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Abstract

Object or people based tracking systems that use RFID have seen increasing usage over

the past decade. These systems provide an effective tracking solution by leveraging

the non-line-of-sight precise identification capability of RFID technology, however they still

have to overcome a number of challenges posed by the nature of the technology to improve

their reliability and accuracy, such as uncertain data that leads to location uncertainty. In

this thesis, two applications are been concentrated: i) asset tracking; and ii) tracking people.

The goal was to develop a generalizable approach for tracking objects or people effectively

by managing the location uncertainty problem caused by uncertain RFID data.

In the context of an asset tracking application, we describe an optimized tracking algo-

rithm to predict the locations of objects in the presence of missed reads using particle filters.

To achieve high location accuracy we develop a model that characterizes the motion of ob-

jects in a supply chain. The model is also adaptable to the changing nature of a business,

such as flow of goods, path taken by goods through the supply chain, and sales volumes.

A scalable tracking algorithm is achieved by an object compression technique, which also

leads to a significant improvement in accuracy.

In the context of a people tracking application for addressing wandering off, one of the

common behaviours among cognitively impaired patients, we have developed an approach

for identifying the traversing direction and the traversing path used by the patients wearing

an RFID tag integrated into clothing for the first time. Our approach uses a particle filtering

(PF) based technique with Received Signal Strength Indicator (RSSI) maps obtained from

scene analysis to continuously track a person wearing an RFID tag over their attire. Using

real-time spatial and temporal data obtained from the PF based tracking approach, we de-

velop two algorithms: i) tag traversing direction (TD) algorithm to identify the tag bearer’s

moving direction (e.g. moving out of a room); and ii) tag traversing path detection algorithm

(TPD) to estimate the traversal path used by the tag bearer.

Furthermore, we propose a generic model for RFID sensing infrastructure using Kernel



x

Density Estimation (KDE) to eliminate the need of generating an RSSI map for every new

environment. The newly developed algorithm can be implemented in practice without the

need for further training data. We then integrate Kullback-Leibler (KL) divergence into our

sensor model to overcome problems posed by information loss when the RSSI distribution

in the training data set is used to generate a generic sensor model based on approximating

RSSI distribution over the monitoring region. Moreover, we also utilize a Dynamic Time

Warping (DTW) technique to improve the performance of our TPD algorithm by measuring

the similarities between the real-time temporal data and the trail walking temporal data. At

last, we investigate the accuracy of our algorithms in a multiple-participants environment.

A detailed discussion of all the proposed method’s performance and accuracy for both ap-

plications show that our algorithms are robust.
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Chapter 1

Introduction

In context of growing advances in lower power microelectronics and sensors, there is a

considerable increase in the usage of mobile and ubiquitous computing i.e., where com-

puting is made to appear in any device, in any location and in any form. This has enabled

the possibility of tracking and tracing objects or people in widely distributed networks, such

as supply chains, surveillance, pharmaceuticals, aged care, military, and postal services.

Tracking and tracing a unique object or person with high precision and accuracy is a de-

manding requirement for all the above said fields, where processes that identify the past and

current location of a unique object are needed, as well as other detailed information such as

the time spent in each location of transit.

Radio-frequency identification (RFID) technology enables unique identification. RFID

systems are capable of automatically identifying people or objects who are connected with

Fig. 1.1 Applications that Utilise Tracking
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an RFID tag. Fig.1.1 gives an overview of the applications that utilize RFID systems. RFID

uses radio-frequency waves to transfer identifying information between tagged objects and

readers without line of sight, providing a means of automatic identification [33]. History

shows some evidence that RFID was discovered in 1935, but the first patent rights for RFID

tags was received only in 1973. However, the potential benefits of using RFID has only

recently been realized [6]. Below is a brief overview of RFID system components and their

basic working principles.

An RFID system usually comprises of three key components as shown in Fig. 1.2: i) an

RFID tag; ii) an RFID reader; and iii) RFID reader antenna. The RFID reader is a transceiver

that transmits the RF (radio frequency) signals using the connected RFID reader antenna.

The RF signal can both energize an RFID tag and read the information stored in the tag and

transfer the information to a processing device (backend system) through the transceiver.

The RFID antenna together with the reader provides the means for not only transmitting its

information to a tag but also converts the radio waves scattered back from the RFID tag into

digital information that can then be passed on to backend systems for further processing.

In RFID systems, the type of tag that is holding the information plays an important role in

evaluating the efficiency and performance of the system. RFID tags can be classified into

three types: i) active tags; ii) passive tags; and iii) battery-assisted passive tags. In table 1.1,

we have compared different types of RFID tags that are currently used in the market.

