
Doctoral Thesis

Robust Rotation Search in

Computer Vision

Author:

Álvaro Joaqúın Parra Bustos

Supervisors:

Dr. Tat-Jun CHIN

Prof. David SUTER

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

in the

Faculty of Engineering, Computer and Mathematical Sciences

School of Computer Science

August 2016

www.adelaide.edu.au
http://cs.adelaide.edu.au/~aparra
http://cs.adelaide.edu.au/~tjchin
http://cs.adelaide.edu.au/~dsuter
https://cs.adelaide.edu.au/
https://cs.adelaide.edu.au/

Declaration

I certify that this work contains no material which has been accepted for the award of

any other degree or diploma in my name in any university or other tertiary institution

and, to the best of my knowledge and belief, contains no material previously published

or written by another person, except where due reference has been made in the text. In

addition, I certify that no part of this work will, in the future, be used in a submission in

my name for any other degree or diploma in any university or other tertiary institution

without the prior approval of the University of Adelaide and where applicable, any

partner institution responsible for the joint award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being

made available for loan and photocopying, subject to the provisions of the Copyright

Act 1968.

The author acknowledges that copyright of published works contained within this thesis

resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web,

via the University’s digital research repository, the Library Search and also through web

search engines, unless permission has been granted by the University to restrict access

for a period of time.

Signed:

Date:

iii

THE UNIVERSITY OF ADELAIDE

Abstract

School of Computer Science

Doctor of Philosophy

Robust Rotation Search in Computer Vision

by Álvaro Joaqúın Parra Bustos

Rotation search is a fundamental problem which has significant importance in geometric

computer vision. In many practical settings, data or measurements for rotation search

are usually contaminated with large errors, leading to the existence of outliers in the

data. As a consequence, traditional least-squares rotation estimation methods are not

suitable in many practical applications. A more appropriate approach is to search for the

rotation based on a robust criterion. However, optimisation problems involving robust

criteria are hard to solve since the objective functions are usually non-differentiable and

non-convex.

This thesis makes several fundamental contributions in robust rotation search. In con-

trast to approximations or local methods that are typically used by current practitioners,

the presented methods in this thesis guarantee global optimality. The main challenge

for robust rotation search algorithms is to find an optimal result in reasonable time (to

be practical in out-of-lab applications). The work in this thesis is a contribution in this

direction.

To efficiently solve robust rotation search, several strategies are presented based on new

insights into the geometry of rotations, from the perspective of global optimisation.

Firstly, for point set registration on horizontally levelled data, the presented algorithms

make it possible to globally find the best rotation in real-time. Secondly, for the fully

unconstrained 3D rotation search problem, the presented algorithms outperform pre-

vious methods by an order of magnitude. The final contribution of this thesis is an

algorithm to safely remove true outliers when rotation is computed on outlier contami-

nated point correspondences. Substantial speed-up can be obtained when the proposed

outlier removal is used as a preprocessor to globally optimal algorithms. Since no inliers

are discarded, global optimality is guaranteed.

The contributions in this thesis can impact on computer vision problems where rotation

search is invoked as a subroutine. This thesis presents examples from 3D point cloud

registration and image stitching.

http://www.adelaide.edu.au/
https://cs.adelaide.edu.au/

Acknowledgements

I am pleased to thank to my supervisor, Dr. Tat-Jun Chin, for all his advice, comments,

and critical revisions throughout this thesis and the articles we published during my

PhD. I really appreciate his interest in this research. Working with him has certainly

been an enriching life experience. I would also like to thank to my co-supervisor Prof.

David Suter for his advice, revisions and comments during research meetings. I extend

this thanks to Anders Eriksson for his valuable comments on ideas and works that are

part of this thesis.

I would also like to thank my Master’s supervisor Dr. Julián Ortiz for his constant

advice.

I would like to express my sincere appreciation to my parents for all they support and

encouragement. I extend this thanks to my tata and t́ıa Maruja for all the unconditional

support. I want to thanks to Carola Cardoso for her help, company and encouragement.

I am also grateful to family and friends that visited me and shared amazing moments.

A big thank to Pamela Cordero and Nicolás Seitz.

During these years I have shared with incredible people. I am very grateful to Exequiel

Sepúlveda and his family for their constant support. A big thank also to Andrés Figueroa

and Paula Núñez for the shared moments, trips and help.

I also would like to extend thanks to Quoc-Huy Tran, Trung T. Pham, and Roberto

Shinmoto for the general advice and encouragement, and to Russell Disher for his hos-

pitality. Many thanks to Sergio Palacio, Carl Vail, Greg Rowlands and Kingsley Denton

for their help.

Last I would like to thank CONICYT Becas-Chile for founding my PhD.

vii

Contents

Declaration iii

Abstract v

Acknowledgements vii

Contents viii

List of Figures xiii

List of Tables xv

List of Algorithms xvii

Abbreviations xviii

Publications xxi

1 Introduction 1

1.1 Applications involving rotation search . 3

1.2 Why is rotation search difficult? . 4

1.3 Current rotation search methods . 5

1.4 Robust estimation . 7

1.5 Research contributions . 9

1.6 Thesis outline . 10

2 The Rotation Search Problem 11

2.1 Introduction . 11

2.2 Rotation representations . 12

2.2.1 Matrix representation . 12

2.2.2 Axis-angle representation . 12

2.2.3 Quaternion representation . 14

2.3 Rotation distances . 15

2.3.1 Angular distance . 15

2.3.2 Chordal distance . 15

ix

Contents x

2.3.3 Quaternion distance . 16

2.3.4 Axis-angle distance . 16

2.4 Rotation search methods . 17

2.4.1 Minimal cases . 17

2.4.2 Least squares methods . 17

2.4.2.1 Least squares methods for Type 1 problems 18

Horn’s method . 18

SVD method . 19

2.4.2.2 Least squares methods for Type 2 problems 19

2.4.3 Outliers in rotation search . 20

2.4.4 Consensus set maximisation methods 22

2.4.4.1 RANSAC . 22

2.4.4.2 Polynomial-time methods 23

2.4.4.3 Branch and bound . 24

2.4.5 Geometric matching methods . 24

2.5 Branch and bound . 24

2.5.1 Branching step . 25

2.5.2 Bounding step . 25

2.5.3 Search strategies . 26

2.5.4 BnB algorithm prototype . 26

2.5.5 Rotation space decomposition . 26

2.5.6 Bounding the rotation space . 27

2.6 Summary . 28

3 Robust 1D Rotation Search 31

3.1 Introduction . 31

3.2 Point cloud registration for LIDAR scans 32

3.3 User-assisted point cloud registration system 33

3.4 Rotation search for point cloud registration 34

3.5 BnB rotation search . 38

3.5.1 A novel rotational bounding function 39

3.5.2 Efficient evaluations for real-time search 42

3.6 Results . 44

3.7 Usage of Algorithm 3.1 in commercial software 48

3.8 Summary . 50

4 Robust 3D Rotation Search 51

4.1 Introduction . 51

4.2 Related work on 6 DoF point cloud registration 52

4.3 Fast BnB rotation search . 53

4.3.1 Objective function and BnB algorithm 53

4.3.2 Previous results . 54

4.3.3 Improving the tightness of the bound 56

4.3.4 Matchlists . 58

4.4 Efficient bound evaluations . 59

4.4.1 Kd-tree approach . 59

4.4.2 Circular R-tree approach . 60

Contents xi

4.4.2.1 Projection of spherical patches 61

4.4.2.2 Indexation for fast intersection queries 65

4.4.3 Modified plane sweep algorithm . 66

4.4.4 Computational analysis . 67

4.5 6 DoF registration . 67

4.5.1 Locally optimal method (Loc-GM) 67

4.5.2 Globally optimal method (Glob-GM) 68

4.6 Results . 69

4.6.1 Rotation search . 69

4.6.1.1 Scalability of rotation search algorithm 72

4.6.1.2 Comparison with other BnB rotation search 72

4.6.2 Globally optimal 6 DoF registration 73

4.6.2.1 Convergence of BnB algorithm 76

4.7 Summary . 79

5 Guaranteed Outlier Removal for Rotation Search 83

5.1 Introduction . 83

5.2 Guaranteed outlier removal . 84

5.3 Efficient algorithm for upper bound . 85

5.3.1 The ideal case . 87

5.3.2 Uncertainty bound . 87

5.3.3 Reducing the uncertainty . 89

5.3.3.1 Degenerate cases . 91

5.3.3.2 Non-degenerate cases . 91

5.3.3.3 Range of αi and βi . 93

5.3.3.4 Validity of the proposed method 94

5.3.4 Interval stabbing . 96

5.4 Main algorithm . 97

5.5 Results . 98

5.5.1 Synthetic data . 98

5.5.2 Point cloud registration . 101

5.5.3 Image stitching . 102

5.5.3.1 Quantitative results . 104

5.5.3.2 Qualitative results . 104

5.6 Summary . 109

6 Conclusions and Future Work 111

6.1 Future research directions . 111

6.1.1 Extensions for registration of LIDAR scans 111

6.1.2 Improvements for 3D rotation search 112

6.1.3 Removal of true outliers on point cloud registration 112

Bibliography 115

List of Figures

1.1 Example of rotation search in point cloud registration. 5

1.2 Robust objective functions. 6

1.3 Example of rotation search on point correspondences 8

2.1 Illustrating the π-ball. 13

2.2 Example of a Type 1 problem with a significant amount of outliers. 21

2.3 Example of a Type 2 problem with a significant amount of outliers. 22

2.4 Illustrating the decomposition of the π-ball into blocks. 27

3.1 Example of terrestrial LIDAR scanner. 31

3.2 Registering mine sites. 32

3.3 Diagram of the user-assisted point cloud registration system. 33

3.4 Sample result of the interactive 3D registration system on underground
mine scans. 35

3.5 Sample result of the interactive 3D registration system on underground
mine scans. 35

3.6 Sample result for the interactive 3D registration system on the Stanford
Dragon. 36

3.7 Plumb-line uncertainty compensation. 37

3.8 Plot of objective function for point cloud rotational registration. 38

3.9 Top view illustration of the rotation search problem. 40

3.10 An illustration of the modified sweep plane algorithm. 43

3.11 Comparing runtime and quality (number of matched points) of various
rotation search methods. 47

3.12 Screenshots of the automated registration tool in Maptek I-Site Studio 6. 49

4.1 Under the action of all possible rotations in B, xi may lie only on a
spherical patch centered at Rcxi. 56

4.2 Illustrating the idea of matchlists. 58

4.3 Stereographic projection of a spherical patch. 60

4.4 The three types of patches arising from projecting spherical patches. . . . 60

4.5 Projection of a spherical patch Sα(x). 62

4.6 Collinearity of the origin, circle’s centre and closest and furthest points
on the a circle to the origin. 63

4.7 A set of interior patches in the projection plane is indexed in a circular
R-tree. 65

4.8 Point clouds used in the evaluation of rotation search. 70

4.9 Rotation search scalability. 72

xiii

List of Figures xiv

4.10 Evolution of upper and lower bounds as a function of iteration count in
the Glob-GM method. 79

4.11 Initial poses of point clouds and globally optimal results by Glob-GM
under the full overlap scenario. 80

4.12 Initial poses of point clouds and globally optimal results by Glob-GM
under the partial overlap scenario. 81

4.13 Ground truth and results of K-4PCS-Quality over the mining dataset
under the partial overlap scenario. 82

5.1 Geometry interpretations. 86

5.2 Geometric considerations of the angular bounding interval. 89

5.3 Solving for αi and βi in using the proposed linear approximations. 92

5.4 Geometry of solving α′i. 95

5.5 Results on synthetic data. 99

5.6 Data instance for armadillo for N = 100. 101

5.7 SIFT correspondences and stitching result of GORE. 103

5.8 Results for the machu-picchu image pair. 105

5.9 Results for the paris1 image pair. 106

5.10 Results for the paris2 image pair. 107

5.11 Results for the rio image pair. 108

6.1 Relating the Euclidean error and the angular error for a point correspon-
dence. 113

List of Tables

4.1 Comparing the performance of BnB rotation search methods using differ-
ent bounds and bound evaluation methods. 70

4.2 Comparing performance of 3D registration methods on point clouds with
full overlap. 77

4.3 Comparing performance of 3D registration methods on point clouds with
partial overlap. 78

5.1 Point cloud registration results. 101

5.2 Image stitching results. 104

xv

List of Algorithms

2.1 ICP for rotation search. 20

2.2 RANSAC for rotation search. 23

2.3 BnB best-first algorithm prototype for maximising f(x). 27

3.1 BnB for 1D rotation search. 39

3.2 Modified sweep plane algorithm for 1D rotation search. 45

4.1 BnB algorithm for 3D rotation search. 55

4.2 Modified plane sweep algorithm for 3D rotation search. 66

4.3 Nested BnB algorithm for 6 DoF registration. 69

5.1 Guaranteed outlier removal for rotation search (GORE). 98

xvii

Abbreviations

BnB Branch and Bound

CSM Consensus Set Maximisation

DoF Degrees of Freedom

GM Geometric Matching

LS Least Squares

SLAM Simultaneous Localisation And Mapping

xix

Publications

This thesis is in part result of the work presented in the following papers:

• Álvaro Parra Bustos, Tat-Jun Chin, Anders Eriksson, Hongdong Li and David

Suter: Fast rotation search with stereographic projections for 3D registration.

IEEE Transactions on Pattern Analysis and Machine Intelligence.

Accepted on 23 Dec 2015.

(DOI: 10.1109/TPAMI.2016.2517636)

• Álvaro Parra Bustos and Tat-Jun Chin: Guaranteed Outlier Removal for Rotation

Search. In International Conference on Computer Vision (ICCV) 2015: 2165-2173

• Álvaro Parra Bustos, Tat-Jun Chin and David Suter: Fast rotation search with

stereographic projections for 3D registration. In Computer Vision and Pattern

Recognition (CVPR) 2014: 3930-3937

(DOI: 10.1109/CVPR.2014.502)

• Tat-Jun Chin, Álvaro Parra Bustos, Michael Brown and David Suter: Fast rotation

search for real-time interactive point cloud registration. In ACM SIGGRAPH

Symposium on Interactive 3D Graphics and Games (I3D) 2014: 55-62

(DOI: 10.1145/2556700.2556712)

http://dx.doi.org/10.1109/TPAMI.2016.2517636
http://dx.doi.org/10.1109/CVPR.2014.502
http://dx.doi.org/10.1145/2556700.2556712

For my parents.

xxiii

Chapter 1

Introduction

The overall objective of computer vision is to construct computer algorithms that can

understand visual information, similar to the ability of the human visual system. For

example, recognising objects such as cars or birds in a picture. Such tasks can be

performed effortlessly by the human vision system. However, it is very challenging to

mimic such abilities on an artificial system. On the other hand, although the human

visual system can achieve very sophisticated tasks, it is affected by limitations that

do not strongly affect computer vision systems. For instance, our visual perception

suffers from limited visible spectrum, fallible memory and optical illusions. Moreover,

since our brain perceives the 3D world from 2D visual information acquired using the

retina, the resulting interpretations can be ambiguous and inaccurate. On the other

hand, computer vision systems are not limited to using the visible spectrum, they can

“remember” a huge amount of visual data, and they can directly perceive in 3D.

At present, there are different mature technologies that enable computers to sense in 3D.

The primary example is light detection and ranging (LIDAR) devices, which make point-

wise depth measurements based on the time of flight of light pulses. For example, the 3D

models of an underground mine in Figure 1.1a were captured with a LIDAR scanner.

Another notable example is depth cameras such as Microsoft Kinect, which captures

depth measurements based on the principle of active stereo with structured infrared

light. There are also technologies that recover the 3D structure of an environment

from 2D image sequences directly based on the principle of multiple view geometry and

simultaneous localisation and mapping (SLAM). An example of such a technology is

Google’s Project Tango that operates in real-time on a smartphone device.

Many useful applications can be implemented on 3D computer vision systems. Examples

are as follows:

1

Chapter 1. Introduction 2

• Recognising a known 3D object within a scene captured in 3D.

• Given a 3D shape, search for a similar shape amongst a database of 3D shapes.

• Stitching several sets of 3D scans together to obtain a more complete 3D model.

• Track changes of a scene over time.

In all of the applications above, a recurrent and basic task is the registration of different

sets of 3D measurements. Registration is defined as the process of transforming or

aligning several sets of measurements into a common coordinate system. An example

is presented in Figure 1.1. The alignment in Figure 1.1c was obtained after finding the

optimal rigid transform to align the point clouds in Figure 1.1a. This thesis focuses

on the optimisation of the rotational parameters in the registration problem, i.e., the

rotation search problem. Although one must estimate all 6 parameters of a 3D rigid

transform to accomplish registration, usually registration problems are decoupled into

rotation and translation search, with 3 parameters in each subproblem. For example,

in [50], least squares estimation of 3D rigid transform, rotation and translation are

treated independently. A more recent approach consists of a nested design. For example,

in [22], an inner rotation kernel is embedded in an outer translation search loop. Rotation

search algorithms can be embedded as a kernel in such a kind of registration methods.

On the other hand, there exist cases where only rotation is required, for instance if an

object is scanned on a turntable [17].

Rotation search is useful not only to computer vision problems that operate on 3D

measurements. Many problems in geometric vision, which take as input 2D images, also

require the estimation of rotational parameters. For example, stitching images when

building a 360◦ panorama or stitching photos of a far away scene. In these cases, the

problem of estimating the homography that relates two images can be accomplished as

a pure rotation search problem. The input of the rotation search problem is obtained by

applying the inverse camera calibration matrix on 2D image keypoints. Another problem

taking 2D images as input, is localising a photo on a given 3D model reconstructed from

images. The rotational parameters can be estimated by registering backprojected rays

from 2D image keypoints with the 3D model. More applications with 2D images as

input are presented Section 1.1.

Despite the prevalence of applications that require rotation search, the problem has not

been satisfactorily solved. For example, the least squares algorithms are not robust

towards outliers. Hence, the rotation obtained can be heavily biased away from the

desired result. More recent robust rotation search algorithms are designed to handle

outliers. However, the existing algorithms are rather inefficient. This thesis makes

several fundamental contributions toward efficient and robust rotation search.

Chapter 1. Introduction 3

The rest of this chapter further illustrates the usefulness and difficulty of rotation search.

A summary of recent progress in this area of computer vision is also given.

1.1 Applications involving rotation search

As alluded above, a vital component of 3D point cloud registration [6, 16, 60, 59] is

rotation search. Further, if translation is known, rotation search and rigid registration

are the same problem. It is emphasised that this thesis focusses on rigid point cloud

registration. For comparisons between different registration problems and methods, the

reader can refer to Tam et al. [70] and Salvi et al. [67]. Applications for point cloud

registration are extensive. Some examples are heritage recording [63], registration of un-

derground mine sites [16], and shape acquisition [28, 1]. In general, any application that

requires integrating data captured from different views has a registration component.

Apart from point cloud registration, the necessity of estimating rotations is present on

many other geometric computer vision problems.

Arguably, camera pose estimation is the more well-known fundamental problem that

has benefited from recent advances in globally optimal rotation search [51, 22, 34, 6].

This problem consists of estimating the position and orientation of a camera from point

matches between a 2D image and a 3D model. Camera pose estimation is an important

problem in geometric computer vision since it is a core problem in many applications

such as motion segmentation and object recognition.

Previously in this thesis, image stitching was presented as an example application for

rotation search that takes 2D images as input. Again, the homography relating two

images can be obtained as a rotational search problem if the input images are of a far

away scene. There exist many panoramic image stitching works [6, 19, 20, 59] that

have benefited from advances in rotation search. An interesting related application is

the creation of a 360◦ panorama by using a smartphone. An application guides the

user holding the smartphone to move the smartphone’s camera to obtain the needed

images to be stitched. The Google Photo Sphere project [30] is an example for such an

application.

Although the focus of this thesis is on computer vision application, rotation search

algorithms are important in other fields, such as robotics.

Hand-eye calibration [36, 68, 64, 35] is an important problem in robotics. Briefly, hand-

eye calibration is defined as the problem of estimating the transformation between a

Chapter 1. Introduction 4

camera and the robot hand where the camera is mounted. Typically, rotational parame-

ters need to be estimated as part of an affine transformation. However, for the problem

of a rotational sensor with a camera attached on it, calibration is solved by rotation

search only [68].

Location recognition [69] is another interesting problem involving rotation search. Lo-

cation recognition is about estimating the position in a 3D model from where an input

2D image was captured. This problem can be formulated as a registration problem

concerning rotation and translation. For a 2D image point, the points in the 3D model

with angular error lower than a threshold lie in a cone. Then, the registration problem

consists of aligning the 3D points in the model to the cones relating points in the 2D

image.

Although rotation search has many applications, in the rest of this thesis, aspects of

the problem and of the algorithms will be illustrated by focussing on the applications

of point cloud registration (Chapters 3 and 4) and image stitching (Chapter 5). The

reader should be reminded, however, that the novel algorithms presented in this thesis

can be easily transported to other applications such as the examples presented above.

1.2 Why is rotation search difficult?

In the ideal case of data without outliers, rotation search can be solved very efficiently

in closed form [37, 2] in the least squares sense. However, least squares algorithms fail in

outlier contaminated data, which is a common scenario in out-of-lab applications. The

methods presented in this thesis are directed at solving rotation search on such “difficult”

input data. These are the cases when only a small portion of the input point clouds can

be rotationally aligned, i.e., the inlier ratio or the percentage of overlap are low. Consider

the example presented in Figure 1.1 in which a small portion of points genuinely overlap

(Figure 1.1c). There is also the case where rotation is estimated from pre-determined

point correspondences, and outliers occur when point correspondences are incorrect (e.g.,

red lines in Figure 1.3b). A discussion on robust estimation is presented in Section 1.4.

Run-time is another important aspect in practical applications. Typically, real-life prob-

lems require a solution in a “short” period of time, and, in some cases, in real-time. An

example of an application that needs to solve rotation search in real-time is the user-

assisted registration system presented in Chapter 3.

At a fundamental level, what makes rotation search difficult is that most of the useful

objective functions are nonconvex. For example, observe the maximisation problem

plotted in Figure 1.2a which is used to robustly register the point clouds in Figure 1.1a.

Chapter 1. Introduction 5

(a) (b) (c)

Figure 1.1: Example of rotation search in point cloud registration. (a) Two input
point clouds that are related by a rotation. (b) Wrong result produced by a local
method (ICP). (c) The globally optimal alignment according to the geometric matching
criterion.

The non-convexity in rotation search is not only due to the non-convexity of robust

objective functions. Hartley and Kahl [32] presented several L∞ and Euclidean norm

multiple view geometric problems with quasi-convex objective functions. In many cases,

such problems can be solved efficiently. However, if rotational parameters form part of

the unknowns, the problems become nonconvex due to the additional constraints arising

from the space of rotations.

To address nonconvex optimisation, usually practical applications employ heuristics,

approximate methods or local algorithms, which do not guarantee optimality. In order

to globally solve rotation search, recent advances use the branch and bound (BnB)

optimisation framework to efficiently explore the problem’s parametric space. The work

presented in this thesis contributes to the usage of BnB to robustly solve rotation search

in real situations.

1.3 Current rotation search methods

Recent methods for rotation search can be distinguished into two groups. The first

group [28, 52, 3, 59, 12] takes as input a priori established point correspondences. The

second group [11, 41, 21, 73, 60, 16, 12] conducts rotation search on the raw data, where

point correspondences are not determined beforehand. Such challenging data occurs

frequently in real-life applications, e.g., surveying, mining, construction, and robotics.

Figures 1.1 and 1.3 are examples of rotation search problems on raw data and data with

point correspondences for 3D scans obtained from an underground mine. Note that the

point clouds only partially overlap.

Chapter 1. Introduction 6

0 1 2 3 4 5 6
0

50

100

150

200

250

300

350

400

angle (radians)

n
u
m

b
e
r

o
f
m

a
tc

h
e
s

(a)

0 1 2 3 4 5 6
0

5

10

15

20

25

angle (radians)

n
u
m

b
e
r

o
f
m

a
tc

h
e
s

(b)

Figure 1.2: Plot of robust objective functions used to solve rotation search problems
in Figures 1.1 and 1.3. (a) The geometric matching objective function is plotted for
250 rotation angles in [0, 2π] about the optimal axis of rotation. (b) The consensus set
maximisation objective function is plotted for 250 rotation angles in [0, 2π] about the
optimal axis of rotation. In both plots, the optimum rotation angle is at the vertical
line.

Recently, BnB has gained popularity in the computer vision community as an opti-

misation framework suitable for nonconvex global optimisation. As discussed before,

geometric computer vision problems are generally nonconvex, if rotational parameters

need to be estimated. Breuel [11] pioneered the use of BnB in geometric computer vision

by registering 2D points to a known 2D model. In Breuel’s formulation, registration is

solved on the raw data, i.e., without the need for a pre-established set of point corre-

spondences. However, a naive extension to estimate the six parameters of a 3D rigid

registration problem is unwieldy, where the primary difficulty is the estimation of the

3D rotational parameters.

More recently, several BnB methods have been presented to globally solve registration

problems on point correspondences. These include Li and Hartley’s algorithm [41] to

rotationally align 3D point clouds, and the algorithms for 3D point cloud registration

by Olsson et al. [53] and Enqvist and Kahl [22]. Another notable method that uses BnB

to globally optimise camera pose with known point correspondences was presented by

Hartley and Kahl [34].

Methods that operate on point correspondences are susceptible to the uncertainty of

keypoint detection and matching techniques. In applications such as the registration

of mine sites in Figure 1.1, it is difficult to find discriminative keypoints. Moreover,

matching points between two point clouds is especially difficult when the genuine point

correspondences lie in a small region. In the example in Figure 1.3, more than 99%

of identified point correspondences are incorrect, i.e., they are outliers. Algorithms

Chapter 1. Introduction 7

presented in [41, 34, 53] will fail in this type of data since they optimise objective

functions that are not robust to outliers.

Global registration methods have been presented to solve problems without a pre-

established set of point correspondences. Li and Hartley [41] presented a BnB algorithm

to solve a “Lipschitzised” objective function. However, they assume point clouds of

same size and a one-to-one valid matching for all points, i.e., no outliers. Go-ICP [73]

encapsulates ICP [9] in a nested BnB scheme to find the optimal solution. Go-ICP does

not assume one-to-one point matches, however its objective function is not robust to

outliers. Moreover, optimality can be affected by approximations used in conducted

nearest neighbour searches.

In addition to BnB, other methodologies have been proposed to globally solve geometric

computer vision problems [52, 3, 19, 20]. They are based on exploring stationary points

of subproblems of a fixed size. While this class of algorithm can robustly solve rotation

search in polynomial time, they are too slow to be practical on typical data sizes.

The two main characteristics of algorithms pursued in this thesis are global optimality

and robustness. The main contributions of the thesis are novel and provably more

efficient algorithms for rotation search that satisfy the two characteristics (more details

are in Section 1.5).

1.4 Robust estimation

Contamination in data is one of the common difficulties associated with many geometric

computer vision problems. Contamination can be categorised into two types: noise

and outliers. Noise is understood as low scale error; for instance, dispersion in measures

produced during the data acquisition process. Usually, noise is modelled as a probability

distribution function. Under the typical assumption of Gaussian noise, the maximum

likelihood estimate corresponds to the least squares solution [31]. However, in many

problems, contamination in data cannot be explained as noise only. Data often contains

outliers, which usually manifest as large-scale errors. A typical example is incorrect

assignments in data association processes. Since a noise model does not explain outliers,

algorithms that only model contamination as noise will break down in outlier prone

data.

Non-robust criteria such as least squares and L∞ norm are inadequate in problems with

outlier contamination. As a consequence, intrinsically robust criteria are required for

robust estimation, i.e., the estimation of a parametric model under the presence of noise

and outliers.

Chapter 1. Introduction 8

(a) (b)

(c) (d)

Figure 1.3: Example of rotation search on point correspondences. The green lines
represent inliers and the red lines represent outliers. There are only 24 inliers in a total
of 250 point correspondences. (a) Initial alignment. (b) The initial alignment in (a) is
translated for a better visualisation of point correspondences. (c) Optimal alignment
found by BnB. (d) The approximate alignment produced for a RANSAC instance.

An intrinsically robust criterion is to find the solution that maximises number of points

into alignment. This formulation is commonly referred to as consensus set maximisa-

tion when the input is a set of point correspondences, and as geometric matching [11]

when the problem is solved with unknown point correspondences. Usually, this type of

problems are much harder to solve, since the corresponding objective function is discrete

and non-differentiable (see Figure 1.2).

Arguably the most popular algorithm for consensus set maximisation is RANSAC (RAN-

dom SAmple Consensus) [24]. Briefly, RANSAC stochastically evaluates hypothesised

models obtained by sampling minimal sets of the input data. Even though RANSAC

Chapter 1. Introduction 9

is an approximate method, it has shown success in many computer vision applications.

The main weakness of RANSAC is its stochastic nature, which results in unpredictable

accuracy. Also, the runtime of RANSAC exponentially increases with respect to the

outlier ratio: as such, it is impractical for highly contaminated data.

For example, in Figure 1.3, RANSAC found 21 matches, however the optimal solution

has 24 matches as reported by BnB.

For registration on raw point clouds, a popular algorithm is ICP [9], however it is non-

robust to outliers (see the incorrect alignment produced by ICP in Figure 1.1b). To

increase robustness, Trimmed ICP [14] considers only the k closest matching point. In

general, it is hard to estimate k, i.e., the number of points with a genuine match. An-

other variant is LM-ICP [26] which replaces the Euclidean norm of the ICP criterion

with a robust norm that truncates errors above a threshold, and then solves the result-

ing problem using iterative optimisation. Whilst more robust than ICP, both variants

remain locally convergent methods.

