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Abstract  

Intraoperative detection of tumorous tissue an important unresolved issue for cancer surgery. 

Difficulty in differentiating between tissue types commonly results in the requirement for additional 

surgeries to excise unremoved cancer tissue, or alternatively in the removal of excess amounts of 

healthy tissue. While pathological methods exist to determine tissue type during surgery, these 

methods can compromise post-operative pathology, have a lag of minutes to hours before the surgeon 

receives the results of the tissue analysis and are restricted to excised tissue. In this work we report the 

development of an optical fibre probe which could potentially find use as an aid for margin detection 

during surgery. A fluorophore doped polymer coating is deposited on the tip of an optical fibre, which 

can then be used to record the pH by monitoring the emission spectra from this dye. By measuring the 

tissue pH and comparing with the values from regular tissue the tissue type can be determined quickly 

and accurately. The use of a novel lift-and-measure technique allows for these measurements to be 

performed without influence from the inherent autofluorescence that commonly affects fluorescence-

based measurements on biological samples. The probe developed here shows strong potential for use 

during surgery, as the probe design can be readily adapted to a low-cost portable configuration which 

could find use in the operating theatre. Use of this probe in surgery either on excised or in-vivo tissue 

has the potential to improve success rates for complete removal of cancers. 
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Introduction 

Incomplete removal of malignant tumours continues to be a significant issue in cancer surgery. It 

increases the risk of local recurrence and impaired survival, and results in the need for additional surgery 

with associated attendant costs and morbidity (1-3). The excision of further benign tissue leads to poor 

cosmesis and impaired function, which assumes particular significance in some sites such as breast or 

head and neck cancer (1). 

In the case of breast cancer, re-excision rates in excess of 20% have been widely reported, and this may 

lead to local recurrence (4-6). Standard pathology techniques such as the use of intraoperative cytology, 

selective margin re-excision based on specimen imaging and/or frozen section are time consuming, can 

potentially compromise post-operative pathological analysis, and show difficulty in accurate detection 

of small tumours (7-9). A recent trial reported higher rate of complete excision following systematic re-

excision of the whole cavity at the time of partial mastectomy, compared with standard practice (5). 

Optical based imaging technologies have been shown to distinguish malignant from benign breast tissue 

in exploratory studies. These include methodology based on Raman spectroscopy (10,11), scanning in 

situ spectroscopy and mapping of whole specimens (12), combined diffuse reflectance spectroscopy 

and intrinsic autofluorescence (10,13), or multimodal optical imaging (14). These studies have been 

exploratory and have examined and mapped tissue distribution in whole excised specimens ex vivo. 

Potential limitations to their clinical use include the portability of equipment, tissue heterogeneity 

leading to scattering of light and autofluorescence and the time required to complete assessments.  

The further development of rapid real-time techniques to detect small volumes of cancer at the margins 

of surgical specimens continues to be a priority in the treatment of cancer. Although breast cancer has 

been the principal focus of such investigation, the technology is also potentially important in other sites 

(15). 

It has been shown in the literature that the extracellular pH in the vicinity of cancer is lowered, when 

compared to that of normal tissue in the same patient (16-19). While various methods exist to record 

tissue pH, to date it has been found to be difficult to accurately measure the pH of small areas of tissue 
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as would be required for the detection of cancer margins due primarily to the large size of conventional 

electrochemical surface pH probes which typically have a tip diameter in the order of 10mm. 

Optical fibre based sensors have found extensive use in the areas of chemical (20-24), biological sensing 

(25-27), physical sensing for temperature (28-30), or structural health monitoring (31,32). Typically 

they are deployed in situations where measurements along the length of the fibre (distributed 

measurements) are required (33), however they also have strong potential for use in applications in 

difficult to reach locations. Fibre measurements can be performed at a position remote from the source 

and detection equipment. By creating a functional coating either along the length of the fibre, or on the 

end-face, the sensing region can be localised to the desired location depending on the application. 

