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Abstract

Background: Recently, genome-wide association studies (GWAS) for cases versus controls using single nucleotide
polymorphism microarray data have shown promising findings for complex neuropsychiatric disorders, including
bipolar disorder (BD).

Methods: Here we describe a comprehensive genome-wide study of bipolar disorder (BD), cross-referencing analysis

from a family-based study of 229 small families with association analysis from over 950 cases and 950 ethnicity-matched
controls from the UK and Canada. Further, loci identified in these analyses were supported by pathways identified
through pathway analysis on the samples.

Results: Although no genome-wide significant markers were identified, the combined GWAS findings have
pointed to several genes of interest that support GWAS findings for BD from other groups or consortia, such as at SYNET
on 6425, PPP2R2C on 4p16.1, ZNF659 on 3p24.3, CNTNAPS (2q14.3), and CDHI13 (16g23.3). This apparent corroboration
across multiple sites gives much confidence to the likelihood of genetic involvement in BD at these lodi. In particular,
our two-stage strategy found association in both our combined case/control analysis and the family-based analysis on
1921.2 (closest gene: sphingosine-1-phosphate receptor 1 gene, STPRT) and on 1g24.1 near the gene TMCOJ, and at
CSMD1 on 8p23.2, supporting several previous GWAS reports for BD and for schizophrenia. Pathway analysis suggests
association of pathways involved in calcium signalling, neuropathic pain signalling, CREB signalling in neurons,
glutamate receptor signalling and axonal guidance signalling.

Conclusions: The findings presented here show support for a number of genes previously implicated genes in
the etiology of BD, including CSMDT and SYNET, as well as evidence for previously unreported genes such as the
brain-expressed genes ADCY2, NCALD, WDR60, SCN7A and SPAGIT6.

Keywords: Case/control, Trio, Transmission disequilibrium test, Pathway analysis

* Correspondence: john.vincent@camh.ca

“Neurogenetics Section, Campbell Family Mental Health Research Institute,
Centre for Addiction and Mental Health (CAMH), R-32, 250 College Street,
Toronto, ON M5T 1R8, Canada

°Department of Psychiatry, University of Toronto, Toronto, Canada

The Institute of Medical Science, University of Toronto, Toronto, Canada
Full list of author information is available at the end of the article

- © 2014 Xu et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
( B|°Med Central Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:john.vincent@camh.ca
http://creativecommons.org/licenses/by/2.0

Xu et al. BMC Medical Genetics 2014, 15:2
http://www.biomedcentral.com/1471-2350/15/2

Background

Bipolar disorder (BD), also known as manic-depressive
illness, is a chronic and devastating psychiatric condi-
tion, affecting 0.5-1.6% of the general population across
their lifetime [1]. The frequency of hospitalization, psy-
chological impairment, family devastation and suicidal
behaviour make BD a major public health concern [2,3],
with an estimated total annual societal cost of at least 45
billion dollars in North America [4]. It is characterized
by the recurrence of manic and hypomanic episodes. Al-
though the majority of BD sufferers experience a signifi-
cant reduction in symptoms between episodes of illness,
approximately 60% develop chronic interpersonal and
occupational impairment, with the result of untreated
illness usually generating major disability [1]. Comorbid-
ity with other psychiatric illness such as alcohol or sub-
stance abuse may also exacerbate the long-term course
of BD [1].

Family, twin and adoption studies provide strong evi-
dence of the genetic predisposition to BD [5,6], with
heritability estimates typically in the region of 80%. The
recurrence risk in siblings of a BD proband is ~8% (cor-
responding to a sibling relative risk compared with the
general population of Ag ~ 8), and for monozygotic
(identical) co-twins the risk is ~ 60%.

Identification of susceptibility genes for BD is the
first step on a path toward improved understanding of
the pathogenesis of mood disorders,with much to offer
including (a) more effective and better targeted treat-
ments, (b) earlier recognition of individuals at risk, and
(c) improved understanding of environmental factors
[7-9]. Linkage study findings support the view that no
variation within a single gene can explain the majority
of cases of BD, and demonstrates features that are typ-
ical in studies of complex genetic disorders, such as: (1)
No finding replicates in all data sets, (2) Modest levels
of statistical significance and estimated effect sizes, and
(3) Chromosomal regions of linkage are typically broad
(often > 20—-30 cM).

Recent advances in density and speed of high-throughput
single nucleotide polymorphism (SNP) genotyping along
with a reduction in costs has provided researchers with an
excellent opportunity to dissect the genetics of BD, under
the hypothesis that common variants contribute to the
disease. There has since been a wave of large genome-
wide association studies (GWAS) of BD that have used
high-density SNP microarrays to look for common shared
genotypes and haplotypes. Although such studies seem to
suffer from many of the same problems as the family-
based whole genome scans performed using microsatellite
markers, ie. failure to replicate across different sample
sets and a realization that much larger sample sizes are
necessary, the use of standard SNPs and genotyping me-
thodologies has allowed the pooling of data from large
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patient cohorts, and this has led to some exciting findings
of possible susceptibility loci and genes such as DGKH,
CACNAIC and ANK3 [10] (reviewed in Lee et al., 2012).

In the current study, we utilized an alternative and, we
believe, more efficient strategy, that used genotype data
from more than 950 BD cases and 950 psychiatrically
screened controls collected from two sites with identical
ascertainment criteria and assessment methods - one in
Canada, the other in the UK. As a source of independent
validation, we have also analysed genome-wide genotype
data from a Canadian cohort of small families.