1.5 Research contributions

The contributions of this thesis are novel and efficient algorithms for robust and globally

optimal rotation search.

Specifically, the major contributions are:

1. A globally optimal and real-time planar (1D) rotation search method for user-

assisted point cloud registration [16]. The method conducts BnB optimisation

with a novel bounding function whose evaluation amounts to simple sorted array

operations. The presented algorithm greatly outperforms conventional registration

methods on planar rotational motions (see Chapter 3).

2. A fast, globally optimal 3D rotation search method [60, 59]. For problems where

it is hard to obtain good quality correspondences, this is a fast alternative that

outperforms existing algorithms. Based on BnB, bound evaluations are accelerated

by using stereographic projections to precompute and index all possible point

matches in spatial R-trees (see Chapter 4).

3. A novel, guaranteed outlier removal for rotation search (GORE) [58]. When point

correspondences (potentially with outliers) are given, the presented method remove

outliers without compromising global optimality. Based on simple geometric op-

erations, GORE is deterministic and fast. Used as a preprocessor to prune a large

Chapter 1. Introduction 10

portion of the outliers from the input data, GORE enables substantial speed-up

of rotation search algorithms (see Chapter 5).

1.6 Thesis outline

The rest of this thesis is structured as follows. Chapter 2 presents a review of rotation

search methods in geometric computer vision. The next two chapters propose geometric

matching algorithms to globally solve for rotations directly on raw data. The special case

for 1D rotations is presented in Chapter 3, while a method to handle 3D rotations is ad-

dressed in Chapter 4. Chapter 5 presents a practical guaranteed outlier removal method

for rotation search which can be used to accelerate rotation search methods without

compromising optimality. Finally, Chapter 6 provides a conclusion and a discussion on

future research directions.

Chapter 2

The Rotation Search Problem

2.1 Introduction

Rotation search is a core sub-routine in many geometric vision applications such as 3D

point cloud registration [6, 16, 60, 59], essential matrix and camera pose estimation [22,

34, 6], hand-eye calibration [68, 35, 64], camera localisation [69] and image stitching [6,

19, 20, 59]. This chapter presents the necessary background theory for rotation search,

and reviews existing rotation search formulations and algorithms. In most practical

cases, the input data for rotation search is contaminated with outliers, thus the focus is

on robust rotation search.

The rotation search problems in the literature can be divided into two main types.

Type 1 - estimate rotation from a set of point correspondences

Given a set of one-to-one point correspondences H = {(xi,yi)}Ni=1, where each (xi,yi)

is a pair of corresponding points in R3, find the rotation R ∈ SO(3) that best aligns the

corresponding points. This problem type was examined in [34, 68, 64, 7, 58].

Type 2 - estimate rotation from “raw” input point sets

Let X = {xi}Mi=1 and Y = {yj}Nj=1 be two point sets in R3, where X and Y can have

different cardinalities in general. Find a rotation matrix R ∈ SO(3) that best aligns X
and Y. This type of problem was examined in [41, 16, 60, 59].

In general, problem Type 2 is much more difficult, since algorithms need to simulta-

neously solve for the rotation and point correspondences (the latter can be estimated

explicitly or implicitly). One of the purposes of this chapter is to survey the specific

rotation search formulations proposed in the literature and the associated algorithms.

11

Chapter 2. The Rotation Search Problem 12

The rest of this chapter is organised as follows: Sections 2.2 presents common rotation

representations. Section 2.3 presents rotation distances. Section 2.4 surveys rotation

search algorithms. Section 2.5 elaborates on the BnB optimisation framework, since this

methodology forms the basis of the novel algorithms to be presented in Chapters 3 and 4.

Finally, a summary of this chapter is presented in Section 2.6.

2.2 Rotation representations

This section presents common rotation representations and their relationships. A large

part of the description is based on [33].

2.2.1 Matrix representation

The most common way to represent a rotation is by a 3 × 3 orthogonal matrix with

determinant equal to 1. Thus, the set of rotations is given by

SO(3) =
{

R ∈ R3×3 | R>R = I, det(R) = 1
}
, (2.1)

where I is the 3× 3 identity matrix and det(·) calculates the matrix determinant.

Results from Lie theory are used to connect the rotation matrix representation to alter-

native representations. SO(3) is a Lie group with associated Lie algebra so(3) consisting

of all 3 × 3 skew-symmetric matrices. so(3) is connected with SO(3) by means of the

exponential map exp : so(3) → SO(3). Moreover, the exponential map allows to con-

nect R3 to SO(3) since any Lie algebra member in so(3) can be represented by a vector

v = [x, y, z]> in R3. The corresponding skew-symmetric matrix can be obtained by the

map v→ [v]×, where

[v]× =

0 −z y

z 0 −x
−y x 0

 . (2.2)

2.2.2 Axis-angle representation

A more intuitive rotation representation is the axis-angle representation. Euler’s rota-

tion theorem states that a rotation (or a sequence of rotations) is equivalent to a single

rotation about a fixed axis. Thus, every rotation in SO(3) can be represented as a ro-

tation angle θ about a unitary rotation axis r̂ in R3. This means each rotation can be

Chapter 2. The Rotation Search Problem 13

Figure 2.1: Illustrating the π-ball.

encoded as a vector

r = θr̂ (2.3)

in R3.

Without restricting θ, the axis-angle representation is not unique. For instance, θr̂ and

(2π−θ)(−r̂) are the same rotation. To define a unique representation, the rotation angle

is restricted to take values in [0, π]. Then, the corresponding rotation domain is a closed

ball Bπ ⊂ R3 of radius π and centred at the the origin as illustrated in Figure 2.1—this

is usually also referred to as the π-ball. However, the Bπ representation is not entirely

devoid of redundancies, since oppositely oriented points on the boundary of Bπ represent

the same rotation. Intuitively, when rotating π radians, the orientation of the rotation

axis is irrelevant.

The connection between the axis-angle and the matrix representation is given by the

exponential map. Specifically, the rotation matrix R in SO(3) corresponding with the

axis-angle representation vector r in Bπ is given by the exponential map over the Lie

algebra matrix [r]×.

The exponential map can be obtained in closed form using Rodrigues’ formula

exp ([θr̂]×) = I + sin(θ)[r̂]× + (1− cos(θ))([r̂]×)2. (2.4)

The vector in R3 equivalent to R can be obtained by the logarithm map log(·) : SO(3)→
R3 defined as

log(R) =

arcsin(‖y‖2)

y

‖y‖2
if y 6= 0

0 if y = 0,

(2.5)

where y = [y1, y2, y3]
> is such that [y]× =

1

2

(
R−R>

)
.

Chapter 2. The Rotation Search Problem 14

2.2.3 Quaternion representation

Quaternions can be thought of as an extension of complex numbers consisting of 3

imaginary components (v1, v3, v3) and a real part w. Analogously to complex numbers,

a quaternion can be represented by a vector q = [w, v1, v2, v3]
> in R4. Rotations can be

represented by unit-quaternions, i.e., quaternions with an Euclidean norm equal to one.

The quaternion representation is important from a theoretical point of view, but is also

a convenient representation in practice. Firstly, it is a more compact representation

than the matrix representation. Also, the quaternion representation is practical for

composing rotations since it requires of fewer operations than the matrix representation1.

The quaternion representation facilitates addressing numerical errors in rotations. The

computed results may drift away from the correct rotation as a consequence of rounding

errors in floating-point calculations. By normalising the resulting quaternion vector, a

valid rotation is obtained, i.e., with an equivalent matrix representation as in (2.1).

There are many geometric vision algorithms that use the quaternion representation for

rotations [37, 54, 51, 53].

Unit-quaternions form a group with the non-commutative quaternion multiplication: the

Hamilton product. The unit-quaternion group is a smooth Lie 3-manifold embedded in

R4 referred to as the unit-quaternion sphere and denoted as S3. By writing a quaternion

as a pair (w,v) where w is the real part and v = [v1, v2, v3]
> is the imaginary vector,

the Hamilton product for two quaternions q1 = (w1,v1) and q2 = (w2,v2) is

q1 · q2 = (w1w2 − 〈v1,v2〉, w1v1 + w2v2 + v1 × v2) (2.6)

where 〈·, ·〉 is the standard inner product and × the cross product in R3.

Unit-quaternions and the axis-angle representation are closely related. The quaternion

representation for a rotation encoded in the axis-angle vector θr̂ is

q = (cos(θ/2), sin(θ/2)r̂). (2.7)

The rotation matrix R equivalent to q can be obtained by using the exponential map

over its axis-angle representation, i.e.,

R = exp ([θr̂]×). (2.8)

1Matrix multiplication requires 27 multiplications and 18 additions, whereas 16 multiplications and
12 additions are needed if using quaternions.

Chapter 2. The Rotation Search Problem 15

The quaternion representation helps in visualising SO(3). S3 is a two-fold covering

space of SO(3) in which opposite points encode the same rotation. In S3, rotations with

rotation angle less than π are mapped one-to-one to the “Northern Hemisphere” with

the “North Pole” [1, 0, 0, 0]> encoding the identity rotation, i.e., with rotation angle

equal to 0.

2.3 Rotation distances

This section provides intuition relating to measuring rotations, and presents results to

bound SO(3) that are important in BnB rotation search formulations. A large part of

the description is based on [33].

2.3.1 Angular distance

An intuitive metric to compare rotations is the angular distance which takes values in

the [0, π] interval. The angular distance of a rotation R with respect to the identity

rotation I, is given by the angle of rotation about the rotation axis of R, and forced to

lie in [0, π] by inverting the rotation axis of R if needed.

For two rotations R and S, the angular distance d∠(R,S) is defined as the rotation

angle of RS>. When rotations are expressed as matrices, the angular distance can be

computed by using of the logarithm map. More specifically,

d∠(R,S) = d∠(RS>, I) = ‖ log(RS>)‖2. (2.9)

The angular distance between two unit-quaternions r and s (with equivalent rotation

matrices R and S) is

d∠(R,S) = 2 arccos(|w|), where (w,v) = r−1s. (2.10)

2.3.2 Chordal distance

The distance between rotation matrices can be computed directly on the matrix repre-

sentation by means of the Frobenius norm ‖ · ‖F on R3×3. The Frobenius norm is the

natural extension of the Euclidean norm to matrices. The chordal distance between two

matrices R and S is defined as

dchord(R,S) = ‖R− S‖F. (2.11)

Chapter 2. The Rotation Search Problem 16

The chordal distance is related to the angular distance by

dchord(R,S) = 2
√

2 sin

(
d∠(R,S)

2

)
. (2.12)

2.3.3 Quaternion distance

The quaternion distance is the Euclidean distance of unit-quaternions embedded in R4.

Since opposite points in S3 correspond to the same rotation, some care is needed to

properly define a distance. This ambiguity can be fixed by defining the quaternion

distance for two unit-quaternions r, s with equivalent rotation matrices R, S as

dquat(R,S) = min {‖r− s‖2, ‖r + s‖2} . (2.13)

The quaternion distance is related to the angular distance by

dquat(R,S) = 2 sin

(
d∠(R,S)

4

)
. (2.14)

2.3.4 Axis-angle distance

In a similar fashion to the quaternion distance, the axis-angle distance is defined by

means of the Euclidean norm in R3. However, such a definition leads to discontinuities

for rotations near to the boundary of Bπ. For example, If r and s are restricted to lie

in Bπ, its Euclidean distance could be larger than the Euclidean distance of two vectors

encoding the same rotations but one of them is outside of Bπ. This discontinuity issue

can be fixed by redefining the logarithm map to consider equivalent axis-angle vectors

outside of Bπ

dlog(R,S) = min
r,s

exp [r]×=R
exp [s]×=S

‖r− s‖2. (2.15)

The axis-angle distance is very useful for bounding the angular distance. The following

bounds are valid for the axis-angle representation [4]

d∠(R,S) ≤ dlog(R,S) ≤ π

2
d∠(R,S). (2.16)

Many recent BnB algorithms for rotation search use the above result to derive bounds

for their objective functions [41, 34, 60, 7, 73, 64].

Chapter 2. The Rotation Search Problem 17

2.4 Rotation search methods

This section formally defines rotation search problems, and surveys existing variants of

the problem and associated algorithms.

2.4.1 Minimal cases

Given point correspondences H = {(xi,yi)}Ni=1 that are related by a rotation R, such

that yi = Rxi, to find R is equivalent to finding the rotation between the underlying

coordinate systems. Consequently, determining the minimal case corresponds to estab-

lishing the minimum number of points needed to uniquely define a coordinate system.

Two points only are sufficient to define a coordinate system if they are non collinear

with the origin. The rotation that relates the defined coordinate systems is the same

that relates the underlying coordinate systems.

The minimum number of correspondences (xi,yi) to align two point clouds related by

rotation is two [37]. Given two correspondences (x1,y1) and (x2,y2), the coordinate

system (̂ix, ĵx, ĵx) associated to X is uniquely defined by

îx =
x1

‖x1‖
(2.17)

ĵx =
x2 − [x2 · îx]̂ix

‖x2 − [x2 · îx]̂ix‖
(2.18)

ĵx = îx × ĵx. (2.19)

Analogously, the coordinate system (̂iy, ĵy, ĵy) associated to Y can be defined by using

the two associated points from Y. Then, the problem is reduced to finding the rotation

that aligns both coordinate systems.

Given two point sets X = {xi}Ni=1 and Y = {yi}Ni=1, that are not in correspondence, the

minimal case is given by 2 subsets with 2 points each: {x1,x2} ⊆ X and {y1,y2} ⊆ Y.

These 2 subsets lead to 2 possible point assignments {(x1,y1), (x2,y2)} and {(x1,y2), (x2,y1)}
for which a rotation can be estimated on each combination.

2.4.2 Least squares methods

A classical optimality criterion is to minimise the sum of squared residuals. Although

least squares (LS) methods are non-robust to outliers, LS algorithms can be useful as

sub-routines in robust methods for Type 1 problems (see page 11). For problem Type 2

Chapter 2. The Rotation Search Problem 18

(see page page 11), LS algorithms are useful in refining rough alignments produced by

approximate algorithms.

2.4.2.1 Least squares methods for Type 1 problems

For problem Type 1, the LS method minimises the sum of squared residuals

min
R∈SO(3)

N∑
i=1

r2i , ri = d(Rxi,yi), (2.20)

where d(·, ·) is some distance function which usually corresponds to the Euclidean dis-

tance or the angular distance (see Section 2.3.1). The LS rotation can be efficiently

obtained in closed form, e.g., by using Horn’s [37] method and SVD [2].

It can be easily shown that the solution of (2.20) is the solution of

max
R∈SO(3)

N∑
i=1

〈yi,Rxi〉 (2.21)

when choosing d(·) as the Euclidean distance, where 〈·, ·〉 is the dot product.

The information needed in the following two closed-form methods is contained in the

cross-covariance matrix

S =

N∑
i=1

xiy
>
i . (2.22)

Horn’s method The method proposed by Horn [37] uses the quaternion representa-

tion. An equivalent quaternion based algorithm was addressed by Faugeras [23].

The quaternion form of the LS problem (2.21) is

max
r∈S3

N∑
i=1

〈rxir−1,yi〉, (2.23)

where S3 is the unit-quaternion sphere (see Section 2.2.3), and vectors xi and yi are

now understood as the purely imaginary equivalent quaternions. The objective function

of the quaternion formulation is equivalent to

N∑
i=1

〈rxi,yir〉. (2.24)

Chapter 2. The Rotation Search Problem 19

Equation (2.24) can be rewritten as r>Qr, for Q being a 4×4 symmetric matrix derived

uniquely from elements of S. The quaternion r that maximises the objective function

of (2.23) corresponds to the eigenvector associated with the largest eigenvalue of Q.

See [37] for a proof, and how to build Q.

SVD method The LS solution can also be calculated by SVD on S. This method,

presented in [2], computes an orthonormal matrix X (det(X) = ±1) that maximises the

objective function of (2.21).

More precisely, the orthonormal matrix X is obtained as

X = VU>, (2.25)

where V and U are from the SVD of S = UΣV>.

Proof that X is the LS solution when it corresponds to a rotation (det(X) = 1) is

presented in [2]. In the case that X is a reflection matrix (|X| = −1), it is also shown

in [2] that by replacing V = [v1,v2,v3] by V′ = [v1,v2,−v3], the resulting X is a

rotation matrix and it maximises the objective function of (2.21).

2.4.2.2 Least squares methods for Type 2 problems

The global LS solution for a problem of Type 2 (see page 11) was addressed in [41].

Assuming that X and Y have the same number of points, and each point in X has a

valid match in Y, the point assignment for X and Y can be formulated as an permutation

matrix. A permutation matrix P ∈ PN is defined as a N ×N matrix such that elements

pij = 1 if xi is in correspondence with yj , and 0 otherwise. Thus, the LS problem is as

follows

min
R∈SO(3), P∈PN

N∑
i=1

r2i , ri = d(RPxi,yi). (2.26)

Li and Harley [41] used a BnB formulation to globally solve the above problem. The

experiments in [41] took more than 1000 seconds on N = 200 points, whereas only

≈ 0.005 seconds were needed for the LS closed-form methods of Type 1 tested in [18]

for problems of 200 point correspondences.

Another suitable methodology is iterative closest point (ICP) [9]. ICP is a local method

that operates by alternating between two simple steps: point assignments and updates

to the transform parameters.

Chapter 2. The Rotation Search Problem 20

The ICP algorithm is presented in Algorithm 2.1. Briefly, ICP iteratively rotates one

point cloud (the source), such that the sum of squared residuals with respect to the

other point cloud (the target) is minimised. At each iteration, residuals—associated to

points in the source point cloud—are defined to be the distance to the closest point in

the target point cloud.

To increase robustness, trimmed ICP [14] considers only the k closest matching points.

However, a priori knowing the number of points k < M from X , that has a valid match

in Y, can be nontrivial in practice. Another variant is LM-ICP [26] which replaces the

L2-norm used in the ICP criterion with a robust norm that truncates errors above a

threshold, then solves the resulting problem using iterative optimisation. Whilst more

robust than ICP, both variants remain locally convergent methods.

Algorithm 2.1 ICP for rotation search.

Require: Point clouds X and Y, error ε.
1: For each point in X , finds the closest point in Y.
2: Estimate rotation in closed-form (see Section 2.4.2.1) on the point correspondences

obtained in the previous step.
3: Apply estimated rotation to points in X .
4: Iterate until the squared residual error is below ε.

2.4.3 Outliers in rotation search

Outliers are differently characterised in Type 1 and Type 2 problems. In the context of

Type 1 problems, outliers are incorrect point correspondences (xi,yj) between two point

clouds. Figure 2.2 is an example of a Type 1 problem highly contaminated with outliers.

A total of 250 point correspondences were obtained and plotted as green and red lines

to distinguish between inliers and outliers. More than 98% of point correspondences are

incorrect, and, only 4 of the total of 250 point correspondences are inliers. Usually, the

high number of outliers makes it hard to solve for rotation in real 3D data, for which

3D keypoint detection and matching techniques [72, 66, 74] are much less accurate than

their 2D counterparts (such as SIFT [43] and SURF [5]). Moreover, the accuracy of

keypoint detection and matching techniques can be especially compromised in point

clouds with a small overlapping region or insufficient sampling resolution.

In Type 2 problems, outliers are non-overlapping points. More precisely, for 2 point

clouds X = {xi}Mi=1 and Y = {yj}Nj=1, outliers are such points that under the optimal

rotation will not match any point in the other point cloud.

Non-overlapping regions may be caused by several factors such as self-occlusion, dust

scattering and non-reflective surfaces. In many cases, outliers are simply the consequence

Chapter 2. The Rotation Search Problem 21

(a) (b)

(c)

Figure 2.2: Example of a Type 1 problem with a significant amount of outliers. (a)
Initial pose of point clouds. Red lines indicate outliers (wrong matches) and green lines
are inliers. (b) For a better visualisation of the massive amount of outliers, a point
cloud was translated. (c) Optimal alignment obtained by BnB.

of scanning a scene from different viewpoints. An example is presented in Figure 2.3

for the problem of registering an underground mine site. Note the small overlapping

region in the acceptable alignment in Figure 2.3b. As a consequence of the massive

large number of outliers, the robust criterion of geometric matching failed to register

point clouds in Figure 2.3. The acceptable alignment in Figure 2.3a was obtained after

manually fixing translational parameters to search for the optimal rotation in accordance

to the geometric matching criterion.

Chapter 2. The Rotation Search Problem 22

(a) (b)

Figure 2.3: Example of a Type 2 problem with a significant amount of outliers. (a)
Global optimal for full 3D registration under the geometric matching criterion. (b)
Acceptable alignment produced by a robust rotation search method after manually
fixing translation parameters.

2.4.4 Consensus set maximisation methods

A popular robust criterion to solve Type 1 problems (see page 11) is consensus set

maximisation (CSM)

max
R∈SO(3), I⊆H

|I|

subject to d(Rxi,yi) ≤ ε, ∀i ∈ I,
(2.27)

where ε is an error threshold and d(·, ·) a distance function. In words, CSM seeks

the rotation R that agrees with as many of point correspondences as possible, where

agreement is up to threshold ε.

2.4.4.1 RANSAC

Introduced by Fischler and Bolles [24], RANSAC (random sample consensus) is one

of the most popular methods in computer vision for robust estimation. The goal of

RANSAC is to maximise the consensus set by stochastically exploring hypothesised

solutions from minimal sets—Only two point correspondences are needed to solve for

rotations (see Section 2.4.1). The optimal value of RANSAC, in general, does not equal

to the CSM solution.

Algorithm 2.2 presents RANSAC applied to rotation search problem for a given set

of input correspondences between point clouds X and Y. The number of RANSAC

iterations K can be estimated from the inlier ratio w, i.e., the number of inliers over

the number of points correspondences. The probability p of at least one minimal set of

size n containing only inliers, and therefore being likely to produce a good estimation,

is given by

1− p = (1− wn)K . (2.28)

Chapter 2. The Rotation Search Problem 23

After taking logarithm,

K =
log(1− p)

log(1− wn)
. (2.29)

For example, if seeking rotation (Algorithm 2.2) with an inlier ratio of 50%, then K ≈ 24

iterations are required to find at least one minimal set containing only true inliers with

probability p = 0.999. Following the same example but choosing the inlier ratio w = 5%,

the required number of iterations is K ≈ 2760. In effect, it can be shown that K increases

exponentially with respect to the outlier ratio (1− w).

In practice, it is difficult to estimate the number of iterations of RANSAC since w is

usually unknown and its estimation is generally nontrivial.

Algorithm 2.2 RANSAC for rotation search.

Require: Point cloud correspondences H = {(xi,yi)}Ni=1, maximum number of itera-
tions K, and inlier threshold ε.

1: R∗ ← I
2: for k = 1, . . . ,K do
3: Randomly sample two correspondences (xi,yi) and (xj ,yj) from H.
4: Hypothesise a rotation R using a LS closed form method (see Section 2.4.2.1)

from the minimal set {(xi,yi), (xj ,yj)}.
5: Find the consensus set IR = {(xi,yi), such that d(Rxi,yi) < ε, ∀i = 1 . . . N},

where d(·) is a distance function (see Section 2.3).
6: if |IR| > |IR∗ | then
7: R∗ ← R
8: end if
9: end for

10: return The best found rotation R∗.

2.4.4.2 Polynomial-time methods

Polynomial-time methods [52, 19, 20, 3] rely on the fact that the solution to (2.27) is

equal to the solution of the same problem on a subset of H of size at most d, where d

is 3 for rotation search. The rotation that realises the CSM objective function is found

by enumerating all
(
N
p

)
subsets of H for all p ≤ d and examining only rotations at

KKT-points [19] or FJ-points [3, 20] related to the visited subset.

Despite polynomial time complexity in the problem size N , a general weakness for this

type of algorithms is their high computational cost. In the case of [19], the number of

unique subsets to test is enormous even for moderate N (e.g., for N = 500 there are

≥ 20 million 3-subsets).

Chapter 2. The Rotation Search Problem 24

2.4.4.3 Branch and bound

BnB has been successfully applied to CSM for rotation estimation. Bazin et al. [7]

extended Hartley and Kahl’s BnB rotation search algorithm [34] to solve the CSM

criterion. The BnB method reported runtimes of a few seconds in rotational registration

problems2. Section 2.5 is dedicated to BnB due to the importance of BnB to robustly

solve Type 1 and Type 2 problems.

2.4.5 Geometric matching methods

The geometric matching (GM) criterion is intrinsically robust for Type 2 problems (see

page 11). The GM method is given by

max
R∈SO(3)

M∑
i=1

max
j=1...N

bd(Rxi,yj) ≤ εc , (2.30)

where d(·, ·) is a distance function, ε is an error threshold, and b·c is the indicator

function that returns 1 if its predicate is true, and 0 if not. Intuitively, the GM criterion

is a discrete function that counts the number of matches when evaluating a certain

rotation. Compared to the CSM formulation, GM is certainly a much harder problem

since rotation and data assignment must be jointly solved, i.e., for each xi is solved if

there is a yj that agrees up to the threshold ε at the optimal rotation. Therefore, GM

is not limited by the inaccuracy of feature matching techniques as in Type 1 problems.

Notice that the GM criterion is nonconcave. Also, it is nonsymmetric, in the sense that

the solution would change if point clouds X and Y were swapped. Many BnB algorithms

have been proposed for solving Type 2 problems. Breuel [11] was one of the earliest to

apply BnB for point cloud registration. Globally optimal rotation search methods for

3D points have been achieved by pre-computing and indexing all possible point matches

for 1D rotation search [16] and 3D rotation search [60].

Note that ICP cannot solve (2.30) since its assignment step assumes that all points in

X have a valid match in Y.

2.5 Branch and bound

BnB is a general optimisation technique that ensures global optimality, up to the desired

level of accuracy. What makes BnB relevant is its ability to solve difficult optimisation

2The number of keypoint correspondences were not explicitly reported, but from [7, Fig. 3] there
seems to be approximately 100 keypoint correspondences.

Chapter 2. The Rotation Search Problem 25

problems, including nonconvex problems. BnB systematically decomposes and prunes

the problem search space, where pruning is achieved using a bounding function. A

detailed presentation of BnB can be found in [38]. In this section, BnB is presented in

the context of rotation search. Also, a BnB algorithm prototype (Algorithm 2.3) is given

as the general structure for BnB algorithms presented in this thesis. Finally, important

techniques for exploring and bounding SO(3) are presented at the end of this section,

as they might be useful for designing BnB algorithms for Type 1 and Type 2 problems

(see page 11).

2.5.1 Branching step

BnB hierarchically partitions the parametric space. Without loss of generality, consider

a maximisation problem for a function f : T→ R, where T is some parametric domain.

BnB splits a region T into n disjoint regions to evaluate bounds of the objective function.

n is called the branch factor. Hence, the problem can be structured into a tree with

nodes associated to search space partitions.

2.5.2 Bounding step

The key of BnB relies on being able to define upper and lower bounds to perform

feasibility tests when visiting partitions. Let assume that lower and upper bounds lP,

uP can be established for each partition P ⊆ T such that

lP ≤ max
x∈P

f(x) ≤ uP. (2.31)

In the bounding step, upper and lower bounds are computed so that a complete branch

of the tree can be safely discarded if its associated upper bound is lower than the largest

found so far lower bound across all nodes. BnB terminates when the difference between

the highest upper bound of all nodes and the best (highest) found so far lower bound is

up to the desired accuracy.

A trivial lower bound can be obtained by simply evaluating f at the “centre of P”. In

fact, for all x in P, f(x) is a valid lower bound. However, upper bound functions are

usually problem dependant and require more effort to define. Usually, there exist a

trade-off between evaluation efficiency and bound tightness. Though a tight bounding

function is likely to conduct more aggressive pruning of the search tree—and hence fewer

bound evaluations—its evaluation time could negatively impact the time of the whole

algorithm.

Chapter 2. The Rotation Search Problem 26

2.5.3 Search strategies

Different search strategies can be conducted. Depth-first and breath-first are common

choices. Breath-first first examines all nodes at the same level in the tree before expand-

ing. By contrast, depth-first examines deeper nodes first until reaching a pre-defined

maximum level before to continuing to explore a lower level node. Hartley and Kahl [34]

noticed that both strategies perform well for 3D rotation search. Although depth-first

would fully traverse paths that originated from unpromising nodes, it uses less memory

than the breath-first strategy. A third strategy is best-first which expands the tree by

visiting first more promising nodes, e.g., nodes with the largest associated upper bound.

2.5.4 BnB algorithm prototype

Implementation of a best-first algorithm can be carried out by a priority queue where

nodes are sorted according to their associated upper bound. A general rotation search

algorithm conducting best-first search is presented in Algorithm 2.3. Visiting nodes

according to their upper bound priority allows to check optimality at the visited node

and safely terminate BnB without the need to visit all nodes in the tree (line 5 in

Algorithm 2.3).

Similarly, depth-first search can also be implemented using a priority queue where the

priority is given by the node’s depth. Unlike best-first, all nodes in the queue have to

be explored to ensure global optimality.

Algorithm 2.3 can be easily adapted for minimisation problems by interchanging the

roles of upper and lower bound functions. Also notice that Algorithm 2.3 is completely

defined if a splitting procedure (line 12) is defined and the upper (lower) bound function

(line 14) is given in the case of a maximisation (minimisation) problem. A splitting

procedure and angular distance bounds for SO(3) partitions are presented below.

2.5.5 Rotation space decomposition

As shown in Section 2.2.2, SO(3) can be represented for a π-ball, where each point in

the π-ball corresponds to a rotation in the axis-angle representation.

Following [41], the π-ball can be conveniently divided into blocks. The cube Cπ =

[−π, π]3 in R3 can be systematically divided; Figure 2.4 illustrates the decomposition

for a block B. To avoid over-exploring SO(3), a simple test can be carried out to discard

cubes that do not intersect the π-ball.