Here we report the first tissue pH measurements performed with an optical fibre tip pH probe on 

excised cancer samples. The optical fibre probe measures pH rapidly, in less than one minute, is 

simple to use, and does not leave a residue or stain that would affect later pathology testing. The 

probe consists of the pH sensitive fluorophore 5,6-carboxynapthofluorescein (CNF) (23), which 

changes colour with a change in the environmental pH. This fluorophore is embedded in an 

acrylamide polymer on the optical fibre tip, which is readout remotely via a laser at the other end of 

the fibre. Preliminary testing showed that this indicator displayed a good balance of an appropriate pH 

response range, broad optical spectra that could potentially be interrogated in the future with bulk 

optics, and good stability for repeat measurements over time. The fibre probe is flexible and robust, 

and has a small measurement area corresponding to the size of the 200 µm diameter optical fibre tip.  

Measurements using organic fluorophores are commonly performed by monitoring the emission 

intensity of a single fluorescence band (wavelength), which is susceptible to errors arising from 

variations in the excitation light power, or photobleaching of the dye. The pH value is inferred by 

monitoring the ratio of two emission bands of the fluorophore. Ratiometric methods alleviate potential 

issues from photobleaching or coupling, allowing for measurements to be performed over a long 

period without the introduction of systematic errors. 
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A pervasive issue with optical based measurements of chemical or biological parameters is the 

presence of background autofluorescence from the tissue itself which is generated when the excitation 

light is incident on the tissue sample (34). While this can be reduced through the use of longer 

wavelength excitation sources, or pre-bleaching of the tissue, it remains a limitation in the majority of 

approaches to determine tissue measurements. This autofluorescence signal is difficult to remove 

through signal post-processing as it can vary significantly across a single sample (34). The novel 

architecture presented here can be utilised in a manner that avoids tissue autofluorescence impacting 

on the pH measurement. Here, the fibre-tip probe is placed in contact with the tissue surface and 

allowed to equilibrate, and is then lifted from the surface before the fluorophore is measured. This 

new “lift-and-measure” technique removes the interaction between the excitation source and the 

sample tissue. The fluorophore chemical structure is altered under different environmental pH 

conditions, which determines the varying emission properties. We propose that the sampling 

measurement induced structural change in the fluorophore is retained after lifting from the surface, 

and so the pH can be measured in the absence of autofluorescence. Calibration curve pH 

measurements were performed in a series of phosphate buffers, and these confirmed that a comparable 

response was seen between measurements with the probe dipped into the buffer and after lifting out 

from the buffer in air. 

Using these techniques surgically excised human breast cancer and melanoma tissue samples were 

measured with the optical fibre pH probe at numerous locations over the sample surface, with the 

tissue type of each location confirmed later by histopathology.  

Materials and Methods 

Materials 

Acrylamide (99%), N,N′-methylenebis(acrylamide) (99%), 3-(trimethoxysilyl)propyl methacrylate 

(98%), triethylamine (99%), monobasic and dibasic potassium hydrogen phosphate were obtained 

from Sigma-Aldrich Chemical Co. (St. Louis, MO). CNF was obtained from Santa Cruz 

Biotechnology, (Dallas, TX). Potassium phosphate buffers were made up from appropriate ratios of 
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monobasic and dibasic potassium hydrogen phosphate to an ionic strength of 0.1 mM, covering a pH 

range from 6.0 to 8.8. 

The polymer solution consisted of (by weight) 27% acrylamide, 3% bis-acrylamide and 70% pH 6.5 

potassium phosphate buffer, with 0.4 mg/mL CNF and 40 µL/mL triethylamine. The solution was 

ultrasonicated until all solid components were fully dissolved and used immediately. 