1.1 Motivation

Due to the low cost nature of passive tags, RFID has become one of the key enabling wire-

less communication technologies that can provide low cost solutions for various tracking

problems. For instance, RFID has a critical role to play in supply chains as they can en-

Fig. 1.2 A Simple RFID System: 1) An RFID Tag; 2) An RFID Reader Antenna; and 3) An
RFID Reader
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Table 1.1 Types of RFID tags

Active Tag Passive tag Battery-assisted tag

Power source Internal battery Energy transferred from the

RFID reader via RF

Tag uses internal battery to power elec-

tronics but tag responses use load modu-

lated backscatter as in passive tags

Communication Range Long Range (100 m or more) Short range (up to 10 m) Moderate range (up to 100 m)

Price $25, USD or more from 0.07 to 0.50 US cents $ 2 USD or more

able tracking of objects, such as their condition as in cold chain monitoring and location

to improve the visibility of the objects traversing through supply chains for inventory man-

agement, and can effectively enable targeted recall of products [43]. Further, through better

visibility of inventory and whereabouts of goods, process or delivery errors can be identi-

fied and rectified in real-time. In addition, automated tracking of goods in the supply chain

not only generates a security benefit, but also monitors the company’s promises in delivery

times which improves customer satisfaction [14].

An example supply chain routine is shown in Fig. 1.3. An RFID enabled object (i.e an

object with an RFID tag attached) is captured by an RFID reader infrastructure and sends a

notification once the goods reach the next stage in the supply chain, such as, the goods are

delivered to the packing centre at 11.00 a.m. Here, the location of the goods are captured by

the RFID system with the time of arrival information. Therefore, an RFID system ensures

that the right quantity of product has been delivered to the right place and at the right time.

Consequently, the current location of the goods is clearly visible to all the parties in the

supply chain in real-time.

On the other hand, we can also use RFID technology for tracking persons. In Australia,

in the period between 2012 to 2060 the population aged 75 or more is expected to rise by 4

million i.e., an increase from about 6.4 to 14.4 per cent of the population [2]. This ageing

population across the globe is expected to increase the number of patients with dementia,

which might raise a significant need for continuous monitoring among cognitively impaired

dementia patients as wandering-off (elopement) from the cared area is quite common among

them. The 2013 Alzheimer’s Facts and Figures [3] states that, “15.5 million caregivers

provided 17.7 billion hours of unpaid care valued at more than $220 billion", which clearly

shows the continuous need for monitoring among dementia patients. Consequently, spatial

tracking of older people is an emerging area of significance because tracking a person with
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fine location granularity enable automated supervision of older people in aged care and

acute hospital environments.

RFID enabled people tracking has the potential to address wandering off and can tremen-

dously reduce the work pressure of care givers. RFID systems are capable of monitoring

patients in real time and send notifications to the caregivers in the event of wandering-off or

when a fall is detected [38].

However, using RFID systems to track objects or people is not always reliable because

of the uncertainty associated with RFID data, especially those systems based on low cost

passive RFID tags. In the next section, we will consider the reasons for the occurrences of

uncertainty and its consequences.

1.2 Challenges

In spite of RFID providing a low cost approach to build tracking applications with many

promising benefits, there remain some challenges to be overcome before these benefits can

be realised. One of the main challenges is uncertainty in the collected raw RFID data.

Uncertainty in RFID networks can occur because of various external and internal fac-

tors, such as interference caused by other objects or radio waves in the environment, signal

bounce-off from various surfaces in the environment leading to signal cancellation, fading

and scattering, distance between the tag and the reader, orientation of the tag and malfunc-

tion of RFID components. These factors typically make the raw RFID data inadequate for

Fig. 1.3 An Example Supply Chain Routine
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Fig. 1.4 Missed Reads in the Distribution Centre

determining the location in tracking applications. In this thesis, we have broadly classified

uncertainty in RFID data into two categories: i) uncertainty resulting from missed reads

(false negatives); and ii) uncertainty resulting from noise inherent in the received signals

from tags.

Missed reads, also known as false negatives, occur when an RFID tag exists in a read-

able zone but the RFID readers fail to read the tags due to, for example, environmental

factors, such as interference, or internal factors, such as a weak response signals from tags

and malfunction of the RFID components [43, 44]. In order to understand the challenge

posed by missed reads, consider the example in Fig. 1.4 which shows a supply chain routine

followed by an object instrumented with a passive RFID tag. The object’s tag was not read

in the distribution center due to some environmental factors. Now the status of the object is

unknown and the current location of that object could be in the distribution center, in transit

between packing to the distribution center, still in the packaging center or even stolen.

