 \\ \hline \\ \hline \\ \hline \\ r_s \times RI \\ \hline \\ \hline \\ -0.122*** \\ -0.177*** \\ -0.214*** \\ -0.214*** \\ -0.201*** \\ -0.199*** \\ -0.181*** \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} -0.149^{***} \\ -0.133^{***} \\ -0.057^{***} \\ -0.069^{***} \\ 0.049^{***} \\ 0.013 \\ 0.055^{***} \\ -0.056^{***} \\ -0.131^{***} \\ \hline \\ \hline r_h \times RI \\ \hline \\ \hline 0.054^{**} \\ 0.099^{***} \\ -0.058^{***} \\ -0.079^{***} \\ -0.109^{***} \\ -0.109^{***} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} -0.041^{***}\\ -0.055^{***}\\ -0.047^{***}\\ -0.082^{***}\\ -0.073^{***}\\ -0.037^{***}\\ -0.041^{****}\\ -0.041^{****}\\ \hline portfolios\\ \hline r_{u} \times RI\\ \hline -0.070^{***}\\ -0.100^{***}\\ -0.125^{***}\\ -0.131^{***}\\ -0.115^{***}\\ \hline \end{array}$                                        | $\begin{array}{c} 0.031^{**} \\ 0.021^{*} \\ -0.002 \\ 0.032^{***} \\ 0.004 \\ -0.001 \\ -0.016^{*} \\ 0.008 \\ 0.013 \end{array}$                                                                                                            | $\begin{array}{c} -0.131^{***}\\ -0.132^{***}\\ -0.03^{***}\\ -0.087^{***}\\ -0.087^{***}\\ -0.067^{***}\\ -0.049^{***}\\ -0.078^{***}\\ \hline \\ r_s \times DN\\ \hline \\ -0.061^{***}\\ -0.068^{***}\\ -0.043^{**}\\ -0.043^{**}\\ -0.041^{***}\\ -0.049^{***}\\ \hline \end{array}$                                                | $\begin{array}{c} 0.052^{***}\\ 0.002\\ 0.034^{**}\\ 0.007\\ 0.032^{**}\\ 0.014\\ -0.026^{*}\\ -0.055^{***}\\ \hline \\ \hline \\ r_h \times DN\\ \hline \\ -0.013\\ -0.006\\ 0.002\\ -0.003\\ 0.007\\ 0.005\\ \end{array}$                                 | $\begin{array}{c} 0.048^{***}\\ 0.046^{***}\\ 0.056^{***}\\ 0.008\\ -0.015\\ 0.011\\ -0.000\\ 0.015\\ 0.022\\ \end{array}$ $\begin{array}{c} r_{u} \times DN\\ \hline \\ 0.009\\ 0.037^{**}\\ 0.045^{***}\\ 0.031^{**}\\ 0.020^{*}\\ 0.022^{**}\\ \end{array}$    | $\begin{array}{c} 0.719\\ 0.718\\ 0.715\\ 0.690\\ 0.684\\ 0.690\\ 0.678\\ 0.700\\ 0.670\\ \hline \hline $\overline{R}^2$\\ \hline \hline $0.518$\\ 0.656\\ 0.688\\ 0.694\\ 0.700\\ \hline \end{array}$                                  |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>High<br>Panel I<br>P<br>High<br>2<br>3<br>4<br>5<br>6<br>7      | $\begin{array}{c} -0.011\\ -0.004\\ -0.032^{*}\\ -0.022\\ -0.075^{***}\\ -0.058^{***}\\ -0.051^{***}\\ -0.066^{***}\\ 0.019\\ \hline \end{array}$ D: standard defined to the second seco    | $\begin{array}{c} -0.149^{***} \\ -0.133^{***} \\ -0.057^{***} \\ -0.069^{***} \\ 0.049^{***} \\ 0.013 \\ 0.055^{***} \\ -0.131^{***} \\ \hline \\ \hline \\ r_h \times RI \\ \hline \\ \hline \\ r_h \times RI \\ \hline \\ \hline \\ 0.054^{**} \\ 0.099^{***} \\ -0.058^{***} \\ -0.058^{***} \\ -0.058^{***} \\ -0.058^{***} \\ -0.039^{***} \\ -0.039^{***} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} -0.041^{***}\\ -0.055^{***}\\ -0.087^{***}\\ -0.082^{***}\\ -0.087^{***}\\ -0.037^{***}\\ -0.041^{***}\\ -0.048^{***}\\ \hline \\ \  \  \  \  \  \  \  \  \  \  \  \  \$                                                                                                                                            | $\begin{array}{c} 0.031^{**}\\ 0.021^{*}\\ -0.002\\ 0.032^{***}\\ 0.004\\ -0.001\\ -0.016^{*}\\ 0.008\\ 0.013\\ \end{array}$                                                                                                                  | $\begin{array}{c} -0.131^{***}\\ -0.132^{***}\\ -0.077^{***}\\ -0.087^{***}\\ -0.087^{***}\\ -0.067^{***}\\ -0.078^{***}\\ \hline r_s \times DN\\ \hline r_s \times DN\\ \hline -0.061^{***}\\ -0.068^{***}\\ -0.043^{**}\\ -0.043^{**}\\ -0.049^{***}\\ -0.049^{***}\\ -0.049^{***}\\ \hline \end{array}$                              | $\begin{array}{c} 0.052^{***}\\ 0.002\\ 0.034^{**}\\ 0.04^{***}\\ 0.007\\ 0.032^{**}\\ 0.014\\ -0.026^{*}\\ -0.055^{***}\\ \hline \\ \hline \\ r_h \times DN\\ \hline \\ -0.013\\ -0.006\\ 0.002\\ -0.003\\ 0.007\\ 0.005\\ -0.002\\ \end{array}$           | $\begin{array}{c} 0.048^{***}\\ 0.046^{***}\\ 0.008^{***}\\ 0.008\\ -0.015\\ 0.011\\ -0.000\\ 0.015\\ 0.022\\ \end{array}$                                                                                                                                        | $\begin{array}{c} 0.719\\ 0.718\\ 0.718\\ 0.690\\ 0.684\\ 0.690\\ 0.678\\ 0.700\\ 0.670\\ \hline \hline R^2\\ \hline R^2\\ \hline R^2\\ \hline 0.518\\ 0.656\\ 0.688\\ 0.696\\ 0.694\\ 0.700\\ 0.667\\ \hline \end{array}$              |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>High<br>Panel