Fibre probe 

The optical setup was configured as shown in Figure 1. Acrylamide was attached to the fibre tip by 

photopolymerisation using a 405 nm laser for two seconds at a coupled power of 13 mW. The CNF 

fluorophore was excited with a blue 473 nm laser for the pH measurements. The two lasers were 

aligned to be collinear into the microscope objective, such that no realignment was required between 

the coating step and subsequent measurements. Silica multi-mode fibre was used for all coating trials 

(Thorlabs UG200UEA or Ocean Optics 200 µM UV/VIS). 

The fibre was cleaved to expose a fresh surface for polymer attachment. The fibre tip was dipped into 

a 2% solution of 3-(trimethoxysilyl)propyl methacrylate in pH 3.5 HCl for one hour, after which the 

fibre was removed and dried with nitrogen. A 405 nm laser source (Crystalaser 25 mW) was coupled 

into the input end of the optical fibre, and the power optimised with a calibrated photodiode. Fibre tips 

were then dipped into the acrylamide polymer solution described above, and illuminated with the 

405 nm source for two seconds with a coupled laser power of 15±0.2 mW to photopolymerise the 

acrylamide polymer onto the fibre tip. 

pH measurement 

A schematic of the optical setup is shown in Figure 1. A 473 nm laser (Toptica iBeam Smart) was 

used to excite the CNF fluorophore. The resulting emission of the CNF consists of two peaks, at 

approximately 565 nm and 705 nm, with an intensity ratio dependent on the pH of the environment 

around the fluorophore. 
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To excite the CNF fluorophore, the 473 nm laser was coupled into the distal end of the probe fibre. 

The coupled laser light then excites the fluorophore-doped probe tip, and a portion of this fluorescent 

light is then captured into a back-propagating mode in the fibre. The fluorescent signal then passes 

through a 473 nm long-pass filter (Semrock EdgeBasic) to remove excess excitation light, before 

being coupled into a spectrometer (Horiba iHR320) via a 200 µm optical fibre patch cable. 

Since the surface pH of tissue biopsies deteriorated slowly when exposed to the atmosphere, before 

measuring with the probe fresh surfaces were exposed by excision.  

Spectral analysis & Lift-and-measure measurement technique 

The ratio of the two CNF fluorophore emission peaks was used to measure the pH response of the 

probe. Spectra were post-processed by integrating the signal under the two peaks, from 500-635 nm 

and from 635-900 nm, and dividing the area of the first peak by the area of the second peak giving the 

fluorescence ratio for that particular probe location. 

Samples were first measured with the probe tip in contact with the sample. The probe was then lifted 

from the surface, and the measurement repeated. Removal of the probe tip from the sample eliminates 

autofluorescence from the tissue sample, such that the only contribution to the observed signal is from 

the fibre sensor itself. 

Probe verification 

The pH response of the optical fibre probe was verified by dipping into a series of 0.1 mM potassium 

phosphate buffer solutions. Measurements were performed both in the solution and in air after 

removing from the buffer, to simulate the lift-and-measure technique described above and as used for 

the human tissue samples. 

Autofluorescence measurements 

Sheep tissue samples were spiked with 1 M hydrochloric acid (Sigma-Aldrich) or 1M sodium 

hydroxide (Sigma-Aldrich) to obtain acidic or basic samples respectively. Measurements were 
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performed using the lift-and-measure technique described above, in an identical fashion to that used 

for the human tissue samples. 

Tissue samples 

The project was approved by the Royal Adelaide Hospital Research Ethics Committee and patients gave 

individual informed consent for their participation. 

 

Research specimens obtained at surgery were placed on ice and transported to the pathology laboratory 

where they were inked and sliced for normal diagnostic processing. Four mastectomy specimens, one 

axillary clearance for recurrent breast cancer and three cases of metastatic melanoma were included 

(Table 1). Fresh tissue not required for diagnostic evaluation was utilised for the pH evaluation 

experiments within one hour of excision at surgery. 