Noisy data is largely due to the intrinsic sensitivity of RF waves to the environment,

such as reflection from side walls and floor, occluding metal objects, absorption of liquids,

tag orientation, thermal noise produced from the electrical components and object moving

speed. Fig. 1.5a & 1.5b shows the effects of the distance between the tag and the reader.

It is clear from the Fig. 1.5b that as the distance between the reader and the tag increases,

the tag readability decreases. Materials such as liquids or metals occluding the tag has a

serious impact on the readability of the tag [12]. In Fig. 1.5c, 1.5d, 1.5e we experimented

the effect of liquids that completely and partially block the RFID tags in three positions: (i)

directly before or behind the liquid; (ii) directly behind the liquid with a portion of the tag
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unblocked by the liquid; and (iii) beside the liquid. For each of these positions the tag read

rate is calculated using the formula below.

Read rate =
Number o f reads per minute

Average read rate in a liquid f ree environment per minute

The average read rate in a liquid free environment was 140 per minute. The experimen-

tal results shown in Table 1.5f, proves that the environment with liquid near the tag does

not have adverse effect on the read rate of the tag unless the tag is partially or completely

blocked by the liquid. From one of our previous researcher [12] it is also found that occlud-

ing metal objects have similar effects on the read rate of the tag. This sensitivity in RFID

systems leads to imprecise, incomplete or even misleading information while inferring the

location of an object or people in tracking applications.

For example, in people tracking aged care applications, the Received Signal Strength

Indicator (RSSI) of the RFID data can be utilized for fine-grained spatial tracking of the tag

bearer. However, due to the highly noisy nature of the received RFID signals, no exact in-

ference about the patient traversing direction (e.g., moving from inside the room to outside)

or traversing path (e.g., moving from the left corner of the inner side of the room to right

corner of outside the room) can be made, but this is essential for alerting a caregiver when

a person leaves a cared area or informing a caregiver the path taken by a person eloping so

that they can be subsequently found by the caregiver.

The above examples give an overview of the challenges that are faced by uncertain RFID

data. Although, active tags and battery assisted tags provide stronger signal (less noise) and

are much less likely to be missed, the price of active and battery assisted tags as well as

the need to replace batteries make them the less desirable for wide-scale tracking applica-

tions. Therefore, passive tags are an economic solution for tracking, especially where cost

of the tags need to be minimized. In addition, passive tags are also lightweight, and passive

(batteryless) RFID tags power themselves when they are interrogated by an RFID antenna,

which leads to them being maintenance free. However, passive tag based tracking systems

have to overcome location uncertainty before deploying them in tracking applications. Con-

sequently, RFID data, especially collected from the passive RFID tags, have to be either

cleaned or managed before high level processing can be carried out to ensure the accuracy

of the tracking applications.
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Fig. 1.5 Environmental effects on received RFID data
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1.3 Author’s Main Contributions

In this thesis we have provided solutions to manage location uncertainty, specifically in the

context of two RFID based tracking applications using passive RFID tags: i) tracking assets

in supply chain management applications which involves coarse-grained location tracking

(e.g., packaging area, distribution center); and ii) addressing wandering-off among elderly

in aged care settings and hospitals which involves fine grained location (e.g., x and y co-

ordinates of a room) tracking. We have utilized a sampling based inference technique known

as particle filtering to manage location uncertainty in both applications.

1.3.1 Addressing Location Uncertainty in Asset Tracking

It is believed that improving visibility of objects in the supply chain routine solves several

problems such as cold chain monitoring, counterfeit and inventory management [18]. Even

though RFID provides promising benefits in tracking systems, RFID based asset tracking

is particularly prone to false negatives, which are also known as missed reads. Missed

reads make RFID data incomplete [35] and using such RFID data in object tracking lead to

ambiguity in the locations of objects.

Therefore, we have presented an approach to address location uncertainty caused by

missed reads in a returnable asset management scenario where the requirements are derived

from International Linen Services (ILS) Pvt. (Ltd.). We modelled objects travelling through

a supply chain using an object flow graph to capture possible movements of objects and

used a PF based object tracking algorithm to continuously track objects, even though raw

RFID data is incomplete due to missing reads.

The asset based tracking involves a broader location tracking application similar to the

example discussed in Fig. 1.5. The proposed sampling based inference technique is not only

scalable for tracking large numbers of items but also accurately determines the most likely

location of the objects in the event of missed reads.