I<br>P<br>High<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | $\begin{array}{c} -0.011\\ -0.004\\ -0.032*\\ -0.022\\ -0.075***\\ -0.058***\\ -0.051***\\ -0.066***\\ 0.019\\ \hline \end{array}$<br>D: standard defined the second s | $\begin{array}{c} -0.149^{***} \\ -0.133^{***} \\ -0.057^{***} \\ -0.069^{***} \\ 0.049^{***} \\ 0.013 \\ 0.055^{***} \\ -0.131^{***} \\ \hline \\ \hline \\ r_h \times RI \\ \hline \\ \hline \\ \hline \\ 0.054^{***} \\ 0.058^{***} \\ -0.058^{***} \\ -0.058^{***} \\ -0.079^{***} \\ -0.039^{***} \\ -0.039^{***} \\ -0.000 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} -0.041^{***}\\ -0.055^{***}\\ -0.087^{***}\\ -0.082^{***}\\ -0.087^{***}\\ -0.087^{***}\\ -0.041^{***}\\ -0.048^{***}\\ \hline \\ portfolios\\ \hline \hline r_u \times RI\\ \hline \\ -0.070^{***}\\ -0.100^{***}\\ -0.125^{***}\\ -0.125^{***}\\ -0.115^{***}\\ -0.123^{***}\\ -0.102^{***}\\ \hline \end{array}$ | $\begin{array}{c} 0.031^{**}\\ 0.021^{*}\\ -0.002\\ 0.032^{***}\\ 0.004\\ -0.001\\ -0.016^{*}\\ 0.008\\ 0.013\\ \end{array}$                                                                                                                  | $\begin{array}{c} -0.131^{***}\\ -0.132^{***}\\ -0.103^{***}\\ -0.087^{***}\\ -0.087^{***}\\ -0.087^{***}\\ -0.067^{***}\\ -0.049^{***}\\ \hline \\ \hline \\ r_s \times DN\\ \hline \\ -0.061^{***}\\ -0.068^{***}\\ -0.043^{**}\\ -0.043^{**}\\ -0.041^{***}\\ -0.049^{***}\\ -0.049^{***}\\ -0.049^{***}\\ -0.023^{*}\\ \end{array}$ | $\begin{array}{c} 0.052^{***}\\ 0.002\\ 0.034^{**}\\ 0.044^{***}\\ 0.007\\ 0.032^{**}\\ 0.014\\ -0.026^{*}\\ -0.055^{***}\\ \hline \\ \hline \\ r_h \times DN\\ \hline \\ -0.013\\ -0.006\\ 0.002\\ -0.003\\ 0.007\\ 0.005\\ -0.002\\ -0.016\\ \end{array}$ | $\begin{array}{c} 0.048^{***}\\ 0.046^{***}\\ 0.008^{***}\\ 0.008\\ -0.015\\ 0.011\\ -0.000\\ 0.015\\ 0.022\\ \hline \\ \hline \\ r_u \times DN\\ \hline \\ 0.009\\ 0.037^{**}\\ 0.045^{***}\\ 0.031^{**}\\ 0.020^{*}\\ 0.022^{**}\\ 0.010\\ 0.002\\ \end{array}$ | $\begin{array}{c} 0.719\\ 0.718\\ 0.718\\ 0.690\\ 0.684\\ 0.690\\ 0.678\\ 0.700\\ 0.670\\ \hline \hline R^2\\ \hline \hline R^2\\ \hline 0.518\\ 0.656\\ 0.688\\ 0.696\\ 0.694\\ 0.700\\ 0.667\\ 0.626\\ \end{array}$                   |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>High<br>Panel I<br>P<br>High<br>2<br>3<br>4<br>5<br>6<br>7      | $\begin{array}{c} -0.011\\ -0.004\\ -0.032^{*}\\ -0.022\\ -0.075^{***}\\ -0.058^{***}\\ -0.051^{***}\\ -0.066^{***}\\ 0.019\\ \hline \end{array}$ D: standard defined to the second seco    | $\begin{array}{c} -0.149^{***} \\ -0.133^{***} \\ -0.057^{***} \\ -0.069^{***} \\ 0.049^{***} \\ 0.013 \\ 0.055^{***} \\ -0.131^{***} \\ \hline \\ \hline r_h \times RI \\ \hline \\ \hline r_h \times RI \\ \hline \\ 0.054^{**} \\ 0.099^{***} \\ 0.049^{**} \\ -0.058^{***} \\ -0.058^{***} \\ -0.058^{***} \\ -0.079^{***} \\ -0.109^{***} \\ -0.039^{***} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} -0.041^{***}\\ -0.055^{***}\\ -0.087^{***}\\ -0.082^{***}\\ -0.087^{***}\\ -0.037^{***}\\ -0.041^{***}\\ -0.048^{***}\\ \hline \\ \  \  \  \  \  \  \  \  \  \  \  \  \$                                                                                                                                            | $\begin{array}{c} 0.031^{**}\\ 0.021^{*}\\ -0.002\\ 0.032^{***}\\ 0.004\\ -0.001\\ -0.016^{*}\\ 0.008\\ 0.013\\ \end{array}$                                                                                                                  | $\begin{array}{c} -0.131^{***}\\ -0.132^{***}\\ -0.077^{***}\\ -0.087^{***}\\ -0.087^{***}\\ -0.067^{***}\\ -0.078^{***}\\ \hline r_s \times DN\\ \hline r_s \times DN\\ \hline -0.061^{***}\\ -0.068^{***}\\ -0.043^{**}\\ -0.043^{**}\\ -0.049^{***}\\ -0.049^{***}\\ -0.049^{***}\\ \hline \end{array}$                              | $\begin{array}{c} 0.052^{***}\\ 0.002\\ 0.034^{**}\\ 0.04^{***}\\ 0.007\\ 0.032^{**}\\ 0.014\\ -0.026^{*}\\ -0.055^{***}\\ \hline \\ \hline \\ r_h \times DN\\ \hline \\ -0.013\\ -0.006\\ 0.002\\ -0.003\\ 0.007\\ 0.005\\ -0.002\\ \end{array}$           | $\begin{array}{c} 0.048^{***}\\ 0.046^{***}\\ 0.008^{***}\\ 0.008\\ -0.015\\ 0.011\\ -0.000\\ 0.015\\ 0.022\\ \end{array}$                                                                                                                                        | $\begin{array}{c} 0.719\\ 0.718\\ 0.718\\ 0.690\\ 0.684\\ 0.690\\ 0.678\\ 0.700\\ 0.670\\ \hline \hline R^2\\ \hline R^2\\ \hline R^2\\ \hline 0.518\\ 0.656\\ 0.688\\ 0.696\\ 0.694\\ 0.700\\ 0.667\\ \hline \end{array}$              |