Methods

Subject recruitment

For the total 1922 samples, there are 871 samples from
Toronto constituting 431 cases (160 males and 271
females) and 440 controls (176 males and 264 females);
there are 1051 samples from UK including 538 cases (180
males and 358 females) and 513 controls (192 males and
321 females). A breakdown of mean and median age at
interview, age of onset (AOQ), diagnostic subtype (BD I
versus BD II), presence of psychotic symptoms, suicide at-
tempt and family history of psychiatric disorders has been
provided previously for both the Toronto and UK cohorts
[11]. The 229 Toronto parent-offspring trio families, in-
cluding 215 families with BD proband and both parents,
and 14 families with BD proband and just 1 parent.
Demographic information and ascertainment criteria for
the family cohort have been reported previously [12].

From the CAMH, Toronto site BD individuals and
unrelated healthy controls matched for age, gender
and ethnicity were recruited. Inclusion criteria for pa-
tients: a) diagnosed with DSMIV/ICD 10 BD I or I
b) 18 years old or over; c) Caucasian, of Northern and
Western European origin, and three out of four grand-
parents also N.W. European Caucasian. Exclusion cri-
teria include: a) Use of intravenous drugs; b) Evidence
of mental retardation; c¢) Related to an individual
already in the study; d) Manias that only ever oc-
curred in relation to or as a result of alcohol or sub-
stance abuse or dependence and/or medical illness; e)
Have any manias as a result of a non-psychotropic
substance. In this study, the SCAN interview (Schedule
for Clinical Assessments in Neuropsychiatry) was used.
SCAN was developed in the framework of the World
Health Organisation (WHO) and the National Insti-
tutes of Health (NIH) Joint Project on Diagnosis and
Classification of Mental Disorders Alcohol and Drug
Related Problems [13]. Details on SCAN are available
at http://apps.who.int/iris/handle/10665/40356.

Using both SCAN and case note review, each case was
assigned DSM-IV and ICD 10 diagnoses by two independ-
ent team members with extensive diagnostic experience
according to lifetime consensus best-estimate diagnosis
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[14]. Lifetime occurrence of psychiatric symptoms was
also recorded using the OPCRIT checklist modified for
use with mood disorders [15].

Similar methods and criteria were also used to collect
a sample of 538 BD cases and 513 controls in London
at the Institute of Psychiatry [16] (as described in Gaysina
et al,, 2010).

Our third sample is an independent BD cohort)t of
229 parent/affected offspring trio families also collected
in the Toronto area. Methods included recruitment from
hospital clinics and through advertising, SCID-I inter-
views, and best estimate consensus diagnosis [17,18].

Both studies were approved by local Research Ethics
Committees (the CAMH Research Ethics Board (REB)
in Toronto, and the College Research Ethics Committee
(CREC) at King’s College London, and informed written
consent was obtained from all participants.

Genotyping

Genome-wide genotyping was performed for the Toronto
and London case/control cohorts using the Illumina-
Sentrix Human Hap550 BeadChip (Illumina Inc., San
Diego, CA, USA). Data was extracted by the Illumina®
Beadstudio software from data files created by the Illu-
minaBeadArray reader. Mainly, these were genotyped
by Illumina Inc. (San Diego, CA, USA) however 280
samples (97 cases and 183 controls) from the Toronto
cohort were genotyped at the Genome Quebec facility.
For the Toronto parent-offspring trio family cohort,
Affymetrix 5.0 arrays (Affymetrix, Santa Clara, CA,
USA) were used, and genotyped by the London Regional
Genomics Centre (London, Ontario).

Sample and SNP quality control

After genotyping, the discovery cohort samples were sub-
ject to a battery of a quality control (QC) tests. Reported
and genetic gender were examined using X-chromosome
linked SNPs. Relatedness between samples, sample conta-
minations, mis-identification and duplications were tested
using genome-wide identity-by-descent (IBD) estimation;
inconsistent samples were dropped from the analysis. Se-
parate QC was applied on the validation cohort including
the 229 Toronto parent-offspring trio families.

SNPs were subject to QC before analysis. Samples and
markers with call rates below 95% were excluded from
analysis. We removed SNPs with minor allele frequen-
cies below 1%. To minimize genotyping errors we ex-
cluded SNPs with p-value <10 for HWE of control
samples. PLINK software was used for quality control
steps described above [19].

Population stratification
Principal component analysis was conducted with EIGEN-
STRAT [20] on the discovery cohort with SNPs selected
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after QC filtering. To ensure the most homogeneous
groups for association analysis, we excluded subjects with
outliers defined by EIGENSTRAT [20]. Principal compo-
nents (PCs) were selected based on analysis of the scree
plot. For the genetic association analysis, the selected prin-
cipal components were adjusted in the logistic regression
model to correct for population stratification. We did not
apply principle component analysis on the validation co-
hort since the family-based association tests are robust
against population substructure [21].

Genotype imputation

Since the discovery and validation datasets were genotyped
on different GWAS SNP platforms, and the validation data-
set has a smaller number of SNPs, genotypes of the SNPs
that are not in the validation cohort were imputed. Beagle
V3.3.1 [22] was used for the trio family imputation using a
trio reference panel (HapMap3 Phasing Data: ftp://ftp.ncbi.
nlm.nih.gov/hapmap//phasing/2009-02_phaselll/HapMap3_
r2/CEU/TRIOS/ [23]) as this has better accuracy than
imputation using a phased reference panel [22]. Individual
genotypes with probability less than 0.90 were not in-
cluded. Hidden Markov models (HMMs) were used for
the imputation [22].

Association analysis

The association analyses were first applied on the discovery
cohort with only autosomal markers tested for association.
Although we used an additive genetic model for primary
analyses, we also explored dominant and recessive genetic
models for sensitivity analysis. Logistic regression models
were applied based on a genetic additive model. Odds ra-
tios (OR) and 95% confidence intervals (CI) were estimated
for the cases compared to the control group. The asso-
ciation, adjusting for principal components from the
EIGENSTRAT analysis, was tested using multivariate
logistic regression (SAS v9.2, Cary, NC). Association
analysis on the validation cohort of trio families was
performed using the transmission disequilibrium test
(TDT) [24]. Power calculations for association analyses
were performed using QUANTO [25,26].