1.3.2 Addressing Location Uncertainty in Tracking People

Wandering-off (e.g. elopement) [8] among older people with dementia, Alzheimer’s disease

(AD) and other cognitive impairments is common [4, 7, 21, 32]. Hospitals and residential

homes have a significant need for monitoring and recognizing wandering-off (e.g. elope-

ment) among older people with cognitive impairments because of the serious consequences
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arising from wandering-off, such as disappearances and serious injuries, for example, from

collisions with vehicles in parking lots.

We propose a novel approach to address wandering off by identifying the traversal di-

rection and traversal path used by elderly people instrumented with low cost passive RFID

tags on their attire named Watchdog. We utilised the PF based technique with the RSSI map

generated with the help of scene analysis techniques to develop two algorithms called the

tag Traversal Path Detection (TPD) to detect the path used and tag Traversal Direction (TD)

algorithm to identify the direction used by the tag bearer.

In the previous asset tracking application, missed reads where the only hurdle for suc-

cessful location tracking, whereas in this application, accurately determining the fine-grained

traversal path used by the tag bearer with the noisy RFID raw data is more challenging. This

is because Watchdog has to overcome various sources of noise affecting the received tag re-

sponse (i.e. RSSI) such as the noise resulting from the limited working range of modulated

backscatter Ultra High Frequency (UHF) RFID, noise in the received signal, multi-path

effects, fading and scattering to reveal the traversal path used by the tag bearer.

1.4 Document Overview

In this section we give a detailed overview of the contents of each chapter in this thesis.

Chapter 2 discusses the related works in both asset tracking and people tracking appli-

cations. This chapter also discusses previous research works upon which our approach is

built.

In Chapter 3, we make our first contribution in Section 3.1, where we discuss our initial

results while tracking RFID enabled assets in a returnable asset supply chain using a PF

based asset tracking algorithm. Later in Chapter 3, Section 3.2 we provide an enhanced

algorithm and detailed discussion for the same asset tracking problem. Here, we introduce

an object flow graph to adapt the evolving B2B (Business to Business) and B2C (Business to

Customer) relationships. We also propose an approach to exploit business related contextual

information to aggregate objects that are travelling together to develop an optimised Particle

Filter (PF) based tracking algorithm.

In Chapter 4, for the first time, we propose a novel approach to address wandering-

off using passive tags. Addressing location uncertainty in tracking people applications is

a complex problem. We say this is more complex because of the nature of RF waves.
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The emitted RF waves mostly get absorbed by the human body, which therefore reduces

the received signal strength or completely eliminates an occurrence of a read. Further the

RSSI is highly dependent on environmental factors is thus very noisy. In this work, we use

a particle filtering based technique with Received Signal Strength Indicator (RSSI) maps

obtained from scene analysis to continuously track a person wearing an RFID tag over

their attire. Using real-time spatial and temporal data obtained from the PF based tracking

algorithm, we develop two algorithms: i) tag traversing direction (TD) algorithm to identify

the tag bearer’s moving direction (e.g. moving out of a room); and ii) tag traversing path

detection algorithm (TPD) to estimate the traversal path used by the tag bearer.

In Chapter 5, we introduce a system that relies on a PF based algorithm that overcomes

the need for acquiring deployment specific models of sensing infrastructure for accurate lo-

cation monitoring to accurately identify the traversal direction and traversal path used by a

person instrumented with a single batteryless (passive) RFID tag over their attire. In par-

ticular, we use a generic sensor model with Kullback-Leibler (KL) divergence to accurately

identify path and direction. Our approach requires no modification to commercial RFID

devices, firmware, hardware, or detailed surveys of deployment scenes and can be imple-

mented in real-time. Furthermore, use of commercial RFID technology not only provides

an unobtrusive, battery-less sensing approach to continuously and automatically monitor

wandering-off among cognitively impaired older people, but also allows the monitoring of

individual persons based on their care needs.

Chapter 6, discusses the utilization of Dynamic Time Warping (DTW), a pattern recog-

nition technique, in our wandering-off problem. In Chapter 4 and Chapter 5, in order to infer

the path used by the patient, the TPD algorithm directly utilizes the location estimates from

the particle filter. As a result of the inference, the prediction either ends up in a defined path

(e.g. Straight in to Straight out) or in an undefined path (Further explanation about paths

can be found in Chapter 4.) In contrast the approach pursued here uses the DTW algorithm

if an undefined path is identified where DTW is used to measure the similarities between

the possible reference paths and the real time walking data to make an inference about the

real path used. Furthermore, we have examined the possibility of tracking multiple people

simultaneously in the given state space.