Table 8(continued)

This table reports alphas, betas, and adjusted  $R^2$  of the market timing regressions of the CMAP excess returns on the C4 factors along with two instrumental variables and interaction terms of the instrumental variables with the C4 factors using portfolios sorted by various characteristics. Alphas are annualized and in percent. The sample period covers 1960/01/04 until 2013/12/31. The lengths of the moving average windows are 5, 10, 20, 50, 100, and 200 days. Newey and West (1987) standard errors with 3 lags are used in reporting statistical significance of a two-sided null hypothesis at the 1, 5, and 10% level is given by a \*\*\*, a \*\*, and a \*, respectively.

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Panel A | : size sorted p | ortfolios     |               |                |                |                |           |                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------|---------------|---------------|----------------|----------------|----------------|-----------|-------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Р       | α               | $DP_m$        | RI            | $\beta_m$      | $\beta_s$      | $\beta_h$      | $\beta_u$ | $r_m \times DP_m$ |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Low     | 10.646***       | 0.004         | 0.042***      | $-0.484^{***}$ | -0.338***      | -0.322***      | -0.077*** | 0.021***          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2       | 3.159           | 0.012***      | 0.017*        | -0.762***      | $-0.546^{***}$ | -0.476***      | 0.012     | 0.082***          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3       | -1.767          | 0.016***      | 0.013         | -0.772***      |                | -0.364***      | 0.045***  | 0.087***          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4       | -2.847          | 0.017***      | 0.010         |                |                | -0.300***      | 0.048***  | 0.088***          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5       | -5.114**        | 0.018***      | 0.014         | -0.789***      | -0.366***      | -0.208***      | 0.074***  | 0.096***          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6       | -4.121          | 0.017***      | 0.011         | -0.713***      | -0.180***      | $-0.122^{***}$ | 0.069***  | 0.076***          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7       | -2.468          |               |               |                |                |                |           | 0.077***          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8       | -4.701*         | 0.015***      | 0.014         | -0.745***      | -0.051***      | -0.189***      | 0.058***  | 0.085***          |
| Panel B: book-to-market sorted portfolios           P $\alpha$ $DP_m$ $Rl$ $\beta_m$ $\beta_s$ $\beta_h$ $\beta_u$ $\tau_m$ Low         -10.162***         0.016***         0.007         -0.218***         0.29***         0.074***         0.0           2         -8.016***         0.016***         0.007         -0.727***         0.171***         -0.218***         0.002***         0.0           3         -7.385***         0.016**         0.001         -0.676***         0.124***         -0.456***         0.023*         -0.015         0.           6         -2.439         0.009***         0.016*         -0.769***         0.022**         -0.884***         0.046***         0.           8         -1.484         0.010***         -0.006         -0.759***         -0.008**         0.049***         0.           9         0.203         0.009***         -0.005         -0.776***         -0.106***         0.010***         0.008         -0.757***         -0.057***         0.116***         0.00           1049         0.010***         0.008         -0.757***         -0.005         0.37***         -0.005***         0.36****         0.326****         0.36****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9       | -6.935***       | 0.016***      | 0.012         | -0.736***      | 0.087***       | $-0.232^{***}$ | 0.009     | 0.084***          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | High    | -4.215*         | 0.008***      | 0.008         | -0.738***      | 0.166***       | -0.026         | 0.111***  | 0.088***          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Panel B | : book-to-mai   | rket sorted p | ortfolios     |                |                |                |           |                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Р       | α               | $DP_m$        | RI            | $\beta_m$      | $\beta_s$      | $\beta_h$      | $\beta_u$ | $r_m \times DP_m$ |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                 |               |               |                |                |                |           | 0.052***          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                 |               |               |                |                |                |           | 0.074***          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                 |               |               |                |                |                |           | 0.069***          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                 |               |               |                |                |                |           | 0.081***          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                 |               |               |                |                |                |           | 0.102***          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                 |               |               |                |                |                |           | 0.100***          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7       | -2.108          | 0.010***      | 0.007         | -0.691***      | 0.074***       | -0.584***      |           | 0.077***          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8       |                 |               |               |                |                |                |           | 0.067***          |
| Panel C: momentum sorted portfoliosP $\alpha$ $DP_m$ $RI$ $\beta_m$ $\beta_s$ $\beta_h$ $\beta_u$ $r_m$ Low9.110**0.0050.037** $-1.004^{***}$ $-0.394^{***}$ $-0.088^{**}$ $0.873^{***}$ $0.22^{***}$ 2 $-1.898$ 0.011** $0.029^{***}$ $-0.902^{***}$ $-0.085^{***}$ $0.236^{***}$ $0.582^{***}$ $0.359^{***}$ 3 $-3.370$ $0.009^{***}$ $0.029^{***}$ $-0.767^{***}$ $0.100^{***}$ $-0.314^{***}$ $0.359^{***}$ $0.4^{***}$ 4 $-4.269^*$ $0.011^{***}$ $0.017^*$ $-0.717^{***}$ $0.162^{***}$ $0.207^{***}$ $0.126^{***}$ $0.6^{***}$ 5 $-8.053^{***}$ $0.016^{***}$ $-0.006$ $-0.653^{***}$ $0.179^{***}$ $-0.207^{***}$ $0.126^{***}$ $0.6^{***}$ 6 $-9.353^{***}$ $0.016^{***}$ $-0.006$ $-0.663^{***}$ $0.219^{***}$ $-0.227^{***}$ $0.126^{***}$ $0.6^{***}$ 7 $-5.313^{**}$ $0.015^{***}$ $-0.006$ $-0.646^{***}$ $0.222^{***}$ $-0.327^{***}$ $-0.101^{***}$ $0.9^{***}$ 8 $-8.445^{***}$ $0.017^{***}$ $-0.003$ $-0.646^{***}$ $0.222^{***}$ $-0.327^{***}$ $-0.101^{***}$ $0.9^{***}$ 9 $-5.566^{**}$ $0.016^{***}$ $0.003$ $-0.69^{****}$ $-0.397^{***}$ $-0.160^{***}$ $0.16^{***}$ 9 $-5.566^{**}$ $0.019^{***}$ $-0.001$ $-0.826^{***}$ $-0.37^{**}$ $-0.319^{***}$ $-0.160^{***}$ <td>9</td> <td></td> <td>0.009***</td> <td>-0.005</td> <td></td> <td></td> <td></td> <td>0.104***</td> <td>0.088***</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9       |                 | 0.009***      | -0.005        |                |                |                | 0.104***  | 0.088***          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | High    | 1.049           | 0.010***      | 0.008         | -0.757***      | -0.059***      | -0.776***      | 0.116***  | 0.070***          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Panel C | : momentum      | sorted port   | folios        |                |                |                |           |                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Р       | α               | $DP_m$        | RI            | $\beta_m$      | $\beta_s$      | $\beta_h$      | $\beta_u$ | $r_m \times DP_m$ |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Low     | 9.110**         | 0.005         | 0.037**       | $-1.004^{***}$ | -0.394***      | -0.088**       | 0.873***  | 0.118***          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                 |               |               |                |                |                |           | 0.124***          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3       | -3.370          |               |               |                |                |                |           | 0.100***          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4       | -4.269*         | 0.011***      | 0.017*        | -0.717***      | 0.162***       | -0.391***      | 0.189***  | 0.084***          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5       |                 |               |               |                |                |                |           | 0.063***          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                 |               | 0.001         |                |                |                |           | 0.058***          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7       | -5.313**        | 0.015***      | -0.006        | -0.660***      | 0.219***       | -0.271***      |           | 0.059***          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8       | -8.445***       | 0.017***      | -0.003        |                | 0.202***       |                | -0.101*** | 0.057***          |
| P $\alpha$ $DP_m$ $RI$ $\beta_m$ $\beta_s$ $\beta_h$ $\beta_u$ $r_m$ High         10.497***         0.003         0.017         -0.461***         -0.138***         -0.301***         -0.009         -0.           2         4.508         0.013***         0.030**         -0.648***         -0.150***         -0.415***         0.137***         0.           3         1.378         0.016***         0.030**         -0.637***         -0.073***         -0.471***         0.097***         0.           4         -1.597         0.016***         0.021*         -0.640***         -0.047**         -0.505***         0.073***         0.           5         -1.907         0.016***         0.022**         -0.589***         0.036*         -0.517***         0.071***         0.           6         -2.018         0.014***         0.022***         -0.488***         0.127***         -0.415***         0.018         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9       |                 |               |               |                | 0.129***       |                |           | 0.059***          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | High    | -6.139*         | 0.019***      | -0.001        | -0.826***      | -0.037         | 0.109***       | -0.349*** | 0.073***          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Panel D | : standard de   | viation sorte | ed portfolios |                |                |                |           |                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Р       | α               | $DP_m$        | RI            | $\beta_m$      | $\beta_s$      | $\beta_h$      | $\beta_u$ | $r_m \times DP_m$ |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | High    | 10.497***       | 0.003         | 0.017         | -0.461***      | -0.138***      |                |           | -0.026***         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2       | 4.508           | 0.013***      | 0.030**       | -0.648***      | $-0.150^{***}$ | $-0.415^{***}$ |           | 0.010*            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3       |                 |               |               |                |                |                |           | 0.012**           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4       | -1.597          | 0.017***      | 0.021*        | -0.640***      | -0.047**       | -0.505***      | 0.073***  | 0.035***          |
| $7 \qquad -1.820 \qquad 0.013^{\star\star\star} \qquad 0.022^{\star\star\star} \qquad -0.488^{\star\star\star} \qquad 0.127^{\star\star\star} \qquad -0.415^{\star\star\star} \qquad 0.018 \qquad 0.127^{\star\star\star} \qquad 0.018 \qquad 0.127^{\star\star\star} \qquad 0.018 \qquad 0.127^{\star\star\star} \qquad 0.018^{\star\star\star} \qquad 0.018^{\star\star} \qquad 0.018^{\star\star\star} \qquad 0.018^{\star\star\star} \qquad 0.008^{\star\star\star} \qquad 0.018^{\star\star\star} \qquad 0.018^{\star\star\star} \qquad 0.018^{\star\star\star} \qquad 0.008^{\star\star\star} \qquad 0.008^{\star\star\star} \qquad 0.008^{\star\star} \qquad 0.008^{\star\star\star} \qquad 0.008^{\star\star} \qquad 0.008^{\star} \qquad 0.00$ | 5       | -1.907          | 0.016***      |               | -0.589***      |                |                |           | 0.034***          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6       | -2.018          | 0.014***      | 0.026***      | $-0.576^{***}$ | 0.055***       | -0.493***      | 0.039***  | 0.046***          |
| 8 -0.824 0.011*** 0.023*** -0.390*** 0.152*** -0.328*** 0.003 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7       | -1.820          | 0.013***      | 0.022***      | -0.488***      | 0.127***       | $-0.415^{***}$ | 0.018     | 0.031***          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8       | -0.824          | 0.011***      | 0.023***      | -0.390***      | 0.152***       | -0.328***      | 0.003     | 0.013***          |
| 9 1.364 $0.007^{***}$ $0.024^{***}$ $-0.251^{***}$ $0.148^{***}$ $-0.231^{***}$ $-0.013$ $-0.531^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9       | 1.364           | 0.007***      | 0.024***      | -0.251***      | 0.148***       | -0.231***      | -0.013    | -0.007**          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Low     |                 | 0.005**       | 0.023***      |                |                |                |           | -0.060***         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                 |               |               |                |                |                |           |                   |