Exploratory analysis on combined discovery and
validation datasets

Exploratory analysis was applied on the combined data-
set of unrelated case control individuals and the trio
family data. A hybrid method was applied to combine
the distinct estimates from separate case control samples
and parent-offspring trio families [27]. The estimates ob-
tained from separate analyses are combined into an overall
risk estimate and provided with the corresponding p-
value. As an exploratory analysis, the combined analysis
was applied on the SNPs that were nominally significant
(p <0.01) in both the discovery and validation analysis.
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Overlap of data with other published GWAS studies
Analysis of microarray genotype data for a subset of the
cases/control cohort (483 cases, 462 controls) from the
Institute of Psychiatry, London has been included in sev-
eral published GWAS meta-analysis reports, including the
Wellcome Trust Case Control Consortium (WTCCC)
2007, Scott et al., 2009, and Sklar et al., 2011 [28-30]. Data
from a subset of the Canadian cohort (334 cases and 257
controls) were also included in the meta-analyses pub-
lished by Scott et al., 2009 and Sklar et al., 2011, and in
a locus-specific replication analysis locus by McMahon
et al, 2010 (3p21.1) [31] and Francks et al., 2010
(19q13) [32]. Thus, the current study includes 55 cases
and 49 controls from the London cohort and 97 cases
and 183 controls from the Toronto cohort that do not
overlap with these studies. GWAS for the small families
does not overlap with any published genome-wide study,
and pathway analysis on these cohorts has not been pub-
lished previously.

Pathway analysis

Our pathway analysis on the discovery cohort data
followed that described by Beyene et al. [33]. For each
SNP passing QC, we performed univariate SNP asso-
ciation analysis using logistic regression in PLINK. We
selected SNPs that have nominal association (p < 0.01)
from the discovery data association analysis. This includes
5111 SNPs.We obtained the nearest gene for each of
the selected SNP from the Illumina SNP annotation file
(HumanHap550Yv3_Gene_Annotation, available from
icom.illumina.com) based on physical distance. The
SNPs were mapped to 2155 genes. For each of the
mapped genes, we obtained an aggregate summary meas-
ure based on individual values for SNPs assigned to this
gene. Here we used the maximum of absolute summary
measure over all SNPs mapped to the gene [33].

The aggregated summary measure was used to evaluate
the significance of predefined pathways using Ingenuity
Pathway Analysis software (IPA, version 11904312).
Briefly, for a given pathway, statistical significance of the
pathway enrichment is calculated using a Fisher's exact
test based on the number of genes annotated, number of
genes represented in the input dataset, and the total num-
ber of genes being assessed in the experiment. A pathway
was deemed significant if the adjusted p-value of enrich-
ment was < 0.05 (adjusted for multiple comparisons using
a Benjamini-Hochberg correction [34]).

Results and discussion

To test the common variant hypothesis more compre-
hensively, we performed an unbiased genome-wide asso-
ciation study of common variation using the discovery
dataset of 1922 case—control samples. Findings were val-
idated using the independent family-based cohort.
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Quality-control (QC) procedures were applied to the
510,740 single nucleotide polymorphisms (SNPs) in the
discovery dataset and 440,794 SNPs in the validation
dataset.

Population stratification

After applying QC filters, 502,877 common autosomal
SNPs remained in the discovery dataset and 346,565 com-
mon autosomal SNPs remained in the validation dataset.
To account for possible population stratification, principal
component analysis was undertaken with EIGENSTRAT
[20]. Five subjects were identified as population outliers
and excluded from the analysis. Three principal com-
ponents were selected based on scree plot. Additional
analyses for population stratification were undertaken
with each of the genetic markers adjusting for the three
principle components. The final datasets included 912 cases
and 903 controls in the discovery dataset and 224 families
(636 individuals) in the validation dataset. The average
genotyping rate in the remaining individuals was 99.7%.
The logistic regression model was used for association
analyses in the discovery cohort. In the discovery data-
set, none of the p-values met the stringent and perhaps
overly conservative Bonferroni correction for genome-
wide significance (Figure 1A). The distribution of p-
values examined in the discovery dataset demonstrated
a close match to that expected for a null distribution
except at the extreme tail of low p-values (Figure 2).

Discovery dataset analysis

We computed the power of the 1815 samples in the dis-
covery dataset. Given a prevalence of BD of 0.01, a SNP
in LD (D'=1) with a risk allele frequency 0.3, we have
76% power to detect significant association at p = 5.0E-7
under an additive model with strong effect size of OR
1.5. To detect an association with the same assumptions
and at p = 5.0E-8 significance level, the statistical power
is reduced to 0.61. With a moderate effect size of OR
1.3, the power to detect genome wide significant associ-
ation (p <5.0E-8) is very low. Despite no genome-wide
significant association (p < 5.0E-8), 68 SNPs in our dis-
covery dataset showed suggestive association with BD
risk (p <0.0001), many of which are replicating other
GWAS findings for BD (Table 1 shows a subset of these
SNPs with previous GWAS evidence for BD; the full set
is given in Additional file 1). The most significant SNP
was rs11787406, which is located just downstream of
the gene PRSS5 on 8p23.1 (p = 2.35E-6). Also, among the
top 68 SNPs we see 6 SNPs within the gene SYNEI on
6q25, with lowest p =3.02E-6 (plus a further 8 SNPs
among the top 1000 SNPs; Additional file 1: Table S1;
Figure 3). SNPs in this gene showed moderate asso-
ciation in the WTCCC study of ~2000 bipolar cases
and ~3000 controls [28], with a genotypic p-value of
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Figure 1 A Manhattan plot is shown for A. the combined loP/CAMH case/control cohort, and B. the CAMH small family sample,
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1.92E-05 for SNP rs2763025. Similarly, in a GWA
meta-analysis [35] 14 SNPs within SYNEI were identified
with p value <9.0E-6. As the WTCCC study and Liu et al.
meta-analyses included the case/control cohort from
London, this cannot be presented as a completely inde-
pendent observation, however the SYNEI SNP rs17082664
also showed suggestive association in a combined analysis
of WTCCC plus STEP-UCL and ED-DUB-STEP2 datasets
(p=3.6E-6), with much of the signal coming from the
STEP-UCL study, which on its own gives p = 3E-4 [36]. A
single SNP in ZNF659 on 3p24.3 was among the top 68
(with a further 4 SNPs among the top 1000; Additional