In Chapter 7, we review our work and conclude our thesis. We also discuss some of the

possible future work in this area.



Chapter 2

Literature Review

In the past decade, number of research papers have been published regarding managing

location uncertainty caused by raw RFID data. This is one of the key research areas

for many researchers in the field of mobile and ubiquitous computing. A number of ex-

isting publications have demonstrated various methods to clean or manage uncertain RFID

data. Here, uncertainty can be any of the following such as false negatives or missed reads,

inconsistent data, and redundant data [52]. In the following sections we discuss some of

the literature which deals with managing location uncertainty in two RFID based tracking

applications: i) asset tracking in supply chain networks applications; and ii) tracking people

in indoor environment applications. Before discussing the related literatures, in the next

section we give a general overview of the particle filtering technique which is a central ap-

proach we have employed to address location uncertainty in the tracking applications. The

PF overview helps the reader to understand this thesis more clearly.

2.1 General Overview of Particle Filters

A number of location tracking applications, either RFID based or non RFID based tech-

nologies, have utilized particle filters [45, 50, 56]. Particle filtering is a sequential Monte

Carlo method that uses a set of particles for state estimation, where the motion model can

be non-linear or non-Gaussian. PF in tracking applications is capable of computing the

conditional probability of a hidden state, i.e., the current location of the object or person in

our application context, given some noisy observations. In our tracking application we are

interested in determining the traversal path used by an object or person given some noisy
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(a) PF process (b) Initialise

(c) Predict (d) Update

(e) Weight (f) Resample

Fig. 2.1 PF Process and an Example for the PF Steps
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raw RFID readings. There are several reasons for choosing PF in our tracking algorithm

rather than other filters like Kalman and Unscented Kalman Filters (UKF): 1) Kalman filter

are effective in linear systems with Gaussian noise. However, in a non-linear system such as

the changing dynamics of a moving person or an object attached with an RFID tag, which

has non-Gaussian noise, for example, noise from various sources like reflection from side

walls, ceiling and floor, occluding metal objects and absorption of liquids, PF can generate

more accurate results [46]; and 2) UKF estimates the hidden state of a non-linear system by

utilising a deterministic sampling technique to pick a minimal set of sigma points i.e., pos-

sible state estimations around a mean estimate, to determine the unknown state. UKF has

some similarities with PF in that it transforms a set of points from the previous state through

a known non-linear equation and combines the results to estimate the current state [46].

However the method of choosing these points in PF is non-deterministic in contrast, UKF

follows a specific algorithm. This eventually leads to the estimation errors which can con-

verge to zero in PF when the number of particles are increased but the error convergence is

not possible in UKF [46]. Lets see below how PF operates in a recursive fashion to estimate

the unknown state of the object in Fig. 2.1a.

Here we discuss an example to illustrate the motivation for using PF in object tracking

problems. We are going to track the red object (e.g., a balloon) in shown in Fig. 2.1. If we

know the current location and speed of this object then we can predict the future location

by assuming the balloon moves with a uniform linear motion. But our prediction might

be wrong due to external noise, such as wind, causing the balloon to have moved to a

different location than predicted. So instead of having a single prediction, if we could have

had slightly different prediction locations then at least one of them might be near to the

right location. Here the particles are used to predict probable locations and on receiving an

observation these particles are validated by weighting. Before analysing the steps involved

in the PF we give an overview of the two critical models used in the PF.

The Motion Model: The motion model formulates the evolution of an object’s current

state from its previous state. In the example scenario, the object was considered to move

with a uniform linear motion with possible process noise from the wind.

The Measurement Model: The measurement model describes how the true observation

relates to the predicted particles.

Steps of PF:

Initialize: The initialisation step is done only in the first iteration as we do not know the
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true location of an object at the first time step. In this step the particles are scattered all over

the given state space, as shown in Fig. 2.1b.

Predict: At the current time, using the motion model we predict the location of the

object by considering the state of the object in the previous time step and the observations

obtained so far, as shown in Fig. 2.1c.

Update: On receiving an observation, the location of predicted particles are updated by

weighting the particles using the measurement model to obtain importance weights, where

high weights are given to the particles nearer to the measurement, as shown in Fig. 2.1d and

2.1e.

Resample: The resampling step eliminates the particles that have lower weights and

replicates the particles that have higher weights within a probabilistic framework. This

results in a new set of same number and equally weighted particles for the next iteration, as

shown in Fig. 2.1f. In the next section, we see some of the works that address uncertainty

in RFID networks in the supply chain networks.