**Table 9** Conditional regressions with market dividend yield and recession indicator

| Panel A   | A: size sorted p         | ortfolios         |                     |                     |                          |                     |                     |                  |
|-----------|--------------------------|-------------------|---------------------|---------------------|--------------------------|---------------------|---------------------|------------------|
| Р         | $r_s \times DP_m$        | $r_h \times DP_m$ | $r_u \times DP_m$   | $r_m \times RI$     | $r_s \times RI$          | $r_h \times RI$     | $r_u \times RI$     | $\overline{R}^2$ |
| Low       | -0.050***                | 0.089***          | 0.014***            | -0.198***           | $-0.146^{***}$           | -0.109***           | -0.064***           | 0.678            |
| 2         | 0.007                    | 0.138***          | $-0.016^{***}$      | $-0.282^{***}$      | -0.217***                | $-0.122^{***}$      | $-0.126^{***}$      | 0.735            |
| 3         | 0.008                    | 0.113***          | -0.028***           | -0.264***           | -0.208***                | $-0.104^{***}$      | -0.127***           | 0.742            |
| 4         | 0.002                    | 0.096***          | -0.031***           | -0.229***           | -0.164***                | -0.073***           | -0.107***           | 0.739            |
| 5         | -0.006                   | 0.075***          | -0.040***           | -0.256***           | -0.111***                | -0.092***           | -0.102***           | 0.739            |
| 6         | -0.036***                | 0.046***          | -0.042***           | $-0.226^{***}$      | -0.069***                | -0.056***           | -0.085***           | 0.719            |
| 7         | -0.044***                | 0.074***          | -0.026***           | -0.259***           | 0.002                    | -0.073***           | -0.075***           | 0.720            |
| 8         | -0.038***                | 0.067***          | -0.038***           | -0.257***           | -0.016                   | $-0.082^{***}$      | -0.080***           | 0.730            |
| 9         | -0.048***                | 0.077***          | -0.024***           | -0.261***           | -0.030*                  | $-0.042^{***}$      | -0.073***           | 0.734            |
| High      | -0.005                   | 0.029***          | -0.050***           | -0.243***           | 0.026*                   | 0.013               | -0.063***           | 0.749            |
| Panel I   | B: book-to-mai           | rket sorted po    | rtfolios            |                     |                          |                     |                     |                  |
| Р         | $r_s \times DP_m$        | $r_h \times DP_m$ | $r_u \times DP_m$   | $r_m \times RI$     | $r_s \times RI$          | $r_h \times RI$     | $r_u \times RI$     | $\overline{R}^2$ |
| Low       | -0.036***                | 0.015*            | -0.036***           | -0.239***           | 0.027                    | 0.070***            | -0.017              | 0.726            |
| 2         | -0.055***                | 0.110***          | -0.040***           | -0.198***           | -0.037**                 | 0.062***            | -0.123***           | 0.709            |
| 3         | -0.059***                | 0.099***          | -0.028***           | -0.237***           | -0.026                   | 0.090***            | -0.121***           | 0.699            |
| 4         | -0.044***                | 0.142***          | -0.010**            | -0.260***           | $-0.048^{***}$           | -0.112***           | -0.060***           | 0.709            |
| 5         | -0.019***                | 0.185***          | -0.036***           | -0.272***           | 0.016                    | -0.162***           | -0.105***           | 0.689            |
| 6         | -0.025***                | 0.137***          | -0.033***           | -0.210***           | -0.065***                | -0.071***           | -0.094***           | 0.685            |
| 7         | -0.023<br>-0.034***      | 0.136***          | -0.033***           | -0.207***           | $-0.046^{***}$           | $-0.045^{***}$      | -0.094<br>-0.080*** | 0.678            |
| 8         | -0.023***                | 0.132***          | -0.035***           | -0.291***           | -0.040                   | -0.366***           | 0.011               | 0.697            |
| o<br>9    | -0.023<br>-0.019***      | 0.125***          | -0.053              | -0.291<br>-0.197*** | -0.083***                | -0.083***           | $-0.120^{***}$      | 0.678            |
| 9<br>High | -0.019<br>-0.033***      | 0.123             | -0.034<br>-0.058*** | -0.197<br>-0.243*** | -0.161***                | $-0.158^{***}$      | -0.120<br>-0.088*** | 0.678            |
|           |                          |                   |                     |                     |                          |                     |                     |                  |
|           | C: momentum              | -                 |                     |                     |                          |                     |                     | -2               |
| Р         | $r_s \times DP_m$        | $r_h \times DP_m$ | $r_u \times DP_m$   | $r_m \times RI$     | $r_s \times RI$          | $r_h \times RI$     | $r_u \times RI$     | $\overline{R}^2$ |
| Low       | 0.042***                 | 0.078***          | $-0.185^{***}$      | -0.287***           | 0.117***                 | -0.291***           | 0.203***            | 0.719            |
| 2         | 0.001                    | 0.105***          | -0.109***           | -0.331***           | 0.017                    | $-0.132^{***}$      | -0.028*             | 0.727            |
| 3         | -0.048***                | 0.123***          | -0.056***           | -0.300***           | 0.039**                  | -0.138***           | -0.051***           | 0.724            |
| 4         | -0.056***                | 0.134***          | $-0.042^{***}$      | -0.304***           | 0.012                    | -0.079***           | -0.043***           | 0.715            |
| 5         | -0.065***                | 0.074***          | -0.036***           | -0.273***           | 0.023                    | $-0.084^{***}$      | -0.075***           | 0.684            |
| 6         | -0.059***                | 0.101***          | $-0.025^{***}$      | $-0.243^{***}$      | -0.035**                 | 0.020               | -0.069***           | 0.676            |
| 7         | -0.075***                | 0.082***          | -0.022***           | -0.211***           | -0.012                   | -0.009              | -0.083***           | 0.682            |
| 8         | -0.066***                | 0.087***          | -0.025***           | -0.179***           | -0.009                   | 0.029*              | -0.033***           | 0.671            |
| 9         | -0.064***                | 0.066***          | -0.026***           | -0.211***           | -0.025                   | -0.075***           | -0.040***           | 0.693            |
| High      | -0.052***                | 0.005             | 0.001               | -0.218***           | 0.042*                   | -0.130***           | -0.062***           | 0.663            |
| Panel I   | D: standard de           | viation sorted    | portfolios          |                     |                          |                     |                     |                  |
| Р         | $r_s \times DP_m$        | $r_h \times DP_m$ | $r_u \times DP_m$   | $r_m \times RI$     | $r_s \times RI$          | $r_h \times RI$     | $r_u \times RI$     | $\overline{R}^2$ |
| High      | -0.137***                | 0.081***          | 0.006               | -0.180***           | -0.048*                  | -0.018              | -0.059***           | 0.519            |
| 2         | -0.121***                | 0.124***          | -0.046***           | -0.250***           | -0.098***                | 0.032               | -0.081***           | 0.656            |
| 3         | -0.130***                | 0.135***          | -0.039***           | -0.282***           | -0.128***                | -0.032              | -0.080***           | 0.691            |
| 4         | -0.115***                | 0.147***          | -0.030***           | $-0.324^{***}$      | $-0.124^{***}$           | -0.118***           | -0.112***           | 0.697            |
| 5         | -0.121***                | 0.149***          | -0.032***           | -0.316***           | -0.119***                | -0.139***           | -0.112              | 0.699            |
| 6         | -0.121<br>$-0.102^{***}$ | 0.144             | -0.032<br>-0.024*** | $-0.323^{***}$      | -0.119<br>$-0.114^{***}$ | -0.139<br>-0.160*** | $-0.105^{***}$      | 0.701            |
| 7         | -0.102                   | 0.116***          | -0.016***           | -0.268***           | -0.066***                | -0.087***           | $-0.114^{***}$      | 0.668            |
| 8         | -0.103***                | 0.087***          | -0.012***           | -0.212***           | -0.000                   | -0.048***           | $-0.093^{***}$      | 0.625            |
| 9         | -0.088***                | 0.056***          | -0.0012             | -0.212<br>-0.196*** | 0.009                    | -0.048<br>-0.044*** | -0.072***           | 0.623            |
| Low       | -0.090***                | -0.023***         | 0.007*              | $-0.101^{***}$      | 0.026**                  | -0.014              | $-0.031^{***}$      | 0.346            |
| LOW       | 0.070                    | 0.023             | 0.007               | 0.101               | 0.020                    | 0.010               | 0.001               | 0.040            |

Table 9(continued)

This table reports alphas, betas, and adjusted  $R^2$  of the market timing regressions of the CMAP excess returns on the C4 factors along with two instrumental variables and interaction terms of the instrumental variables with the C4 factors using portfolios sorted by various characteristics. Alphas are annualized and in percent. The sample period covers 1960/01/04 until 2013/12/31. The lengths of the moving average windows are 5, 10, 20, 50, 100, and 200 days. Newey and West (1987) standard errors with 3 lags are used in reporting statistical significance of a two–sided null hypothesis at the 1, 5, and 10% level is given by a \*\*\*, a \*\*, and a \*, respectively. model specification. The first notable finding is that once again, the abnormal returns are reduced just as in Table 7, previously. Most of the  $\alpha$  s turn negative with the exception of market-cap, momentum and standard deviation decile one which have all positive and statistically as well as economically significant values. Nevertheless, it is reassuring that for all other CMAP portfolios the abnormal returns are negative and, mostly, insignificant with a few deciles having negative *and* highly significant  $\alpha$  s.

The dividend yield on the market appears the affect positively and significantly the abnormal returns for all decile portfolios under investigation. At the same time, the recession indicator has a positive and statistically significant impact on the abnormal returns of the standard deviation deciles only. Positive and significant coefficients on the RI dummy variable obtain only for market-cap deciles one and seven as well as momentum deciles one through four. The rest of the CMAP portfolios'  $\alpha$  s appear to be unaffected by general economic conditions. Next, I investigate the impact of the state variables on the loadings of the four factors. The market's dividend yield has a strong and positive effect on both the market and HML beta for all CMAP portfolios. Conversely, the SMB and UMD factor loadings are reduced whenever the market's dividend yield increases. The recession indicator has mostly a negative impact on all factor loadings with a few exceptions.

### D. Comparison with simple moving average strategies

In this subsection, I compare the performance of the CMA strategy against the simple moving average strategy (SMA). Specifically, I use two popular window lengths of 10 days (SMA(10)) and 20 days (SMA(20)). Table 10 reports the trading frequency (NT) and the BETC for all three strategies across the four sets of portfolios investigated in this article. The NT and BETC for the CMA require a bit more discussion regarding the fair comparison with the SMA strategy. The values for NT and BETC reported previously in Table 5 have been adjusted by a factor of six in order to make the comparison with the SMA more equitable. Specifically, the NT value for CMA in Table 5 has been divided by a factor of six and reported in Table 10 to reflect the fact that the CMA is an equal-weighted portfolio of six SMA strategies. Similarly, the BETC value for CMA in Table 5 has been multiplied by a factor of six and reported in Table 10.

One thing that emerges from Table 10 is that the trading intensity of the CMA strategy is lower than the trading intensity of the two SMA strategies, while the break-even transaction cost of the CMA strategy exceeds the BETC of SMA(10) and SMA(20). The NT and BETC values are almost uniformly monotonic from low to high decile portfolios sorted by market capitalization of equity, book-to-market ratios, and price momentum. The trading intensity and break-even transaction costs are also monotonic for decile portfolios sorted by standard deviation with the exception of the reverse sorting where the first decile is high and