 

Pathology verification 

The location of each pH measurement using the optical fibre probe were photographically recorded to 

enable correlation with presence of non-malignant or cancer tissue as determined by subsequent 

histopathology. 

Following the pH measurements, the tissue was fixed in 10% buffered formalin for 24 hours and 

photographed. The presence of cancer or normal tissue at the measurement sites was then 

histologically assessed in Haematoxylin and eosin (H&E) stained paraffin embedded sections. The 

occurrence of either cancer or normal tissue at each measurement site was determined by using both 

the macroscopic photographs and the H&E stained sections for accuracy. The H&E sections were also 

used for tumour typing, and determination of non-malignant tissue as fat or fibrosis. Correlation was 

then made with the site of probe and the type of underlying tissue from which the pH reading was 

taken. For the majority of the cases there was a single localised tumour but several cases had 

multifocal tumours in the specimen (Table 1). 

Results 
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Effect of tissue autofluorescence 

A background tissue autofluorescence signal is generated when the probe excitation light is incident 

on the tissue sample. The autofluorescence spectrum can vary significantly across the sample and so 

is difficult to remove with data post-processing techniques, such as subtraction. An example of tissue 

autofluorescence is shown in Figure 2, where spectra have been recorded with the probe both 

touching and lifted from the tissue surface, for sheep tissue samples spiked with hydrochloric acid 

(acidic) or sodium hydroxide (basic) solutions. 

As shown in Figure 2, the autofluorescence background can form a significant fraction of the total 

signal strength and can form a significant contribution to the apparent measured ratio. The tissue 

samples were spiked with acidic and basic solutions to show that the autofluorescence background 

affects measurements in both high and low pH environments 

Probe response to pH and verification of lift-and-measure technique 

To reduce the impact of autofluorescence on the pH measurements a novel “lift-and-measure” 

technique was devised. The probe response to pH was first recorded with a series of PBS buffer 

solutions, measuring the response both before and after removal from the solution (Figure 3).  

From these results it can be seen that the probe has a similar response to pH both in solution and after 

removal, with a small shift in the pH response curve between the two, and so it can be concluded that 

the lift-and-measure pH measurement is a valid reading of the surface tissue pH. Upon removal of the 

fibre from the solution changes in the fluorescence spectra were observed for one - five seconds, 

which is interpreted as the evaporation of the solvent from the tip of the fibre. After this rapid change 

the signal was observed to be stable for a period of at least ten minutes. Preliminary experiments 

demonstrated that the pH shift of this fluorophore was extremely well suited to differentiation 

between healthy and tumorous tissue, with large shifts observed in the fluorescence ratio between the 

two tissue types.  
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Figure 3a shows the fluorescence response of the CNF with varied pH. As the buffer pH increases, the 

first peak decreases in intensity while the second peak increases. Integration of the two fluorescence 

bands to obtain the fluorescence ratio gives the results shown in Figure 3b. This ratiometric behaviour 

allows for the pH to be interpreted with little dependence on the excitation power or fluorophore 

density. If the excitation intensity is increased the two bands will increase proportionally, removing 

the intensity dependence which typically restricts the precision of intensity-based fluorophore 

measurements. This property also minimises variations in pH signal response between probes, 

simplifying fabrication requirements. 

The structure of CNF both before and after reaction with hydrogen ions is shown in Figure 4. As the 

probe equilibrates with the pH of the solution, each CNF molecule will be in either the protonated 

acid form or in the deprotonated form that favours formation of the lactone. We postulate that because 

each CNF molecule is locked in protonated or deprotonated form, the fluorescence emission profile of 

the probe will reflect the equilibrium achieved in solution. The subsequent result of this is that the 

probe retains a “memory” of the pH of the solution into which it was last immersed. This particular 

property of the fluorophore allows for the use of the lift-and-measure technique, with measurements 

to be performed after the removal of the probe from the surface of the tissue sample to reduce the 

observed tissue autofluorescence. 