2.2 Asset Tracking in Supply Chain Applications

Tracking is essential in industrial applications such as supply chain management, to monitor

the traveling objects. In supply chain management, the motivation behind using RFID is to

eliminate the barriers in visibility, which is the key for many problems [15, 18, 31, 51] such

as those associated with inventory control. According to [27], one of the most important

benefits of such improved information visibility is realized in inventory management and

asset utilization. According to the results in [27], the qualitative factors account for over half

of the anticipated total benefits of RFID technology. However, the barrier they are facing to

obtain a genuine location tracking system is the uncertainty in RFID networks [13].

Uncertainty in RFID based asset tracking are particularly prone to false negatives, which

is also known as missed reads. Missed reads make RFID data incomplete [35] and using

such RFID data in asset tracking lead to ambiguity in the locations of objects. Hence,

managing missed reads in raw RFID data is important for developing effective asset tracking

applications.
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2.2.1 Data Cleaning Techniques

Previous research on managing uncertainty in RFID systems [22–24] proposed an adaptive

smoothing window to clean raw RFID data. The basic idea of the method is that they

assume that, if there is a tag in the segmented window then the tag is present for the whole

time span of that window. In this case, a larger window is able to overcome missed reads

but prone to redundant data and inconsistent data. On the other hand, smaller windows

are less affected by the redundant data (which are caused by frequently read tags that are

within the vicinity of the reader for a long time, which might require significant amount

of memory) and inconsistent data (is a factor where no inference about the object can be

made because of the object being read by different readers in different position) but prone to

missed reads. Therefore, the system is dependent on choosing an appropriate window size

for an application.

In [53], the authors define an adjustable smoothing window that adjusts the size of the

window with respect to the rate of missing RFID data in the traceability supply chain appli-

cations. The adaptable window helps in distinguishing missed and inconsistent data, how-

ever, these data cleaning techniques are not applicable to estimate the location of objects in

a supply chain because they cannot predict a missed object’s likely location.

2.2.2 Managing Location Uncertainty

A number of existing publications [16, 28, 48, 56] have used Bayesian techniques to man-

age the location uncertainty problem in tracking applications. In [16] authors have only

addressed uncertainty caused by false positives. In [56] authors’ aim is not addressing

missed reads, nevertheless they reduce the effect of missed reads by aggregating an object’s

readings to a single read during a pre-defined time period. However, they need at least

one reading during that time period to avoid missing an object. Thus, the accuracy of their

technique reduces when an object is completely missing (i.e. unobserved) for a period of

time.

In [28], the authors designed a transition model that depicts the probable flow of objects

and serves as a base for their predictions of past, current and future locations of RFID

tagged objects, even in the case of missed reads. However, these methods need a detailed

transaction history of a business to develop the transition model. Also, this approach cannot

be used for continuous object tracking.

The work in [48] aims to precisely locate an object placed on a shelf using a mobile
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reader. However, the accuracy of their approach to find the precise location of static objects

relies on accurate measurement of the sensor model obtained from training data. In widely

distributed supply chains, obtaining training data for each location is a tedious process. In

addition, their algorithm does not predict the motion of the object in the case of missed reads

and thus their approach cannot predict the possible location of a moving object.

In [35], the authors demonstrate how containment relationships of objects enable ob-

ject localization. Their proposed method relies on packaging level information and forms

coloured time-varying graphs that depict inter-object containment relationships. The data

inference technique estimates the most likely location of an object if there is a missed read.

The inference techniques infer edges and nodes (objects) in the graph, building a probabilis-

tic distribution over all possible locations for each node. Iterative inference combines both

edge and node inference estimates to find the most probable location of an object. How-

ever, the ability to address missed reads is highly dependent on the inter-object containment

relationships, such as the data association that a particular set of cases are on a particular

pallet.

In Chapter 3, we propose a tracking algorithm that is capable of estimating an object’s

location in the case of missed reads. In contrast to [28], we continuously track objects in

a large scale supply chain and our dynamic motion model is flexible to adapt to changes in

object flow and can be used in any widely distributed supply chains with large volumes of

complex transactions. Unlike [56], once an object is detected by a reader, our approach is

capable of estimating an object’s location throughout the supply chain even if the object is

missed by multiple readers. In contrast to [48], we are not interested in a precise location

estimation and so we do not need training data to build an accurate sensor model that pre-

dicts the location of missed objects. Although we could have used a measured sensor model

at each location, this requires extra effort. Finally, the ability of the proposed algorithm to

predict the location of missed objects is independent of inter-object relationships. In addi-

tion, our approach can also be applied to contained objects (e.g. cases on a pallet aggregated

and tracked as a single object instead of multiple cases), as in [35].