| Panel A: size         | sorted portfol | 10S              |      |       |      |       |
|-----------------------|----------------|------------------|------|-------|------|-------|
| Portfolio             | C              | CMA              | SMA  | A(10) | SMA  | A(20) |
|                       | NT             | BETC             | NT   | BETC  | NT   | BETC  |
| Low                   | 708            | 0.90             | 1484 | 0.58  | 932  | 0.81  |
| 2                     | 776            | 0.59             | 1714 | 0.38  | 1072 | 0.51  |
| 2<br>3<br>4           | 790            | 0.47             | 1726 | 0.32  | 1090 | 0.43  |
| 4                     | 814            | 0.42             | 1778 | 0.29  | 1148 | 0.38  |
| 5                     | 818            | 0.36             | 1808 | 0.24  | 1140 | 0.31  |
| 6                     | 823            | 0.37             | 1742 | 0.29  | 1166 | 0.30  |
| 7                     | 825            | 0.35             | 1810 | 0.22  | 1146 | 0.29  |
| 7<br>8                | 847            | 0.26             | 1832 | 0.20  | 1194 | 0.21  |
| 9                     | 889            | 0.16             | 1938 | 0.11  | 314  | 0.09  |
| High                  | 943            | -0.02            | 2116 | -0.01 | 1502 | -0.04 |
| Panel B: book         | x-to-market sc | orted portfolios |      |       |      |       |
| Portfolio             | C              | CMA              | SMA  | A(10) | SMA  | A(20) |
|                       | NT             | BETC             | NT   | BETC  | NT   | BETC  |
| Low                   | 927            | 0.17             | 2106 | 0.08  | 1410 | 0.12  |
|                       | 916            | 0.09             | 2032 | 0.08  | 1340 | 0.08  |
| 2<br>3<br>4<br>5      | 919            | 0.12             | 2070 | 0.07  | 1346 | 0.09  |
| 4                     | 896            | 0.15             | 1956 | 0.11  | 1316 | 0.11  |
| 5                     | 918            | 0.07             | 2070 | 0.03  | 1408 | 0.01  |
| 6                     | 876            | 0.10             | 1948 | 0.10  | 1260 | 0.07  |
| 7                     | 886            | 0.10             | 2016 | 0.03  | 1302 | 0.06  |
| 8                     | 885            | 0.08             | 2012 | 0.05  | 1316 | 0.05  |
| 9                     | 868            | 0.10             | 1950 | 0.08  | 1310 | 0.07  |
| High                  | 863            | 0.22             | 1896 | 0.18  | 1282 | 0.15  |
| Panel C: mon          | nentum sorte   | d portfolios     |      |       |      |       |
| Portfolio             | C              | CMA              | SMA  | A(10) | SMA  | A(20) |
|                       | NT             | BETC             | NT   | BETC  | NT   | BETC  |
| Low                   | 870            | 0.86             | 1832 | 0.53  | 1198 | 0.74  |
| 2                     | 899            | 0.42             | 1932 | 0.27  | 1296 | 0.36  |
| 2<br>3<br>4<br>5<br>6 | 910            | 0.21             | 2060 | 0.14  | 1316 | 0.23  |
| 4                     | 903            | 0.18             | 2064 | 0.10  | 1360 | 0.15  |
| 5                     | 916            | 0.10             | 2060 | 0.07  | 1362 | 0.08  |
| 6                     | 913            | 0.08             | 2098 | 0.06  | 1402 | 0.05  |
| 7                     | 904            | 0.11             | 1996 | 0.08  | 1356 | 0.04  |
| 8                     | 922            | -0.01            | 2086 | -0.00 | 1390 | -0.01 |
| 9                     | 908            | 0.08             | 2016 | 0.04  | 1436 | 0.03  |
| High                  | 867            | 0.12             | 1938 | 0.07  | 1308 | 0.09  |
| Panel D: stan         | dard deviatio  | n sorted portfol | ios  |       |      |       |
| Portfolio             | C              | CMA              | SMA  | A(10) | SMA  | A(20) |
|                       | NT             | BETC             | NT   | BETC  | NT   | BETC  |
| High                  | 719            | 0.70             | 1558 | 0.52  | 936  | 0.75  |
| 2                     | 790            | 0.74             | 1650 | 0.53  | 1098 | 0.68  |
| 2                     | 786            | 0.66             | 1634 | 0.48  | 1042 | 0.63  |
| 3                     | 780            | 0.00             | 1034 | 0.10  | 1012 |       |

**Table 10**CMA versus Simple MA: trading Frequency and Break–Even TransactionCosts

| Portfolio | СМА |      | SMA(10) |      | SMA(20) |      |
|-----------|-----|------|---------|------|---------|------|
|           | NT  | BETC | NT      | BETC | NT      | BETC |
| 5         | 774 | 0.48 | 1624    | 0.34 | 1026    | 0.44 |
| 6         | 772 | 0.44 | 1646    | 0.32 | 1048    | 0.35 |
| 7         | 767 | 0.40 | 1664    | 0.27 | 1092    | 0.32 |
| 8         | 769 | 0.37 | 1640    | 0.25 | 990     | 0.36 |
| 9         | 740 | 0.37 | 1546    | 0.27 | 928     | 0.38 |
| Low       | 660 | 0.43 | 1350    | 0.32 | 832     | 0.40 |

**Table 10** (continued)

This table reports findings from a comparison of the performance of the combination MA (CMA) strategy to a simple MA strategy with 10 and 20 days window. Below I report the equivalent trading frequency, NT, for the combination MA strategy as well as the equivalent break-even transaction cost for the combination MA strategy, BETC, using 10 decile portfolios sorted by size, book-to-market, momentum, and standard deviation of return. The sample period covers January 4, 1960 until December 31, 2013 with value-weighted portfolio returns. SMA(q) refers to the simple MA strategy with *q* days in the window. The lengths of the moving average windows in the combination MA strategy are 5, 10, 20, 50, 100, and 200 days. The combination moving average portfolio is an equal-weighted combination of the six individual simple moving average returns.

contains 10% of the stocks with the highest historical volatility, while the tenth decile is low and contains stocks with the lowest historical volatility.

Next, I turn to the comparison of the mean and variance improvement of the CMA strategy relative to SMA(10) and SMA(20). Table 11 reports the mean improvement,  $\Delta\mu$ , and the risk reduction,  $\Delta\sigma$ , for all three strategies. A very consistent and curious pattern of findings emerges from all four panels. The CMA strategy uniformly produces a lower improvement in average return relative to buy-and-hold when compared with both the SMA(10) and SMA(20). However, it is also always the case that the risk reduction attained by the CMA strategy relative to buy-and-hold uniformly exceeds the risk reduction achieved by both SMA(10) and SMA(20). Both  $\Delta\mu$  and  $\Delta\sigma$  are almost exhibit interesting patterns cross-sectionally, in particular, return improvement is almost the same across deciles for size and book-to-market portfolios while monotonic for momentum and volatility-sorted portfolios.

Finally, I turn to a simple predictive regression comparison where I use a conditional version of the Carhart 4-factor model with a moving average indicator as a predetermined state variable

$$CMAP_{jt,L} = \alpha_j + \beta_{j,m}r_{mkt,t} + \beta_{j,s}r_{smb,t} + \beta_{j,h}r_{hml,t} + \beta_{j,u}r_{umd,t} + \phi_{j,Z}(Z_{t-1}\otimes [1_T, r_{mkt,t}, r_{smb,t}, r_{hml,t}, r_{umd,t}]) + \varepsilon_{jt}, \quad j = 1, ..., N$$

where  $Z_{t-1}$  is represented by a moving average indicator variable equal to one of the MA signal indicates a buy and zero otherwise for the SMA strategy. For the CMA strategy, the moving indicator is the equal-weighted average of the six SMA indicator variables. In the interest of brevity, I report only the adjusted

| Portfolio     | CMA            |                 | SMA          | SMA(10)         |              | SMA(20)         |  |
|---------------|----------------|-----------------|--------------|-----------------|--------------|-----------------|--|
|               | $\Delta \mu$   | $\Delta \sigma$ | $\Delta \mu$ | $\Delta \sigma$ | $\Delta \mu$ | $\Delta \sigma$ |  |
| Low           | 11.73          | 6.15            | 15.90        | 5.14            | 13.86        | 5.24            |  |
| 2             | 8.43           | 7.64            | 11.93        | 6.12            | 10.11        | 6.19            |  |
| 3             | 6.80           | 7.40            | 10.19        | 5.95            | 8.63         | 6.13            |  |
| 4             | 6.25           | 7.38            | 9.37         | 5.93            | 7.98         | 6.01            |  |
| 5             | 5.48           | 7.23            | 8.08         | 5.83            | 6.42         | 5.92            |  |
| 6             | 5.60           | 6.87            | 9.21         | 5.60            | 6.35         | 5.60            |  |
| 7             | 5.28           | 6.96            | 7.49         | 5.65            | 6.03         | 5.66            |  |
| 8             | 4.11           | 7.01            | 6.82         | 5.67            | 4.57         | 5.71            |  |
| 9             | 2.54           | 6.90            | 3.80         | 5.60            | 2.21         | 5.72            |  |
| High          | -0.34          | 7.12            | -0.44        | 5.71            | -1.09        | 5.86            |  |
| Panel B: bool | k-to-market so | rted portfolio  | S            |                 |              |                 |  |
| Portfolio     | CM             | IA              | SMA          | (10)            | SMA          | (20)            |  |
|               | Δμ             | $\Delta \sigma$ | Δμ           | $\Delta \sigma$ | Δμ           | $\Delta \sigma$ |  |

| Table 11 | CMA versus simple M | IA: improvement in mean and ariance |
|----------|---------------------|-------------------------------------|
|----------|---------------------|-------------------------------------|

| Portfolio | СМА          |                 | SMA(10) |                 | SMA(20)      |                 |
|-----------|--------------|-----------------|---------|-----------------|--------------|-----------------|
|           | $\Delta \mu$ | $\Delta \sigma$ | Δμ      | $\Delta \sigma$ | $\Delta \mu$ | $\Delta \sigma$ |
| Low       | 2.95         | 7.94            | 3.20    | 6.40            | 3.08         | 6.60            |
| 2         | 1.55         | 7.06            | 2.87    | 5.77            | 2.02         | 5.83            |
| 3         | 2.02         | 6.67            | 2.70    | 5.42            | 2.33         | 5.49            |
| 4         | 2.43         | 6.93            | 4.00    | 5.65            | 2.68         | 5.59            |
| 5         | 1.24         | 6.87            | 1.16    | 5.37            | 0.29         | 5.52            |
| 6         | 1.67         | 6.58            | 3.49    | 5.21            | 1.56         | 5.33            |
| 7         | 1.65         | 6.34            | 1.15    | 5.05            | 1.45         | 5.14            |
| 8         | 1.26         | 6.94            | 1.95    | 5.36            | 1.17         | 5.55            |
| 9         | 1.64         | 6.73            | 2.90    | 5.52            | 1.66         | 5.51            |
| High      | 3.53         | 7.46            | 6.12    | 6.02            | 3.65         | 6.05            |