Chapter 2. The Rotation Search Problem 27

Algorithm 2.3 BnB best-first algorithm prototype for maximising f(x).

1: Initialise priority queue q, y∗ ← 0, T ∗ ← null.
2: Insert T into q.
3: while q is not empty do
4: Obtain the highest priority partition P and its upper bound uP from q.
5: if uP − y∗ ≤ ε then
6: Terminate
7: end if
8: Compute a lower bound lP for P by evaluating f(T) for some T ∈ P.
9: if lP > y∗ then

10: y∗ ← lP, T ∗ ← T .
11: end if
12: Split P into n disjoint partitions {Pi}ni=1.
13: for all partitions Pi, i = 1 . . . n do
14: Compute an upper bound uPi for Pi.
15: if uPi > y∗ then
16: Insert Pi with priority uPi into q.
17: end if
18: end for
19: end while
20: return Optimal transformation T ∗ with objective value y∗.

Figure 2.4: Illustrating the decomposition of the π-ball into blocks.

2.5.6 Bounding the rotation space

Following [41, 34], bounding functions can be derived from (2.16). The left hand side of

inequality (2.16) can be rewritten as the following lemma.

Lemma 2.1. If R,S represent two rotations in SO(3) and r, s are the corresponding

axis-angle vectors, then

d∠(R,S) ≤ ‖r− s‖. (2.32)

Chapter 2. The Rotation Search Problem 28

In words, the angular distance of two rotations is upper bounded by the Euclidean

distance of their axis-angle representations.

To further derive a bounding function for f for a partition P of the π-ball, it is convenient

to establish a bound δP for the angular distance of rotations in P with respect to the

“central” rotation, i.e.,

max
R∈P

d∠(Rc,R) ≤ δP, (2.33)

where rc is the centre of a partition P and Rc its equivalent rotation matrix.

It follows from Lemma 2.32 that δP can be defined as

δP := max
r∈P

(‖r− rc‖) . (2.34)

In the case of a block decomposition of the π-ball, the centre rotation and the angular

bound δB are derived from the block coordinates. Let p and q be the vectors at two

opposite corners of P. Then,

rc =
(p + q)

2
(2.35)

and

δP =
‖p− q‖

2
. (2.36)

2.6 Summary

This chapter formulated rotation search problems and presented a review of main algo-

rithms for rotation search used in geometric computer vision. Two problem categories

were identified (see page 11). The first class of methods estimates rotations from a set of

point correspondences (Type 1 problems) whereas the second estimates rotations from

“raw” input point sets (Type 2 problems).

Algorithms were also classified according to the optimality criterion. Since robustness to

outliers is one of the pursued objectives in this thesis, this chapter presented intrinsically

robust methods for both type of problem. For Type 1 problems, an intrinsically robust

criterion is CSM (see Section 2.4.4), whereas for Type 2 problems the criterion is GM

(see Section 2.4.5). Also LS methods were presented (see Section 2.4.2). Although LS

methods are non-robust to outliers, LS closed-form algorithms are invoked as a sub-

routine in RANSAC, which is a stochastic method for CSM.

Chapter 2. The Rotation Search Problem 29

In relation to finding the global solution, a BnB prototype (Algorithm 2.3) was presented

as the general structure for BnB algorithms presented in this thesis.

Type 2 problems are challenging since point correspondences have to be estimated along

with the optimal rotation. Since optimality is not affected by the uncertainty of point

assignment procedures (point assignment is solved optimally), this class of problems is

important for data with insufficiently distinctive local features. Chapters 3 and 4 present

globally optimal methods under the GM criterion.

Chapter 3

Robust 1D Rotation Search

3.1 Introduction

In surveying applications in construction, mining, safety inspection, and documentation

of heritage structures, the motions or transformations that need to be estimated are

usually horizontally constrained. This is because when sensing for terrestrial information

using LIDAR scanning (see Figure 3.1), usually a calibration procedure is conducted in

such a way that the captured range image or point cloud is horizontally levelled. Thus,

the registration of two scans is reduced to a 4 DoF problem, where 3 DoF relate to

translation and 1 DoF to azimuth.

Although registering horizontally levelled point clouds involves fewer parameters, it is

still difficult to globally solve the reduced 4 DoF formulation in data contaminated with

outliers, as is typically encountered in real-life surveying applications. In such cases,

Figure 3.1: Example of terrestrial LIDAR scanner. Source: Wikimedia Commons.

31

https://commons.wikimedia.org/wiki/File:Lidar_P1270901.jpg

Chapter 3. Robust 1D Rotation Search 32

(a) (b)

Figure 3.2: Registering mine sites. (a) A set of partially overlapping LIDAR scans
(viewed from the top) from an underground mine and (b) their correct registration.

registration methodologies based on keypoint detection and matching are usually inade-

quate, especially on data with “organic” or “self-similar” structure such as underground

mine sites. See Figure 3.2 for examples.

This chapter presents an user-assisted system for the registration problems in such a

setting. The system generates instant guidance to the user to facilitate finding a correct

alignment. The key component of the system is a novel real-time and globally optimal

1D rotation search algorithm. This algorithm is aimed at problem Type 2 (see page 11

in Section 2.1) to solve the GM criterion (see Section 2.4.5).

This chapter is organized as follows: Section 3.2 discuses the significance of point cloud

registration and existing algorithms. Section 3.3 proposes the user-assisted point cloud

registration system. Section 3.4 presents the 1D rotation search problem. Section 3.5

gives a detailed description of the proposed 1D rotation search algorithm. Section 3.6

experimentally compares the proposed rotation search algorithm against other tech-

niques. Section 3.7 shows the usage of the user-assisted system in commercial software.

Section 3.8 summarises the chapter.

3.2 Point cloud registration for LIDAR scans

LIDAR scans are useful in applications involving large-scale 3D modelling, surveying and

mapping. In such applications, a recurrent task is to align multiple scans. Registration

is difficult due to the small partial overlaps between the point clouds. See Figure 3.2.

This occurs frequently in practice, since a surveyor will economise the work by spreading

the scans over the scene uniformly, thus reducing scan overlaps.

Despite significant efforts, fully automatic registration of multiple point clouds remains

challenging [70]. Globally optimal methods do not require human input [11, 41], but they

can be very slow. Due to the difficulty of globally solving this kind of problems, practical

systems usually use approximations or local methods. Approximate methods are fast,

Chapter 3. Robust 1D Rotation Search 33

Figure 3.3: Diagram of the user-assisted point cloud registration system.

such as those based on randomised heuristics [13, 1, 56, 71] or feature matching [28, 42,

27, 62]. However, approximate methods do not guarantee good results. Additionally,

local methods such as ICP [9] and its variants [14, 25], only succeed on roughly aligned

point clouds, i.e., they depend on good initialisations. Unfortunately, it is tough to

initialise problems such as the example in Figure 3.2. In the case of underground scans,

GPS localisation of the LIDAR devices cannot be used to initialise the registration.

Manual initialisation can be tricky and laborious in “self-similar” point clouds such as

in the given example.

3.3 User-assisted point cloud registration system

This section presents a novel user-assisted system with real-time interaction for point

cloud registration. The proposed system, summarised in Figure 3.3, is less cumbersome

and time-consuming than the typical process of alignment using only ICP. Guided by the

system, the user’s role is to identify overlapping regions across the point clouds. More

Chapter 3. Robust 1D Rotation Search 34

specifically, given two input point clouds, the user first selects a point p in the first point

cloud, then hovers the mouse over the second point cloud to look for a matching point.

Each mouse position gives rise to a potential corresponding point q, and the first point

cloud is translated by vector q−p such that p and q coincide. In real-time, the system

calculates the rotation centred on q that best aligns the local point clouds around p and

q. This provides instant verification of the match p↔ q. If the result is not satisfactory,

the user can simply move the mouse to a different location, or restart by reselecting point

p. Once a satisfactory rotational alignment based on p ↔ q is obtained, the user can

refine the overall alignment by using ICP to estimate a full 3D rigid transform using

all the points. This system allows the user to register multiple overlapping point clouds

by simply repeating the steps above. Please watch a demonstration video in [15] or

Figures 3.4, 3.5 and 3.6 for screenshots of the system in action.

From a user’s standpoint, identifying corresponding regions across point clouds is much

easier than initialising their alignment as required in ICP. Arguably, manually initialising

alignment involves first finding where the point clouds overlap. Our system thus requires

much less effort on the part of the user; for example, the point sets in Figure 3.2 can

be aligned in mere minutes. Note that p,q need not be salient points or points with

high curvature [27, 62]. A human observer can draw upon structural characteristics of

the scene (e.g., end points or intersections of tunnels; see Figures 3.4 and 3.5) to quickly

find overlaps.

Finally, although this section concentrates on LIDAR scans of underground mines, the

system is certainly applicable to other kinds of objects or structures, as long as each

point cloud is level with respect to the ground plane. Examples include the Stanford

range data [17] where the objects were rotated on a turntable; see the demonstration

video [15] or Figure 3.6.

3.4 Rotation search for point cloud registration

Within the context of problem Type 2 (see page 11), here rotation search is solved for the

GM criterion (see Section 2.4.5). Let X = {xi}Mi=1 and Y = {yj}Nj=1 be two 3D points

clouds. Assume that X and Y have been translated such that the corresponding points

p ∈ X and q ∈ Y are at the origin in R3. The GM criterion seeks the rotation matrix

R ∈ SO(3) that maximises the function

Q(R) =
M∑
i=1

max
j=1...N

b‖Rxi − yj‖ ≤ εc, (3.1)

Chapter 3. Robust 1D Rotation Search 35

60
40

20
0

20
40

60

20

0

20

40

20
24
6

(a) Point p (green cross) selected by
the user in the first point cloud.

60
40

20
0

20
40

60

20

0

20

40

5
0
5

M 191, B 91, setup 0.017505s, align 0.001117s, match 18

(b) Point q (green cross) selected by
the user in the second point cloud and
the optimised rotational alignment.

60
40

20
0

20
40

60

20

0

20

40

5
0
5

M 191, B 110, setup 0.017477s, align 0.001132s, match 18

(c) A better point q and the rotational
alignment.

60
40

20
0

20
40

60

20

0

20

40

5
0
5

icp match 93

(d) ICP refinement of the result in (c).

Figure 3.4: Sample result of the interactive 3D registration system on underground
mine scans.

30
20

10
0
10

20
30

40
50

30
20

10
0

10
20

30
40

20
24

(a) Point p selected by the user in the
first point cloud.

20

0

20

40

30
20

10
0

10
20

30
40

5
0
5

M 550, B 704, setup 0.018551s, align 0.012746s, match 19

(b) Point q (green cross) selected by
the user in the second point cloud and
the optimised rotational alignment.

20

0

20

40

30
20

10
0

10
20

30
40

5
0
5

M 550, B 725, setup 0.024549s, align 0.009360s, match 17

(c) A better point q and the rota-
tional alignment.

20

0

20

40

30
20

10
0

10
20

30
40

5
0
5

icp match 180

(d) ICP refinement of the result in
(c).

Figure 3.5: Sample result of the interactive 3D registration system on underground
mine scans.

Chapter 3. Robust 1D Rotation Search 36

0.06
0.04

0.02
0

0.02
0.04

0.06
0.08

0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(a) Point p selected by the user
in the first point cloud.

0.06
0.04

0.02
0

0.02
0.04

0.06
0.08

0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

M 168, B 291, setup 0.028600s, align 0.001153s, match 6

(b) Point q (green cross) se-
lected by the user in the second
point cloud and the optimised
rotational alignment.

0.06
0.04

0.02
0

0.02
0.04

0.06
0.08

0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

M 168, B 270, setup 0.026510s, align 0.001321s, match 23

(c) A better point q and the ro-
tational alignment.

0.06
0.04

0.02
0

0.02
0.04

0.06
0.08

0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

icp match 120

(d) ICP refinement of the result
in (c).

Figure 3.6: Sample result of the interactive 3D registration system on the Stanford
Dragon (views 96◦ and 120◦).

where b·c equals 1 if the condition · is true and 0 otherwise, and ε is the error threshold.

Intuitively, Q(R) counts the number of points in {Rxi}Mi=1 that are matched (within

distance ε) to a point in Y.

Optimising over the space of 3D rotations R still presents a major problem, as observed

in other works. For example, the box-and-ball algorithm presented by Li and Hartley

requires more than 150 seconds to rotationally align two point clouds of size of just 100

points each [41]. Moreover, they considered an easier problem with no outliers, i.e., each

point in X must have a matching point in Y. Rotation search has also been investigated

for other applications, e.g., for estimating camera poses [34, 68, 7, 6]. Most of these

methods are not amenable to real-time performance.

As mentioned earlier, the presented methodology relies on the level compensator existing

on many LIDAR devices to remove two angular DoF from R, leaving only the azimuth

Chapter 3. Robust 1D Rotation Search 37

Figure 3.7: Plumb-line uncertainty compensation. If the angular deviation of the
z-axis is within φ, then all possible variations of Rz(θ)xi due to the uncertainty lie
within a ball of radius εi, where εi can be obtained based on the cosine rule.

θ unknown. The criterion (3.1) now takes the form

Q(θ) =

M∑
i=1

max
j=1...N

b‖Rz(θ)xi − yj‖ ≤ εc, (3.2)

where Rz(θ) is a rotation matrix of θ radians about the z-axis. It is assumed in (3.2)

that each X and Y is levelled with respect to the ground plane. Secondly, given a correct

correspondence p↔ q, it is unnecessary to try to rotationally align all the points, since

the point clouds only partially overlap. Thus, it is excluded from (3.2) points in X and

Y whose norm is greater than a threshold εn. While this reduces the size of the problem,

on dense point clouds such as those in Figure 3.2, the size of the remaining point sets

can still be large.

To account for potential inaccuracies in level compensation, an extra tolerance

εi :=
√

2‖xi‖2 − 2‖xi‖2 cosφ (3.3)

is optionally added to ε for each xi, where φ is the angular uncertainty of the plumb-line

(the z-axis); see Figure 3.7. To illustrate the resulting Q(θ), Figure 3.8 plots the function

for two of the point clouds from Figure 3.2.

It is clear that Q(θ) has multiple local maxima, and a simple strategy to maximise

the function by sampling at discrete intervals is unlikely to be successful and efficient.

Recall that each evaluation of (3.2) requires checking whether each Rz(θ)xi matches a

point in Y, which can be an expensive nearest neighbour problem if X and Y are large.

Moreover, as exemplified in Figure 3.8, many of the evaluations will be wasted on totally

unpromising values of θ. The existence of multiple local maxima in (3.2) also rules out

the usage of iterative local improvement methods to find the best θ, since these can only

converge to a local maximum.

Chapter 3. Robust 1D Rotation Search 38

0 1 2 3 4 5 6
0

50

100

θ (radians)

Objective value

Discrete evaluations

Figure 3.8: Plot of objective function for point cloud rotational registration. The
top figures show X ,Y with p,q indicated by red crosses. Only the points (coloured
green) with distance ≤ εn to p,q are used. The objective function (3.2) is plotted at
the bottom, where the sampling of (3.2) at 20 discrete positions is also shown.

3.5 BnB rotation search

The 1D rotation search problem (3.2) can be globally solved by using BnB (see Sec-

tion 2.5). The method recursively explores and prunes the search space [0, 2π] by main-

taining a list of intervals. Given an interval, it is tested whether a better rotation than

the best found so far exists in the interval. If the test fails then the whole interval is

discarded; else the interval is divided into smaller subintervals. The process is repeated

until the global maximum is found. Algorithm 3.1 summarises the procedure.

A key component of Algorithm 3.1 is the bounding function Q̂(T), which gives the upper

bound of Q(θ) in the interval T ⊆ [0, 2π]:

Q̂(T) ≥ max
θ∈T

Q(θ). (3.4)

As shown in Algorithm 3.1, Q̂(T) plays the crucial role of pruning unpromising search in-

tervals. Following the original work of Breuel [11] on geometric matching, the rotational

bounding function can be defined as

Q̂gm(T) =
M∑
i=1

max
j=1...N

b‖Rz(θc)xi − yj‖ ≤ ε+ δic, (3.5)

Chapter 3. Robust 1D Rotation Search 39

Algorithm 3.1 BnB rotation search to solve (3.2).

Require: Point sets X and Y, threshold ε.
1: Set Qmax = 0, T0 = [0, 2π], and list = (T0, Q̂(T0)).
2: while list is not empty do
3: Remove from list the interval T with the highest Q̂(T).
4: if Q̂(T) > Qmax then
5: θc ← centre of T.
6: if Q(θc) = Q̂(T) then
7: θ∗ ← θc and terminate algorithm.
8: else if Q(θc) > Qmax then
9: Qmax ← Q(θc) and θ∗ ← θc.

10: end if
11: Tl ← [min(T), θc] and Tr ← [θc,max(T)].
12: list← list ∪ (Tl, Q̂(Tl)) ∪ (Tr, Q̂(Tr)).
13: end if
14: end while

where θc is the centre value of T, and

δi :=
√

2‖xi‖2 − 2‖xi‖2 cos(max(T)− θc), (3.6)

is an additional tolerance that arose due to the actions of all possible rotations in T:

δi ≥ max
θ∈T
‖Rz(θ)xi − xi‖. (3.7)

In order for (3.5) to satisfy condition (3.4), it is necessary to show that any match in

maxθ∈TQ(θ) will be accounted in (3.5). The terms of the sum in (3.2) can be bounded

by using the triangle inequality:

‖Rz(θ)xi − yj‖ ≤ ‖Rz(θ)xi −Rz(θc)xi‖+ ‖Rz(θc)xi − yj‖

≤ ‖Rz(θc)xi − yj‖+ δi. (3.8)

This result shows that for any θ in T, a match (Rz(θ)xi,yj) up to ε is accounted by the

match (Rz(θc)xi,yj) up to ε plus the extra tolerance δi, where θc is a fixed angle (the

centre of value of T). See [11] for more details.

It will be shown experimentally in Section 3.6 that applying (3.2) and (3.5) in Algo-

rithm 3.1 does not produce real-time performance.

3.5.1 A novel rotational bounding function

Clearly, the runtime of Algorithm 3.1 depends on the total number of angular intervals

that are tested before the optimal θ is found. A tighter bounding function will reduce

Chapter 3. Robust 1D Rotation Search 40

Figure 3.9: Top view illustration of the rotation search problem. For simplicity,
only a point xi from X is shown. Under all possible rotation angles in a range T, a
direct application (3.5) of Breuel’s bounding function conservatively assumes xi may lie
anywhere within a δi-sphere centred at Rz(θc)xi. In reality, xi can only lie on an arc.
The bounding function (3.9) exploits this knowledge. Further, if y ∈ Y can possibly
match with xi, then an ε-ball centred at y intersects with the circular trajectory of xi
at an arc. Section 3.5.2 describes a method that indexes the set of possible matches
with xi in a simple array for rapid evaluations of (3.2) and (3.9).

the number of intervals that needs to be tested, since it can conduct more aggressive

pruning. The core insight is that a direct application in (3.5) of Breuel’s bounding

function ignores the limited range of rotational transforms, i.e., a point can only lie in

a circular arc under all possible Rz(θ) for θ ∈ T. Thus, it is unnecessary to expect that

xi may lie anywhere within the δi-ball centred at Rz(θc)xi, as assumed in (3.5). See an

illustration of this in Figure 3.9.

This observation is crystallised by the following proposed bounding function

Q̂arc(T) =

M∑
i=1

max
j=1...N

bd(arc(xi,T),yj) ≤ εc, (3.9)

where arc(xi,T) is defined as the circular arc formed when xi is rotated about the z-axis

by all possible angles in T,

arc(xi,T) = { Rz(θ)xi | θ ∈ T } , (3.10)

Chapter 3. Robust 1D Rotation Search 41

while d(arc(xi,T),yj) is the shortest distance of yj to the arc,

d(arc(xi,T),yj) = min
x∈arc(xi,T)

‖x− yj‖. (3.11)

Figure 3.9 illustrates this idea. Next, it is proven that Q̂arc(T) is a valid bounding

function that is also tighter than Q̂gm(T).

Lemma 3.1. The condition

Q̂arc(T) ≥ max
θ∈T

Q(θ) (3.12)

is satisfied for all intervals T within [0, 2π].

Proof. To prove the lemma, it is sufficient to show that, if it is possible for a pair xi and

yj to be matched under angle θ ∈ T, then the same pair of points must contribute 1 to

the function Q̂arc(T). This can be trivially demonstrated, since if the condition

‖Rz(θ)xi − yj‖ ≤ ε (3.13)

is true, i.e., xi and yj are matched under a θ ∈ T, then

d(arc(xi,T),yj) ≤ ε (3.14)

must be true, since it is known that there exists an x ∈ arc(xi,T) such that ‖x−yj‖ ≤ ε
is satisfied, i.e., set x = Rz(θ)xi.

Another important condition for a valid bounding function is that Q̂(T) approaches

Q(θ) as the volume of T approaches zero [38]. This can be easily seen in Q̂arc(T), since

as T collapses to a single point θc (volume of T becomes 0), then d(arc(xi, θc),yj) =

‖Rz(θc)xi − yj‖ =⇒ Q̂arc(θc) = Q(θc).

Lemma 3.2. The condition

Q̂gm(T) ≥ Q̂arc(T) (3.15)

is satisfied for all intervals T within [0, 2π], i.e., Q̂arc(T) is a tighter bounding function

than Q̂gm(T).

Proof. Showing that Q̂gm(T) at least equals Q̂arc(T) can be done by simply appealing to

be fact that arc(xi,T) lies in δi-sphere with centre Rz(θc)xi. Then, for any yj such that

Chapter 3. Robust 1D Rotation Search 42

the point-to-arc distance d(arc(xi,T),yj) ≤ ε, the condition ‖Rz(θc)xi − yj‖ ≤ ε+ δi is

also satisfied.

To show that Q̂gm(T) can be greater than Q̂arc, it is sufficient to show that there exist

hypothetical points xi and yj that contribute 1 to Q̂gm(T), but may not contribute 1 to

Q̂arc. An example is

xi and yj = Rz(θc)xi

(
1 +

ε+ δi
‖xi‖

)
(3.16)

which clearly satisfy ‖Rz(θc)xi − yj‖ ≤ ε + δi. However, the point-to-arc distance for

this pair is

d(arc(xi,T),yj) = ε+ δi (3.17)

which violates the required condition d(arc(xi,T),yj) ≤ ε. Of course, this assumes that

T is not a point θc, else δi = 0 and all Q̂gm(θc) = Q̂arc(θc) = Q(θc) by design.

3.5.2 Efficient evaluations for real-time search

The efficiency of evaluating the objective and bounding functions is also crucial to the

speed of Algorithm 3.1, since these functions are called repeatedly. Kd-trees are the

workhorse in Breuel’s method [11] for speeding up the function evaluations. As Sec-

tion 3.6 will show, this is still insufficient for real-time performance.

Here, this section proposes a much faster method for evaluating (3.2) and (3.9). Based

on the same insight in Section 3.5.1, as xi is subjected to all allowable rotations Rz(θ),

only a subset Yxi of Y can possibly match with xi, since Rz(θ)xi is limited to lie on a

circular arc. Define circxi as the trajectory resulting from rotating xi about the z-axis

by 2π radians. An ε-ball centred at a point y ∈ Yxi intersects with circxi at a circular

arc; see Figure 3.9. Intuitively, solving the query

max
j=1...N

b‖Rz(θ)xi − yj‖ ≤ εc (3.18)

amounts to testing if Rz(θ)xi lies within any of the circular arcs due to the intersections

between ε-balls centred on Yxi and circxi . Note that this test does not involve nearest

neighbour searches.

To implement the above idea, let [α, β] be the angular interval subtended by the inter-

section between an ε-ball and circxi ; see Figure 3.9. The intervals relating to all y ∈ Yxi

Chapter 3. Robust 1D Rotation Search 43

(a) (b)

Figure 3.10: (a) An illustration of the modified sweep plane algorithm. The sweep
plane is rotated about the z-axis for 2π radians. (b) This is the top view of (a) which
is unrolled to lie flat on the plane. In this example, “status” in Algorithm 3.2 has the
content [‖x1‖xy, ‖x3‖xy, ‖x2‖xy], ‖x4‖xy]. Like in the classical sweep plane algorithm,
the proposed algorithm visits a finite set of “events”, corresponding to the points Y, in
the order of their azimuth. In this example, yj has the potential to match x2 and x4.

are stored in the array

intxi = [α1, β1, α2, β2, . . .] (3.19)

which is maintained to be sorted. If an ε-ball intersects circxi at one point, then α

equals β (there may exist repeated values in intxi). Also, overlapping intervals in intxi

are merged into a single interval; for example, in Figure 3.9 [α4, β4] and [α5, β5] will be

merged. An efficient algorithm to compute intxi will be given later. Computing (3.18)

amounts to simply finding the position of the angle θ+ θxi in intxi , where the offset θxi

is the azimuth of xi

θxi = arcsin

(
xi(2)√

xi(1)2 + xi(2)2

)
∈ [0, 2π]. (3.20)

If θ + θxi lies within any neighbouring [α, β], then the solution to (3.18) is 1; else, it is

0. A similar idea can be used for the range query

max
j=1...N

bd(arc(xi,T),yj) ≤ εc (3.21)

contained in (3.9), where T = [θ1, θ2]. If θ1+θxi and θ2+θxi both lie in the same position

in intxi , and that position is not within any neighbouring [α, β], then the solution to

(3.21) is 0; else it is 1. Thus, (3.2) and (3.9) are reduced to a series of sorted array

insertion operations, which are extremely simple and efficient.

The following is a discussion on how to build the arrays {intxi}Mi=1 given point clouds

X and Y. Since X and Y change rapidly in the presented real-time interactive system,

it is vital to compute {intxi}Mi=1 very quickly. The proposed solution is inspired by

Chapter 3. Robust 1D Rotation Search 44

the classical sweep plane algorithm [55, Section 7.7]. A sweep plane rotates about the

z-axis, and each time the sweep plane “hits” a point yj ∈ Y, the angular intervals

corresponding to yj are inserted into the relevant arrays; Figure 3.10 illustrates the

idea, and Algorithm 3.2 summarises the method. Note that the subsets {Yxi}Mi=1 are

implicitly contained in {intxi}Mi=1, thus they are not output by Algorithm 3.2.

Similar to the original sweep plane algorithm, the key to the efficiency of Algorithm 3.2

is the maintenance of a status array, which allows to avoid exhaustively checking all

M × N potential matches between X and Y. Here, status contains the sorted norms

{‖xi‖xy}Mi=1, where ‖xi‖xy is the norm of xi on the xy-plane

‖xi‖xy =
√

xi(1)2 + xi(2)2. (3.22)

Essentially ‖xi‖xy is the radius of circxi , and this quantity is “perpendicular” to the

sweep direction; see Figure 3.10b. In addition, analogous to the sorting of intersection

events in the original algorithm, Algorithm 3.2 visits the points in Y in the order of

their azimuth angle (3.20). This ensures that in Step 13 the intervals are inserted in

sorted order into intxi . Merging potentially overlapping intervals on-the-fly can be done

efficiently by maintaining a stack along with each sorted interval array intxi ; since this

is a very common problem, the details will not be discussed here.

Using similar analysis from computational geometry [55, Section 7.7], for each point

in Y it is needed to query the sorted array status of length M twice. The complexity

of Algorithm 3.2 is O(N logM + k), where k is the total number of possible matches

between X and Y. Results in Section 3.6 demonstrate that Algorithm 3.2 consumes

very little overhead. In turn, this enables very efficient evaluations of functions (3.2)

and (3.9), leading to real-time optimal rotation search.

3.6 Results

The performance of the proposed rotation search algorithm is tested and benchmarked

by evaluating the following methods:

• bnb-M-circ: the proposed algorithm.

• bnb-1-tree: Algorithm 3.1 using Breuel’s original bounding function Q̂gm (3.5).

Given X and Y, a kd-tree is used to index Y to speed-up the evaluation of (3.2)

and (3.5).

• bnb-M-tree: same as bnb-1-tree but to further speed up (3.2) and (3.5), for

each xi ∈ X , a kd-tree indexes the set of possible matches Yxi . This yields M

Chapter 3. Robust 1D Rotation Search 45

Algorithm 3.2 Modified sweep plane algorithm.

Require: Point sets X and Y, threshold ε.
1: Set intxi = ∅ for all i = 1, . . . ,M .
2: Reorder the points in Y based on their azimuth (3.20).
3: status← sort {‖xi‖xy}Mi=1 for all xi ∈ X ; see (3.22).
4: Reorder the points in X based on their position in status.
5: for j = 1, . . . , N do
6: il ← smallest i such that status(i) ≥ ‖yj‖xy − ε.
7: iu ← largest i such that status(i) ≤ ‖yj‖xy + ε.
8: if both il and iu are not null then
9: for i = il, . . . , iu do

10: if (‖xi‖xy − ‖yj‖xy)2 ≤ ε2 − (xi(3)− yj(3))2 then
11: arc← intersect circxi and ε-ball centred at yj .
12: [α, β]← angular interval subtended by arc.
13: Insert (or, if required, merge) [α, β] into intxi .
14: end if
15: end for
16: end if
17: end for
18: return Set of arrays {intxi}Mi=1.

kd-trees in total. To check if Rz(θ)xi matches a point in Y, only the kd-tree

associated with xi needs to be queried.

• icp-rotate: a special case of ICP whereby given X and Y, the optimised trans-

formation is restricted to Rz(θ) (see Algorithm 2.1).