Observed -logo(p)

T T T T
0 1 2 3 4 5 6

Expected —logyo(p)

Figure 2 Quantile-Quantile (Q-Q) plot of p-values for the case
control dataset. Note: The Q-Q plot measures deviation from the
expected P-values. The diagonal (red) line represents the expected
(null) distribution. The slight deviation of the observed values from
expected values at the tail of the distribution is consistent with modest
genetic effects.

file 1: Table S1). Sklar et al. [37] (no overlap with
current datasets) also reported nominal association for
this gene, with p = 3.25E-4 at rs259521. We also report
3 SNPs among the top 68 situated within the ZNF274
gene (rs4444432: p = 4.85E-6) on 19q13. However, this
is someway distal to the nominal association for schizo-
phrenia and psychosis reported by Francks et al. [32]. We
also see suggestive association at rs4689410, within the
PPP2R2C gene on 4pl6.1 (p = 5.96E-6), which was previ-
ously reported to be associated to bipolar disorder [38,39].
In addition, a number of genes with no previous associ-
ation to BD have multiple SNPs with suggestive association
(Additional file 1: Table S4), including the brain-expressed
genes, ADCY2, NCALD, WDR60, SCN7A and SPAG16.

Validation dataset analysis

We computed the power of the TDT in 224 trio families
in our validation sample. Given a prevalence of BD of
0.01, a SNP in LD (D'=1) with a risk allele frequency
0.3, we have 82% power to detect association at the p =
0.05 significance level under an additive model with a
strong effect of OR 1.5. To detect an association with a
moderate effect size of OR 1.3, the statistical power re-
duce to 0.58. 132 SNPs in the validation dataset showed
suggestive association (p <0.0001), with the lowest p-
value at rs16873052 on 6p24.1, uncorrected p = 3.19x107
(Figure 1B). Other SNPs showing suggestive association
included SNPs within known candidate genes for BD, such
as PDE4B (p=7.45x107). PDE4B encodes a phospho-
diesterase that binds directly with DISCI, and is critical
for cyclic adenosine monophosphate signalling, which is
linked to learning, memory, and mood [40], and shows as-
sociation with SCZ [41-44], and to some degree with BD
[44]. SNPs were identified with suggestive association at a
number of other genes with plausible biological arguments
for involvement in, and/or previous associations to BD,



Table 1 SNPs showing suggestive association (p < 0.0001) to BD in our combined (CAMH and loP) GWAS

Chr SNP bp A1/A2 MAF MAF_UK MAF_CAN P (UnAdj) OR (UnAdj) P (Adj) OR (Adj) P_UK P_CAN Gene

1 rs2813164 96688031 T 0.3017 0.286 0.3195 3.75E-04 1.295 5.67E-05 1.349 0.07331 0.001371 Y0062°

3 rs11708571 21591377 G/A 0.3062 0.3163 0.2938 1.82E-04 0.7633 8.66E-05 0.7485 5.278-05 0.2652 ZNF659P<4
4 rs4689410 6344204 A/G 0.3434 0.3569 03275 2.04E-05 0.7418 5.96E-06 0.7264 0.01966 0.0002366 PPP2R2CE
6 rs215006 152755628 A/G 0.2281 0.2095 0.2185 2.78E-04 1.335 7.83E-05 1.38 0.003807 0.001586 SYNET®

6 15214972 152775813 T/C 0.2271 0.2219 0.2327 4.73E-05 1.383 1.66E-05 1419 0.003363 0.005299 SYNE1T®

6 152623971 152831067 A/G 0.2107 0.2225 0.2348 1.86E-05 142 3.52E-06 1.481 0.004044 0.02257 SYNE1®

6 152623966 152853674 T 0.2122 0.2076 0.2173 1.50E-05 1424 3.02E-06 1.481 0.002348 0.002308 SYNE1®

6 rs2141150 152868632 C/A 0.2138 0.2063 0.2155 1.73E-05 1419 3.33E-06 1476 0.002484 0.002721 SYNE1€

6 152695261 152869726 aT 0.2069 0.2022 0.212 2.32E-05 1417 4.12E-06 1476 0.006699 0.001146 SYNET®

9 157864144 101406038 G/A 0.1284 0.1294 0.1268 4.85E-04 0.7059 8.05E-05 0.6674 0.0008592 0.1271 GABBR2™"
10 1512773173 30011304 T/C 0.1028 0.1698 0.2155 1.26E-05 0.6902 6.56E-05 0.7054 0.02562 8.22E-05 SvILY

19 rs1483651 58689834 /A 0.1914 0.2857 0.2734 9.70E-06 1.389 7.55E-06 141 0.05476 1.10E-05 ZNF274°
19 154444432 58715538 G/T 0.2801 0.2868 0.2741 5.58E-06 1.402 4.85E-06 1419 0.05396 4.94E-06 ZNF274¢
19 157256349 58718269 A/G 0.281 0.3041 0.2839 4.09E-05 1.349 4.51E-05 1.359 0.03677 0.0001753 ZNF274¢