## Panel C: momentum sorted portfolios

| Portfolio | СМА          |                 | SMA(10)      |                 | SMA(20)      |                 |
|-----------|--------------|-----------------|--------------|-----------------|--------------|-----------------|
|           | $\Delta \mu$ | $\Delta \sigma$ | $\Delta \mu$ | $\Delta \sigma$ | $\Delta \mu$ | $\Delta \sigma$ |
| Low       | 13.72        | 12.59           | 17.74        | 8.44            | 16.21        | 9.07            |
| 2         | 6.86         | 9.36            | 9.56         | 6.75            | 8.63         | 7.08            |
| 3         | 3.59         | 7.88            | 5.15         | 5.67            | 5.63         | 5.91            |
| 4         | 2.92         | 7.46            | 3.86         | 5.44            | 3.67         | 5.76            |
| 5         | 1.63         | 7.03            | 2.66         | 5.43            | 1.88         | 5.42            |
| 6         | 1.35         | 6.70            | 2.35         | 5.41            | 1.41         | 5.33            |
| 7         | 1.76         | 6.68            | 3.07         | 5.29            | 1.10         | 5.41            |
| 8         | -0.15        | 6.33            | -0.07        | 5.43            | -0.18        | 5.37            |
| 9         | 1.26         | 7.00            | 1.44         | 5.95            | 0.73         | 6.06            |
| High      | 1.98         | 8.68            | 2.61         | 7.51            | 2.07         | 7.73            |

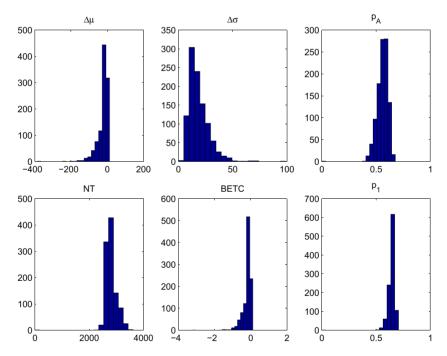
| Portfolio | CMA          |                 | SMA(10)      |                 | SMA(20)      |                 |
|-----------|--------------|-----------------|--------------|-----------------|--------------|-----------------|
|           | $\Delta \mu$ | $\Delta \sigma$ | $\Delta \mu$ | $\Delta \sigma$ | $\Delta \mu$ | $\Delta \sigma$ |
| High      | 9.32         | 7.23            | 14.85        | 6.08            | 12.83        | 6.21            |
| 2         | 10.82        | 8.55            | 16.23        | 6.73            | 13.64        | 7.06            |
| 3         | 9.59         | 8.32            | 14.47        | 6.56            | 12.10        | 6.76            |
| 4         | 7.43         | 7.69            | 10.94        | 6.07            | 9.22         | 6.18            |
| 5         | 6.81         | 7.05            | 10.21        | 5.61            | 8.31         | 5.66            |
| 6         | 6.18         | 6.57            | 9.76         | 5.23            | 6.69         | 5.23            |
| 7         | 5.64         | 5.76            | 8.30         | 4.62            | 6.42         | 4.71            |
| 8         | 5.21         | 5.03            | 7.46         | 4.12            | 6.55         | 4.24            |
| 9         | 5.07         | 4.22            | 7.71         | 3.59            | 6.40         | 3.65            |
| Low       | 5.25         | 3.14            | 7.98         | 2.74            | 6.06         | 2.75            |

This table reports findings from a comparison of the performance of the combination MA (CMA) strategy to a simple MA strategy with 10 and 20 days window. I report the improvement in the mean return,  $\Delta\mu$ , and the improvement in the standard deviation,  $\Delta\sigma$ , for the combination MA strategy relative to the BH strategy using 10 decile portfolios sorted by size, book-to-market, momentum, and standard deviation of return. The sample period covers January 4, 1960 until December 31, 2013 with value-weighted portfolio returns. SMA(q) refers to the simple MA strategy with q days in the window. The lengths of the moving average windows in the combination MA strategy are 5, 10, 20, 50, 100, and 200 days. The combination moving average portfolio is an equal-weighted combination of the six individual simple moving average returns.

goodness-of-fit for the CMA, SMA(10), and SMA(20) in Table 12.<sup>5</sup> The reported findings indicate that the adjusted  $R^2$  from these conditional predictive regressions for the CMA strategy exceeds that goodness-of-fit of the same regression for the SMA(20) strategy which in turn exceeds to goodness-of-fit of the SMA (10) strategy. This finding is robust across all four sets of decile portfolios and is probably due to the fact that the CMA strategy aggregates six signals from six different SMA strategies with various window lengths. To the extent that there may be any incremental value-added across SMA strategies of varying lengths then an aggregative signal like the CMA equal-weighted averaging over several SMA signals may improve the chances of the signal being on the right side of the market.

## E. Individual stocks

In this subsection, I report results on the performance of moving average strategies with individual stocks in the Center for Research in Security Prices (CRSP) database starting in January 4, 1988 until December 30, 2011 that have continuously non-missing daily return observation during this entire sample period. This


5 The full results of these conditional regressions are available from the author upon request.

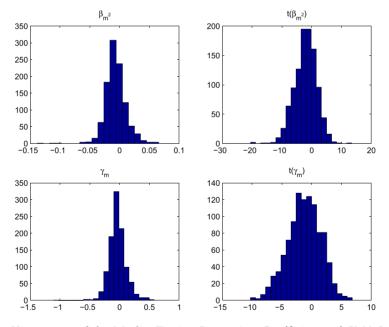
| Panel A: size sorted | portfolios                 |                           |                           |
|----------------------|----------------------------|---------------------------|---------------------------|
| Portfolio            | $\overline{R}_{CMA}^2$     | $\overline{R}^2_{MA(10)}$ | $\overline{R}^2_{MA(20)}$ |
| Low                  | 0.687                      | 0.488                     | 0.557                     |
| 2                    | 0.746                      | 0.506                     | 0.586                     |
| 3                    | 0.772                      | 0.515                     | 0.621                     |
| 4                    | 0.769                      | 0.508                     | 0.610                     |
| 5                    | 0.767                      | 0.509                     | 0.605                     |
| 6                    | 0.736                      | 0.494                     | 0.589                     |
| 7                    | 0.735                      | 0.484                     | 0.582                     |
| 8                    | 0.739                      | 0.494                     | 0.582                     |
| 9                    | 0.754                      | 0.483                     | 0.580                     |
| High                 | 0.776                      | 0.492                     | 0.580                     |
| Panel B: book-to-ma  | arket sorted portfolios    |                           |                           |
| Portfolio            | $\overline{R}_{CMA}^2$     | $\overline{R}^2_{MA(10)}$ | $\overline{R}^2_{MA(20)}$ |
| Low                  | 0.740                      | 0.457                     | 0.558                     |
| 2                    | 0.703                      | 0.451                     | 0.546                     |
| 3                    | 0.690                      | 0.457                     | 0.540                     |
| 4                    | 0.666                      | 0.432                     | 0.532                     |
| 5                    | 0.649                      | 0.437                     | 0.506                     |
| 6                    | 0.671                      | 0.459                     | 0.534                     |
| 7                    | 0.666                      | 0.448                     | 0.517                     |
| 8                    | 0.676                      | 0.477                     | 0.558                     |
| 9                    | 0.686                      | 0.460                     | 0.550                     |
| High                 | 0.643                      | 0.464                     | 0.527                     |
| Panel C: momentur    | n sorted portfolios        |                           |                           |
| Portfolio            | $\overline{R}_{CMA}^2$     | $\overline{R}^2_{MA(10)}$ | $\overline{R}^2_{MA(20)}$ |
| Low                  | 0.672                      | 0.487                     | 0.593                     |
| 2                    | 0.715                      | 0.517                     | 0.619                     |
| 3                    | 0.710                      | 0.514                     | 0.608                     |
| 4                    | 0.680                      | 0.481                     | 0.577                     |
| 5                    | 0.664                      | 0.450                     | 0.535                     |
| 6                    | 0.659                      | 0.431                     | 0.514                     |
| 7                    | 0.684                      | 0.451                     | 0.518                     |
| 8                    | 0.700                      | 0.437                     | 0.519                     |
| 9                    | 0.700                      | 0.446                     | 0.515                     |
| High                 | 0.722                      | 0.448                     | 0.518                     |
| Panel D: standard d  | eviation sorted portfolios |                           |                           |
| Portfolio            | $\overline{R}_{CMA}^2$     | $\overline{R}^2_{MA(10)}$ | $\overline{R}^2_{MA(20)}$ |
| High                 | 0.466                      | 0.363                     | 0.403                     |
| 2                    | 0.689                      | 0.507                     | 0.581                     |
| 3                    | 0.713                      | 0.521                     | 0.590                     |
| 4                    | 0.719                      | 0.508                     | 0.597                     |