Theoretically, since in bnb-M-tree only the possible matches Yxi of xi are searched for

a match, the bound Q̂gm is equal to Q̂arc, i.e., bnb-M-circ and bnb-M-tree will take

the same number of iterations in Algorithm 3.1. The fundamental difference is thus the

efficiency required to evaluate the objective and bounding functions. The performance

metrics used to compare the above methods are:

• Total runtime, which includes all data structure preparation time (kd-trees, sorted

arrays, etc.) and searching for θ until convergence (all methods compared can

provably converge). All the methods were implemented in C and run on a machine

with an Intel Core i7 3.40 GHz CPU.

• Number of matched points (3.2) at convergence. All the BnB methods will yield

the same globally maximal value. For icp-rotate, the converged θ value is simply

used to evaluate (3.2).

Further, to evaluate the metrics for icp-rotate, it was reported the average result for

10 different random initialisations.

Chapter 3. Robust 1D Rotation Search 46

To simulate the user-assisted search for matching regions, given two input point clouds,

the sampling of local point sets X and Y is as follows:

1. On each point cloud, 3D keypoints are detected. While many methods are ap-

plicable, for convenience ISS [74] is used as implemented on Point Cloud Library

(PCL) [61].

2. 100 keypoint matches are randomly sampled across the two point clouds. For each

match, the local point cloud (within radius εn) around each keypoint are taken as

X and Y.

3. ISS also gives the surface normal at the keypoints. Each X and Y pair is ori-

ented such that the normals are pointing up. The rotation search algorithm then

optimises the rotation Rz(θ) that best aligns X and Y.

Note that the sampled keypoint matches here need not be genuine matches; the purpose

is to examine the speed of various methods in rotation search, not their accuracy in

matching keypoints. Also, εn is varied across ten different values for each keypoint

match, thus yielding X and Y of different sizes. In total, for each pair of input point

clouds, 100× 10 = 1000 rotation search problems are obtained.

The experiment is conducted in the following pairs of point clouds from the underground

mine data in Figure 3.2, namely Set 1 vs Set 2, Set 2 vs Set 3, and Set 1 vs Set 4 (the

numbering is taken in the left-right order in Figure 3.2). As output by the LIDAR

device, these point clouds are individually level with respect to the ground plane. For

completeness, the range data from the Stanford 3D Scanning Repository [17] was also

used, namely, bunny, dragon and armadillo (for each object, point clouds from two

different views were chosen). The objects were rotated on a turntable, hence the data

satisfies the assumption of being levelled; see Figure 3.6.

Figure 3.11 shows the overall result on all datasets, and plots both runtime and number

of matches against problem size. To enable a consistent way of measuring problem size,

before performing rotation search, for each X and Y it is ensured that X is smaller than

Y by swapping the point sets if required. M is taken as the size of each rotation search

problem. Doing this also ensures that the quality value is bounded by M , as defined in

the objective function (3.2).

The runtime results in Figure 3.11a clearly show that bnb-M-circ has a much better

computational complexity than bnb-1-tree. It is also evident that bnb-1-tree cannot

provide real-time performance. Figure 3.11b gives a closer comparison between bnb-M-

circ, bnb-M-tree and icp-rotate. The two methods bnb-M-circ and bnb-M-tree

Chapter 3. Robust 1D Rotation Search 47

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

2

4

6

8

10

problem size

to
ta

l
ru

n
 t
im

e
 (

s
)

bnb−1−tree

bnb−M−tree

bnb−M−circ (proposed)

icp−rotate

(a) Total runtime versus problem size.

0 500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

0.25

problem size

to
ta

l
ru

n
 t
im

e
 (

s
)

bnb−M−tree

bnb−M−circ (proposed)

icp−rotate

0.05s

(b) Total runtime versus problem size (up to size 2500 only).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

100

200

300

400

500

600

700

800

problem size

n
u
m

b
e
r

o
f
m

a
tc

h
e
d
 p

o
in

ts

bnb methods

icp−rotate

(c) Number of matched points versus problem size.

Figure 3.11: Comparing runtime and quality (number of matched points) of various
rotation search methods.

Chapter 3. Robust 1D Rotation Search 48

show a clear divergence starting from small problem sizes. Taking 20 frames-per-second

(0.05 seconds per rotation search) as real-time, bnb-M-tree can only handle up to

800 points, whereas bnb-M-circ is good up to 2500 points. This indicates the superior

efficiency of the novel bound evaluation techniques in Section 3.5.2 (recall that since both

methods theoretically evaluate the same bounds, their core difference is in the bound

evaluation time). In problems involving high resolution LIDAR scans such as surveying

the underground mines in Figure 3.2 (e.g., an individual scan can contain up to 500, 000

points), extremely fast rotation search is crucial for aligning the local point clouds X
and Y with sizes up to the range of thousands. Somewhat surprisingly, the results show

that icp-rotate is slower than bnb-M-circ (note that the plots in Figure 3.11 show

the average time and quality for icp-rotate over 10 repetitions). This implies that the

number of iterations required in icp-rotate is typically higher than the presented BnB

method. In any case, as Figure 3.11c shows, the quality of icp-rotate is lower than

BnB (note that all the BnB methods return the same globally optimal result), and its

quality will vary more erratically without the averaging conducted here.

Other globally optimal methods. As surveyed in Section 3.2, there exist other

methods that promise global optimality in point cloud registration. Most of them tackle

full 3D rigid transforms, thus a direct comparison is only possible if significant changes

are made to those methods. For an indication of how the other methods compare, Li and

Hartley [41] used their method to optimise pure rotation in an experiment, where one

of the bunny point clouds was downsampled and then rotated to yield two point sets X
and Y (their method requires X and Y to have the same size and each point in X must

have a matching point in Y). For point clouds with 200 points their method requires

more than 1000 seconds. A globally optimal rotation search algorithm was proposed

by Bazin et al. [7], however, they require 3D point correspondences to be established

between the point clouds X and Y to guide the search. Thus, they are tackling a Type

1 problem instead. Moreover, their method is only optimal with respect to the set of

discrete correspondences between X and Y, and not to all the available points.

3.7 Usage of Algorithm 3.1 in commercial software

The novel user-assisted registration system (Section 3.3) is part of the automated reg-

istration tool in Maptek I-Site Studio 6 [46]. Of vital importance to the system is the

efficiency of Algorithm 3.1 for 1D rotation search. Watch the system in action in the

demonstration video for automated registration in [46] or see Figure 3.12 for screenshots

of the system.

Chapter 3. Robust 1D Rotation Search 49

(a) Unregistered LIDAR scans.

(b) Final registration.

Figure 3.12: Screenshots of the automated registration tool in Maptek I-Site Studio
6 [46]. (a) Unregistered point clouds. (b) Final registration.

Chapter 3. Robust 1D Rotation Search 50

3.8 Summary

This section presented a fast 1D rotation search algorithm for Type 2 problems (see

Algorithm 3.1) in the context of a user-assisted point cloud registration system with

real-time interaction; the diagram in Figure 3.3 summarises the system.

This system is useful for aligning multiple point clouds for large-scale 3D modelling

and surveying. In particular, in settings where fully automatic registration may not be

feasible due to large problem sizes or lack of information for initialisation, this system

provides an efficient means for registering the point clouds with minimal user effort. At

the core of this system is the novel presented rotation search algorithm that is able to

globally solve rotation search in real-time. This algorithm is based on BnB and relies

on a highly efficient bounding function. Experiments show that the system is orders of

magnitude faster than previous approaches.

Chapter 4 extends the 1D rotation search algorithm to full 3D rotation search.

Chapter 4

Robust 3D Rotation Search

4.1 Introduction

Many existing point cloud registration systems still rely on the classical ICP method [9],

which conducts an EM-like optimisation that alternates between point assignments and

updates to the rigid transform parameters. While highly efficient, ICP requires careful

initialisations since it is only locally convergent. A similar weakness afflicts the well-

known SoftAssign method [29], which also performs alternating optimisation. In many

applications, the required initialisation is not available or is too laborious to be acquired.

Thus, there is the need to consider algorithms that are globally convergent.

This chapter presents a global 6 DoF point cloud registration algorithm that solves

the GM criterion (2.30). The presented algorithm does not assume any constraints on

the original alignment of the point clouds, unlike the user-assisted system presented in

Chapter 3 which depend on the point clouds being horizontally level. The algorithm

is based on nested BnB, whereby an outer BnB loop optimises the translation and the

inner BnB loop conducts rotation search. The main contribution of this chapter is a

rotation search kernel in such a nested design.

Since the rotation search algorithm is invoked repeatedly in the nested BnB algorithm, its

efficiency has a large impact on the runtime of 6 DoF point cloud registration. Typically,

optimising the rotational parameters is less efficient than the translational parameters,

due to the special structure of SO(3). As discussed in Section 1.2, this is by no means a

trivial problem, and significant efforts have been devoted purely to rotation search [34,

68, 64, 7]; see Section 2.4 for a review of rotation search algorithms.

The presented rotation search algorithm exploits the geometry of rotational transforms

to derive a bounding function that is provably tighter than those proposed previously.

51

Chapter 4. Robust 3D Rotation Search 52

This allows pruning of unpromising rotations to be conducted more aggressively in BnB,

thus speeding up convergence. Further, this chapter also proposes a fast algorithm to

evaluate the proposed bounding function. Specifically, the algorithm precomputes all

possible point matches using stereographic projections [49] and indexes them in circular

R-trees [45]. This facilitates rapid bound evaluations and further increases the perfor-

mance of BnB. The result is a rotation search algorithm that is robust, globally optimal

and fast; the method can register up to 1000 points in 2 seconds.

This chapter is organised as follows: Section 4.2 surveys related works on point cloud

registration. Section 4.3 describes the proposed rotation search algorithm and the novel

bounding function for BnB. Section 4.4 describes the proposed method based on stere-

ographic projections and R-trees for rapid bound evaluations. Section 4.5 shows how

the rotation search kernel can be used in nested BnB to globally optimise 6 DoF rigid

transforms. Section 4.6 provides experimental results and comparisons. Section 4.7

summarises this chapter.

4.2 Related work on 6 DoF point cloud registration

To facilitate discussion, the classification for rotation search problems presented in

page 11 is extended to classify 6 DoF registration methods. Here, Type 1 and Type

2 problems, originally defined for rotation search, are interpreted as estimating a 6 DoF

rigid transform on point correspondences, and on the “raw” data, respectively.

Significant effort has been devoted to 6 DoF point cloud registration. Available tech-

niques include randomised heuristics [13, 1], feature detection and matching [27], and

methods that construct alternative representations for the point sets such as mixture

models [39, 48] or Fourier transforms [44].

6 DoF registration algorithms of Type 1 [28, 52, 3] are susceptible to the veracity of

the given point matches. Since Type 2 registration algorithms [11, 41, 21, 73] use the

original point clouds without prior matching, they are not exposed to the potential

errors of “hard-coded” point matches. Such methods face a tougher problem, since they

must also optimise the matching (either implicitly or explicitly) along with the rigid

transform. This chapter focusses on problem Type 2.

Of closer relevance to this chapter is the class of methods that employ mathematical

optimisation to deterministically find the best solution. One of the earliest globally opti-

mal registration methods was proposed by Breuel [11] for GM, e.g., finding a previously

seen configuration of 2D points in an input edge map. The method is based on BnB,

which guarantees global optimality. While Breuel’s original formulation is fast enough

Chapter 4. Robust 3D Rotation Search 53

for optimising 2D rigid transforms with 3 DoF, a naive extension to estimate 3D rigid

transforms with 6 DoF is unwieldy, as the volume of the search space is significantly

increased by going from 2D to 3D.

Li and Hartley [41] formulated a “Lipschitzised” objective function that can be globally

optimised using BnB. However, the method must assume one-to-one matching of the

point clouds (i.e., no partial overlaps), which can be too restrictive for many practical

applications. Further, the reported computational time is quite high.

More recently, Yang et al. [73] proposed a globally optimal method called Go-ICP,

which does not assume one-to-one point correspondences. The algorithm consists of

two nested BnB loops, where the outer loop optimises the rotation while the inner loop

searches for the translation given candidate rotations. Unlike Go-ICP, the registration

method presented in this chapter (Section 4.5), conducts rotation search in the inner

loop. However, with respect to rotation BnB, stemming from the fact that the presented

algorithm conducts GM [11] instead of LS [9], a much tighter bounding function can be

constructed. Further, the bounding function can be rapidly evaluated with a method

based on stereographic projections, R-trees and matchlists, all of which cannot be easily

exploited under LS; see Section 4.4 for details. By virtue of a much faster rotation search

kernel, the presented 6 DoF algorithm outperforms Go-ICP significantly.

A distinct class of methods conduct 3D registration as a graph matching problem, which

involves pairwise matching constraints. Graph matching is well known to be fundamen-

tally difficult. Spectral approximations have been proposed [40], but only very small

point sets can be handled. Enqvist et al. [21] posed graph matching as a vertex cover

problem, and a BnB algorithm was proposed. In practice, solving vertex cover is com-

putationally exorbitant. Thus, only relatively small point sets with large overlaps have

been tested.

4.3 Fast BnB rotation search

This section presents a fast BnB rotation search algorithm for problem Type 2.

4.3.1 Objective function and BnB algorithm

The GM criterion (see Section 2.4.5) is rewritten for the Euclidean norm. Let X =

{xi}Mi=1 and Y = {yj}Nj=1 be two 3D point clouds which are assumed to be potentially

Chapter 4. Robust 3D Rotation Search 54

related by a 3D rotation. The GM criterion seeks the rotation R ∈ SO(3) that maximises

Q(R) =
M∑
i=1

max
j=1...N

b‖Rxi − yj‖ ≤ εc , (4.1)

where b·c is the indicator function which returns 1 if the condition · is true and 0

otherwise, and ‖ · ‖ is the Euclidean norm in R3. The criterion (4.1) is robust since two

points are matched only if their distance is less than the inlier threshold ε.

It is instructive to compare (4.1) against the LS criterion in ICP, which minimises

E(R) =
M∑
i=1

min
j=1...N

‖Rxi − yj‖2. (4.2)

For each point Rxi, its nearest neighbour in Y must be found. Contrast this to (4.1)

where as long as a sufficiently close point in Y exists, the distance of Rxi to its nearest

neighbour is irrelevant.

Algorithm 4.1 summarises the presented BnB algorithm for finding the globally optimal

3D rotation with respect to maximising (4.1). The basic idea is to recursively subdivide

and prune the rotation space, until the global optimum is found; see Section 2.5 for a

description of BnB. Here, rotations are represented using the axis-angle representation

(see Section 2.2.2) in which all rotations are contained in a π-ball. The π-ball is initially

enclosed with a cube B of side 2π, then it is successively decomposed into eight smaller

cubes; see Section 2.5.5 for more details.

Crucially influencing the runtime of Algorithm 4.1 is the tightness of the bounding

function Q̂, which satisfies

Q̂(B) ≥ max
r∈B

Q(Rr), (4.3)

where Rr is the matrix form of rotation r. A tighter Q̂ will prune more aggressively

and yield fewer iterations. Equally important is the efficiency of evaluating Q and Q̂,

since they are called repeatedly. This chapter makes contributions in both aspects, as

described in Sections 4.3.3 and 4.4.

4.3.2 Previous results

From Lemma 2.32, given two rotation vectors u and v in the π-ball

∠(Rux,Rvx) ≤ ‖u− v‖, (4.4)

Chapter 4. Robust 3D Rotation Search 55

Algorithm 4.1 BnB algorithm to maximise (4.1).

Require: Point sets X and Y, threshold ε.
1: Initialise priority queue q, B← cube of side 2π,
Q∗ ← 0, R∗ ← ∅.

2: Insert B with priority Q̂(B) into q.
3: while q is not empty do
4: Obtain highest priority cube B from q.
5: If Q̂(B) = Q∗ then terminate.
6: Rc ← centre rotation of B.
7: If Q(Rc) > Q∗ then Q∗ ← Q(Rc), R∗ ← Rc.
8: Subdivide B into eight cubes {Bd}8d=1.

9: For each Bd, if Q̂(Bd)>Q∗, insert Bd with priority Q̂(Bd) into q.
10: end while
11: return Optimal rotation R∗ with quality Q∗.

where x is a 3D point, and ∠(·, ·) gives the angular distance. Further, given a cube B,

let p and q be the points at two opposite corners of B. Then,

c :=
p + q

2
(4.5)

is the centre of B with rotation matrix Rc. For any rotation u situated in the box B, it

is obtained that

∠(Rcx,Rux) ≤ max
u∈B
‖c− u‖

=
‖p− q‖

2
:= αB (4.6)

as a direct consequence of (4.4). It thus follows that

‖Rcx−Rux‖ ≤ δ, (4.7)

where the bound δ is based on the cosine rule

δ =
√

2‖x‖2(1− cosαB). (4.8)

The result (4.7) immediately suggests the following bounding function for the objective

function (4.1):

Q̂br(B) =

M∑
i=1

max
j=1...N

b‖Rcxi − yj‖ ≤ ε+ δic , (4.9)

where δi is defined as (4.8) evaluated with xi. This bounding function was also originally

proposed by Breuel; see [11] for proof that (4.9) is a valid bound for (4.1).

Chapter 4. Robust 3D Rotation Search 56

X,Y

Z

Figure 4.1: Under the action of all possible rotations in B, xi may lie only on a
spherical patch centered at Rcxi. However the bounding function (4.9) assumes that
xi may lie in the δi-ball centred at Rcxi.

The bounding function (4.9) is unnecessarily conservative. Geometrically, the result (4.7)

says that Ruxi may lie anywhere within a ball of radius δi centred at Rcxi. Intuitively,

this is inaccurate, since the actions of all possible rotations in B may only allow xi to lie

on a patch on the surface of the sphere with radius ‖xi‖; see Figure 4.1. The proposed

method in this chapter exploits this key insight.

4.3.3 Improving the tightness of the bound

Let Sθ(x) represent the spherical patch (see Figure 4.1) centred at x with angular radius

θ, i.e.,

Sθ(x) = {p ∈ R3 | ‖p‖ = ‖x‖, ∠(x,p) ≤ θ}. (4.10)

S2π(x) is thus the sphere of radius ‖x‖ centred at the origin, and Sθ(x) ⊆ S2π(x).

Further, the outline of Sθ(x) is a circle on the surface of S2π(x). Using the above

notation, the result (4.6) can be reexpressed as

Rux ∈ SαB(Rcx) (4.11)

where c, u and αB are as defined previously.

Let lε(y) denote the closed ball of radius ε centred at y:

lε(y) = {p | ‖p− y‖ ≤ ε}. (4.12)

Chapter 4. Robust 3D Rotation Search 57

The objective function (4.1) can be rewritten as

Q(R) =
M∑
i=1

max
j=1...N

bRxi ∈ lε(yj)c . (4.13)

From (4.11), since xi can only lie in SαB(Rcxi) under all possible rotations in B, de-

termining if xi can match with yj under B amounts to checking if SαB(Rcxi) intersects

with lε(yj). This leads to the upper bound

Q̂sp(B) =
M∑
i=1

max
j=1...N

bSαB(Rcxi) ∩ lε(yj) 6= ∅c . (4.14)

To qualify as a valid bounding function for BnB, Q̂sp has to meet the following provided

conditions.

Lemma 4.1. For any cube B

Q̂sp(B) ≥ max
r∈B

Q(Rr). (4.15)

Also as B collapses to a single point r,

Q̂sp(B) = Q(Rr). (4.16)

Proof. To prove (4.15), it is sufficient to show that if the pair xi and yj contribute 1 to

Q(Rr) for any r ∈ B, they must also contribute 1 to Q̂sp(B). If xi and yj contribute 1

to Q(Rr), then ‖Rrxi − yj‖ ≤ ε and Rrxi ∈ lε(yj). Since r is in B then Rrxi must lie

in SαB(Rcxi); see (4.11). This proves that the intersection SαB(Rcxi) ∩ lε(yj) contains

at least the item Rrxi and is thus nonempty.

To prove (4.16), based on (4.6) as B collapses to a single point, p = q = c and αB = 0.

Thus SαB(Rcxi) collapses to a single point Rcxi, rendering (4.14) to equal (4.13).

Intuitively, Q̂sp imposes a tighter bound than Q̂br, since given B, Q̂sp allows xi to vary

within a spherical patch while Q̂br allows xi to vary within a ball that encloses the

spherical patch. A formal proof is as follows.

Lemma 4.2. For any cube B

Q̂br(B) ≥ Q̂sp(B). (4.17)

Proof. Since both functions are already lower-bounded by maxr∈BQ(Rr), it is sufficient

to show that there are hypothetical pairs xi and yj that contribute 1 to Q̂br but 0 to

Chapter 4. Robust 3D Rotation Search 58

Figure 4.2: Illustrating the idea of matchlists on 1D rotation search—an analogous
idea exists for 3D rotation search. Here, the origin is at the centre of the largest circle.
(Left) Under the actions of all possible rotations in an interval B ⊆ [0, 2π], x1 cannot
match with any of the yj ’s, whilst x2 can match (up to ε) with y3 and y4. (Right) For
a subinterval B′ of B, only x2 needs to be tested for potential intersections (i.e., the
matchlist of B′ is {x2}), since it is not possible for x1 to have a match under B′.

Q̂sp. Set yj = Rcxi(1 + ε+δi
‖xi‖); clearly the condition ‖Rcxi − yj‖ ≤ ε + δi holds and

xi and yj are matched under Q̂br. However, then ‖yj‖ − ‖xi‖ > ε and lε(yj) cannot

intersect with SαB(xi), thus giving 0 to Q̂sp.

Applying Q̂sp in BnB instead of Breuel’s original bound Q̂br allows more aggressive

pruning of unpromising rotations and thus leads to faster convergence.

4.3.4 Matchlists

Let N be the subset of points in X that can potentially have matches with Y under the

rotations in B, i.e.,

N = {x ∈ X | ∃ y ∈ Y, SαB(Rcx) ∩ lε(y) 6= ∅} , (4.18)

where Rc and αB are as defined in (4.6) for B. For a subcube B′ ⊆ B, it can be established

that

Q̂sp(B′) ≤ Q̂sp(B) = |N |. (4.19)

Further, points not in N cannot possibly have matches under rotations in B′. Thus, we

need to sum over only N when evaluating Q̂sp(B′). Figure 4.2 illustrates the idea.

Breuel called N the matchlist of B′ [10]. Using matchlists avoids redundant intersection

queries in (4.14), especially in the later stages of BnB. To apply the idea in Algorithm 4.1,

Chapter 4. Robust 3D Rotation Search 59

when inserting a cube B into the queue, the algorithm also records the indices of points

that are matched under B, such that the subcubes of B can benefit from using match-

lists. Note that the quality evaluation Q(Rc) for the centre rotation of B (step 6 in

Algorithm 4.1) can also be speeded up using the matchlist of B.

It is worthwhile to note that matchlists are not applicable in a BnB algorithm for the LS

criterion (4.2), since each xi must always be matched to its nearest point in Y regardless

of the distance.

4.4 Efficient bound evaluations

Using a tighter bound in BnB can be counterproductive if evaluating the bound itself

takes significant time. The Kd-tree is the main workhorse in [11] for evaluating Q and

Q̂br. Points in Y are indexed in a single kd-tree which is queried during BnB with

rotated points from X . This takes O(M logN) effort per function evaluation.

To evaluate the proposed bound (4.14), it is necessary to solve multiple queries of the

following kind:

max
j=1...N

bSαB(Rcxi) ∩ lε(yj) 6= ∅c . (4.20)

Intuitively, since SαB(Rcxi) must lie on the surface of the sphere S2π(xi), only the subset

of Y whose lε(yj) intersect with S2π(xi) can possibly have a non-zero intersection with

SαB(Rcxi). This subset is defined as

Yxi = {yj | yj ∈ Y, |‖xi‖ − ‖yj‖| ≤ ε} , (4.21)

and the maximisation in (4.20) can be taken over just Yxi . Section 4.4.3 will provide an

efficient algorithm for finding Yxi for all i, given two point clouds X and Y.

4.4.1 Kd-tree approach

To evaluate (4.20) quickly, each Yxi can be indexed with a kd-tree. A total of M kd-trees

are thus constructed. Given B, a range query can be performed on the i-th kd-tree with

point Rcxi and range (δi+ε) (recall that SαB(Rcxi) is enclosed by the (δi+ε)-ball centred

at Rcxi). This disregards points in Y that will never match with xi. Evaluating (4.14)

thus takes O(M logNav) effort, where Nav ≤ N is the average size of {Yxi}Mi=1.

Chapter 4. Robust 3D Rotation Search 60

Figure 4.3: Stereographic projection of a spherical patch. A solid ball lε(yj) intersects
the surface of the sphere S2π(xi) at a spherical patch, which has a circular outline on
the sphere. Under stereographic projection, the spherical patch is projected to become
a circular patch.

(a) (b) (c)

Figure 4.4: The three types of patches arising from projecting spherical patches.
(a) Interior patch. This is the case shown in Figure 4.3. (b) Exterior patch. The
spherical patch contains the North Pole, thus the “contents” of the spherical patch are
projected outside the circle. (c) Half-plane. The North Pole lies exactly on the outline
of the spherical patch.

4.4.2 Circular R-tree approach

While the M kd-tree approach permits faster bound evaluation than naive search, the

technique to be proposed in this section gives bigger computational gains. Continuing

the above observations, each lε(yj) for yj ∈ Yxi intersects S2π(xi) at a spherical patch—

recall that a sphere-to-sphere intersection yields a circle, i.e., the outline of the spherical

patch, see Figure 4.3. The size of the patch depends on the distance of yj to S2π(xi).

The idea is to stereographically project the spherical patches onto the xy-plane Ω. As-

suming an unit-sphere and a projection pole at [0, 0, 1]> (North Pole), a point x on the

sphere and its projection p = [p1, p2]
> are related by

x =

[
2p1

1 + p>p
,

2p2
1 + p>p

,
p>p− 1

1 + p>p

]>
. (4.22)

The crucial property is that circles are projected as circles; see Figure 4.3. In order

to see this, recall that a circle arises from the intersection between a plane τ and the

Chapter 4. Robust 3D Rotation Search 61

sphere. Let τ be [a b c] x = d. Putting (4.22) into the plane equation yields

(c− d)(p21 + p22) + 2ap1 + 2bp2 − (c+ d) = 0. (4.23)

If c 6= d, (4.23) is a circle; else it is a line. In the latter case, the pole lies on the circle

formed by the plane-sphere intersection. Circle intersections are also preserved, i.e.,

circles on the surface of the sphere that intersect will also intersect in the projection

plane Ω. See [49] for details.

A spherical patch is thus projected to become a circular patch in Ω; see Figure 4.3.

Given the circular patches from Yxi , to solve (4.20), first SαB(Rcxi) is stereographically

projected to obtain the query patch Lq, then it is checked if Lq intersects any of the

spherical patches from Yxi . What makes this technique more efficient than the M kd-tree

approach is the usage of spatial access data structures [45] to query for intersections.

Note that the stereographic projection of a circle can be computed in closed-form in

constant time, thus it presents little overheads.

The following subsections explain stereographic projection of spherical patches and ef-

ficient indexing schemes for circular patches. Note that by replacing Lq with the stere-

ographic projection of Rxi, the methods below can also be used to evaluate the qual-

ity (4.13).

4.4.2.1 Projection of spherical patches

Discussing the full details of stereographic projection of circles is beyond the scope of

this chapter. This section provides only the essential details. The reader can refer to

the text [49] for a more comprehensive description.

Typically the vast majority of spherical patches do not intersect with or contain the

North Pole. These are projected to become interior patches, i.e., the interior of the

spherical patch is projected to the interior of the circle in Ω. This is the case in Figure 4.3.

If a spherical patch contains the North Pole in its interior, it is projected to become an

exterior patch, i.e., its contents are projected outwards. If the North Pole lies exactly

on the circular outline of the spherical patch, the projection gives rise to a half-plane.

Figure 4.4 shows the three possibilities.

To stereographically project a spherical patch Sα(x), it is convenient to first normalise

the patch such that it lies on the unit-sphere. This implies making ‖x‖ = 1 while leaving

α unchanged. A proportional scaling of the ε-ball that gave rise to Sα(x) is not required,

since the angular deviation α does not change with this normalisation. Let (ϕx, θx) be

the spherical coordinates of x, where ϕx ∈ [0, π] and θx ∈ [0, 2π] are the inclination

Chapter 4. Robust 3D Rotation Search 62

(a) (b)

(c)

Figure 4.5: Projection of a spherical patch Sα(x). The diagrams show the side view
of Figure 4.3, where the horizontal axis represents the xy-plane Ω. As explained in
Figure 4.4, three cases can arise: (a) an interior patch, (b) an exterior patch, or (c) a
half-plane. In the above diagrams, the bolded segments on the horizontal axes indicate
the resulting patches.

and azimuth. If ϕx − α > 0, Sα(x) does not contain the North Pole; see Figure 4.5a.

If ϕx − α < 0, the North Pole lies in the interior of Sα(x); see Figure 4.5b. Finally, if

ϕx−α = 0, the North Pole lies exactly on the circular outline of Sα(x); see Figure 4.5c.

Consider first the spherical patches that are projected to yield interior and exterior

patches. The aim is to project the circular outline of Sα(x) to a circle (pc, rc) on Ω.

Let points a′ and b′ on the circle be the closest and the farthest points to the origin (see

Figure 4.6). The following lemma establishes that a′, b′, pc and the origin are collinear.

Lemma 4.3. The farthest and the closest point on a circle from p are collinear with p

and the circle’s centre c.