2SNP or locus positive in [29].
PSNP or locus positive in [61].
°SNP or locus positive in [37].
4SNP or locus positive in [28].
€SNP or locus positive in [36].
fSNP or locus positive in Gurling-UCL top 1000 (personal communication).
9SNP or locus positive in [61].
"SNP or locus positive in [69].
Only SNPs included if located at genes with previous GWAS bipolar disorder associations. Chr = chromosome; SNP = single nucleotide polymorphism; bp = base pair (position from p telomere, according to NCBI36/

hg18); A1 =allele 1; A2 =allele 2; MAF = minor allele frequency, (also for UK and Canadian (CAN) sets); P(UnAdj) = unadjusted p-value; OR(UnAdj) = unadjusted odds ratio; P(Adj) = adjusted p-value; OR(Adj) = adjusted
odds ratio; Gene indicates SNP lies within a known gene. Full list of 68 SNPs showing suggestive association (p < 0.0001) is given in Additional file 1: Table S2.
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hapmap.ncbi.nlm.nih.gov/) is plotted in light blue. Chromosomal position is plotted according to NCBI build 36/Hg18. The SNP with the strongest
evidence for association at each locus is shown as a blue diamond.Correlation of linkage disequilibrium between SNPs and the blue diamond
SNP, %, is colour-coded, red indicating stronger LD.

such as NRG3 (p = 5.53x10®), GAD2 (p = 2.21x10°), GRIK2  Table 2 shows a subset of these 132 SNPs with previous

(p = 4.18x10™), GABRG3 (p =3.83x107), and the synapse-
associated protein 102 gene, DLG3 (p = 5.31x107°). In
addition, a SNP in ATP2A2, the Darier disease gene
(MIM#124200) also showed suggestive association (p =
2.67x107). Co-morbidity between Darier disease and BD
has been known for some time [45], and linkage for BD to
this locus has been reported in numerous studies [46-49].

evidence for BD or other neuropsychiatric disorders (the
full set is given in Additional file 1).

Exploratory analysis on combined discovery and
validation datasets

Thirteen SNPs were nominal significant in the combined
case/control discovery cohort and the trio validation cohort
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Table 2 Selected SNPs (based on location within gene encoding protein of known function or disease association)
showing suggestive association with TdT analysis (p <0.0001) to BD in our validation dataset (small family cohort)

Chr SNP bp A1/A2 T/UT TDT OR P value Chisq Gene Comments/MIM #

1 rs575056 66522367 /T 49/96 05104 9.5E-05 1523 PDE4B  Protein interacts with DISCT, and is considered a candidate
gene for BD and SCZ; MIM 600127

1 rs538336 66545251 G/A 63/116 0.5431 745E-05 1569 PDE4B  MIM 600127

6 rs2852571 102108785 T/G 96/47  2.043 4.18E-05 16.79 GRIK2 Kainate glutamate receptor; homozygous mutations are
associated with intellectual disability; MIM 138244

10 rs7074934 26571676  G/A 4/28 01429  221E-05 18 GAD2  Glutamate decarboxylase, responsible for converting L-glutamic
acid to GABA; MIM 138275

10 1517647803 83730201 G/A 11/45 02444  553E-06 2064 NRG3 Member of neuregulin gene family, associated with BD and
SCZ; MIM 605533

11 rs1893050 84305742 C/T 3/24 0125 531E-05 1633 DLG2 Post-synaptic density protein; MIM 603583

12 rs11065615 109214996 T/C 2/23 0.08696 267E-05 17.64 ATP2A2 MIM 107840; Mutations in this gene cause Darier disease
(MIM 124200)

15 rs140673 25155075 (/A 8/35 02286 3.83E-05 1695 GABRG3 GABA-A receptor; MIM 600233

16 rs7186123 81379253 G/T 20/54 03704  7.74E-05 1562 CDHI13  Cadherin gene associated with autism, also alcohol

dependency; MIM 601364

The full list of 132 SNPs showing suggestive association (p < 0.0001) is given in Additional file 1: Table S3. Mendelian Inheritance in Man (MIM) number is included
in comments, as a source of reference. Chr = chromosome; SNP = single nucleotide polymorphism; bp (base pair) indicates coordinates according to build hg18/
NCBI36. Alleles are indicated in A1/A2. Transmitted (T) and untransmitted (UT) allele counts are given (T/UT), also odds ratio (OR) for the transmission

disequilibrium test) TDT, and chisquare (Chisq) value.

datasets with joint analysis p <0.01 (Table 3). A sign test
for the same direction of effect between discovery cohort
and trio validation cohort was significant (p <0.001).
Several SNPs in this list overlap with candidate genes
of interest in non-overlapping studies. These include
SNP rs1154037 in CSMD1, for which the intronic SNP
rs4875310 was suggestive significant in the Sklar et al.
2008 study (p =3.74x10), as well as other SNPs at
CSMD1 in the Baum et al., 2008 study [50] (rs779105,
NIMH cohort p=0.0341, German cohort p =0.0047;
rs7812884, NIMH cohort p =0.0012, German cohort
p =0.0103).

Pathway analysis

Using the set of 2155 genes identified by our association
analysis, pathway analyses were performed with IPA.
From the pathway analysis of the 2155 genes (1956 of
them were mapped to the IPA database) with nominal
associations, 30 pathways were significantly enriched for
at a Benjamini-Hochberg corrected p-value of 0.05 (see
Table 4). Specific pathways involved in bipolar disorder
(such as Neuropathic Pain Signaling, CREB Signaling in
Neurons, etc.) were amongst the ones identified as most
significant (Table 4). Consequently, these results suggest
that the genes identified by our association analysis have
a high degree of biological relevance.