Tissue measurements 

Tissue surface measurements were obtained from four melanoma and four breast cancer samples. 

Figure 5a shows the individual measurement results, with tissue type determined after each 

experiment by pathology tests. Data was normalised to the mean value of the normal tissue results to 

simplify comparison between samples, the results of which are shown in Figure 5a. The mean and 

standard deviation values for the individual samples are shown in Table 1, along with descriptions of 

the specimen and tumour type for each of the measured samples. The receiver operating characteristic 

(ROC) curve for the normalised data is shown in Figure 5b. 
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An example of a measured sample is shown in Figure 6 below. This photograph taken before optical 

measurements was performed has the probe sampling locations marked for Sample 2 (Metastatic 

melanoma in multiple lymph nodes). The tissue type in each of these locations was determined using 

pathological analysis methods described earlier.  

From the results shown in Figure 5a it can be seen that typically the tumour samples are significantly 

more acidic than normal tissue samples. Applying the Mann Whitney U test on the dataset showed 

significant differences between healthy and tumorous tissue, with p<0.001. Utilising the ROC curve 

in Figure 5b a threshold for these preliminary values was defined, with a pH ratio of 1.35 showing a 

sensitivity of 88%, and a selectivity of 90%. 

As can be seen from the data in Table 1, some variation in values is observed between samples for the 

tumour tissue samples, with the majority of samples however still showing a statistically significant 

difference in tissue pH between the tumour and normal tissue samples.  

Necrotic tumour and fibrosis tissue types were also measured during trials, with results suggesting 

that the probe is also able to discriminate effectively between these tissue types as well. Necrotic 

tumour samples were observed to display a similar pH to regular cancer samples, while fibrosis 

samples showed a similar pH to normal tissue.  

Discussion 

These results show that cancerous tissue can be effectively differentiated from normal tissue in fresh 

human tissue biopsies by measurement of the tissue pH. The use of an optical probe allows for 

measurements to be performed rapidly with high spatial resolution. Currently our results show that 

measurements can be performed using an optical probe with a diameter of 200 µm, equivalent to an 

area in the order of five to ten cells wide, with the potential to reduce this to the measurement of 

single cells by reducing the size of the fibre probe by tapering the fibre tip (25). The use of the lift-

and-measure technique allows measurements to be performed without the influence of the tissue 

autofluorescence that typically restricts the performance of optical sensors. Minimal effects from 
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photobleaching were observed, with the sensor showing high levels of stability even with repeat scans 

during tissue measurements. 

The performance of the pH probe in this preliminary study was comparable or exceeded that described 

by a commercially available product, the Marginprobe (88% sensitivity at 1.35 threshold marked in 

Figure 5a, versus 84-68%) by Pappo et al. (35,36). The variations observed a subset of the tissue samples 

may have been due to probe function, or alternatively failure to accurately collocate the tissue 

measurement and the final pathology samples. Measures to address this latter possibility have been 

included in current studies. Heterogeneity of tissue elements can vary widely within tumours and 

normal breast tissue. This was shown to contribute to a variation in sensitivity in the detailed initial 

evaluation of the Marginprobe by Pappo (35). Similar criticisms have been made with respect to the 

range of other optical methods (37). A similar consideration could have contributed to the variation we 

observed with low values for two tumours. 

Additional improvements to the optical probe, such as the use of multi-core imaging fibre could also 

result in an increase in sample throughput, by measuring the tissue pH over a larger area with 

improved spatial resolution compared to the multi-mode fibre which was utilised here, which gives a 

single discrete pH measurement at each sampling location. 