Proof. Without loss of generality, say the circle centre c coincides with the origin and p

lies on the x-axis such that p = [px, 0]> and px ≥ 0. The distance l from p to any point

Chapter 4. Robust 3D Rotation Search 63

(a) (b)

Figure 4.6: The closest point a′ on a circle to the origin and the farthest one b′ are
in the line passing through the origin and the centre of the circle pc. (a) When the
origin is in the exterior region of the circle, azimuth of a′ and b′ are equal. (b) When
the origin is in the interior region of the circle, the absolute difference of azimuth of a′

and azimuth of b′ is π.

in a circle with polar coordinates (r, θ) is given by

l2 = r2 + p2x − 2rpx cos(θ). (4.24)

Then, the minimum distance is reached for θmin = 2kπ; and the maximum one for

θmax = (2k+ 1)π, where k ∈ N. As the polar coordinates (r, θmax) and (r, θmin) lie over

the x-axis as well as p and c, all of them are collinear.

From Lemma 4.3, the points in the circle with minimum and maximum radial distance

(a′ and b′) lie on a line passing through the circle’s centre (see Figure 4.6). Then, the

circle’s parameters can be obtained as

pc =
a′ + b′

2
and rc =

‖a′ − b′‖
2

. (4.25)

The stereographic projection of spherical coordinates on the unit-sphere (inclination

ϕ ∈ [0, π] and azimuth θ ∈ [0, 2π]) to polar coordinates (radial distance r′ and azimuth

θ’) is given by

(r′, θ′) =

(
sin(ϕ)

1− cos(ϕ)
, θ

)
. (4.26)

Since r′(ϕ) is decreasing with respect to ϕ, the points a, b with the highest and the

lowest inclination in the circular outline are projected to Ω as the points a′, b′ with

the lowest and the highest radial distance. Let (ϕa, θa) and (ϕb, θb) be the spherical

coordinates of a and b, and (r′a, θa) and (r′b, θb) the polar coordinates of a′ and b′. From

Lemma 4.3, a′ and b′ are collinear with the origin, therefore θa = θb when a′ and b′ are

Chapter 4. Robust 3D Rotation Search 64

at the same side with respect to the origin, and |θa − θb| = π if the origin is between

them (see Figure 4.6).

Following (4.26), the circle’s parameters can be rewritten when θa = θb as

pc =
r′(ϕa) + r′(ϕb)

2

[
cos(θa)

sin(θa)

]
and rc =

r′(ϕb)− r′(ϕa)

2
, (4.27)

and when |θa − θb| = π as

pc =
r′(ϕa)− r′(ϕb)

2

[
cos(θa)

sin(θa)

]
and rc =

r′(ϕb) + r′(ϕa)

2
. (4.28)

By expressing the inclination of a and b as

ϕu = ϕx + α, ϕu ∈ [0, 2π] (4.29)

ϕl = ϕx − α, ϕl ∈ [−π, π] (4.30)

it can be easily verified that circle’s parameters can be obtained as

pc =
r(ϕl) + r(ϕu)

2
x̂′ and rc =

|r(ϕl)− r(ϕu)|
2

, (4.31)

where r(·) is defined as r′ in (4.26) but allowed to take values in [−π, 2π], and

x̂′ :=

[
cos(θx)

sin(θx)

]
=

[x(1),x(2)]>

‖[x(1),x(2)]>‖
(4.32)

is the unit vector of the orthogonal projection of x onto Ω.

Now consider the Sα(x) that project to a half-plane (see Figure 4.5c). That condition

is satisfied when ϕl = 0. Following an analogous analysis that when the projection is a

circle, let a be the point in Sα(x) such that its stereographic projection a′ is the closest

point to the origin on Ω. Then projection of remaining points in the circle must lie in

a line passing through a′ and normal to it. Since the side of the line where Sα(x) is

mapped is flipped when ϕu > π, the half-plane is defined as

â′p− d ≥ 0 if ϕu < π (4.33)

â′p− d < 0 if ϕu ≥ π (4.34)

where p is an arbitrary point in Ω, d = |r(2α)| is the radial distance for the inclination

ϕu = 2α (recall that ϕl = 0 in this case), and â′ the unit vector in R2 corresponding to

the orthogonal projection of a onto Ω. See Figure 4.5c.

Chapter 4. Robust 3D Rotation Search 65

A

B C D

E F G H I J
A

B
C

D

E F

G H

I

J

Figure 4.7: A set of interior patches in the projection plane is indexed in a circular
R-tree. The MBR at each node is also drawn. The tree structure is shown on the right.
A query patch Lq is also shown; in this example, Lq does not intersect with the largest
MBR at the root node, hence the search need not proceed beyond the root.

4.4.2.2 Indexation for fast intersection queries

Once the spherical patches from Yxi are projected onto the xy-plane Ω, they are indexed

to facilitate efficient intersection queries. Here, indexing schemes are described for the

three possible types of circular patches.

The indexing of exterior patches and half-planes is first explained. These resulting

patches arise from spherical patches that are containing or intersecting the North Pole.

As these patches are infrequent in practice (in fact, no half-planes existed in the experi-

ments of Section 4.6), they are simply indexed in a list. Given a query patch Lq, the list

is scanned to see if Lq intersects with any of the entries; as soon as a hit is encountered,

the search is stopped and 1 is returned to (4.20). In fact, if Lq is itself an exterior patch

or a half-plane, it will always intersect with an entry in the list (since all the originating

spherical patches contain and intersect at the North Pole) and the scan can be avoided.

Solving (4.20) is dominated by testing the interior patches for overlaps with Lq. To

facilitate efficient querying, the interior patches are indexed (specifically, their circular

outlines) in a circular R-tree. R-trees are indexing structures designed for spatial access

queries; see [45] for a general exposition. In the used circular R-tree, the circles are

hierarchically indexed in a balanced tree. Circles in the same node are enclosed by a

minimum bounding rectangle (MBR). For example, Figure 4.7 shows a circular R-tree of

depth three. The main parameter for tree building is the branching factor and maximum

depth.

Regardless of the type of circular patch Lq, querying the circular R-tree is conducted

similarly; the distinction lies in how the overlaps are defined. At each node, if Lq overlaps

with the MBR of the node, the children of the node are traversed; at a leaf node, Lq
is simply tested for overlaps with the interior patches contained therein, and if a hit is

Chapter 4. Robust 3D Rotation Search 66

encountered the query is terminated instantly. If Lq does not overlap with the MBR of

a node, the whole branch can be ignored; contrast this to kd-tree queries, where the full

depth of the tree must be reached, such that candidate nearest distances are obtained to

enable pruning of branches. In fact, in the circular R-tree, should (4.20) evaluate to 0, it

is usually unnecessary to explore all tree levels. In many actual cases, only the first-few

levels are descended; Figure 4.7 shows an example. This difference in behaviour is the

source of massive improvements in runtime, as will be shown in Section 4.6.1.

4.4.3 Modified plane sweep algorithm

As defined earlier, Yxi ⊆ Y is the set of points for which the ε-ball lε(yj) intersects with

the sphere S2π(xi). A naive method to compute all {Yxi}Mi=1 is thus to test for each

pair (i, j) whether S2π(xi) intersects with lε(yj). Testing all M × N pairs is wasteful,

since not all the pairs intersect. This section proposes a more efficient method inspired

by the plane sweep algorithm [55] used for calculating line segment intersections. See

Algorithm 4.2.

The algorithm is described using the concepts of status and events used in plane sweep.

Specifically, the plane sweep algorithm maintains a status containing the sorted values

of the norms {‖xi‖}Mi=1. The algorithm then iterates over events {yj}Nj=1. For each event

yj , it inserts the values ‖yj‖ − ε and ‖yj‖+ ε into the status; let il and iu respectively

be the position of ‖yj‖ − ε and ‖yj‖ + ε in the status. Due to the presorting of the

norms {‖xi‖}Mi=1, any xi whose index in status is below il or above iu cannot intersect

with lε(yj). Thus, the algorithm does not exhaustively test all M ×N pairs of data for

intersections. More specifically, it takes O(N logM) effort, since it inserts into a sorted

array (the status) N times.

Algorithm 4.2 Modified plane sweep algorithm for finding the intersecting ε-ball set
{Yxi}Mi=1.

Require: Point sets X and Y, threshold ε.
1: Set Yxi = ∅ for all i = 1, . . . ,M .
2: status← sort {‖xi‖}Mi=1 for all xi ∈ X .
3: Reorder X based on their position in status.
4: for j = 1, . . . , N do
5: il ← smallest i such that status(i) ≥ ‖yj‖ − ε.
6: iu ← largest i such that status(i) ≤ ‖yj‖+ ε.
7: if both il and iu are not null then
8: for i = il, . . . , iu do
9: Yxi ← Yxi ∪ {lε(yj)}.

10: end for
11: end if
12: end for

Chapter 4. Robust 3D Rotation Search 67

4.4.4 Computational analysis

To evaluate the proposed bounding function (4.14), it will be necessary to build and

query M circular R-trees. Similarly for the kd-tree approach, M kd-trees are required.

Search efficiency is of greater interest since querying occurs multiple times during BnB.

Theoretically, R-trees and kd-trees have similar search complexities, which is O(log n).

In the worst case the algorithm will need to traverse the full depth of the tree and

visit other branches. In practice, however, significant speedups are observed when using

circular R-trees. A reason behind this was given in Section 4.4.2.2.

Of secondary interest is the tree-building time, which occurs only once before the main

loop of Algorithm 4.1. Given Yxi , constructing a balanced circular R-tree and kd-tree

have similar complexities. In particular, there exists a linear time worst case algorithm

for insertion in R-tree; see [45] for details. Both types of trees will require finding

{Yxi}Mi=1 using Algorithm 4.2.

4.5 6 DoF registration

This section shows how the proposed fast rotation search method can be used for full

3D (6 DoF) point cloud registration.

4.5.1 Locally optimal method (Loc-GM)

Firstly, a locally optimal method is presented. Whilst locally optimal methods for the

LS criterion are abundant [9, 25, 65], there appear to be no such algorithms for the GM

criterion.

Formally, the aim is to maximise

Q(R,T) =

M∑
i=1

max
j=1...N

b‖Rxi + T− yj‖ ≤ εc , (4.35)

where T ∈ R3 is a translation vector. The proposed algorithm is simple: given the

current parameters (R(t),T(t)), it repeatedly updates R and T by holding one of the

components constant at each iteration. However, both subproblems are nonconvex. Each

subproblem is globally solved by using BnB. Fixing R(t), the new translation component

T(t+1) is obtained by BnB over the translation parameter space. Optimising over R3 is

more efficient than SO(3), since the underlying “rectangular” structure of R3 enables the

tightest possible bound. The translation search can be done easily by a 3D extension

Chapter 4. Robust 3D Rotation Search 68

of Breuel’s algorithm [11]. Given T(t+1), R(t+1) is obtained via Algorithm 4.1. The

subproblems are solved repeatedly until Q(R,T) does not change with the updates.

4.5.2 Globally optimal method (Glob-GM)

To conduct globally optimal 6 DoF registration, this chapter is based on the nested

BnB idea used in Go-ICP [73], where two BnB algorithms (one each for R and T) are

executed in a nested manner to reach globally optimal solutions. Different from Go-

ICP, here, the inner BnB optimises rotation and the outer one optimises translation.

See Algorithm 4.3.

The goal is to maximise the objective function

Q(R,T) =
M∑
i=1

max
j=1...N

b‖R(xi + T)− yj‖ ≤ εc. (4.36)

From the perspective of the outer BnB loop, the goal is to find the translation that

maximises

V (T) = max
R

M∑
i=1

max
j=1...N

b‖R(xi + T)− yj‖ ≤ εc, (4.37)

where V (t) is “evaluated” given T by invoking Algorithm 4.1 to rotationally align points

X + T and Y. Given a box of translations T ⊂ R3 the upper bound

V̂ (T) = max
R

M∑
i=1

max
j=1...N

b‖R(xi + Tc)− yj‖ ≤ ε+ δc, (4.38)

can again be evaluated by using Algorithm 4.1 to rotationally align points X + Tc and

Y, where Tc is the centre of T, and δ is half of the longest diagonal in T. Effectively,

both R and T are co-optimised and the final result is guaranteed to be 6 DoF globally

optimal [73].

Another crucial feature of Go-ICP adopted here, is an auxiliary local method to improve

the quality of the current best solution—see Line 10 in Algorithm 4.3. It has been shown

in [73] that such an auxiliary routine (ICP was used in their case) helps to significantly

speed up the overall 6 DoF algorithm. To this end, Algorithm 4.3 uses the locally

convergent method Loc-GM described in Section 4.5.1.

Chapter 4. Robust 3D Rotation Search 69

Algorithm 4.3 Nested BnB algorithm to maximise (4.37).

Require: Point sets X and Y, threshold ε.
1: Initialise priority queue q, V ∗ ← 0, T∗ ← ∅, R∗ ← ∅.
2: Insert initial translation cube T into q.
3: while q is not empty do
4: Obtain highest priority cube T from q.
5: Tc ← centre of T.
6: Calculate V (tc) by calling Algorithm 4.1 to align X+tc with Y based on threshold

ε.
7: If V (tc) = V ∗, then terminate.
8: if V (tc) > V ∗ then
9: V ∗ ← V (tc), t∗ ← tc, R∗ ← R from Line 6.

10: Call Loc-GM (Sec 4.5.1) to refine (R∗, t∗).
11: end if
12: Subdivide T into 8 sub-cubes {Td}8d=1.
13: for each Td do
14: δ ← 1/2 of the length of the diagonal of Td.
15: Tc ← centre of Td.
16: Calculate V̂ (Td) by calling Algorithm 4.1 to align X + tc with Y based on

threshold ε+ δ.
17: If V̂ (Td) > V ∗, queue Td with priority V̂ (Td).
18: end for
19: end while
20: return Optimal rotation R∗ and translation t∗.

4.6 Results

4.6.1 Rotation search

Firstly, the efficiency of the 3D rotation search method (Section 4.3) is examined. The

efficiency of the 6 DoF point cloud registration algorithm (Section 4.5) will be analysed

in Section 4.6.2.

The experiment was designed as follows. The methods were run on scans of objects from

three different sources, namely, the Stanford 3D Scanning Repository [17] (specifically

bunny, armadillo, dragon, and buddha), Mian’s dataset [47] (specifically parasaur, t-rex

and chicken) and a proprietary dataset of laser scans of underground mines1 (specifically

mine-a, mine-b and mine-c). For each object, two partially overlapping point clouds V1
and V2 were chosen. Figure 4.8 shows the point clouds used in this experiment, whilst

Columns 2–3 in Table 4.1 list the sizes of V1 and V2.

Realistic point clouds X and Y were generated as input of rotation search for each object

based on the following steps:

1The mining dataset was provided by Maptek.

Chapter 4. Robust 3D Rotation Search 70

Object |V1| |V2| avg M
inliers 1KDT 1KDT-ML MKDT MKDT-ML MCIRC MCIRC-ML

(%) time (s) time (s) time (s) time (s) time (s) time (s)

bunny 7055 6742 379.27 42 9.53 6.14 9.04 5.91 2.80 1.73

armadillo 5619 5483 356.94 14 17.81 10.30 16.17 9.11 4.54 2.38

dragon 6991 6200 349.28 29 9.26 5.95 8.50 5.69 2.00 1.22

buddha 5312 5109 374.71 20 14.09 8.04 12.44 6.85 3.43 1.74

mine-a 1285 917 362.33 10 233.84 65.48 172.74 46.96 48.96 12.39

mine-b 1445 1271 168.52 42 42.80 15.66 28.92 10.77 8.14 2.78

mine-c 1274 1102 183.10 81 45.38 16.33 30.34 11.10 8.29 2.83

parasaur 4495 3642 295.77 34 15.79 6.79 7.17 4.88 1.79 1.21

t-rex 6970 7636 226.72 13 11.83 7.97 8.96 5.77 2.48 1.49

chicken 7592 7829 294.51 17 11.53 8.51 8.56 6.10 2.18 1.53

Table 4.1: Comparing the performance of BnB rotation search methods using dif-
ferent bounds and bound evaluation methods. 1KDT: bound (4.9) using 1 kd-tree,
MKDT: bound (4.14) using M kd-trees, MCIRC: bound (4.14) using M circular R-
trees. 1KDT-ML, MKDT-ML and MCIRC-ML are variants of the above using match-
lists (Section 4.3.4).

Figure 4.8: Point clouds used in the evaluation of rotation search: bunny, armadillo,
dragon, buddha, mine-a, mine-b, mine-c, parasaur, t-rex and chicken.

Chapter 4. Robust 3D Rotation Search 71

1. Detect 3D keypoints in V1 and V2. It was used the ISS3D detector in Point Cloud

Library (PCL) [61].

2. Calculate descriptors for the 3D keypoints. This was done by using the PFH

method in PCL.

3. Match the keypoints between V1 and V2 by computing the L2 distance between

PFH descriptors. The matching threshold was chosen such that exactly 100 key-

point matches were obtained. The matching precision varied across the objects

(see Column 5 in Table 4.1), but it was verified that at least 3 true positive matches

existed per V1 and V2 pair.

4. For each match p↔ q, translate V1 by −p and V2 by −q such that they potentially

differ by a rotation about the origin. Then take points from V1 and V2 within a

radius δloc from the origin to produce the pair X and Y as input for rotation

search. To “normalise” the sizes here, M ≤ N is ensured by swapping X and Y
if needed (see Column 4 in Table 4.1 for the average size of X for each object).

Since Y is indexed in efficient data structures, its actual size is of less concern.

The radius δloc was chosen as a ratio of the point cloud extent from the origin and

fixed (δloc = 5, except for the underground mine scans where it was set to 20) for

each V1 and V2 pair.

Note that the focus in this experiment is rotation search performance, thus there is less

of a concern with actually registering the point clouds (again, this will be examined in

Section 4.6.2). The following rotation search methods were benchmarked. All methods

were implemented in C++ and executed on an Intel Core i7 3.40 GHz CPU.

• 1KDT: Breuel’s original method [11], i.e., BnB with objective (4.1) and bound (4.9).

The bound is evaluated using 1 kd-tree.

• MKDT: BnB with objective (4.13) and bound (4.14). The bound is evaluated

using M kd-trees (see Section 4.4.1).

• MCIRC: BnB with objective (4.13) and bound (4.14). The bound is evaluated

using steoreographic projection and M circular R-trees (see Section 4.4.2).

• 1KDT-ML, MKDT-ML and MCIRC-ML: Variants of the above with matchlists

(see Section 4.3.4).

Note that all the BnB methods above optimise the same GM criterion for rotation search

(in fact, they all achieve the same globally optimal quality), thus their runtime results

are directly comparable.

Chapter 4. Robust 3D Rotation Search 72

200 400 600 800 1000 1200 1400 1600
0

20

40

60

80

100

120

problem size

m
e
d
ia

n
 r

u
n
 t
im

e
 (

s
)

1KDT
MKDT
MCIRC
1KDT−ML
MKDT−ML
MCIRC−ML

(a)

200 400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

7

problem size

m
e

d
ia

n
 r

u
n

 t
im

e
 (

s
)

MCIRC−ML

2 seconds

(b)

Figure 4.9: (a) Median runtime versus problem size M . (b) Median runtime versus
problem size M for MCIRC-ML. In this experiment, it was ensured that the input point
clouds X and Y are of equal size so as to compare against [7].

The average runtime of all methods are listed in Columns 6–11 in Table 4.1. Note that

the recorded times include durations for all data structure preparations (e.g., building

kd-trees or circular R-trees). It can be seen that the datasets differ significantly in

difficulty. In general, the runtime is an order of magnitude larger on the underground

mine dataset, possibly due to the more “organic” looking 3D structures. Also, using

matchlists generally helps in substantially speeding up BnB convergence, and this effect

is more pronounced in the harder point clouds. The results also point to the significant

computational gains obtained via the proposed bounding function and bound evaluation

algorithm. Specifically, the proposed approach requires an order of magnitude less pro-

cessing time than Breuel’s original method. Using matchlists also allows MCIRC-ML to

be several times faster than MCIRC.

4.6.1.1 Scalability of rotation search algorithm

To investigate the scalability of the rotation search algorithms, the above experiment

is repeated with only the armadillo scans to avoid excessive runtimes. Also, the neigh-

bourhood size δloc was varied to test a wider range of sizes of X and Y. Figure 4.9a

plots the median runtime as a function of the size of X . Note that for the BnB rotation

search algorithms, the size of X is a good representation of the problem size, since Y is

indexed in data structures and its size is not influential to runtime. These results verify

the superior performance of the proposed algorithm on a large range of problem sizes.

4.6.1.2 Comparison with other BnB rotation search

Comparing with other formulations and techniques for rotation search is nontrivial, but

an endeavour has been made to quantitatively benchmark against [7]. While the authors

of [7] also use BnB, there are crucial differences. First, their algorithm takes a set of

Chapter 4. Robust 3D Rotation Search 73

point matches as input, while Algorithm 4.1 does not require any a priori determined

point matches between X and Y. Using point matches obviates the need to search for

matches during BnB optimisation. Second, the error used in [7] is the angular error

between matching points, while Algorithm 4.1 uses the L2 distance. In the experiment

of [7], keypoint matches were first obtained from two partially overlapping scans of the

bunny dataset. The scans differed purely by rotation. The number of keypoint matches

were not explicitly reported, but from [7, Figure 3] there seems to be approximately 100

keypoint matches. It was further reported that their algorithm “converges in a couple

of seconds”.

The scalability experiment in Section 4.6.1.1 was rerun. To obtain results that are

comparable, here it was ensured that the size of Y is similar to the size of X , by using

an appropriately selected radius on the subsampled point clouds (note that this does

not mean that the resulting point clouds have one-to-one correspondence). Figure 4.9b

shows the median runtime of MCIRC-ML. This algorithm is evidently superior, since

it can align up to 1000 points within 2 seconds despite the need to conduct matching

between X and Y during the optimisation.

4.6.2 Globally optimal 6 DoF registration

This section examines the performance of the globally optimal 3D registration method

(Glob-GM, Algorithm 4.3) which encapsulates the proposed fast rotation search algo-

rithm. The closest work to the proposed method is Go-ICP [73], which globally min-

imises the LS criterion (4.2). Glob-GM was inspired by Go-ICP’s nested BnB scheme

(although their outer BnB loop optimises the rotation and the inner BnB loop estimates

the translation). In Go-ICP, the standard ICP algorithm [9] was also incorporated to

locally refine intermediate solutions. An equivalent step also exists in Glob-GM, where

the novel local method Loc-GM (Section 4.5) is used to speed up convergence.

In the experiments in [73], nearest neighbours (NN) distance calculations were speeded

up using distance transforms (DT) [25]. A DT is basically a discrete lookup table for NN

distance values. If the data does not lie on a uniform grid, DT can only approximate the

true NN distances. Thus, the global optimality guarantee of Go-ICP can be compromised

by the approximations. It is stressed, however, that the original ideas of nested BnB

and local refinement for speedup remain valid. In the experiments, the DT in Go-ICP

was replaced with a kd-tree, which gives exact NN distances (since the point sets lie in

3D, using kd-tree is ideal). Thus, this implementation of Go-ICP can achieve the true

global minimum.

Chapter 4. Robust 3D Rotation Search 74

Also, Glob-GM was compared against K-4PCS [71], which is a state-of-the-art approxi-

mate algorithm for point cloud registration. K-4PCS randomly generates and evaluates

rigid transforms to find the best alignment. Briefly, 4 approximately coplanar points in

Y are sampled and tested/matched against points from X . The number of samples or

iterations is determined from the overlap ratio (equivalent to inlier rate), which must

be known beforehand or estimated on-the-fly (note that this information is not required

in Go-ICP and Glob-GM). To improve efficiency, K-4PCS first subsamples the dense

input point clouds by 3D keypoint detections. 3D keypoint detection was not further

conducted for data reduction, since X and Y were already subsampled in conducted

experiments (see below for details of the subsampling),

Two different settings were tested in this experiment:

• Full overlap: X is a subsample of Y, i.e., X ⊂ Y. This is the same setting as that

used in [73].

• Partial overlap: X and Y are two different scans, thus not all the points in X have

a match in Y.

Based on the objects used in Section 4.6.1, the data for the above two settings was

created as follows.

For the full overlap scenario, for each object, one of the scans was selected and down-

sampled to obtain Y. X is created as a sampled region of 100 points from Y. For the

underground mine dataset, the above procedure was performed for each individual scan,

thus yielding six pairs of X and Y which are named mine-1 to mine-6. Figure 4.11

shows the data in their initial (unregistered) poses.

For the partial overlap scenario, the point cloud pairs X and Y were simply down-

sampled versions of the original V1 and V2 used in Section 4.6.1. See Figure 4.12 for the

resulting data and their initial (unregistered) poses.

To avoid excessive runtimes, X was fixed between 400 and 1200 points for the full overlap

case and between 180 and 410 points for the partial overlap scenario. The sizes of X
and Y are listed in Columns 2 and 3 of Tables 4.2 and 4.3 for both settings. Each point

cloud set was uniformly scaled to fit the cube [−50, 50]3. Also, X and Y for each object

were translated such that their respective centroids coincide with the origin. The chosen

initial unregistered poses were ensured to be far from the globally optimal solution.

The following variants of the Algorithm 4.3 were compared against Go-ICP and K-4PCS:

• Glob-GM-N: Algorithm 4.3 with local refinment (Step 10) disabled.

Chapter 4. Robust 3D Rotation Search 75

• Glob-GM: Algorithm 4.3 with local refinement.

• Glob-GM-N-ML, Glob-GM-ML: Variants of the above methods with the usage of

matchlists in the rotation search.

Note that matchlists cannot be easily applied in Go-ICP, since each point xi in X must

always be matched to a nearest point in Y (see Section 4.3.4).

For Glob-GM and variants, the matching threshold ε was chosen as half of the cell

grid side used during the downsampling step; see Column 4 in Tables 4.2 and 4.3 for

the actual values. For Go-ICP, following the experiment in [73], the algorithm was

terminated when the difference between the upper and lower bounds is ≤
√

0.05.

The suggested setting for the 4 thresholds (δ1, δ2, δ3, δ4) of K-4CPS in [71] is

δ1 = δ3 = 4τ ; δ2 = τ ; δ4 = ρ2, (4.39)

where τ is related to the size of the cell grid used for downsampling, and ρ is the point

cloud density.

Two variants of K-4PCS were designed by changing the method settings. The first vari-

ant K-4PCS-Quick was tuned to return fast approximate results, while the second variant

K-4PCS-Quality was tuned to obtain high quality results. Specifically, parameters were

chosen as follows:

• K-4PCS-Quick: K-4PCS with the proposed setting for τ = 2ε.

• K-4PCS-Quality: K-4PCS with τ = ε and δ4 = ε.

Note that under experiment settings ε is taken as the half of the cell grid side used for

downsampling (see Column 4 in Tables 4.2 and 4.3 for used ε values). Since K-4PCS is

randomised in nature, the median of 10 runs of each variant is reported.

Tables 4.2 and 4.3 report the runtimes and quality metrics for the optimised alignment.

A timeout of 5 hours (18000 seconds) was imposed for all methods—if a method cannot

terminate successfully within the time limit, the result is marked with a ‘-’ in the tables.

For comprehensive benchmarking, four quality metrics are used:

• geometric matching value (4.35).

• angular error (ang. err.) of the optimised rotation with respect to the ground

truth rotation.

Chapter 4. Robust 3D Rotation Search 76

• translation error (tr. err.) with respect to the ground truth translation.

• RMS error (cost function minimized by ICP).

In the full overlap setting, Glob-GM and variants predictably obtained the alignment

with the highest possible quality value (Q∗ = 100, since |X | = 100 for all data). Go-ICP

also expectedly found the result with ≤
√

0.05 RMS error. As expected, the quality of

K-4PCS-Quality is better than K-4PCS-Quick, at the cost of longer runtimes. In fact, in

the case of full overlap, K-4PCS-Quality is as accurate as the globally optimal methods—

it is stressed, however, that unlike the globally optimal algorithms, K-4PCS-Quality

cannot certify optimality of its results. Among the Glob-GM variants, clearly the usage

of local refinement and matchlists provide significant speedups. The results also confirm

that the partial overlap setting is more challenging than the full overlap setting. See

Figures 4.11 and 4.12 for the globally optimal registration by Glob-GM. In the partial

overlap setting, although K-4PCS-Quality was more accurate than K-4PCS-Quick, it

was not able to correctly align for all datasets, e.g., no acceptable alignments were

obtained for the mine objects as shown in Figure 4.13.

Comparing Go-ICP and the Glob-GM variants, it is evident that the latter is much

more efficient than the former. In fact, in the partial overlap setting, Go-ICP did not

finish executing within the time limit for all data. A major factor behind the superior

efficiency of Glob-GM is a faster rotation search kernel, which is enabled by the proposed

tighter rotational bounding function and its efficient evaluation based on stereographic

projection and circular R-trees. The usage of matchlists also contributes to more efficient

optimisation.

4.6.2.1 Convergence of BnB algorithm

To illustrate the convergence of Algorithm 4.3, Figure 4.10 plots the evolution of the

upper and lower bounds during the registration of the bunny dataset. The time instances

where a result is updated and then refined by the local method (Loc-GM) are also

plotted. The result clearly affirms the ability of the local refinement idea of Yang et

al. [73] to speed up BnB convergence. Figure 4.10 also shows that, similar to all BnB

methods, the bulk of the time in Algorithm 4.3 is spent on waiting for the gap between

the bounds to reduce to zero, even if the globally optimal estimate has been obtained

much earlier (at approximately the 1250-th iteration). Thus, for practical applications

it is probably convenient to terminate Algorithm 4.3 much earlier by using a non-zero

convergence gap (e.g., as mentioned earlier, Go-ICP is terminated when the lower and

upper bounds differ by ≤
√

0.05).