Conclusions

Our GWA study presented here represents a multi-staged
analysis, combining case/control genome-wide genotype
data from two “sister” studies with parallel recruitment
strategies and identical genotyping platforms as a discovery

set, and using a family-based cohort consisting mainly of
trios as a validation set. We reported our results by using
suggestive significance (p <0.0001) and nominal sig-
nificance (p <0.01). This is based on the concern that
the SNPs across the genome are not independent, so a
simple Bonferroni adjustment may be too conservative.
Although relatively few results were suggestive signifi-
cant in both discovery and validation sets, several of the
overlapping SNPs are in genes of much interest for neuro-
psychiatric disease. One SNP in particular (rs1154037) is
located within the third intron of the CUB and Sushi mul-
tiple domains 1 gene (CSMD1I), which has been implicated
by at least two further (non-overlapping) BD GWA stud-
ies [37,50]. CSMD1I, which has also been associated with
schizophrenia [51,52], is a complement control-related
gene, and supports the theory of diminished activity of
immunity-related pathways in the brain as a disease
mechanism for psychiatric disorders including BD [53].
CSMD1 protein can inhibit the deposition of complement
component C3 in vitro [54], and thus impaired function
may lead to impaired regulation of the classical com-
plement cascade. Alternatively, it is also known that
proteins involved in regulating complement control
can also regulate synaptic function [55,56]. Also of
note, the neuropepetide Y gene, NYP, also identified
by a nearby SNP in the joint discovery and validation
analysis, was previously shown to be significantly
down-regulated in the dorsolateral prefrontal cortex of
psychosis patients [57], and in prefrontal cortex of BD
subjects [58].

Analysis of associations from our discovery set shows
strong support for the SYNEI locus (Table 1; Figure 3),



Table 3 Most significant overlap between discovery set (case/controls) and validation set (families)

Chr SNP bp MAF MAF_UK MAF_CAN P-value: P_UK P_CAN P-value: P-value: Gene Function/domains?
discovery validation joint
1 rs12564407 101581806 0.0372  0.0343 004089 5.02E-04 003818 00034 1.13E-05 000004 nrSTPR1 Sphingosine-1-phosphate receptor 1; MIM 601974
1 rs17452017 163951301 0.0708 0.07484 0.066 271E-04 0002292 0.04094  1.00E-03 0.0003 nr TMCO1 Transmembrane and coiled-coil domains 1; MIM 614123
2 rs1564004 17962338 0310 03233 0.295 7.85E-04 0.02767  0.009408 4.09E-03 00006  KCNS3 Potassium voltage-gated channel; MIM 603888
2 16437044 157852441 0346 03413 03516 7.09E-04 005345 0004589 4.18E-03  0.001 GALNT5 N-acetylgalactosaminyltransferase 5
2 1s7597971 166996418 0314 0.303 03254  546E-04 0.1141 00007991 3.93E-03 0.0007  SCN7A Sodium channel, voltage-gated, type VII, alpha; MIM 182392
5 rs4594899 1185216 0446 04506 0441 2.39E-04 0.07997 0.0007831 7.96E-03 0.002 nr SLC12A7  Potassium/chloride transporter MIM 604879
5 rs643502 140565698 0420 04059 04357  9.18E-04 001301 003198 852E-03  0.001 nr PCDHB12 Protocadherin B12; MIM 606338
7 rs272706 24119442 0483 04854 04906  391E-04 002933 0.005035 7.06E-03  0.007 nr NPY Neuropeptide Y; MIM 162640
8 rs1154037 4257636 0.0563 0.05561 005744  1.15E-03 308E-05 06685 6.04E-03 0.003 CSMD1 CUB and Sushi multiple domains 1; MIM 608397
12 1517041209 94684987 03276 03352 03189  586E-03 0006487 02539 468E-03  0.002 NTN4 Promotes neurite elongation from olfactory bulb explants; MIM
610401
14 rs179524 30312602  0.223 02157 0.2307 333E-04 0002542 0.04466 8.09E-03 0.001 nr SCFD1 Sec1 family domain containing 1
16 1512443910 72711976 02943 0316 02699  3.05E-03 0002753 02762 9.82E-03  0.005 nr PSMD7  Proteasome 26S subunit, non-ATPase, 7; MIM 157970
20 rs13039978 57581000  0.0490  0.04626 005205  545E-04 0.1359 0.0007083 3.08E-03 0.001 nr PHACTR3 Phosphatase and actin regulator 3; MIM 608725
1 rs12564407 101581806 0.0372  0.0343 0.04089  5.02E-04 0.03818 0.0034  1.13E-05 0.00004 nr S1PR1 Sphingosine-1-phosphate receptor 1; MIM 601974

SNPs close to rs1154037, highlighted in bold, were positive in several other BD GWA studies [37,50], with no overlap in subjects. Where the SNP does not lie within a gene, the nearest coding gene is given (Nr = near).

Chr = chromosome; SNP = single nucleotide polymorphism; bp (base pair) indicates coordinates according to build hg18/NCBI36; MAF = minor allele frequency, (also for UK and Canadian (CAN) sets). Mendelian
Inheritance in Man (MIM) number, where available, is included with “function/domains?”, as a source of reference.
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Table 4 Canonical pathways enriched using 1956 genes from discovery set with adjusted p-value <0.05

Ingenuity canonical pathways -log(p) P (adj) Molecules

Molecular Mechanisms of Cancer 4.54 0.003 RAP2B,PLCB2,JAKT,DIRAS3,PIK3R1,SMAD3,TAB2,CCND1,MYC,PTK2, CTNNA2,CAMK2D,RHOG,RHOSB. ....
Neuropathic Pain Signaling In Dorsal Horn Neurons 442 0.003 PLCB2,CAMK4,GRIAT,PIK3RT,GNAT1,TACT,GNA14,GRIA4, TACRT,CAMK2D,PIK3C3,CREB1T,CAMKIG ...
Calcium Signaling 4.24 0.003 RAP2B,CAMK4,CALM,GRIAT,TNNT2,HDAC9,CREB5,GRIA4,CABINT NFAT5,CAMK2D....