2.3 Tracking People in Indoor Environments

Object or people based indoor tracking has shown its importance in various areas such as

hospitals, aged care, shopping malls, offices and many other structures [56]. Existing out-
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door location based tracking technologies [30, 42] cannot be directly implemented indoors

as these techniques use GPS or cellular positioning to evaluate user location. GPS or cel-

lular positioning techniques cannot be used efficiently in a covered indoor space where fine

granularity in the spatial details is required. Furthermore these technologies are power hun-

gry and thus pose problems in terms of size and maintenance of batteries. Passive RFID can

be considered one of the efficient systems for indoor based tracking. However, the readings

from the RFID tags are highly noisy and no exact inference about the tracking person can be

made with raw data. If the uncertainty problem can be resolved passive RFID can provide a

low cost and effective solution for indoor based tracking [47] problems.

People tracking is vital in hospital and aged care environment to track patients suffering

from cognitively impaired diseases. Exact fine grain inference about the location and the

previous locations used by the patients is significant in these kind of applications. Hence,

managing noisy readings in the raw RFID data can help develop low cost and effective

people tracking applications.

2.3.1 Identifying Traversing Direction and Traversal Path Used in an
Indoor Environment

Number of works that utilise passive tags for determining tag traversal direction are lim-

ited. In [25], authors use several antennas and record the tag events as they are detected.

Then using the order of events, tag direction is determined. However, their research is con-

ducted using relatively more expensive active (battery powered) RFID tags to determine the

traversing direction of a tag. In [37], time intervals between tag detections by static reader

antennas are used to find the tag traversal direction, however, this method has only been

successful with dense tags (10 or more) and cannot be implemented with single tag. In [57],

direction of arrival (DoA) is used to find the moving direction of a tag, however, real-time

evaluation of this method is not reported in the paper. In [59], we developed two methods

using tag phase and its radial velocity to determine the direction of a passive tag worn by

a person. However, the accuracy of identifying the tag traversal direction is less than 90%

and it is also likely to be adversely affected by higher walking speeds of a tag bearer.

To the best of our knowledge, in Chapter 4, we are the first to study traversing path of a

tag bearer using passive RFID tags attached to their outfit using fixed antennas. Although

mobile robots’ trajectories were investigated in [19, 26] by utilising mobile antennas and

fixed tags, mobile robots are mounted with RFID antennas and their trajectories are deter-



Literature Review 18

mined from the location of static (fixed) tags attached to walls. These techniques relies on

dense tag deployments on walls to determine the trajectory used by the robot and have been

specifically designed for scenarios such as stock taking in supermarkets [26] where static

tags are placed on shelving. If these approaches are directly implemented in our problem

context then more resources are needed than what we currently use, for example, multiple

tags have to be attached to the ground over the monitoring area. Also, patients have to

carry wrist worn battery powered RFID readers [38] instead of low cost, lightweight and

battery-less tags. In contrast, our developed algorithms are capable of accurately and reli-

ably identify the traversal direction and path used by a person instrumented with a single

passive RFID tag.

2.3.2 Localisation Methods

Nevertheless, a number of localisation methods exist that may be used to infer a tag bearer’s

location. These RFID based localisation techniques can be broadly classified into three main

categories [11]:

1. Distance based estimation: This kind of estimation depends upon the use of properties

of triangles such as triangulation and trilateration [11, 29]. The range measurement

parameters are obtained from Received Signal Strength Indicator (RSSI) [17], Time of

Arrival (ToA) [25], Angle of Arrival (AoA) [49], Time Difference of Arrival (TDoA)

[37] and Received Signal Phase (RSP) [59].

2. Proximity based estimation: Proximity based estimation is a kind of sensing technique

which determines how close an object is from a known priori location. If a tag is

detected by a reader antenna, then the location of the tag is assumed to be within the

readable zone of that particular antenna [29].

3. Scene analysis: Scene analysis consists of two distinct steps [17, 34, 40, 58]. In step 1,

information about the features of the environment is collected and in step 2, obtained

real-time measurements are compared with the previously collected data (from step

1) to infer the current location of the object.

A fine-grained RFID positioning system that is robust under multi-path and non-line of

sight is proposed in [49]. The algorithm is specifically designed to identify the position of

an RFID tagged missed object in the given space. For example, to identify a misplaced
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book in a library where books, racks and shelves have a passive RFID tag on them. This

algorithm uses a pre-defined hierarchical algorithm to first identify the rack and then the

shelf holding the book and then use a dynamic time warping technique to pinpoint a tag

location. Therefore, localizing a static object can be determined with such systems.