Chapter 4. Robust 3D Rotation Search 77

Full overlap (Glob-GM and variants)

Dataset |X | |Y| ε
Glob-GM-N Glob-GM-N-ML Glob-GM Glob-GM-ML

Q∗ ang. err. tr. err. RMS
time (s) time (s) time (s) time (s)

bunny 100 566 3.25 1600.42 1143.01 1721.08 995.46 100 3.06 2.75 2.07

armadillo 100 1162 2.00 921.80 730.51 589.19 496.77 100 4.04 3.35 1.27

dragon 100 691 2.75 902.85 532.11 823.00 498.59 100 7.31 4.13 1.82

buddha 100 843 2.00 5484.89 3778.08 327.48 265.01 100 4.93 2.73 1.09

parasaur 100 703 1.50 5516.18 4523.27 2372.94 1842.79 100 1.73 1.29 1.12

t-rex 100 743 2.00 11001.40 7557.27 57.43 44.96 100 6.50 2.46 1.38

chicken 100 714 2.00 4177.20 3131.83 4000.96 2960.39 100 3.06 1.71 1.33

mine-1 100 412 0.88 1515.23 777.15 1513.00 845.01 100 1.88 0.40 0.48

mine-2 100 649 1.25 305.21 166.64 148.53 83.97 100 0.77 1.14 1.04

mine-3 100 627 1.25 126.07 84.29 132.13 76.85 100 1.71 0.89 0.79

mine-4 100 678 1.00 1760.09 1219.15 1750.77 1240.67 100 3.06 0.98 0.61

mine-5 100 933 1.00 11777.50 7816.78 11440 7695.75 100 1.73 0.77 0.78

mine-6 100 496 1.00 4249.53 2091.67 4238.54 2079.69 100 1.68 0.76 0.75

Full overlap (Go-ICP)

Dataset |X | |Y| ε
Go-ICP

time (s) Q ang. err. tr. err. RMS

bunny 100 566 3.25 9364.16 100 1.7E-4 6.8E-5 3.2E-5

armadillo 100 1162 2.00 6321.26 100 4.5E-4 2.4E-4 3.0E-5

dragon 100 691 2.75 4314.57 100 3.5E-4 1.8E-4 2.3E-5

buddha 100 843 2.00 2027.46 100 1.4E-4 8.9E-5 1.4E-5

parasaur 100 703 1.50 5171.75 100 1.8E-4 1.1E-4 1.2E-5

t-rex 100 743 2.00 14137.80 100 4.4E-4 8.9E-5 1.8E-5

chicken 100 714 2.00 9936.01 100 2.2E-4 1.1E-4 1.7E-5

mine-1 100 412 0.88 1270.40 100 1.3E-4 2.0E-5 1.0E-5

mine-2 100 649 1.25 - - - - -

mine-3 100 627 1.25 12496.60 100 1.1E-4 5.4E-5 1.4E-5

mine-4 100 678 1.00 14723.70 100 5.7E-5 7.8E-5 1.9E-5

mine-5 100 933 1.00 12189.10 100 7.7E-5 6.2E-6 6.0E-6

mine-6 100 496 1.00 - - - - -

Full overlap (K-4PCS variants)

Dataset |X | |Y| ε
K-4PCS-Quick K-4PCS-Quality

time (s) Q ang. err. tr. err. RMS time (s) Q ang. err. tr. err. RMS

bunny 100 566 3.25 32.15 16 142.38 23.58 48.08 143.35 38 145.75 29.69 46.74

armadillo 100 1162 2.00 21.01 33 161.77 62.58 48.75 1277.53 100 1.4E-3 8.7E-4 5.0E-4

dragon 100 691 2.75 0.04 84 4.68 2.68 2.62 23.13 100 1.2E-3 6.8E-4 2.8E-4

buddha 100 843 2.00 0.43 58 9.62 4.40 3.45 33.82 100 1.9E-3 9.1E-4 4.9E-4

parasaur 100 703 1.50 1.03 66 11.81 3.43 2.91 202.19 100 1.2E-3 4.1E-4 2.7E-4

t-rex 100 743 2.00 0.35 69 9.18 3.91 2.21 11.25 100 3.2E-3 4.7E-4 5.8E-4

chicken 100 714 2.00 0.37 55 42.45 2.17 6.42 18.11 100 9.2E-4 5.0E-4 3.6E-4

mine-1 100 412 0.88 0.97 100 1.71 0.46 0.47 17.86 100 4.6E-4 2.4E-4 2.2E-4

mine-2 100 649 1.25 0.30 82 6.26 0.24 1.28 25.14 100 1.8E-4 2.6E-4 2.7E-4

mine-3 100 627 1.25 0.23 91 3.12 0.65 1.15 2.03 100 1.2E-3 5.9E-4 6.1E-4

mine-4 100 678 1.00 0.03 100 3.0E-3 1.8E-3 7.0E-4 1.47 100 1.6E-3 1.1E-3 4.3E-4

mine-5 100 933 1.00 2.42 100 1.8E-3 2.0E-4 3.6E-4 119.00 100 6.1E-4 2.2E-4 2.9E-4

mine-6 100 496 1.00 0.17 99 2.16 0.44 0.36 11.24 100 2.0E-3 4.5E-4 5.0E-4

Table 4.2: Comparing performance of 3D registration methods on point clouds
with full overlap. Glob-GM: Algorithm 4.3, Glob-GM-N: Algorithm 4.3 w/o local re-
finement, Glob-GM-ML and Glob-GM-N-ML: variants of the above with matchlists,
K-4PCS-Quick: K-4CPS optimised for fast approximate solutions, K-4PCS-Quality:
K-4CPS optimised for quality.

Chapter 4. Robust 3D Rotation Search 78

Partial overlap (Glob-GM and variants)

Dataset |X | |Y| ε
Glob-GM-N Glob-GM-N-ML Glob-GM Glob-GM-ML

Q∗ ang. err tr. err RMS
time (s) time (s) time (s) time (s)

bunny 359 340 2.75 - 16576.50 - 14545.80 176 1.22 0.76 1.89

armadillo 281 276 2.00 7082.31 3469.95 6926.02 3427.36 211 1.19 0.86 1.41

dragon 358 343 2.75 - 6358.54 - 5987.86 305 0.52 0.87 1.76

buddha 232 199 2.75 - 9462.10 - 9302.98 161 11.78 2.42 3.49

parasauro 371 311 1.50 6414.84 2670.91 5479.75 2271.37 249 0.32 0.37 1.12

t-rex 371 417 2.00 12438.00 5213.35 12121.80 4955.63 265 0.98 0.30 1.33

chicken 379 407 2.00 13807.70 5942.92 13813.40 6139.23 293 0.47 0.75 1.38

mine-a 305 195 1.00 - 9592.71 - 9206.10 129 5.89 0.35 0.78

mine-b 264 188 1.68 - 13647.90 - 12832.40 145 3.73 0.26 1.19

mine-c 235 218 1.50 11952.20 5638.28 11125.00 5199.41 164 1.59 0.23 0.99

Partial overlap (Go-ICP)

Dataset |X | |Y| ε
Go-ICP

time (s) Q ang. err. tr. err. RMS

bunny 359 340 2.75 - - - - -

armadillo 281 276 2.00 - - - - -

dragon 358 343 2.75 - - - - -

buddha 232 199 2.75 - - - - -

parasauro 371 311 1.50 - - - - -

t-rex 371 417 2.00 - - - - -

chicken 379 407 2.00 - - - - -

mine-a 305 195 1.00 - - - - -

mine-b 264 188 1.68 - - - - -

mine-c 235 218 1.50 - - - - -

Partial overlap (K-4PCS variants)

Dataset |X | |Y| ε
K-4PCS-Quick K-4PCS-Quality

time (s) Q ang. err. tr. err. RMS time (s) Q ang. err. tr. err. RMS

bunny 359 340 2.75 94.51 62 13.09 8.10 9.70 1212.46 162 0.91 1.80 2.22

armadillo 281 276 2.00 1.04 132 3.38 1.72 2.61 28.22 192 0.55 0.48 1.21

dragon 358 343 2.75 0.72 241 4.67 1.68 3.14 36.92 291 1.13 0.73 1.71

buddha 232 199 2.75 0.31 83 48.94 7.48 12.05 11.88 140 4.16 0.71 2.05

parasauro 371 311 1.50 1.17 155 2.42 1.58 1.91 12.36 227 0.88 0.45 1.07

t-rex 371 417 2.00 7.36 163 4.38 3.05 3.82 206.14 232 0.97 0.62 1.54

chicken 379 407 2.00 6.01 129 4.38 3.12 3.79 168.59 276 1.06 0.47 1.37

mine-a 305 195 1.00 35.58 85 59.24 9.70 16.26 416.48 86 59.21 10.68 18.05

mine-b 264 188 1.68 3.99 82 4.17 9.15 9.25 62.45 99 7.37 11.44 11.59

mine-c 235 218 1.50 5.08 80 176.06 7.82 9.44 109.83 145 3.82 9.73 9.79

Table 4.3: Comparing performance of 3D registration methods on point clouds with
partial overlap. Glob-GM: Algorithm 4.3, Glob-GM-N: Algorithm 4.3 w/o local re-
finement, Glob-GM-ML and Glob-GM-N-ML: variants of the above with matchlists,
K-4PCS-Quick: K-4CPS optimised for fast approximate solutions, K-4PCS-Quality:
K-4CPS optimised for quality.

Chapter 4. Robust 3D Rotation Search 79

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

350

400

iteration
o

b
je

c
ti
v
e

 v
a

lu
e

Lower bound

Upper bound

BnB

Local

Figure 4.10: Evolution of upper and lower bounds as a function of iteration count in
the Glob-GM method (Algorithm 4.3). The time instances where a result is updated
and then refined by the local method (Loc-GM) are also plotted. The algorithm is
terminated only when the upper bound equals the lower bound (at ≈ the 2750-th
iteration).

4.7 Summary

This chapter presented an efficient BnB algorithm for 3D rotation search (Algorithm 4.1)

that solves the GM criterion.

Of significant importance on runtime is the tightness of the bounding function. The

proposed bounding function (4.11) is provably tighter than previously available bounds.

A very efficient algorithm to evaluate the bound based on stereographic projections and

R-trees was also presented. The proposed globally optimal rotation search algorithm was

shown to be an order of magnitude faster than the original BnB algorithm of Breuel [11].

This chapter also presented a globally optimal 6 DoF point cloud registration algorithm

(Algorithm 4.3) that encapsulates the presented rotation search method. Experimental

results demonstrate the superior efficiency of this algorithm for point cloud registration,

owing to a faster rotation search kernel.

Chapter 4. Robust 3D Rotation Search 80

armadillo bunny dragon buddha
in

it
ia

li
sa

ti
on

re
su

lt

parasauro t-rex chicken

in
it

ia
li

sa
ti

on
re

su
lt

mine-1 mine-2 mine-3

in
it

.
re

su
lt

mine-4 mine-5 mine-6

in
it

.
re

su
lt

Figure 4.11: Initial poses of point clouds and globally optimal results by Glob-GM
under the full overlap scenario.

Chapter 4. Robust 3D Rotation Search 81

armadillo bunny dragon buddha
in

it
ia

li
sa

ti
on

re
su

lt

parasauro t-rex chicken

in
it

ia
li

sa
ti

on
re

su
lt

mine-a mine-b mine-c

in
it

ia
li

sa
ti

o
n

re
su

lt

Figure 4.12: Initial poses of point clouds and globally optimal results by Glob-GM
under the partial overlap scenario.

Chapter 4. Robust 3D Rotation Search 82

mine-a mine-b mine-c

gr
ou

n
d

tr
u

th
re

su
lt

Figure 4.13: Ground truth and results of K-4PCS-Quality over the mining dataset
under the partial overlap scenario.

Chapter 5

Guaranteed Outlier Removal for

Rotation Search

5.1 Introduction

The previous two chapters solved rotation search problems of Type 2 under the GM

criterion by using BnB, which guarantees global optimality. However, the runtime of

BnB can be prohibitive on large point sets. Although real-time performance is achievable

for 1D rotation search (see Chapter 3), longer runtimes were needed for 3D rotation

search (see Chapter 4).

To reduce the problem’s difficulty, rotations can be estimated from point correspon-

dences, i.e., by solving a problem of Type 1 (see page 11). However, BnB can be

inefficient when a large proportion of the point correspondences are outliers. This was

observed in the experiments in Chapter 4.

To estimate rotations robustly in the presence of outlying correspondences, rotation

search can be posed as a CSM problem (see Section 2.4.4). Using the angular distance

∠(·, ·) the CSM formulation for rotation search is

maximize
R, I⊆H

|I|

subject to ∠(Rxi,yi) ≤ ε, ∀i ∈ I,
(5.1)

where agreement is up to the inlier threshold ε. Here, H = {1, . . . , N}Ni=1 indexes the set

of all point matches {(xi,yi)}Ni=1. The optimal R∗ is consistent with the largest possible

subset I∗ ⊆ H of the data. Note that R∗ can be easily found given I∗, and vice versa.

Thus, I∗ or R∗ can be referred as the solution without ambiguity.

83

Chapter 5. Guaranteed Outlier Removal for Rotation Search 84

RANSAC [24] (see Section 2.4.4.1) can be applied to approximately solve (5.1). Al-

though RANSAC is very efficient, in general it does not provide the optimal solution I∗.
Formally, let Ĩ ⊆ H be the result of RANSAC. Then |Ĩ| ≤ |I∗|, and in general Ĩ * I∗,
i.e., genuine inliers may be discarded.

Unlike RANSAC, global algorithms such as BnB and polynomial-time methods [52,

19] (see Section 2.4.4.2) are guaranteed to find the globally optimal result. A general

weakness of global algorithms, however, is their high computational cost, especially for

data with large sizes N and high outlier contamination rates; see Section 2.4.4.2 for a

discussion on the cost of solving polynomial-time methods.

This chapter presents a novel guaranteed outlier removal technique for rotation search

(GORE). Specifically, GORE is able to reduce H to a subset H′ of point matches, in a

way that any (xi,yi) discarded by reducing H to H′ is a genuine outlier, i.e., any (xi,yi)

that is removed does not belong to I∗. More formally, GORE ensures that I∗ ⊆ H′ ⊆ H,

which is a result RANSAC cannot guarantee.

GORE functions as an efficient preprocessor to the rotation search problem (5.1). Based

on simple geometric operations, GORE is deterministic and fast. By aggressively reduc-

ing the population of true outliers (almost 90% can be eliminated), GORE significantly

accelerates BnB. For example, using GORE before BnB reduces the overall runtime by

an order of magnitude. Note that the global solution to the reduced data H′ equals the

global solution I∗ to the original H.

This chapter is organised as follows: Section 5.2 presents a guaranteed outlier removal

method. Section 5.3 presents this chapter’s main contribution; a tight lower bound

that allows efficient removal of true outliers. Section 5.4 describes the main algorithm

of GORE. Experiments are presented in Section 5.5 and Section 5.6 summarises this

chapter.

5.2 Guaranteed outlier removal

Using the angular distance renders the norm of the points irrelevant. Henceforth, all

the points are assumed to have unit norm. The rotation search problem (5.1) can be

rewritten as

maximize
k∈H

fk, (5.2)

Chapter 5. Guaranteed Outlier Removal for Rotation Search 85

where fk is defined as the maximum objective value of the subproblem Pk, with k =

1, . . . , N :

maximize
Rk, Ik⊆H\{k}

|Ik|+ 1

subject to ∠(Rkxi,yi) ≤ ε, ∀i ∈ Ik,

∠(Rkxk,yk) ≤ ε.

(Pk)

In words, Pk seeks the rotation Rk that agrees with as many of the correspondences

(xk,yk) as possible, given that Rk must align (xk,yk). The reformulation in (5.2) does

not make the original problem (5.1) any easier—its utility derives from clarifying how

an upper bound on fk allows to identify outliers.

Let l ≤ |I∗| be a lower bound for the solution of the rotation search problem (5.1). The

presented outlier removal technique depends on the ability to calculate an upper bound

f̂k for the result of each Pk, i.e., f̂k ≥ fk. Given the lower and upper bound values, the

following result can be established.

Theorem 5.1. If f̂k < l, then (xk,yk) is a true outlier, i.e., k does not exist in the

solution I∗ to (5.1).

Proof. The proof is by contradiction. If k is in I∗, then fk = |I∗|. However, if f̂k < l,

then fk < l ≤ |I∗|, which contradicts the previous condition. Hence, k cannot exist in

I∗.

This chapter’s main algorithm (Section 5.4) applies Proposition 5.1 iteratively for k =

1, . . . , N to remove outliers. The main contribution in this chapter is an efficient al-

gorithm to calculate a tight upper bound f̂k for Pk (Section 5.3) for each k. As a

by-product, the upper bound algorithm also computes a tight lower bound l for (5.1) to

enable efficient removal of true outliers.

5.3 Efficient algorithm for upper bound

Recall that any candidate rotation Rk to solve Pk must bring xk within angular distance

ε from yk, i.e.,

∠(Rkxk,yk) ≤ ε. (5.3)

Rk can be interpreted by decomposing it into two rotations

Rk = AB, (5.4)

Chapter 5. Guaranteed Outlier Removal for Rotation Search 86

(a) (b)

(c)

Figure 5.1: Geometry interpretations. (a) Interpreting rotation Rk according to (5.4).

(b) The uncertainty region Lk(xi) (5.15). (c) This figure shows Sδ(θ)(Aθ,yk
B̂xi) in-

tersecting with Sε(yi) for a particular θ. The aim is to find a bounding interval
Θi ⊂ [−π, π] on θ for which the intersection is non-empty.

where B is defined as a rotation that honors the condition

∠(Bxk,yk) ≤ ε, (5.5)

and A as a rotation about axis Bxk. Since A leaves Bxk unchanged, the condition (5.5)

and hence constraint (5.3) are always satisfied. Figure 5.1a illustrates this interpretation.

Solving Pk thus amounts to finding the combination of the rotation B (a 2 DoF problem,

given (5.5)) and the rotation angle of A (a total of 3 DoF) that maximises the objective.

Chapter 5. Guaranteed Outlier Removal for Rotation Search 87

5.3.1 The ideal case

In the absence of noise and outliers, xi can be aligned exactly with yi for all i. Based

on (5.4), the rotation that solves Pk under this ideal case is denoted as

R̂k = ÂB̂, (5.6)

which can be solved as follows (refer also to Figure 5.1a). First, find a rotation B̂ that

aligns xk exactly with yk, i.e.,

B̂xk = yk. (5.7)

For example, take B̂ as the rotation that maps xk to yk with the minimum geodesic

motion. To solve for Â, take any i 6= k, then find the angle θ̂ of rotation about axis B̂xk

that maps B̂xi to yi. Then Â = exp ([θ̂B̂xk]×), where exp (·) is the exponential map;

see Section 2.2.2 for details. The above steps affirm that rotation estimation requires a

minimum of two point matches (see Section 2.4.1).

5.3.2 Uncertainty bound

In the usual case, data is contaminated with noise and outliers. The aim of this section

is to establish a bound on the position of xi when acted upon by the set of feasible

rotations Rk, i.e., those that satisfy (5.3) for Pk.

The set of B that maintain (5.5) cause Bxk to lie within a spherical region of angular

radius ε centred at yk, i.e.,

Bxk ∈ Sε(yk), (5.8)

where Sε(yk) := {x ∈ R3 |∠(x,yk) ≤ ε and ‖x‖ = 1}. (5.9)

Since Bxk is the rotation axis of A, the interior of Sε(yk) also represents the set of

possible rotation axes for A. Further, for any i 6= k,

∠(Bxi, B̂xi) = ∠(Bxk, B̂xk) (5.10)

= ∠(Bxk,yk) ≤ ε, (5.11)

where (5.10) is based on the fact that applying the same pair of rotations on different

points will transport the points across the same angular distance. Hence, (5.11) also

Chapter 5. Guaranteed Outlier Removal for Rotation Search 88

shows that the set of feasible B cause Bxi to lie in a spherical region, i.e.,

Bxi ∈ Sε(B̂xi). (5.12)

Figure 5.1a also shows Sε(yk) and Sε(B̂xi). The bound on Rkxi can thus be analysed

based on these two regions.

To make explicit the dependence of A on a rotation axis a and angle θ, the notation

Aθ,a is adopted, where

Aθ,a = exp ([θa]×). (5.13)

Let p be an arbitrary unit-norm point. Define

circ(p,a) := {Aθ,ap | θ ∈ [−π, π]} (5.14)

as the circle traced by p when acted upon by rotation Aθ,a for all θ at a particular axis

a.

The set of possible positions of Rkxi is then defined by

Lk(xi) := {circ(p,a) | p ∈ Sε(B̂xi),a ∈ Sε(yk)}. (5.15)

Figure 5.1b illustrates this feasible region, which exists on the unit-sphere. The region

is bounded within the two circles

circ(pn,an) and circ(pf ,af), (5.16)

which are highlighted in Figure 5.1b. Intuitively, pn and an (resp. pf and af) are the

closest (resp. farthest) pair of points from Sε(B̂xi) and Sε(yk). Mathematically,

pn = exp

([
ε

B̂xi × yk

‖B̂xi × yk‖

]
×

)
B̂xi; (5.17)

an = exp

([
ε

yk × B̂xi

‖yk × B̂xi‖

]
×

)
yk; (5.18)

pf = exp

([
ε

yk × B̂xi

‖yk × B̂xi‖

]
×

)
B̂xi; and (5.19)

af = exp

([
ε

B̂xi × yk

‖B̂xi × yk‖

]
×

)
yk. (5.20)

Note that if B̂xi is antipodal to yk, the feasible region reduces to the spherical region

S3ε(B̂xi).

Chapter 5. Guaranteed Outlier Removal for Rotation Search 89

(a)

(b)

Figure 5.2: Geometric considerations of the angular bounding interval. (a) Solving
for γi in the red triangle. Its cathetus is half of the longest segment connecting points
in Sε(yi) and its hypotenuse is the radius of circ(yi,yk). (b) To simplify the diagram
and to aid intuition, the sphere in Figure 5.1 is stereographically projected to the 2D
plane using the North Pole (yk) as the projection pole. Recall that the stereographic
projection preserves circles [49], thus the shapes of all the circles and spherical regions
on the sphere are preserved. Note that stereographic projection is only for presentation
and is not required in practice.

Result 1. For any i 6= k, if Sε(yi) does not intersect with Lk(xi), then (xi,yi) cannot

be aligned by any rotation Rk that satisfies (5.3). The correspondence (xi,yi) can then

be safely removed without affecting the result fk of Pk.

5.3.3 Reducing the uncertainty

For each point match (xi,yi) that survives the pruning by Result 1, its uncertainty

bound (5.15) is reduced into an angular interval. This reduction is crucial for the

efficient upper bound algorithm to be introduced in Section 5.3.4.

Chapter 5. Guaranteed Outlier Removal for Rotation Search 90

Consider rotating an arbitrary unit-norm point p with Aθ,u for a fixed angle θ and

an axis u ∈ Sε(yk). The aim is to bound the possible locations of Aθ,up given the

uncertainty in u. To this end, it can be established that

max
u∈Sε(yk)

∠(Aθ,up,Aθ,ykp) ≤ max
u∈Sε(yk)

‖θu− θyk‖2

= 2|θ| sin(ε/2), (5.21)

where the first line is based on a well-known result of the axis-angle representation (see

Lemma 2.32), and the second line occurs since Sε(yk) has an angular radius of ε.

Now (5.21) is extended to accommodate the uncertainty of p itself as a point from

Sε(B̂xi):

max
p∈Sε(B̂xi)
u∈Sε(yk)

∠(Aθ,up,Aθ,ykB̂xi)

≤ max
p∈Sε(B̂xi)
u∈Sε(yk)

∠(Aθ,up,Aθ,ykp) + ∠(Aθ,ykp,Aθ,ykB̂xi)

≤ 2|θ| sin(ε/2) + ε. (5.22)

The second line is due to the triangle inequality, while the third line applies (5.21) on

the first term of the second line. Define

δ(θ) = 2|θ| sin(ε/2) + ε. (5.23)

The inequality (5.22) states that for a fixed θ and for all u ∈ Sε(yk) and Bxi ∈ Sε(B̂xi),

the point Aθ,uBxi lies in

Sδ(θ)(Aθ,ykB̂xi). (5.24)

Figure 5.1c depicts this spherical region. Observe that for all θ ∈ [−π, π], the centre of

the region lies in circ(B̂xi,yk). Intuitively, this is a circle of a fixed latitude on the globe

when yk is the North Pole. Further, the spherical region attains the largest angular

radius at θ = ±π.

For a pair (xi,yi), the idea is to obtain a bound Θi (an interval) on the range of θ that

enable Aθ,uBxi to align with yi, given the uncertainties u ∈ Sε(yk) and Bxi ∈ Sε(B̂xi).

This is analogous to seeking a bound on the θ that allows Sδ(θ)(Aθ,ykB̂xi) to “touch”

Sε(yi); see Figure 5.1c.

Henceforth, concepts from the spherical coordinate system are used with reference to yk

as the North Pole.

Chapter 5. Guaranteed Outlier Removal for Rotation Search 91

5.3.3.1 Degenerate cases

If B̂xi is close to yk, the North Pole may lie in Lk(xi). If this occurs, Θi is taken as

[−π, π].

5.3.3.2 Non-degenerate cases

Define φ(yi) and ψ(yi) respectively as the azimuth and inclination of yi. The spherical

region Sε(yi) is contained between the meridians φ(yi)− γi and φ(yi) + γi, where

γi = arcsin

(
sin(ε)

sin(ψ(yi))

)
(5.25)

following the geometric considerations in Figure 5.2a. Let θi ∈ [−π, π] be the rotation

angle such that the point Aθi,ykB̂xi is on the meridian φ(yi). Refer to Figure 5.2b.

Case 1: θi ∈ [0, π]

This case is shown in Figure 5.2b. Define Θi = [θai , θ
b
i]. The desired bounding interval

Θi can be obtained by taking

θai = θi − γi − αi and θbi = θi + γi + βi, (5.26)

where αi is the largest value such that the spherical region

Sδ(θai)(Aθai ,yk
B̂xi) (5.27)

still touches the meridian φ(yi)− γi, and βi is the largest value such that the spherical

region

Sδ(θbi)
(Aθbi ,yk

B̂xi) (5.28)

still touches the meridian φ(yi) + γi. Refer to Figure 5.2b. αi and βi must be found to

determine Θi. From (5.23),

δ(θai) = 2|θi − γi − αi| sin(ε/2) + ε and (5.29)

δ(θbi) = 2|θi + γi + βi| sin(ε/2) + ε. (5.30)

Applying the same geometric considerations in Figure 5.2a on the spherical regions (5.27)

and (5.28),

sin(αi) =
sin(δ(θai))

sin(ψ(xi))
and sin(βi) =

sin(δ(θbi))

sin(ψ(xi))
. (5.31)

Chapter 5. Guaranteed Outlier Removal for Rotation Search 92

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sin(βi)

lower bnd. of sin(βi)

sin(δ(θbi))/ sin(ψ(xi))

δ(θbi)/ sin(ψ(xi))

0 β∗i β
′
i π/4 π/2

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sin(αi)

lower bnd. of sin(αi)

sin(δ(θai))/ sin(ψ(xi))

δ(θai)/ sin(ψ(xi))

0 α∗i α
′
i π/4 π/2

(b)

Figure 5.3: (a) Solving for βi in (5.31) using the proposed linear approximations.
(b) Solving for αi in (5.31) using the proposed linear approximations. Note that the
obtained solution α′i and β′i are always greater than the exact solution α∗i and β∗i , thus
guaranteeing [θai , θ

b
i] is a valid bounding interval.

Note that the functions on both sides of each equation have the unknowns αi and βi

respectively.

Figure 5.3a plots the two sine functions sin(βi) and sin(δ(θbi))/ sin(ψ(xi)). βi is consid-

ered only to be in [0, π/2], since the condition where the two functions do not intersect

before βi ≤ π/2 corresponds to the degeneracies in Section 5.3.3.1; proof is given in

Section 5.3.3.3. Further, since usually ε� π, the period of the second sine function

2π

2 sin(ε/2)
� 2π (5.32)

is much greater than 2π, thus explaining the almost linear trend of the second sine

function for βi ∈ [0, π/2]. A largely identical plot occurs for the functions involving αi

(see Figure 5.3b).

Analytically solving the equations in (5.31) is non-trivial. However, since all that is

required is a bounding interval Θi, sine functions can be replaced with more amenable

approximations that yield a valid bounding interval. An identical technique is used to

solve for αi and βi respectively, thus here a solution is described only for βi.

To solve for βi, sin(βi) is replaced with a lower-bounding two-piece linear function

g : [0, π/2]→ [0, 1] defined as

g(t) =

2
√

2

π
t if 0 ≤ t < π/4

2(2−
√

2)

π
t+
√

2− 1 if π/4 ≤ t < π/2.

(5.33)

Chapter 5. Guaranteed Outlier Removal for Rotation Search 93

See Figure 5.3a. Jordan’s inequality

2

π
t ≤ sin(t) ≤ t for t ≤ π

2
(5.34)

is used to obtain an upper-bounding line to sin(δ(θbi))/ sin(ψ(xi)), which enables to

replace the second sine function with

δ(θbi)

sin(ψ(xi))
=

2|θi + γi + βi| sin(ε/2) + ε

sin(ψ(xi))
. (5.35)

This upper-bounding line is legitimate for

2|θi + γi + βi| sin(ε/2) + ε ≤ π/2, (5.36)

where in the worst case requires

2π sin(ε/2) + ε ≤ π/2 (5.37)

or ε ≤ π/(2π + 2) ≡ 21.7◦, which is more than adequate for practical applications.

Solving for βi in the manner above allows to compute the upper limit θbi in constant

time.

Note that the resulting upper limit θbi may extend beyond π; to “wrap around” the

interval, Θi = [θai , θ
b
i] is broken into two connected intervals [θai , π] and [θbi − 2π,−π].