Cellular Effects of Sildenafil (Viagra) 42 0.003 PLCB2,CAMK4,CALM1T,CACNATS,PDE3AGNAT1,GNA14,PDE4D. . ..

Glutamate Receptor Signaling 415 0.003 GRIN2B,CALML5,CAMK4,CALM1,SLCT7A6,GRID2,GRIAT,GRIK3,SLCTA3,GRIA4,GNG7... ..

Axonal Guidance Signaling 411 0.003 PLCB2,PIK3R1,NTN1,PTK2,NCK2,EPHB1,SEMA3D,UNCSD. . ..

ILK Signaling 3.99 0.004 MAP2K6,TMSL3,PPP2R2A PIK3R1,DIRAS3,BMP2,HIF1A,CREB5,CCND1,PGF,PTK2 NCK2MYC. . ..

Nitric Oxide Signaling in the Cardiovascular System 349 0.0108 PDE2A,CALML5,GUCY1B2,CACNA1D,CAMK4,CALM1,GUCY1A3,CACNATS,PIK3RT. . ..

Gap Junction Signaling 327 0.0150 PLCB2,PIK3R1,GNA11,GNA14,TUBB2B,SP3,ADCY5,PIK3C3,PRKAR1TB,CAV1,PRKCE,CTNNB1,ACTCT.. ..
Role of NFAT in Cardiac Hypertrophy 323 0.0150 MAP2K6,PLCB2,CAMK4,CALM1,PIK3R1,GNAT1,HDAC9,GNAT4. ...

BMP signaling pathway 3.19 0.0150 CAMK4,GRB2,RRAS BMP2,SMAD6,SMAD7,ZNF423,BMPR1B JUN,PRKAR2B,MAP3K7,CREB1,PRKARTB. ....
Dopamine-DARPP32 Feedback in cAMP Signaling 3.17 0.0150 PLCB2,CAMK4,CALM1,PPP2R2A,CACNATS,GNAT1T,GNA14,CREBS5,KCNJ4,ADCY5,CREBT,PRKAR1B. ..
CREB Signaling in Neurons 3.07 00161 PLCB2,CAMK4,CALM1,PIK3R1,GRIAT,GRID2,GNAT1,GNA14,CREB5,GRIA4,GNG7,GRIK5,CAMK2D,GRID1....
N-Glycan Biosynthesis 3.04 00161 B4GALT4,ALG2 MGAT4AAMANTCT B4GALT1,STEGAL2 MANTAT MGAT5 MANTA2, MAN2AT B4GALT5, FUT4
cAMP-mediated signaling 3.04 00161 AKAP12,CAMK4,CALM1,PTGER3,PDE3A TAART,CREB5,CHRM3,CHRM1,PDE4D,HTR1B,CAMK2D,ADCYS. . ..
Factors Promoting Cardiogenesis in Vertebrates 298 00174 SMAD2,FZD10,NOX4,TCF4,BMP2,FZD1,TCF3,FZD8 BMPR1BMAP3K7 (includes EG:172842),PRKCE....
Melatonin Signaling 2.89 0.0201 MAP2K6,CALMLS,PLCB2,CAMK4AMTNRTA,CALM1,GNA11,PLCL2,GNAT4,CAMK2D,PRKAR2B,RORA.....
Synaptic Long Term Potentiation 277 0.0235 GRIN2B,CALMLS5,PLCB2,CAMK4,CALM1,RRAS,GRIAT,GNAT1,ITPR1,CREB5,GRIA4,GRIN3A,GRM7 ...
Amyotrophic Lateral Sclerosis Signaling 2.75 0.0235 GRIN2B,CACNA1D,GDNF,CAPN11,GRID2,CACNA1S,GRIAT,PIK3R1,GRIK3,GRIA4,GRIN3A PGF,GRIKS. . ..
Phospholipase C Signaling 273 0.0235 PLCB2,CAMK4,CALM1,DIRAS3,HDACY,PLA2G2A,CREB5,GNG7 PLA2GA4E,RHOGNFAT5,RHOB,ADCYS. . ..
PI3K Signaling in B Lymphocytes 2.73 0.0235 PLCB2,CAMKA4,CALM1,PIK3RT,GNATT,GNA14,PTPRCNFATS5,JUN,CAMK2D,CREB1,IRS2,PPP3CA. ...
Synaptic Long Term Depression 2.7 0.0241 PLCB2,PPP2R2A,GRID2,GRIAT,GNAT1,PLA2G2A,GNA14,GRIA4,PLA2G4E,GRID1... ..

PPARa/RXRa Activation 26 0.0290 MAP2K6,PLCB2,NCOA6,SMAD3,GNAT1,GNA14,IL6,CHD5,JUN,MAP3K7, ADCY5,PRKAR1B,PRKAAT.. ..
TGF-p Signaling 244 0.0386 MAP2K6,SMAD2,INHA,GRB2,RRAS,BMP2,SMAD3,SMAD6,SMAD7,ZNF423,GSC,BMPR1B PIASA4. . ..
Protein Kinase A Signaling 244 0.0386 PLCB2,PDE3A,SMAD3,CREB5,PDEAD,NTN1,PTK2,CAMK2D,ADCY5,RYR3 PDE2A YWHAE PTCH1 ... ..
N-Glycan Degradation 238 0.0426 MANEA,GBA3 MANTC1,SIMANTATHEXBMANTA2 MAN2A1

Regulation of IL-2 Expression in Activated and Anergic T Lymphocytes 2.36 0.0430 VAV2,SMAD2,CALML5,CAMK4,CALM1,GRB2,RRAS,SMAD3,MALT1,NFAT5,JUN,VAV3,ZAP70,MAPK10.. ..
Wnt/{-catenin Signaling 2.32 0.0454 FZD10,TCF4,PPP2R2ATLET,FZD1,S0X13,CCND1,S0X2,MYC,SOX9,JUNNLKMAP3K7. ...