This is an important step towards the development of a real-time sensor which can be used in vivo at 

the time of surgery to determine the presence of cancer at surgical margins. The rapid response of the 

optical probe gives an indication of the tissue type in real-time. Measurement time could potentially be 

controlled by varying the thickness of the polymer layer, as testing showed a thinner layer gives faster 

response however at the cost of reduced signal intensity. The use of such a fibre sensor to give an 

immediate indication of tissue type has the potential to reduce the need for repeat surgery by increasing 

the success rate of complete cancer removal. It offers the potential for greater precision and smaller 

excision volumes during surgery compared with a complete cavity shave, (5) and a small footprint 

compared with other techniques. The low level of complexity involved in determining tissue type using 

the probe also gives rise to the potential for the use of this probe in a portable configuration. Given its 
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construction is based on optical fibres it also has the potential for wider use in other sites and more 

deeply situated tumours as allowed by endoscopic or image-guided devices. 
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Tables 

 

Sample Specimen Tumour type Number of 

measurements 

Tumour 

mean and 

std. dev. 

Normal mean 

and std. dev. 

1 Left inguinal lymph 

node dissection 

 Metastatic melanoma 12 5.3 ± 1.3 1.0 ± 0.1 

2 Left axillary clearance Metastatic melanoma in 

multiple lymph nodes 

11 3.4 ± 1.0 1.0 ± 0.07 

3 Skin excision, right 

groin 

Subcutaneous deposit of 

metastatic melanoma 

15 1.7 ± 0.4 1.0 ± 0.5 

4 Left mastectomy Grade II infiltrating ductal 

carcinoma 

12 1.31 ± 0.31 1.0 ± 0.2 

5 Left mastectomy Grade II infiltrating ductal 

carcinoma 

11 2.7 ± 1.5 1.0 ± 0.8 

6 Right mastectomy Invasive metaplastic 

carcinoma (spindle cell 

carcinoma with anaplasia) 

20 3.3 ± 0.8 1.0 ± 0.4 

7 Left mastectomy Grade III infiltrating ductal 

carcinoma 

11 6.9 ± 2.6 1.0 ± 0.04 

8 Left axillary clearance Multiple tumour deposits of 

infiltrating ductal carcinoma 

ranging 4 mm to 20 mm 

12 1.9 ± 0.3 1.0 ± 0.1 
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Table 1 - Summary of measurements 

 

Figure Legends 

 

Figure 1 – Experimental details for measurements (a) Schematic for coating and pH measurement trials. 

(b) Scanning electron microscope image showing an example of the polymer coatings obtained. 

 

Figure 2 - Spectra of fibre pH probe measuring the surface of tissue spiked with an acidic or basic 

solution. Measurements were performed both touching the tissue surface and in air using the lift-and-

measure technique. 
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Figure 3. Characterization of the polymer functionalized probe (a) Emission spectra of the CNF 

fluorophore at different environmental pH values showing the ratiometric response. Spectra taken in air 

after 20s immersion in buffer. (b) Calibration curve for the fibre pH probe both dipped into a buffer 

(Touching, grey squares) and in air after dipping (Air, black circles). 

 

Figure 4. Chemical structure of CNF, illustrating the structural change that occurs due to pH. 
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Figure 5. Results obtained from use of the optical fiber pH probe on excised human tissue samples (a) 

Scatter plot showing the measured fluorescence ratio using the optical fibre tip pH probe, obtained from 

normal (fat and breast tissue) and tumour surface tissue measurements across eight tissue samples. Probe 

measurement locations were subsequently pathology tested to confirm tissue type. For each sample, the 

data was normalised to the mean value of the corresponding normal tissue dataset, with the mean and 

standard deviation for each individual sample shown in Table 1. Tumour (grey) and normal (black) 

measurement datasets are shown, with the experimentally derived threshold value used to determine the 

accuracy and specificity of the optical measurement technique marked in grey (b) Receiver operating 

characteristic (ROC) curve for data shown in Figure 5a 
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Figure 6. Example photograph of Sample 2 (Metastatic melanoma in multiple lymph nodes), with probe 

sampling locations marked on the image. 

 

 