Case 2: θi ∈ [−π, 0]

Case 2 is simply a mirror of Case 1 and the same steps apply with the “directions”

reversed.

Result 2. For any i 6= k, if Sε(yi) intersects with Lk(xi), the range of angles θ such that

∠(Aθ,uBxi,yi) ≤ ε for all u ∈ Sε(yk) and Bxi ∈ Sε(B̂xi) is bounded by Θi computed

according to Section 5.3.3.

5.3.3.3 Range of αi and βi

δ(θa) and δ(θb) are consequence of the bound result of Lemma 2.32. Thus, δ(θai) (resp.

δ(θbi)) is maximised when |θai | = π (resp. |θbi | = π).

To solve (5.31) is equivalent to solving

αi = arcsin

(
sin(δ(θai))

sin(ψ(xi))

)
, βi = arcsin

(
sin(δ(θbi))

sin(ψ(xi))

)
. (5.38)

Chapter 5. Guaranteed Outlier Removal for Rotation Search 94

αi and βi have solution if ψ(xi) > 0 and

sin(δ(θai)) ≤ sin(ψ(xi)) and sin(δ(θbi)) ≤ sin(ψ(xi)), (5.39)

as arcsin yields non negative values when evaluated in [0, 1]. Note that sin(ψ(xi)) ∈ [0, 1]

since ψ(xi) takes values in [0, π]. Note also that δ(θai), δ(θbi) ∈ [ε, π/2] if ε < 21.7◦,

then sin(δ(θai)) and sin(δ(θbi)) take values in (0, 1]. By using Jordan’s inequality (5.34)

in (5.39), the following bound over the position of xi guarantees the existence of a

solution to 5.38:

λ(xi) ≥ ε
π(π + 1)

2
≡ 6.506ε, (5.40)

where λ(xi) is defined as the distance to the “closest pole” and taking values in [0, π/2]

as required by Jordan’s inequality.

Result (5.40) shows that there exist a solution of the equations in (5.38) if xi is not too

close to the poles. Recall that rather than finding the exact solutions of (5.31), bounds of

such exact solutions are obtained by intersecting linear approximations: (5.33) and (5.35).

Thus, it is sufficient to check if the approximate method has solution to obtain a bound-

ing interval Θi. If the approximate method does not have a solution then Θi is set to

[−π, π].

Lemma 5.2. α and β are well defined in [0, π/2].

Proof. Let the outline of the spherical region Sδ(θbi)
(Aθbi ,yk

B̂xi) be infinitesimally close

to either the North or the South Pole. In such a limiting case, the meridians containing

Sδ(θbi)
(Aθbi ,yk

B̂xi) will be at azimuthal angle π apart, thus βi ≤ π/2. If either the North

or the South Pole is contained in Sδ(θbi)
(Aθbi ,yk

B̂xi), then this spherical region cannot

be bounded between two meridians since the spherical region can intersect points with

azimuth in all the azimuthal domain [0, 2π]. The same analysis can be done for αi.

5.3.3.4 Validity of the proposed method

The following lemma makes it possible to establish that the solution of intersecting

sin(δ(θai))/ sin(ψ(xi)) (resp. sin(δ(θbi))/ sin(ψ(xi))) with the sine function is upper bounded

by the solution of intersecting δ(θai)/ sin(ψ(xi)) (resp. δ(θbi)/ sin(ψ(xi))) with the sine

function.

Lemma 5.3. If f̂a and f̂ b are upper bounding functions of sin(δ(θai))/ sin(ψ(xi)) and

sin(δ(θbi))/ sin(ψ(xi)), and α̂i, β̂i are such that α̂i = arcsin(f̂a(α̂i)), β̂i = arcsin(f̂ b(β̂i)),

then α̂i ≥ α∗i and β̂i ≥ β∗i , where α∗i and β∗i are the solutions of (5.31).

Chapter 5. Guaranteed Outlier Removal for Rotation Search 95

0

1

Figure 5.4: Geometry of solving α′i.

Proof. Let fa be the right hand function in the left equation in (5.38). Define ya0 := fa(0)

ya0 = arcsin

(
sin (2(γi + αi) sin(ε/2) + ε)

sin(ψ(xi))

)
(5.41)

ya0 > 0 since, as will be shown, arcsin is evaluated in (0, 1] raising values > 0. Since

sin(δ(θai))/ sin(ψ(xi)) < 1 if condition (5.40) is true, it is sufficient to show the argument

in arcsin is > 0 to prove that ya0 > 0. sin(2(γi + αi) sin(ε/2) + ε) > 0 if 2π sin(ε/2) < π,

which is a less restrictive condition over ε than in (5.37). sin(ψ(xi)) > 0 since it is a

necessary condition to (5.31) has a solution.

fa intersects the identity at some α∗i in [0, α̂i] since fa is a continuous function lying at

opposites sides of the identity at 0 and α̂i:

fa(0) = ya0 > 0 and fa(α̂i) ≤ f̂a(α̂i) ≤ arcsin(f̂a(α̂i)) = α̂i, (5.42)

since arcsin(t) ≥ t in [0, 1]. The same analysis can be done to show that β̂i ≥ β∗i .

The linear approximations for the right hand side of equations in (5.31) are

f̂a(αi) :=
δ(θai)

sinψ(xi)
= maαi + ba and f̂ b(βi) :=

δ(θbi)

sinψ(xi)
= mbβi + bb, (5.43)

where (ma, ba) and (mb, bb) are the parameters of the linear functions.

Define α̂i and β̂i as the solutions of

sin(α̂i) = maα̂i + ba and sin(β̂i) = mbβ̂i + bb. (5.44)

Chapter 5. Guaranteed Outlier Removal for Rotation Search 96

Define α′i and β′i as the solutions of

g(α′i) = maα′i + ba and (β′i) = mbβ′i + bb, (5.45)

where g is the piece-wise linear function defined in (5.33).

From Lemma 5.3, α̂i ≥ α∗i and β̂i ≥ β∗i . Here it is shown that α′i ≥ α̂i, β
′
i ≥ β̂i,

and hence they are valid bounds. Geometrically, α′i is at the intersection of a segment

PQ with a segment SjSj+1, where P = (0, ba) with ba ≥ 0, and segments {SjSl+j}2l=1

defining g; see Figure 5.4. Recall g was defined to be a lower bounding function of sine.

PQ intersects sine at the left than {SjSj+1}2j=1.

Lemma 5.4. α′i and β′i that solve (5.45) are such that α′i ≥ α∗i and β′i ≥ β∗i .

Proof. Proof α′i ≥ α∗i is given by showing that α′i ≥ α̂i. g is a lower bounding function

of sin (see (5.33)). Then, for all line equations {pjαi + qj}2j=1 defining g

pjαi + qj ≤ sin(αi). (5.46)

It follows from (5.44) and (5.46) that

pjα̂i + qj ≤ sin(α̂i) = maα̂i + ba, ∀j = 1, 2. (5.47)

Finally, α̂i ≤ α′i is obtained by replacing

ba = (pj −ma)α′i + qj (5.48)

from (5.45) in (5.47):

pjα̂i + qj ≤ maα̂i + (pj −ma)α′i + qj ⇔ α̂i ≤ α′i. (5.49)

Proving β′i ≥ β∗i can be done similarly.

5.3.4 Interval stabbing

For problem Pk, on the input point matches that remain after pruning by the application

of Result 1, Result 2 can be used to convert them into a set of angular intervals {Θj},
where each Θj = [θaj , θ

b
j]. The aim is to find the largest number of point matches that

can be aligned by the same rotation angle θ. More formally, this is the solution of

Ok = maximize
θ∈[−π,π]

∑
j

⌊
θ ∈ [θaj , θ

b
j]
⌋

(5.50)

Chapter 5. Guaranteed Outlier Removal for Rotation Search 97

where b·c is an indicator function that returns 1 if the input predicate is true and 0

otherwise. This is the well-known interval stabbing problem, for which efficient deter-

ministic algorithms exist [8, Chap. 10]. f̂k := Ok + 1 is taken as an upper bound to the

solution fk to Pk.

Theorem 5.5. f̂k := Ok + 1 ≥ fk.

Proof. By Result 2, each interval Θj is an over-estimation of the range of angles of

rotation Aθ,u that permit the associated point match to be aligned. The number Ok + 1

must thus be greater than or equal to the maximum number of point matches that can

be aligned under problem Pk.

As a by-product of interval stabbing, it can be derived

R̃k = Aθ̃,B̂xk
B̂, (5.51)

where θ̃ is an angle that globally solves (5.50). Aligning the input data with R̃k thus

provides a lower bound to the original rotation search problem (5.1).

5.4 Main algorithm

This section presents GORE for the rotation search problem (5.1). Algorithm 5.1 sum-

marizes the method. Given a set of input point matches H, GORE iterates over each

point match (xk,yk) and performs two operations: seek an improved lower bound l to

problem (5.1) and an upper bound f̂k to subproblem Pk; both steps are conducted si-

multaneously using the given techniques in Section 5.3. Both values are then compared

to attempt to reject the current point match as an outlier. The output is a reduced set

of point matches H′ ⊆ H guaranteed to include the globally optimal solution I∗ to (5.1).

GORE is a deterministic algorithm, unlike RANSAC. The worst case time complexity

can be established as follows: for each k, the bounding interval Θi for each i 6= k is

obtained in constant time. Given N intervals, the stabbing problem (5.50) can be solved

in O(N logN) time [8, Chap. 10]. Thus, Line 5 in Algorithm 5.1 takes O(N logN) time.

In the worst case, Line 5 is performed N times, and GORE thus consumes O(N2 logN)

time.

As a whole, GORE contains only very simple geometric operations. Section 5.5 demon-

strates the extreme efficiency of GORE in processing large input data sizes.

Chapter 5. Guaranteed Outlier Removal for Rotation Search 98

Algorithm 5.1 Guaranteed outlier removal for rotation search (GORE).

Require: Point matches {(xi,yi)}Ni=1, inlier threshold ε.
1: H ← {1, 2, . . . , N}.
2: H′ ← H, O ← H, V ← ∅, and l← 0.
3: for all k ∈ O do
4: V ← V ∪ {k}.
5: Compute upper bound f̂k and suboptimal rotation R̃k (Section 5.3) for problem

Pk on data indexed by H′.
6: Ck ← {i | i ∈ H′,∠(R̃kxi,yi) ≤ ε}.
7: lk ← |Ck|.
8: if lk > l then
9: l← lk.

10: O ← H′ \ Ck.
11: end if
12: if f̂k < l then
13: H′ ← H′ \ {k}.
14: end if
15: O ← O \ V.
16: end for
17: return {(xi,yi) | i ∈ H′}.

5.5 Results

All algorithms were implemented in C++. GORE’s implementation is public avail-

able [57]. Experiments were conducted on a standard PC with a 2.7 GHz CPU.

5.5.1 Synthetic data

A data instance was generated as follows: N points on the unit-sphere were randomly

produced to obtain set X . Set X was randomly rotated to produce set Y, which was

then added with Gaussian noise of σ = 0.5◦ (recall that the angular distance was used

here). For a given outlier rate ρ, ρN point matches (xi,yi) were randomly chosen from

(X ,Y) and resampled uniformly on the sphere to create outliers. In the experiments,

N ∈ {100, 250, 500} and ρ = {0, 0.05, . . . , 0.9} were used. For each (N, ρ) combination,

1000 data instances were generated and ε = 0.5◦ was used in (5.1). The following

approaches were tested:

• RANSAC: A confidence level of 0.99 was used for the stopping criterion [24]. For

each data instance, median runtime over 100 runs were taken.

• GORE: Algorithm 5.1. No particular ordering for the data was conducted beyond

the order of generation.

• BnB: Following the method of [7, 34].

Chapter 5. Guaranteed Outlier Removal for Rotation Search 99

N = 100 N = 250 N = 500

0 10 20 30 40 50 60 70 80 90
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

outlier (%)

ti
m

e
 (

s
)

RANSAC
GORE
BnB
GORE+RANSAC
GORE+BnB
RGORE+BnB
GORE+aBnB

0 10 20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

outlier (%)

ti
m

e
 (

s
)

RANSAC
GORE
BnB
GORE+RANSAC
GORE+BnB
RGORE+BnB
GORE+aBnB

0 10 20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

outlier (%)

ti
m

e
 (

s
)

RANSAC
GORE
BnB
GORE+RANSAC
GORE+BnB
RGORE+BnB
GORE+aBnB

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

outlier (%)

e
rr

o
r

(d
e
g
re

e
s
)

GORE
SVD
GORE+SVD

0 10 20 30 40 50 60 70 80 90
0
5

10
15
20
25
30
35
40

outlier (%)
e
rr

o
r

(d
e
g
re

e
s
)

GORE
SVD
GORE+SVD

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

outlier (%)

e
rr

o
r

(d
e
g
re

e
s
)

GORE
SVD
GORE+SVD

0 10 20 30 40 50 60 70 80 90
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

outlier (%)

e
rr

o
r

(d
e

g
re

e
s
)

GORE
GORE+RANSAC

0 10 20 30 40 50 60 70 80 90
0.2

0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28

outlier (%)

e
rr

o
r

(d
e

g
re

e
s
)

GORE
GORE+RANSAC

0 10 20 30 40 50 60 70 80 90
0.205
0.21

0.215
0.22

0.225
0.23

0.235
0.24

0.245
0.25

outlier (%)

e
rr

o
r

(d
e

g
re

e
s
)

GORE
GORE+RANSAC

Figure 5.5: Results on synthetic data. Row 1: Runtimes for different outlier
ratios. Rows 2 and 3: Angular error of estimated rotations. To avoid clutter,
GORE+RANSAC’s error is not plotted in Row 2.

• GORE+BnB: Data remaining after GORE was fed to BnB. The lower bound of

BnB was also initialised as the value of l at the termination of Algorithm 5.1.

• GORE+RANSAC: Data remaining after GORE was fed to RANSAC. Global op-

timality is not guaranteed.

• RGORE+BnB: Same as GORE+BnB, but the initial value of l in Algorithm 5.1

for GORE was obtained by first running RANSAC to yield a suboptimal result Ĩ.

• GORE+aBnB: Same as GORE+BnB, but all the original data was given to BnB

(GORE was only used to initialize the lower bound of BnB).

Runtime comparisons The first row of Figure 5.5 shows the median total runtime

over all data instances for the methods.

While RANSAC was faster than GORE at low outlier rates, as the outlier rate increased,

the runtime of RANSAC increased exponentially. In contrast, the runtime of GORE

grew at a much lower rate. As expected, the runtime of BnB also grew rapidly as the

outlier rate increased. This contrasts with the trend exhibited by GORE+BnB—as the

outlier rate increased, the total runtime decreased. This is because at higher outlier rates,

GORE removed more outliers and reduced the overall data population more aggressively.

Chapter 5. Guaranteed Outlier Removal for Rotation Search 100

Hence, BnB was able to find the global solution using less time. Since the bulk of the

runtime in GORE+BnB was due to BnB, the total runtime decreased with outlier rate.

At lower outlier rates, GORE+BnB took longer than “raw” BnB since there were fewer

outliers to remove, but steadily GORE+BnB began to outperform BnB. The perfor-

mance gain became significant at ≈ 70% outliers. At 90% outliers, GORE+BnB was an

order of magnitude faster than BnB. As it is shown in Section 5.5.2, outlier rates greater

than 95% are actually very common in real data.

The results of RGORE+BnB at low outlier rates show that initializing GORE with

RANSAC only marginally reduced the total runtime. However, at high outlier rates, the

total runtime increased dramatically following the slowing down of RANSAC. Crucially,

the trend of GORE+aBnB shows clearly that the dominating factor in speeding up BnB

is in reducing the data amount and outlier rate, not in initializing BnB with a good lower

bound. Hence, hot starting BnB with the suboptimal result |Ĩ| of RANSAC will not

reduce runtime (not to mention that at high outlier rates, the computation of RANSAC

itself is a major burden).

Evaluation of suboptimal rotation Here is provided empirical evidence that, al-

though GORE cannot completely eliminate all outliers, the best suboptimal rotation

R̃k calculated by Algorithm 5.1 is actually a good approximate solution. On each data

instance generated above, the error of the best R̃k to the globally optimal solution R∗

was calculated, where the error is measured by d∠(R̃k,R
∗) = ‖ log(R̃k(R

∗)>)‖2 with

log(·) the inverse of the exponential map (see Section 2.3.1 for more details). The dis-

tance is interpreted as the minimum geodesic motion between R̃kp and R∗p, where p is

an arbitrary point [33]. The rotations estimated using SVD [2] from the raw data, and

from the data after outlier removal with GORE, were evaluated in the same way. The

second row in Figure 5.5 shows error from all three rotations for increasing outlier rate,

while the third row shows error from R̃k and GORE+RANSAC’s result.

As expected, SVD (LS) rotation estimation is easily biased by outliers. Also, the non-

negligible error of GORE+SVD points to the presence of remaining outliers after GORE.

The error of R̃k, however, remains low (≤ 0.5◦) even for high outlier rates. This indicates

the efficacy of GORE as a suboptimal rotation search method. Results also show that a

further improvement to R̃k can be achieved by GORE+RANSAC at a small additional

runtime.

Chapter 5. Guaranteed Outlier Removal for Rotation Search 101

Figure 5.6: Data instance for armadillo for N = 100. Green lines represent the 10
inlier matches found by BnB. To avoid excessive clutter, only half of the outlier matches
(red lines) are displayed.

Object N irat

GORE RANSAC BnB
RANSAC GORE

+BnB +BnB

lwbnd err out time lwbnd err time opt err time time time
(◦) (s) (◦) (s) (◦) (s) (s) (s)

buddha
|S1| = 4151
|S2| = 3901

100 0.09 6 0.23 53 0.009 7 0.36 0.164 9 0.37 0.225 0.389 0.074

250 0.05 9 0.31 178 0.040 10 0.24 0.583 12 0.22 0.980 1.561 0.116

500 0.03 13 0.35 390 0.112 14 0.31 1.366 17 0.27 2.875 4.211 0.237

750 0.02 13 0.34 590 0.304 14 0.32 4.127 17 0.27 7.565 11.827 0.630

1000 0.01 13 0.32 807 0.447 14 0.30 6.494 17 0.27 12.610 19.470 1.018

bunny
|S1| = 6533
|S2| = 6226

100 0.18 16 0.19 74 0.003 16 0.20 0.032 18 0.13 0.030 0.062 0.003

250 0.10 20 0.27 209 0.015 21 0.24 0.133 24 0.13 0.145 0.278 0.024

500 0.06 27 0.23 442 0.056 26 0.23 0.342 30 0.22 0.520 0.881 0.076

750 0.04 31 0.18 684 0.127 29 0.25 0.659 32 0.23 1.245 1.946 0.147

1000 0.04 32 0.19 924 0.219 30 0.24 1.220 35 0.14 2.445 3.764 0.269

armadillo
|S1| = 4508
|S2| = 4362

100 0.10 7 0.17 80 0.003 8 0.30 0.125 10 0.21 0.095 0.215 0.013

250 0.06 10 0.17 229 0.014 12 0.31 0.501 14 0.26 0.350 0.875 0.021

500 0.03 10 0.69 469 0.055 12 0.31 1.783 15 0.24 1.430 3.198 0.066

750 0.02 13 0.34 713 0.146 13 0.29 3.270 16 0.24 3.435 7.002 0.161

1000 0.01 13 0.34 958 0.233 13 0.31 6.843 16 0.50 7.150 14.505 0.264

dragon
|S1| = 5332
|S2| = 4683

100 0.20 19 0.22 71 0.004 18 0.20 0.024 20 0.24 0.060 0.079 0.014

250 0.12 29 0.11 205 0.016 29 0.15 0.068 30 0.25 0.175 0.241 0.034

500 0.07 30 0.18 446 0.055 31 0.17 0.257 33 0.22 0.565 0.827 0.065

750 0.05 33 0.15 693 0.167 33 0.16 0.506 35 0.17 1.340 1.908 0.184

1000 0.04 36 0.12 939 0.226 36 0.16 0.870 38 0.14 2.635 3.557 0.283

Table 5.1: Point cloud registration results.

5.5.2 Point cloud registration

This experiment tests the use of GORE for rotational registration. This experiment

uses data from the Stanford repository, namely buddha, bunny, armadillo and dragon.

Two partially overlapping scans S1 and S2 were selected for each object. Sizes of S1

and S2 are listed on the Column 1 in Table 5.1. S1 and S2 were centred and scaled

such as their centroids coincided with the origin and both point sets were contained in

the cube [−50, 50]3. Point matches between S1 and S2 were obtained using ISS3D [74]

keypoint detector and matching with the PFH [66] descriptor as available in Point Cloud

Library [61].

Chapter 5. Guaranteed Outlier Removal for Rotation Search 102

A correspondence set was created by retaining N of the best point matches based on

the L2-norm of the PFH descriptors. For N ∈ {100, 250, 500}, the obtained inlier ratios

based on the threshold ε = 0.5◦ are listed in Column 3 in Table 5.1. Observe that

the outlier rates in this problem are extremely high, even reaching 99% in some data

instances. For each correspondence set, 10 different randomized rotations were applied

on S1 to produce 10 data instances for rotation search; Figure 5.6 depicts one such

instance.

For GORE, a straightforward variant was used; the main loop in Algorithm 5.1 was

iterated until no more outliers could be removed. Typically this required 3 to 10 passes

through the data. While this increased the duration of the method, the total runtime

was still relatively minuscule, as evidenced in Table 5.1. Also, the following methods

were executed: RANSAC, BnB, RANSAC+BnB (the suboptimal RANSAC result |Ĩ|
was used to initialize the lower bound of BnB) and GORE+BnB. The following measures

were recorded:

• lwbnd: objective value (5.1) of best suboptimal solution.

• err (◦): angular error in degrees of best suboptimal rotation to true rotation.

• time (s): total runtime in seconds.

• opt: objective value (5.1) of global solution.

Table 5.1 lists the median values over all 10 data instances.

Due to the extremely high outlier rates, RANSAC was an order of magnitude slower than

GORE. On all the data instances, GORE was able to terminate within 1 second, even

with multiple passes over the data. The most crucial outcome is that the combination

GORE+BnB was able to find the globally optimal result with an order of magnitude

less time than raw BnB. This was due to the massive reduction of true outliers be-

fore BnB—in this experiment, after GORE the median problem size to BnB was just

50. Additionally, the fact that RANSAC+BnB was slower than raw BnB indicates the

ineffectiveness of hot starting using RANSAC.

5.5.3 Image stitching

This experiment follows the image stitching experiment in [19]. SIFT correspondences

are obtained across an image pair taken with known camera intrinsics K1 and K2. The

scene is sufficiently far away to justify a homography H = K2RK−11 as an alignment

function, where R is the rotation between the views. The rotation R can be estimated

Chapter 5. Guaranteed Outlier Removal for Rotation Search 103

(a)

(b)

Figure 5.7: SIFT correspondences and stitching result of GORE. Source: Flickr (left
and right images).

by registering the matching vectors backprojected from the SIFT keypoint coordinates

using the inverse calibration matrix.

Figure 5.7 presents a challenging image pair where there is a very small overlapping

area. A total of 147 SIFT matches were detected and 79 of them correspond to inliers.

The inlier threshold used was ε = 0.04◦. GORE with multiple repetitions eliminated all

outliers in 10 ms; running BnB after GORE would thus terminate immediately, since

the best solution found by GORE equals to the global solution.

The experiment was run over the four additional image pairs presented in Figures 5.8–

5.11.

https://www.flickr.com/photos/hectorgarcia/4282212500
https://www.flickr.com/photos/hectorgarcia/4282215608

Chapter 5. Guaranteed Outlier Removal for Rotation Search 104

Image pair N irat
GORE BnB

GORE

+BnB

lwbnd err (◦) out time (s) opt time (s) time (s)

valparaiso 147 0.54 79 1.55 68 0.01 79 0.21 0.01

machu-picchu 194 0.33 51 1.10 60 0.02 64 1.94 1.27

paris1 718 0.07 49 0.01 584 0.33 51 16.68 2.03

paris2 921 0.22 181 0.16 311 1.07 200 16.24 11.33

rio 675 0.18 115 0.69 379 0.20 120 11.43 4.74

Table 5.2: Image stitching results.

5.5.3.1 Quantitative results

Table 5.2 presents quantitative results and experiment details. For brevity, RANSAC

results are not included here, since it is clear from results in Section 5.5.1 that running

RANSAC does not assist in cutting down the overall runtime of globally optimal rotation

search. For all tested image pairs, removing true outliers found by GORE helped to

decrease runtime.

5.5.3.2 Qualitative results

Panel (b) in Figures 5.8–5.11 show the SIFT keypoint matches. Green lines designate

the inliers that agree with the globally optimal rotation, while red lines designate “true”

outliers with respect to the globally optimal rotation.

Panel (c) show the matches that remain after GORE; observe that the matches that

have been removed do not exist in the true inlier set.

To demonstrate that the suboptimal rotation produced by GORE is very close to the

optimal one, panel (d) show the stitched images using the homographies defined using

the suboptimal rotations. Compare with the stitching results in panel (e) where the

homographies were defined using the globally optimal rotation found by BnB.

Chapter 5. Guaranteed Outlier Removal for Rotation Search 105

(a) Input images.

(b) SIFT keypoint matches (green = true inliers, red = true outliers).

(c) Matches that remain after preprocessing with GORE.

(d) Stitching result using suboptimal rotation by GORE.

(e) Stitching result using globally optimal rotation by BnB.

Figure 5.8: Results for the machu-picchu image pair. Source: Flickr (left and right
images).

https://www.flickr.com/photos/starobs/11789376316
https://www.flickr.com/photos/starobs/11789379646

Chapter 5. Guaranteed Outlier Removal for Rotation Search 106

(a) Input images.

(b) SIFT keypoint matches (green = true inliers, red = true
outliers).

(c) Matches that remain after preprocessing with GORE.

(d) Stitching result using suboptimal ro-
tation by GORE.

(e) Stitching result using globally optimal
rotation by BnB.

Figure 5.9: Results for the paris1 image pair. Source: Flickr (left and right images).

https://www.flickr.com/photos/befs/2175403327
https://www.flickr.com/photos/befs/2176188154

Chapter 5. Guaranteed Outlier Removal for Rotation Search 107

(a) Input images.

(b) SIFT keypoint matches (green = true inliers, red = true
outliers).

(c) Matches that remain after preprocessing with GORE.

(d) Stitching result using suboptimal ro-
tation by GORE.

(e) Stitching result using globally optimal
rotation by BnB.

Figure 5.10: Results for the paris2 image pair. Source: Flickr (left and right images).

https://www.flickr.com/photos/81894496@N06/9899176433
https://www.flickr.com/photos/81894496@N06/9899180493

Chapter 5. Guaranteed Outlier Removal for Rotation Search 108

(a) Input images

(b) SIFT keypoint matches (green = true inliers, red = true outliers).

(c) Matches that remain after preprocessing with GORE.

(d) Stitching result using suboptimal ro-
tation by GORE.

(e) Stitching result using globally optimal
rotation by BnB.

Figure 5.11: Results for the rio image pair. Source: Flickr (left and right images).

https://www.flickr.com/photos/christianhaugen/3741028892
https://www.flickr.com/photos/christianhaugen/3740237483

Chapter 5. Guaranteed Outlier Removal for Rotation Search 109

5.6 Summary

This chapter presented a guaranteed outlier removal technique for problem Type 1, in

the sense that any datum it removes cannot be in the globally optimal solution. Based

on simple geometric operations, GORE (Algorithm 5.1) is deterministic and efficient.

Experiments show that, by significantly reducing a significant amount of the outliers,

GORE greatly speeds up globally optimal rotation search.

The suboptimal rotation of GORE could be a good alternative for applications that

require a quick solution.

Chapter 6

Conclusions and Future Work

This thesis investigated finding globally optimal solutions for rotation search. Rotation

search is an important sub-routine in many geometric computer vision problems such

as point cloud registration, camera pose estimation, and image stitching, as surveyed

in Chapter 1. Rotation search is a computationally challenging problem. Most of the

useful objective functions such as GM and CSM are nonconvex/nonconcave, as surveyed

in Chapter 2.

This thesis made several contributions towards improving the performance of solving ro-

bust rotation search. For 1D rotation search, Chapter 3 proposed a real-time algorithm.

For 3D rotation search, Chapter 4 proposed an algorithm that is an order of magnitude

faster than previous formulations. When rotation search is solved on point correspon-

dences, Chapter 5 proposed an effective outlier removal method that only removes true

outliers, thus reducing the time for obtaining the optimal rotation by a subsequent exact

algorithm.

6.1 Future research directions

6.1.1 Extensions for registration of LIDAR scans

A possible extension for the user-assisted point cloud registration system of Chapter 3

is to leverage on 3D keypoint detectors to provide suggestions to the user on how to

align the point clouds. For example, solutions could be proposed efficiently by solving

rotation search for the best keypoint matches. Alternatively, if the number of keypoints

is small (≈ 100 for each point cloud), rotation could be solved by Algorithm 3.1 for all

possible keypoint matches in a few minutes.

111

Chapter 6. Conclusions and Future Work 112

6.1.2 Improvements for 3D rotation search

The BnB rotation search algorithm of Chapter 4 uses R-trees to index all possible

matches (see Section 4.4.2). The proposed upper bounding function (4.14) is evaluated

by querying multiple R-trees. There is a trade-off between insertion and search time

in R-trees [45]. Thus, the runtime of Algorithm 4.1 could be improved by using a

more sophisticated insertion strategy if the further reduction in querying time is more

significant than the extra cost of the insertion strategy. Also, static versions for R-

trees could be examined. Such variants of R-trees “bulk load” the data with a possible

reduction on the building time. For a discussion on insertion strategies and static R-trees

the reader can refer to [45].