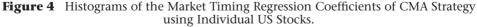
 Table 12
 CMA versus simple MA: predictive regressions goodness-of-fit

| Panel D: standard deviation sorted portfolios |                        |                           |                           |  |  |  |
|-----------------------------------------------|------------------------|---------------------------|---------------------------|--|--|--|
| Portfolio                                     | $\overline{R}_{CMA}^2$ | $\overline{R}^2_{MA(10)}$ | $\overline{R}^2_{MA(20)}$ |  |  |  |
| 5                                             | 0.728                  | 0.523                     | 0.607                     |  |  |  |
| 6                                             | 0.724                  | 0.525                     | 0.589                     |  |  |  |
| 7                                             | 0.715                  | 0.516                     | 0.584                     |  |  |  |
| 8                                             | 0.693                  | 0.491                     | 0.579                     |  |  |  |
| 9                                             | 0.619                  | 0.447                     | 0.528                     |  |  |  |
| Low                                           | 0.362                  | 0.280                     | 0.310                     |  |  |  |

This table reports goodness-of-fit results in predictive regressions of the conditional Carhart model with an MA indicator as a state variable for the combination MA (CMA) strategy with the simple MA strategy with 10 and 20 days window. I report the adjusted  $R^2$  for the combination MA strategy relative to the BH strategy using 10 decile portfolios sorted by size, book-to-market, momentum and standard deviation of return. The sample period covers January 4, 1960 until December 31, 2013 with value-weighted portfolio returns. SMA(q) refers to the simple MA strategy with *q* days in the window. The lengths of the moving average windows in the combination MA strategy are 5, 10, 20, 50, 100, and 200 days. The combination moving average returns.







*Notes:* Figure 3 presents histogram plots of  $\Delta \mu$ ,  $\Delta \sigma$ ,  $p_A$ , *NT*, *BETC*, and  $p_1$  of the relative performance of the combination moving average strategy versus the buy and hold strategy using 1040 individual US stocks. The sample contains 6052 daily observations, and the data covers the January 4, 1988 until December 30, 2011.

results in 1040 individual stocks. Instead of reporting the results in tabular form, I report the key attributes in Figure 3 as histograms.

The performance of the CMA strategy with individual stocks is largely consistent with the performance of the CMA strategy with portfolios. The risk of the CMA strategy is uniformly always smaller than the risk of the underlying stock. The difference in average returns between the CMA and BH strategies is negative for 1011 or more than 97% of all individual stocks I investigate. The findings for the BETC are identical as the latter is calculated as a function of the former. The inferior performance of the CMA strategy relative the BH strategy for individual stocks comes as a surprise compared with the findings for the portfolios presented in the previous section. Nevertheless, there is a universal reduction in risk indicated by the uniformly positive values for  $\Delta \sigma$ . The majority of negative values for  $\Delta \mu$  could be due to the shorter time period under investigation relative to the findings for the stock portfolios.

Figure 4 presents histograms of the distribution of  $\hat{\beta}_{m^2}$  and  $\hat{\gamma}_m$  across 1040 individual stocks. The findings of both market timing specifications are both qualitatively and quantitatively similar. Only 30% (TM) to 34% (HM) of the market timing coefficients are positive with less than a half of those statistically significant. At the same time, 66% (HM) to 70% (TM) of the market timing coefficients





*Notes:* Figure 4 presents histogram plots of the market timing regression coefficients  $\beta_{m^2}$  and  $\gamma_m$  as well as the associated *t*-statistics of the combination moving average strategy using 1040 individual US stocks. The sample contains 6052 daily observations and the data covers the January 4, 1988 until December 30, 2011.

are negative with the majority being statistically significant. These findings indicate that the CMA strategy performed on individual stocks fails to time the market in the right direction.

## F. Discussion

The large values of the risk-adjusted abnormal returns presented in the previous subsection demonstrate the profitability of the CMA switching strategy. This raises the question as to what ultimately drives of the performance of the CMA strategy. So far, the evidence points towards a strategy that is contrarian, with a focus on large-cap growth stocks and short the market. However, the goodness-of-fit statistics indicate that this is at most only half the story. A more fundamental question that arises is how can this strategy survive in competitive financial markets. A few potential reasons seem plausible.

First, there is ample evidence that stock returns are predictable at various frequencies at least to a certain degree. This level of predictability is not perfect but is sufficient to improve forecasts of future stock returns when stock return predictability is ignored. Some of the early evidence presented in Fama and Schwert (1977) and Campbell (1987) as well as more recent work by Cochrane (2008) clearly demonstrates that stock return predictability is an important feature that investors should ignore at their own peril.

Evidence regarding the performance of the moving average technical indicator is present in Brock et al. (1992) in the context of predicting future moments of the Dow Jones Industrial Average. Lo et al. (2000) provide further evidence using a wide range of technical indicators with wide popularity among traders showing that this adds value even at the individual stock level over and above the performance of a stock index. More recently, Neely et al. (2010) provide evidence in favor of the usefulness of technical analysis in forecasting the stock market risk premium.

Second, early work on the performance of filter rules by Fama and Blume (1966); Jensen and Benington (1970) concluded that such rules were dominated by buy and hold strategies especially after transaction costs. Malkiel (1996) makes a forceful and memorable point against technical indicators: "Obviously, I'm biased against the chartist. This is not only a personal predilection but a professional one as well. Technical analysis is anathema to the academic world. We love to pick on it. Our bullying tactics are prompted by two considerations: (1) after paying transaction costs, the method does not do better than a buy-and-hold strategy for investors, and (2) it's easy to pick on. And while it may seem a bit unfair to pick on such a sorry target, just remember: It's your money we are trying to save." In a follow up on Brock et al. (1992); Bessembinder and Chan (1998) attribute the forecasting power of technical analysis to measurement errors arising from non-synchronous trading. Ready (2002) goes even further and claims the results in Brock et al. (1992) are spurious and due to data snooping. Formal tests using White's Reality Check are conducted in Sullivan et al. (1999) confirm that Brock et al. (1992) results are robust

to data snooping and perform even better out of sample though there is evidence of time variation in performance across subperiods. A more recent study using White's Reality Check and Hansen's Superior Predictive Ability (SPA) test is Hsu and Kuan (2005) who find evidence of profitability of technical analysis using relatively "young" markets like the National Association of Securities Dealers and Quotes (NASDAQ) Composite index and the Russell 2000 both in-sample and out-of-sample.

Furthermore, Treynor and Ferguson (1985) make a strong case in favor of investor's learning and Bayesian updating conditional on new information received rationally combining past prices can result in abnormal profitability. Sweeney (1988) revisits Fama and Blume (1966) and finds that filter rules can be profitable to floor traders in the 1970–1982 time period. Neftci (1991) presents a formal analysis of Wiener-Kolmogorov prediction theory which provides optimal linear forecasts. He concludes that if the underlying price processes are nonlinear in nature then technical analysis rules might capture some useful information that is ignored by the linear prediction rules. More involved and inherently non-linear rules are investigated in the context of foreign currency exchange rates by Neely et al. (1997) using a genetic programming approach. Gencay (1998) goes even further in using non-linear predictors based on simple moving average rules on the Dow Jones Industrial Average over a long time period between 1897 and 1988. In a similar vein, Allen and Karjalainen (1999) use genetic algorithms to search for functions of past prices find that can outperform a simple buy-and-hold strategy and report negative excess returns for most of the strategies they consider.

Thirdly, it is entirely possible that market prices of financial assets can persistently deviate from fundamental values. Those fundamental values themselves are subject to incomplete information and, perhaps, imperfect understanding of valuation tools as well as dispersion of beliefs and objective and behavioral biases across the pool of traders and investors who regularly interact in financial markets. When investors' information is incomplete, and they learn continuously over time, the true fundamental value, Zhu and Zhou (2009) as well as Han et al. (2016) show theoretically that the moving average price is a useful state variable that aids in investors' learning and improves their well-being and utility.

Behavioral and cognitive biases have been proposed in Daniel et al. (1998) and Hong and Stein (1999), among others, as a potential driver of both price underreaction and over-reaction in conjunction with the observed price continuation of stock prices. An alternative explanation for price continuation was proposed in Zhang (2006). He argues that investors sub-optimally underweight newly arriving public information leading to a persistent deviation of the market price from the fundamental intrinsic value.

Note also that despite the apparent similarity of the CMA switching strategy to the momentum strategy, the four-factor alphas reported previously are statistically significant and of large magnitudes. This is perhaps not surprising given that the payoff of the CMA strategy resembles an at-the-money protective put strategy. The non-linearity this induces makes the asset pricing task much more difficult when linear models are used.

## V. CONCLUSION

In this paper, I report results for the performance of a combination moving average strategy applied to decile portfolios sorted by size, book-to-market, momentum, and standard deviation of return. Further unreported findings for portfolios of stocks sorted by various measures of yield, past returns, and industry classification support the reported findings. There is overwhelming evidence that the combination moving average strategy dominates in a mean-variance sense buying and holding any of the decile portfolios. The excess returns of the CMA returns over BH returns of the underlying portfolios are relatively insensitive to the four Carhart (1997) factors and generate high statistically and economically significant abnormal returns. Furthermore, the abnormal returns for most deciles decline substantially after controlling for the market's dividend yield, the shortterm risk-free rate, recessions, and up/down markets. This CMA strategy does not involve overly excessive trading when implemented with daily returns and has positive break-even transaction costs, suggesting that it will be actionable even for large institutional investors. These findings are robust with respect to portfolio construction, various lag lengths of the moving average, alternative sets of portfolios, and individual stocks. The risk-adjusted performance is reduced substantially only in the context of a conditional asset pricing model with the market's dividend yield and a recession indicator as predetermined state variables. Hence, it appears that the success of the CMA strategy does not represent an anomaly and is consistent with rational asset pricing. In addition, any abnormal returns surviving the previously mentioned tests may not be actionable in practice because of limits to arbitrage and price impact of trading on illiquid risky assets with low trading volumes.