Agrin Interactions at Neuromuscular Junction 226 0.0498 RRAS,ITGA6,ITGA3,LAMCT,PTK2,JUN,NRG3,ERBB4, MUSK,LAMB1,MAPK10.. ..

Colorectal Cancer Metastasis Signaling 225 0.0498 FZD10,TCF4,JAK1,PTGER3,PIK3RT,DIRAS3,MMP16,SMAD3,FZD1,L6,CCND1,GNG7,BIRC5,PGF.....

Ingenuity Pathway Analysis of the 1956 genes identified 30 significantly enriched pathways.

2/S1/0SET-1 L L /WOD [RIUSIPIWIOIG MMM//:d1Yy

TS ‘10T $212uaD [DIIPaN DNG [P 12 NX

€1 Jo 01 3beq



Xu et al. BMC Medical Genetics 2014, 15:2
http://www.biomedcentral.com/1471-2350/15/2

albeit not at genome-wide significance levels. SYNEI has
been implicated in a number of independent studies.
Mutations of this gene are known as a cause for auto-
somal recessive spinocerebellar ataxia 8 (MIM 610743)
and Emery-Dreifuss muscular dystrophy 4 (MIM
612998). SYNE! encodes a nesprin-1 component of a
complex that links the cytoskeleton and nucleoskeleton
(reviewed in [59]). However, several brain specific iso-
forms of rat Synel have been shown to localize to the
postsynaptic side of synapses of glutamatergic neurons,
and may be part of a mechanism of endocytosis of syn-
aptic proteins, including glutamate receptors [60].

Our comparison with data from an independent BD
GWAS from University College London showed joint sug-
gestive significant loci at CDH13, PPP2R2C and IGFBP7
(McQuillin and Gurling, personal communication). Com-
parison with other published GWA studies for bipolar dis-
order, excluding those with partial overlap of subjects,
appears to corroborate several loci and candidate genes,
including CNTNAPS5 [50,61], ZNF804A [62], ZNF659
[37], SORCS?2 [50,63,64], and ZNF536 [61]. A full list is
provided in the Additional file 1: Table S2). CNTNAPS,
encoding another neurexin-like protein, has also been
linked with autism [65]. Interestingly, CDH13 was also
suggestive significant in our validation set (rs7186123;
p =7.74E-5), however the odds ratio suggests this allele
as protective, whereas for the suggestive significant
SNPs at CDH13 in the discovery set the alleles appear
mostly to be risk alleles (Additional file 1: Tables S1, S2
and S3).

Of the three zinc finger genes listed as loci showing
suggestive significant association in our combined case/
control study and in other bipolar GWA studies, little is
known about the function, except for ZNF536 on chromo-
some 19p13.3, which is highly expressed in the developing
brain, and in cerebral cortex, hippocampus and hypo-
thalamus and is believed to be a negative regulator of
neuronal differentiation [66].

Suggestive association was seen at SNP rs4689410 within
the gene PPP2R2C in our study (p =5.96E-6). This gene
has been previously reported to be associated with BD
[38,39], and has also shown modest association in the UCL
study, for SNP rs13122929 (p =9.95E-4; McQuillin and
Gurling, personal communication). Disruption of this gene
may also be a cause of autosomal dominant intellectual
disability (ID) [67]. This is one among a number of genes
for which disruption may cause ID and for which common
alleles may also be associated with risk for BD or SCZ (e.g.
ANK3, TCF4 and NRXNI).

Interestingly, a number of well established GWAS can-
didate genes are not represented among our top 1000 p-
values, including CACNAIC, ANK3 and DGKH [50,64],
or ODZ4 [30]. This could reflect differences in the popula-
tion in terms of heterogeneity of phenotype or ethnicity,
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or an issue of insufficient power to detect an effect, or ef-
fects due to differences in method of ascertainment. Con-
versely, a number of genes in our validation set show
multiple SNPs with suggestive association that have not
been reported elsewhere (Additional file 1: Table S4), in-
cluding the brain-expressed genes, ADCY2, NCALD,
WDR60, SCN7A, SPAG16. 1t will be of much interest to
see whether support for these genes, for which no pheno-
type has previously been reported (Online Mendelian In-
heritance in Man) [68], increases in BD meta-studies,
once the sample size exceeds the tens of thousands.

In summary, the findings here support several key gen-
etic associations to genes for BD, such as CSMD1I, SYNEI

Additional file

Additional file 1: Table S1. SNPs from top 1000 from our combined
CAMH/IoP GWAS for BPAD, for which at least one other non-overlapping
GWAS also shows association at same gene. Table S2: Top 68 SNPs
(showing suggestive association to BD: p < 0.0001) in our combined
(CAMH and loP) GWAS. Table S3. Top 132 SNPs (showing suggestive
association to BD in our CAMH family cohort: p < 0.0001). Table S4: Listing
suggestive significant genic SNPs for combined Toronto and London GWAS
for which there are 4 or more suggestive significant SNPs among the top
1000, and for which no other positive reports have been published to date
Figure S1: Scree plot of principal components (PCs) of the genotypes in
the case—control samples.
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