6.1.3 Removal of true outliers on point cloud registration

A further research direction is to investigate the removal of true outliers on point cloud

registration:

maximize
R∈SO(3), t∈R3, I⊆H

|I|

subject to ‖Rxi + t− yi‖ ≤ ε, ∀i ∈ I,
(6.1)

where H = {1, . . . , N} indexes the set of all point correspondences {(xi,yi)}Ni=1.

For 4 DoF registration, true outliers might be removed using a similar method to as that

used in Chapter 5: assuming a correspondence to be a true inlier, bound the constrains

of (6.1) into angular intervals. As in Chapter 5, an upper bound of the solution of the

problem can be obtained on such angular intervals. If that upper bound is lower than a

known lower bound, then the assumed inlier can be identified as a true outlier.

For 6 DoF registration, if the translation is fixed such that (xk,yk) remains a valid

correspondence for any rotation, an upper bound of the solution of (6.1) can be obtained

as N −m, where m is a lower bound on the the number of true outliers of the resulting

rotation search problem resulting of fixing the translation. Thus, m can be obtained by

using the Euclidean version of Algorithm 5.1. From Figure 6.1, the angular error ε can

be expressed in terms of the Euclidean error ε′:

ε = arccos

(
d

‖xi‖

)
. (6.2)

Thus, Algorithm 5.1 can be adapted to the Euclidean error by considering independent

angular errors (6.2) associated with each point correspondence (xi,yi).

Chapter 6. Conclusions and Future Work 113

Figure 6.1: Relating the Euclidean error ε′ and the angular error ε for a point corre-
spondence (xi,yi) related by a rotation R such that ‖Rxi−yi‖ ≤ ε′. d can be obtained
by solving the circle–circle intersection problem.

Bibliography

[1] D. Aiger, N. J. Mitra, and D. Cohen-Or. “4-points congruent sets for robust pair-

wise surface registration”. In: Proceedings ACM SIGGRAPH 2008. SIGGRAPH.

New York, NY, USA: ACM, Aug. 1, 2008, 85:1–85:10. isbn: 978-1-4503-0112-1.

doi: 10.1145/1399504.1360684.

[2] K. Arun, T. Huang, and S. Blostein. “Least-Squares Fitting of Two 3-D Point

Sets”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)

PAMI-9.5 (Sept. 1987), pp. 698–700. issn: 0162-8828. doi: 10.1109/TPAMI.1987.

4767965.

[3] E. Ask, O. Enqvist, and F. Kahl. “Optimal Geometric Fitting under the Truncated

L2-Norm”. In: Computer Vision and Pattern Recognition (CVPR). Computer Vi-

sion and Pattern Recognition. Portland, OR: IEEE, June 23–28, 2013, pp. 1722–

1729. doi: 10.1109/CVPR.2013.225.

[4] C. Atkin. “Weakly bounded banach lie groups”. In: Victoria Interna- tional Con-

ference. 2004, pp. 9–13.

[5] H. Bay, T. Tuytelaars, and L. Van Gool. “SURF: Speeded Up Robust Features”.

In: European Conference on Computer Vision (ECCV). Vol. 3951. 3951. Springer

Berlin Heidelberg, 2006, pp. 404–417. isbn: 978-3-540-33832-1. doi: 10.1007/

11744023_32.

[6] J.-C. Bazin, H. Li, I. S. Kweon, C. Demonceaux, P. Vasseur, and K. Ikeuchi.

“A Branch-and-Bound Approach to Correspondence and Grouping Problems”.

In: IEEE Transactions on Pattern Analysis and Machine Intelligence 35.7 (July

2013), pp. 1565–1576. issn: 0162-8828. doi: 10.1109/TPAMI.2012.264.

[7] J.-C. Bazin, Y. Seo, and M. Pollefeys. “Globally Optimal Consensus Set Maxi-

mization through Rotation Search”. In: Asian Conference on Computer Vision

(ACCV). Vol. 7725. Lecture Notes in Computer Science. Springer Berlin Heidel-

berg, 2012, pp. 539–551. isbn: 978-3-642-37443-2. doi: 10.1007/978- 3- 642-

37444-9_42.

115

http://dx.doi.org/10.1145/1399504.1360684
http://dx.doi.org/10.1109/TPAMI.1987.4767965
http://dx.doi.org/10.1109/TPAMI.1987.4767965
http://dx.doi.org/10.1109/CVPR.2013.225
http://dx.doi.org/10.1007/11744023_32
http://dx.doi.org/10.1007/11744023_32
http://dx.doi.org/10.1109/TPAMI.2012.264
http://dx.doi.org/10.1007/978-3-642-37444-9_42
http://dx.doi.org/10.1007/978-3-642-37444-9_42

Bibliography 116

[8] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational geom-

etry. 3rd. Springer, 2008.

[9] P. J. Besl and N. D. McKay. “A method for registration of {3-D} shapes”. In:

IEEE Transactions on Pattern Analysis and Machine Intelligence 14.2 (Feb. 1992),

pp. 239–256. issn: 0162-8828. doi: 10.1109/34.121791.

[10] T. M. Breuel. “A comparison of search strategies for geometric branch and bound

algorithms”. In: European Conference on Computer Vision (ECCV). Vol. 2352.

Copenhagen, Denmark: Springer Berlin Heidelberg, Apr. 2002, pp. 837–850. isbn:

978-3-540-43746-8. doi: 10.1007/3-540-47977-5_55.

[11] T. M. Breuel. “Implementation techniques for geometric branch-and-bound match-

ing methods”. In: Computer Vision and Image Understanding 90.3 (2003), pp. 258

–294. issn: 1077-3142. doi: 10.1016/S1077-3142(03)00026-2.

[12] M. Brown, D. Windridge, and J.-Y. Guillemaut. “Globally Optimal 2D-3D Reg-

istration from Points or Lines Without Correspondences”. In: International Con-

ference on Computer Vision (ICCV). 2015, pp. 2111–2119. url: http://www.cv-

foundation.org/openaccess/content_iccv_2015/html/Brown_Globally_

Optimal_2D-3D_ICCV_2015_paper.html.

[13] C.-S. Chen, Y.-P. Hung, and J.-B. Cheng. “RANSAC-based DARCES: A new

approach to fast automatic registration of partially overlapping range images”. In:

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 21.11

(Nov. 1999), pp. 1229–1234. issn: 0162-8828. doi: 10.1109/34.809117.

[14] D. Chetverikov, D. Svirko, D. Stepanov, and P. Krsek. “The trimmed iterative clos-

est point algorithm”. In: International Conference on Pattern Recognition (ICPR).

Vol. 3. IEEE, 2002, pp. 545–548. isbn: 0-7695-1695-X. doi: 10.1109/ICPR.2002.

1047997.

[15] T.-J. Chin, Á. Parra Bustos, and M. S. Brown. Demostration video for: Fast Rota-

tion Search for Real-Time Interactive Point Cloud Registration. 2014. url: https:

//youtu.be/tg8XfU13GGQ.

[16] T.-J. Chin, Á. Parra Bustos, M. S. Brown, and D. Suter. “Fast Rotation Search

for Real-time Interactive Point Cloud Registration”. In: Proceedings of the 18th

Meeting of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and

Games. I3D ’14. New York, NY, USA: ACM, 2014, pp. 55–62. isbn: 978-1-4503-

2717-6. doi: 10.1145/2556700.2556712.

[17] B. Curless and M. Levoy. “A volumetric method for building complex models from

range images”. In: Computer Graphics (SIGGRAPH 1996 Proceedings). ACM,

1996, pp. 303–312. doi: 10.1145/237170.237269.

http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.1007/3-540-47977-5_55
http://dx.doi.org/10.1016/S1077-3142(03)00026-2
http://www.cv-foundation.org/openaccess/content_iccv_2015/html/Brown_Globally_Optimal_2D-3D_ICCV_2015_paper.html
http://www.cv-foundation.org/openaccess/content_iccv_2015/html/Brown_Globally_Optimal_2D-3D_ICCV_2015_paper.html
http://www.cv-foundation.org/openaccess/content_iccv_2015/html/Brown_Globally_Optimal_2D-3D_ICCV_2015_paper.html
http://dx.doi.org/10.1109/34.809117
http://dx.doi.org/10.1109/ICPR.2002.1047997
http://dx.doi.org/10.1109/ICPR.2002.1047997
https://youtu.be/tg8XfU13GGQ
https://youtu.be/tg8XfU13GGQ
http://dx.doi.org/10.1145/2556700.2556712
http://dx.doi.org/10.1145/237170.237269

Bibliography 117

[18] D. W. Eggert, A. Lorusso, and R. B. Fisher. “Estimating 3-D rigid body transfor-

mations: a comparison of four major algorithms”. In: Machine Vision and Appli-

cations 9.5-6 (1997), pp. 272–290. issn: 0932-8092. doi: 10.1007/s001380050048.

[19] O. Enqvist, E. Ask, F. Kahl, and K. Åström. “Robust Fitting for Multiple View Ge-

ometry”. In: European Conference on Computer Vision (ECCV). ECCV. Vol. 7572.

Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012, pp. 738–751.

isbn: 978-3-642-33717-8. doi: 10.1007/978-3-642-33718-5_53.

[20] O. Enqvist, E. Ask, F. Kahl, and K. Åström. “Tractable Algorithms for Robust

Model Estimation”. In: International Journal of Computer Vision 112.1 (Mar. 1,

2014), pp. 115–129. issn: 0920-5691. doi: 10.1007/s11263-014-0760-2.

[21] O. Enqvist, K. Josephson, and F. Kahl. “Optimal Correspondences from Pairwise

Constraints”. In: International Conference on Computer Vision (ICCV). IEEE,

Sept. 29–Oct. 2, 2009, pp. 1295–1302. isbn: 978-1-4244-4420-5. doi: 10.1109/

ICCV.2009.5459319.

[22] O. Enqvist and F. Kahl. “Robust Optimal Pose Estimation”. In: European Con-

ference on Computer Vision (ECCV). Vol. 5302. Lecture Notes in Computer Sci-

ence. Springer Berlin Heidelberg, 2008, pp. 141–153. isbn: 978-3-540-88681-5. doi:

10.1007/978-3-540-88682-2_12.

[23] O. D. Faugeras and M. Hebert. “The Representation, Recognition, and Locating

of 3-D Objects”. In: The International Journal of Robotics Research 5.3 (1986),

pp. 27–52. issn: 0278-3649. doi: 10.1177/027836498600500302.

[24] M. A. Fischler and R. C. Bolles. “Random Sample Consensus: A Paradigm for

Model Fitting with Applications to Image Analysis and Automated Cartography”.

In: Commun. ACM 24.6 (June 1981), pp. 381–395. issn: 0001-0782. doi: 10.1145/

358669.358692.

[25] A. W. Fitzgibbon. “Robust Registration of 2D and 3D Point Sets”. In: British

Machine Vision Conference (BMVC). Manchester: BMVA Press, 2001, pp. 411

–420. isbn: 1-901725-16-2. doi: 10.5244/C.15.43.

[26] A. W. Fitzgibbon. “Robust registration of 2D and 3D point sets”. In: Image

and Vision Computing 21.13–14 (2003). British Machine Vision Computing 2001,

pp. 1145 –1153. issn: 0262-8856. doi: 10.1016/j.imavis.2003.09.004.

[27] R. Gal and D. Cohen-Or. “Salient geometric features for partial shape match-

ing and similarity”. In: ACM Transactions on Graphics (TOG) 25.1 (Jan. 2006),

pp. 130–150. doi: 10.1145/1122501.1122507.

[28] N. Gelfand, N. J. Mitra, L. J. Guibas, and H. Pottmann. “Robust global registra-

tion”. In: Eurographics. Eurographics. Vol. 2. 2005, pp. 197–206. isbn: 3-905673-

24-X. url: http://dl.acm.org/citation.cfm?id=1281920.1281953.

http://dx.doi.org/10.1007/s001380050048
http://dx.doi.org/10.1007/978-3-642-33718-5_53
http://dx.doi.org/10.1007/s11263-014-0760-2
http://dx.doi.org/10.1109/ICCV.2009.5459319
http://dx.doi.org/10.1109/ICCV.2009.5459319
http://dx.doi.org/10.1007/978-3-540-88682-2_12
http://dx.doi.org/10.1177/027836498600500302
http://dx.doi.org/10.1145/358669.358692
http://dx.doi.org/10.1145/358669.358692
http://dx.doi.org/10.5244/C.15.43
http://dx.doi.org/10.1016/j.imavis.2003.09.004
http://dx.doi.org/10.1145/1122501.1122507
http://dl.acm.org/citation.cfm?id=1281920.1281953

Bibliography 118

[29] S. Gold, A. Rangarajan, C.-P. Lu, S. Pappu, and E. Mjolsness. “New algorithms

for 2D and 3D point matching: Pose estimation and correspondence”. In: Pattern

recognition 31.8 (1998), pp. 1019–1031. doi: 10.1016/S0031-3203(98)80010-1.

[30] Google Street View. Google Photo Sphere’s website. Google Photo Sphere. url:

https://www.google.com/maps/streetview/publish/.

[31] R. Hartley and F. Kahl. “Global optimization through searching rotation space

and optimal estimation of the essential matrix”. In: International Conference on

Computer Vision (ICCV). Rio de Janeiro: IEEE, 2007, pp. 1–8. isbn: 978-1-4244-

1630-1. doi: 10.1109/ICCV.2007.4408896.

[32] R. Hartley and F. Kahl. “Optimal Algorithms in Multiview Geometry”. In: Asian

Conference on Computer Vision (ACCV). Vol. 4843. Lecture Notes in Computer

Science. Springer Berlin Heidelberg, 2007, pp. 13–34. isbn: 978-3-540-76385-7. doi:

10.1007/978-3-540-76386-4_2.

[33] R. Hartley, J. Trumpf, Y. Dai, and H. Li. “Rotation Averaging”. In: International

Journal of Computer Vision 103.3 (July 2013), pp. 267–305. issn: 0920-5691, 1573-

1405. doi: 10.1007/s11263-012-0601-0.

[34] R. I. Hartley and F. Kahl. “Global Optimization through Rotation Space Search”.

In: International Journal of Computer Vision 82.1 (2009), pp. 64–79. issn: 0920-

5691. doi: 10.1007/s11263-008-0186-9.

[35] J. Heller, M. Havlena, and T. Pajdla. “A branch-and-bound algorithm for glob-

ally optimal hand-eye calibration”. In: Computer Vision and Pattern Recognition

(CVPR). CVPR. Providence, RI: IEEE, June 2012, pp. 1608–1615. isbn: 978-1-

4673-1226-4. doi: 10.1109/CVPR.2012.6247853.

[36] R. Horaud and F. Dornaika. “Hand-Eye Calibration”. In: The International Jour-

nal of Robotics Research 14.3 (June 1, 1995), pp. 195–210. issn: 0278-3649. doi:

10.1177/027836499501400301.

[37] B. K. P. Horn. “Closed-form solution of absolute orientation using unit quater-

nions”. In: J. Opt. Soc. Am. A 4.4 (Apr. 1987), pp. 629–642. doi: 10.1364/

JOSAA.4.000629.

[38] R. Horst and H. Tuy. Global optimization: Deterministic approaches. Berlin, Hei-

delberg: Springer, 2003. 730 pp. isbn: 978-3-540-61038-0.

[39] B. Jian and B. C. Vemuri. “A robust algorithm for point set registration using

mixture of Gaussians”. In: International Conference on Computer Vision (ICCV).

Vol. 2. IEEE, 2005, pp. 1246–1251. isbn: 0-7695-2334-X. doi: 10.1109/ICCV.

2005.17.

http://dx.doi.org/10.1016/S0031-3203(98)80010-1
https://www.google.com/maps/streetview/publish/
http://dx.doi.org/10.1109/ICCV.2007.4408896
http://dx.doi.org/10.1007/978-3-540-76386-4_2
http://dx.doi.org/10.1007/s11263-012-0601-0
http://dx.doi.org/10.1007/s11263-008-0186-9
http://dx.doi.org/10.1109/CVPR.2012.6247853
http://dx.doi.org/10.1177/027836499501400301
http://dx.doi.org/10.1364/JOSAA.4.000629
http://dx.doi.org/10.1364/JOSAA.4.000629
http://dx.doi.org/10.1109/ICCV.2005.17
http://dx.doi.org/10.1109/ICCV.2005.17

Bibliography 119

[40] M. Leordeanu and M. Hebert. “A spectral technique for correspondence prob-

lems using pairwise constraints”. In: International Conference on Computer Vi-

sion (ICCV). Vol. 2. Beijing: IEEE, 2005, pp. 1482–1489. isbn: 0-7695-2334-X.

doi: 10.1109/ICCV.2005.20.

[41] H. Li and R. Hartley. “The 3D-3D Registration Problem Revisited”. In: Interna-

tional Conference on Computer Vision (ICCV). Rio de Janeiro: IEEE, Oct. 2007,

pp. 1–8. isbn: 978-1-4244-1630-1. doi: 10.1109/ICCV.2007.4409077.

[42] X. Li and I. Guskov. “Multiscale Features for Approximate Alignment of Point-

based Surfaces.” In: ACM SIGGRAPH/Eurographics Symposium on Geometry

Processing. Vol. 255. Vienna, Austria: Citeseer, 2005, pp. 217–226. url: http:

//dl.acm.org/citation.cfm?id=1281955.

[43] D. Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. In: Inter-

national Journal of Computer Vision 60.2 (2004), pp. 91–110. issn: 0920-5691.

doi: 10.1023/B:VISI.0000029664.99615.94.

[44] A. Makadia, A. Patterson, and K. Daniilidis. “Fully automatic registration of 3D

point clouds”. In: Computer Vision and Pattern Recognition (CVPR). Vol. 1. New

York, USA: IEEE, 2006, pp. 1297–1304. isbn: 0-7695-2597-0. doi: 10.1109/CVPR.

2006.122.

[45] Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos, and Y. Theodoridis. R-

trees theory and applications. London: Springer, 2006. isbn: 978-1-84628-293-5.

url: http://public.eblib.com/choice/publicfullrecord.aspx?p=645397.

[46] MAPTEK. Introducing I Site Studio 6. url: http://www.maptek.com/products/

i-site/i-site_studio_6.html.

[47] A. Mian, M. Bennamoun, and R. Owens. “Three-Dimensional Model-Based Object

Recognition and Segmentation in Cluttered Scenes”. In: IEEE Transactions on

Pattern Analysis and Machine Intelligence 28.10 (Oct. 2006), pp. 1584–1601. issn:

0162-8828, 2160-9292. doi: 10.1109/TPAMI.2006.213.

[48] A. Myronenko and Xubo Song. “Point Set Registration: Coherent Point Drift”.

In: IEEE Transactions on Pattern Analysis and Machine Intelligence 32.12 (Dec.

2010), pp. 2262–2275. issn: 0162-8828. doi: 10.1109/TPAMI.2010.46.

[49] T. Needham. Visual complex analysis. Clarendon Press, 1997.

[50] N. Ohta and K. Kanatani. “Optimal estimation of three-dimensional rotation and

reliability evaluation”. In: European Conference on Computer Vision (ECCV).

Vol. 1406. Lecture Notes in Computer Science. Springer Berlin Heidelberg, Jan. 1,

1998, pp. 175–187. isbn: 978-3-540-64569-6. doi: 10.1007/BFb0055666.

http://dx.doi.org/10.1109/ICCV.2005.20
http://dx.doi.org/10.1109/ICCV.2007.4409077
http://dl.acm.org/citation.cfm?id=1281955
http://dl.acm.org/citation.cfm?id=1281955
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1109/CVPR.2006.122
http://dx.doi.org/10.1109/CVPR.2006.122
http://public.eblib.com/choice/publicfullrecord.aspx?p=645397
http://www.maptek.com/products/i-site/i-site_studio_6.html
http://www.maptek.com/products/i-site/i-site_studio_6.html
http://dx.doi.org/10.1109/TPAMI.2006.213
http://dx.doi.org/10.1109/TPAMI.2010.46
http://dx.doi.org/10.1007/BFb0055666

Bibliography 120

[51] C. Olsson, F. Kahl, and M. Oskarsson. “Optimal Estimation of Perspective Camera

Pose”. In: Pattern Recognition, 2006. ICPR 2006. 18th International Conference

on. Vol. 2. 2006, pp. 5–8. doi: 10.1109/ICPR.2006.909.

[52] C. Olsson, O. Enqvist, and F. Kahl. “A polynomial-time bound for matching and

registration with outliers”. In: Computer Vision and Pattern Recognition (CVPR).

Anchorage, AK: IEEE, June 2008, pp. 1–8. isbn: 978-1-4244-2242-5. doi: 10.1109/

CVPR.2008.4587757.

[53] C. Olsson, F. Kahl, and M. Oskarsson. “Branch-and-Bound Methods for Euclidean

Registration Problems”. In: Pattern Analysis and Machine Intelligence (TPAMI)

31.5 (May 2009), pp. 783–794. issn: 0162-8828. doi: 10.1109/TPAMI.2008.131.

[54] C. Olsson, F. Kahl, and M. Oskarsson. “The registration problem revisited: Op-

timal solutions from points, lines and planes”. In: Computer Vision and Pattern

Recognition (CVPR). Vol. 1. IEEE, 2006, pp. 1206–1213. isbn: 0-7695-2597-0. doi:

10.1109/CVPR.2006.307.

[55] J. O’Rourke. Computational geometry in C. 2nd ed. Cambridge, UK: Cambridge

University Press, 1998. 376 pp. isbn: 978-0-521-64010-7 978-0-521-64976-6.

[56] C. Papazov and D. Burschka. “Stochastic global optimization for robust point set

registration”. In: Computer Vision and Image Understanding 115.12 (Dec. 2011),

pp. 1598–1609. issn: 10773142. doi: 10.1016/j.cviu.2011.05.008.

[57] Á. Parra Bustos. Author’s website. url: http://cs.adelaide.edu.au/~aparra.

[58] Á. Parra Bustos and T.-J. Chin. “Guaranteed Outlier Removal for Rotation Search”.

In: International Conference on Computer Vision (ICCV). 2015, pp. 2165–2173.

url: http://www.cv-foundation.org/openaccess/content_iccv_2015/html/

Bustos_Guaranteed_Outlier_Removal_ICCV_2015_paper.html.

[59] Á. Parra Bustos, T.-J. Chin, A. Eriksson, H. Li, and D. Suter. “Fast Rotation

Search with Stereographic Projections for 3D Registration”. In: (2015). doi: 10.

1109/TPAMI.2016.2517636.

[60] Á. Parra Bustos, Chin, Tat-Jun, and D. Suter. “Fast Rotation Search with Stereo-

graphic Projections for 3D Registration”. In: Computer Vision and Pattern Recog-

nition (CVPR). June 23–28, 2014, pp. 3930–3937. isbn: 978-1-4673-1226-4. doi:

10.1109/CVPR.2014.502.

[61] PCL. Point Cloud Library’s website. url: http://pointclouds.org.

[62] H. Pottmann, J. Wallner, Q.-X. Huang, and Y.-L. Yang. “Integral invariants for

robust geometry processing”. In: Computer Aided Geometric Design 26.1 (Jan.

2009), pp. 37–60. issn: 01678396. doi: 10.1016/j.cagd.2008.01.002.

http://dx.doi.org/10.1109/ICPR.2006.909
http://dx.doi.org/10.1109/CVPR.2008.4587757
http://dx.doi.org/10.1109/CVPR.2008.4587757
http://dx.doi.org/10.1109/TPAMI.2008.131
http://dx.doi.org/10.1109/CVPR.2006.307
http://dx.doi.org/10.1016/j.cviu.2011.05.008
http://cs.adelaide.edu.au/~aparra
http://www.cv-foundation.org/openaccess/content_iccv_2015/html/Bustos_Guaranteed_Outlier_Removal_ICCV_2015_paper.html
http://www.cv-foundation.org/openaccess/content_iccv_2015/html/Bustos_Guaranteed_Outlier_Removal_ICCV_2015_paper.html
http://dx.doi.org/10.1109/TPAMI.2016.2517636
http://dx.doi.org/10.1109/TPAMI.2016.2517636
http://dx.doi.org/10.1109/CVPR.2014.502
http://pointclouds.org
http://dx.doi.org/10.1016/j.cagd.2008.01.002

Bibliography 121

[63] F. Remondino. “Heritage Recording and 3D Modeling with Photogrammetry and

3D Scanning”. In: Remote Sensing 3.12 (May 30, 2011), pp. 1104–1138. issn:

2072-4292. doi: 10.3390/rs3061104.

[64] T. Ruland, T. Pajdla, and L. Kruger. “Globally optimal hand-eye calibration”. In:

Computer Vision and Pattern Recognition (CVPR). Providence, RI: IEEE, June

2012, pp. 1035–1042. isbn: 978-1-4673-1226-4. doi: 10.1109/CVPR.2012.6247781.

[65] S. Rusinkiewicz and M. Levoy. “Efficient variants of the ICP algorithm”. In: In-

ternational Conference on 3-D Digital Imaging and Modeling. Quebec City, Que.:

IEEE, May 2001, pp. 145–152. isbn: 0-7695-0984-3. doi: 10.1109/IM.2001.

924423.

[66] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz. “Aligning point cloud views

using persistent feature histograms”. In: International Conference on Intelligent

Robots and Systems (IROS). Nice: IEEE, Sept. 2008, pp. 3384–3391. isbn: 978-1-

4244-2057-5. doi: 10.1109/IROS.2008.4650967.

[67] J. Salvi, C. Matabosch, D. Fofi, and J. Forest. “A review of recent range image

registration methods with accuracy evaluation”. In: Image and Vision Computing

25.5 (May 2007), pp. 578–596. issn: 02628856. doi: 10.1016/j.imavis.2006.05.

012.

[68] Y. Seo, Y.-J. Choi, and S. W. Lee. “A branch-and-bound algorithm for globally op-

timal calibration of a camera-and-rotation-sensor system”. In: International Con-

ference on Computer Vision (ICCV). ICCV. Kyoto: IEEE, Sept. 2009, pp. 1173–

1178. isbn: 978-1-4244-4420-5. doi: 10.1109/ICCV.2009.5459343.

[69] L. Svarm, O. Enqvist, M. Oskarsson, and F. Kahl. “Accurate Localization and Pose

Estimation for Large 3D Models”. In: Computer Vision and Pattern Recognition

(CVPR). Columbus, OH: IEEE, June 2014, pp. 532–539. doi: 10.1109/CVPR.

2014.75.

[70] G. K. L. Tam, Zhi-Quan Cheng, Yu-Kun Lai, F. C. Langbein, Yonghuai Liu, D.

Marshall, R. R. Martin, Xian-Fang Sun, and P. L. Rosin. “Registration of 3D Point

Clouds and Meshes: A Survey from Rigid to Nonrigid”. In: IEEE Transactions on

Visualization and Computer Graphics 19.7 (July 2013), pp. 1199–1217. issn: 1077-

2626. doi: 10.1109/TVCG.2012.310.

[71] P. W. Theiler, J. D. Wegner, and K. Schindler. “Fast registration of laser scans

with 4-point congruent sets - what works and what doesn’t”. In: ISPRS Annals of

Photogrammetry, Remote Sensing and Spatial Information Sciences II-3 (Aug. 7,

2014), pp. 149–156. issn: 2194-9050. doi: 10.5194/isprsannals-II-3-149-2014.

http://dx.doi.org/10.3390/rs3061104
http://dx.doi.org/10.1109/CVPR.2012.6247781
http://dx.doi.org/10.1109/IM.2001.924423
http://dx.doi.org/10.1109/IM.2001.924423
http://dx.doi.org/10.1109/IROS.2008.4650967
http://dx.doi.org/10.1016/j.imavis.2006.05.012
http://dx.doi.org/10.1016/j.imavis.2006.05.012
http://dx.doi.org/10.1109/ICCV.2009.5459343
http://dx.doi.org/10.1109/CVPR.2014.75
http://dx.doi.org/10.1109/CVPR.2014.75
http://dx.doi.org/10.1109/TVCG.2012.310
http://dx.doi.org/10.5194/isprsannals-II-3-149-2014

Bibliography 122

[72] F. Tombari, S. Salti, and L. Di Stefano. “Performance Evaluation of 3D Keypoint

Detectors”. In: International Journal of Computer Vision 102.1-3 (Mar. 2013),

pp. 198–220. issn: 0920-5691, 1573-1405. doi: 10.1007/s11263-012-0545-4.

[73] J. Yang, H. Li, and Y. Jia. “Go-ICP: Solving 3D Registration Efficiently and

Globally Optimally”. In: International Conference on Computer Vision (ICCV).

Sydney, NSW: IEEE, Dec. 2013, pp. 1457–1464. doi: 10.1109/ICCV.2013.184.

[74] Y. Zhong. “Intrinsic shape signatures: A shape descriptor for 3D object recogni-

tion”. In: International Conference on Computer Vision Workshops (ICCV Work-

shops). Kyoto: IEEE, 2009, pp. 689–696. isbn: 978-1-4244-4442-7. doi: 10.1109/

ICCVW.2009.5457637.

http://dx.doi.org/10.1007/s11263-012-0545-4
http://dx.doi.org/10.1109/ICCV.2013.184
http://dx.doi.org/10.1109/ICCVW.2009.5457637
http://dx.doi.org/10.1109/ICCVW.2009.5457637

	TITLE: Robust Rotation Search in Computer Vision
	Declaration
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abbreviations
	Publications
	Dedication

	Chapter 1 Introduction
	Chapter 2 The Rotation Search Problem
	Chapter 3 Robust 1D Rotation Search
	Chapter 4 Robust 3D Rotation Search
	Chapter 5 Guaranteed Outlier Removal for Rotation Search
	Chapter 6 Conclusions and Future Work
	Bibliography