Further work would be necessary to investigate the potential link between the returns of the CMA switching strategy and the payoffs of protective put options on the underlying asset. One potential alternative is to combine all first four moments using a utility function over them and convert the gains into certainty equivalent utility gains. Comparing the certainty equivalent utility gains to the break-even transaction costs will provide further evidence into whether the CMA switching strategy is desirable for investors who care about the first four moments of asset returns. In addition, more theoretical studies along the lines of Zhu and Zhou (2009) as well as Han et al. (2016)would provide a further justification of the practical application of technical analysis and the continued investigation of technical analysis role in empirical asset pricing.

Considering the vast literature on technical analysis and the numerous technical indicators following by some traders in practice, this study is just a first step towards investigating the performance and implementation of one common technical indicator. Future work will determine which other technical indicators

perform well, and whether they produce significant abnormal returns over and above the relevant transaction costs.

Paskalis Glabadanidis Accounting and Finance, Business School University of Adelaide Adelaide SA 5005 Australia paskalis.glabadanidis@adelaide.edu.au

#### REFERENCES

- Allen, F., and R. Karjalainen (1999), 'Using Genetic Algorithms to Find Technical Trading Rules', *Journal of Financial Economics*, 51, 245–72.
- Balduzzi, P., and A. W. Lynch (1999), 'Transaction Costs and Predictability: Some Utility Cost Calculations', *Journal of Financial Economics*, 52, 47–78.
- Bessembinder, H., and K. Chan (1998), 'Market Efficiency and the Returns to Technical Analysis', *Financial Management*, 27, 5–17.
- Blume, L., D. Easley, and M. O'Hara (1994), 'Market Statistics and Technical Analysis: The Role of Volume', *Journal of Finance*, 49, 153–81.
- Brock, W., J. Lakonishok, and B. LeBaron (1992), 'Simple Technical Trading Rules and the Stochastic Properties of Stock Returns', *Journal of Finance*, 47, 1731–64.
- Brown, D. P., and R. H. Jennings (1989), 'On Technical Analysis', *The Review of Financial Studies*, 2, 527–51.
- Campbell, J. Y. (1987), 'Stock Returns and the Term Structure', *Journal of Financial Economics*, 18, 373–99.
- Carhart, M. M. (1997), 'On Persistence in Mutual Fund Performance', *Journal of Finance*, 52, 57–82.

Cochrane, J. H. (2008), 'The Dog that Did Not Bark: A Defense of Return Predictability', *Review of Financial Studies*, 21, 1533–75.

Daniel, K., D. Hirshleifer, and A. Subrahmanyam (1998), 'Investor Psychology and Security Market Under- and Overreactions', *Journal of Finance*, 53, 1839–85.

Faber, M. T. (2007), 'A Quantitative Approach to Tactical Asset Allocation', *Jouranl of Wealth Management*, 9, 69–79.

Fama, E. F., and M. E. Blume (1966), 'Filter Rules and Stock-Market Trading', *Journal of Business*, 39, 226–41.

Fama, E. F., and W. Schwert (1977), 'Asset Returns and Inflation', *Journal of Financial Economics*, 5, 115–46.

Ferson, W. E., and R. W. Schadt (1996), 'Measuring Fund Strategy and Performance in Changing Economic Conditions', *Journal of Finance*, 51, 425–61.

- Fung, W., and D. A. Hsieh (2001), 'The Risk in Hedge Fund Strategies: Theory and Evidence from Trend Followers', *Review of Financial Studies*, 14, 313–41.
- Gencay, R. (1998), 'The Predictability of Security Returns with Simple Technical Trading Rules', *Journal of Empirical Finance*, 5, 347–59.
- Glabadanidis, P. (2014), 'The Market Timing Power of Moving Averages: Evidence from US REITs and REIT Indexes', *International Review of Finance*, 14(2), 161–202.

- Glabadanidis, P. (2015a), Market Timing and Moving Averages: An Empirical Analysis of Performance in Asset Allocation. New York: Palgrave Macmillan.
- Glabadanidis, P. (2015b), 'Market Timing with Moving Averages', *International Review of Finance*, 15(3), 387–425.
- Goh, J., F. Jiang, J. Tu, and G. Zhou (2012), 'Forecasting Government Bond Risk Premia Using Technical Indicators', Working paper.
- Han, Y. (2006), 'Asset Allocation with a High Dimensional Latent Factor Stochastic Volatility Model', *Review of Financial Studies*, 19, 237–71.
- Han, Y., K. Yang, and G. Zhou (2013), 'A New Anomaly: The Cross-Sectional Profitability of Technical Analysis', *Journal of Financial and Quantitative Analysis*, 48(5), 1433–61.
- Han, Y., G. Zhou, and Y. Zhu (2016), 'Trend Factor: Any Economic Gains from Using Information over Investment Horizons?', *Journal of Financial Economics*, forthcoming. http://dx.doi.org/10.1016/j.jfineco.2016.01.029.
- Henriksson, R. D., and R. C. Merton (1981), 'On Market Timing and Investment Performance. II. Statistical Procedures for Evaluating Forecasting Skills', *Journal of Business*, 54, 513–33.
- Hong, H., and J. C. Stein (1999), 'A Unified Theory of Underreaction, Momentum Trading, and Overreation in Asset Markets', *Journal of Finance*, 54, 2143–84.
- Hsu, P.-H., and C.-M. Kuan (2005), 'Reexamining the Profitability of Technical Analysis with Data Snooping Checks', *Journal of Financial Econometrics*, 3, 606–28.
- Huang, D., and G. Zhou (2013), 'Economic and Market Conditions: Two State Variables that Predict the Stock Market', Working paper.
- Jensen, M. C., and G. A. Benington (1970), Random Walks and Technical Theories: Some Additional Evidence', *Journal of Finance*, 25, 469–82.
- Jiang, F. (2013), 'Trend-Based Conditional Asset Pricing: Explaining the Cross-Section of Technical Analysis Profitability', Working paper.
- Kilgallen, T. (2012), 'Testing the Simple Moving Average across Commodities, Global Stock Indices, and Currencies', *Journal of Wealth Management*, 15, 82–100.
- Lo, A., H. Mamaysky, and J. Wang (2000), 'Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation', *Journal of Finance*, 55, 1705–65.
- Lynch, A. W., and P. Balduzzi (2000), 'Predictability and Transaction Costs: The Impact on Rebalancing Rules and Behavior', *Journal of Finance*, 66, 2285–309.
- Malkiel, B. G. (1996), A Random Walk Down Wall Street. New York: W. W. Norton & Company, Inc..
- Neely, C. J., D. E. Rapach, J. Tu, and G. Zhou (2010), 'Out-of-Sample Equity Premium Prediction: Fundamental vs. Technical Analysis', Unpublished working paper, Washington University in St. Louis.
- Neely, C. J., D. E. Rapach, J. Tu, G. Zhou (2011), 'Forecasting the Equity Risk Premium: The Role of Technical Indicators', Unpublished working paper, Federal Reserve Bank of St. Louis.
- Neely, C., P. Weber, and R. Dittmar (1997), 'Is Technical Analysis in the Foreign Exchange Market Profitable? A Genetic Programming Approach', *Journal of Financial and Quantitative Analysis*, 32, 405–26.
- Neftci, S. N. (1991), 'Naive Trading Rules in Financial Markets and Wiener-Kolmogorov Prediction Theory: A Study of "Technical Analysis", *Journal of Business*, 64, 549–71.
- Newey, W. K., and K. D. West (1987), 'A Simple, Positive Semi-Definite, Heteroscedasticity and Autocorrelation Consistent Covariance Matrix', *Econometrica*, 55, 703–8.
- Ready, M. J. (2002), 'Profits from Technical Trading Rules', *Financial Management*, 31, 43–61.
- Sullivan, R., A. Timmerman, and H. White (1999), 'Data-Snooping, Technical Trading Rule Performance, and the Bootstrap', *Journal of Finance*, 54, 1647–92.

- Sweeney, R. J. (1988), 'Some New Filter Rule Tests: Methods and Results', *Journal of Financial and Quantitative Analysis*, 23, 285–300.
- Taleb, N. N. (2012), Antifragile Things that Gain from Disorder. New York: Random House, Inc..
- Treynor, J. L., and R. Ferguson (1985), 'In Defense of Technical Analysis', *Journal of Finance*, 40, 757–73.
- Treynor, J. L., and K. Mazuy (1966), 'Can Mutual Funds Outguess the Market?', *Harvard Business Review*, 44, 131–6.
- Wang, J. (1993), 'A Model of Intertemporal Asset Prices Under Asymmetric Information', *Review of Economic Studies*, 60, 249–82.
- Zhang, F. X. (2006), 'Information Uncertainty and Stock Returns', *Journal of Finance*, 61, 105–36.
- Zhu, Y., and G. Zhou (2009), 'Technical Analysis: An Asset Allocation Perspective on the Use of Moving Averages', *Journal of Financial Economics*, 92, 519–44.