Landmarc [34] utilises the scene analysis technique to identify the spatial position of a

desired tag from the reference tags whose locations are known previously. They first locate

the reference tags that are near to the desired tag and then using their RSSI value and the

k-NN algorithm, the nearest tag location is calculated.

Some of the other works that utilise scene analysis to localise the desired tag location

with the help of reference tags are discussed in [40, 54, 58]. In [58], the authors localise the

desired tag’s location by utilising a 2D grid of reference tags and proximity, while in [40],

the Kalman filter based technique is used in locating the desired tag and in [54] weighted

centroid localisation and PF are employed to track the objects. However, all of the above

discussed methods, regardless of the technique they use, rely on reference tags to localise

the position of the desired tag.

Quite different to the above discussed methods, in [20, 39], the authors have proposed a

device-free tracking method using passive reference RFID tags. In Twins [20], the authors

utilize the critical state i.e, the interference caused by the object/person moving in the state

space to the fixed tags to identify that a motion has occurred and to track the motion. In

the Tag Track [39], however, a new fingerprinting based tracking system is introduced that

utilizes k-NN and Gaussian mixture model based HMM to identify the reference tag that

is near to the moving object. Unlike the other reference tag based localization discussed

previously, [20] and [39] have proposed a method for device-free tracking, however, they

still depend upon reference tags to localize the position of the moving object and no evidence

for continuous path detection is found.

In [56] indoor spatial queries are evaluated from a PF based method. In contrast to other

studies discussed, this work does not need reference tags but introduces nodes and edges all

along the state space and assume that the object is moving only along the nearest edge by

compromising on fine-grain localization. Also, the discontinuity in their antenna set-up does

not allow continuous tracking of objects. Instead, objects missing over a period of time are

assumed to be in one of the rooms that are nearest to the last seen location. Although such

methods can be beneficial in estimating spatial queries, it cannot be directly implemented

in continuous tracking applications. However, the research methods used in [56] serve as a
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basis for our work, which also does not rely on reference tags. In contrast to [56] we are

interested in continuous and accurate monitoring of temporal and spatial coordinates of a

tag bearer.

Other than [20, 39, 56], all other localisation techniques discussed above successfully lo-

calise a tag using more expensive active RFID tags, in contrast, we use low cost, lightweight,

passive (battery-less) RFID tags which power themselves when they are interrogated by an

RFID antenna. Therefore the received signals in our system are often noisier and can only

be used in a limited working range. We are interested in using passive RFID tags because

they are maintenance free (batteryless), unobtrusive and can be easily integrated into cloth-

ing as washable passive RFID tags are already a commercial reality [5]. Also, hospitals

are places where hygiene is a top priority, so these low cost tags can be easily disposed if

required.



Chapter 3

Addressing Location Uncertainty in
Asset Tracking

There are two articles included in this chapter where each of section contains one paper.

3.1 An Accurate Method for Managing Missing Reads in

RFID Enabled Asset Tracking

This section includes a short paper containing preliminary results obtained for the managing

location uncertainty in the context of the returnable asset tracking application.

R. Sankarkumar, D. C. Ranasinghe, and T. Sathyan. A highly accurate method for man-

aging missing reads in RFID enabled asset tracking. In 10th International Conference on

Mobile and Ubiquitous Systems (MOBIQUITOUS), Tokyo, Japan, 2013. Ranked as A ac-

cording to Core conference ranking 2014.

Variables s, m and q are clearly defined in this thesis version of the paper (not found in

the published paper) in order to address the reviewer comments.
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3.2 An Accurate and Scalable Approach for Addressing

Location Uncertainty in RFID Enabled Asset Track-

ing

The article included in this section is a conference paper which is an extension of the previ-

ous article with an improved tracking algorithm formulated in the context of a two dimen-

sional tracking problem with detailed simulation based experiments and results.

R. Sankarkumar, D. C. Ranasinghe, and T. Sathyan. A highly accurate and scalable

approach for addressing location uncertainty in asset tracking applications. In IEEE Inter-

national Conference on Radio Frequency Identification (IEEE RFID), Orlando, USA, 2014.

Ranked as B according to Core conference ranking 2014.



 
 
 
 
Sankarkumar, R., Ranasinghe, D.C. & Sathyan, T. (2014). A highly accurate and 
scalable approach for addressing location uncertainty in asset tracking applications. 
2014 IEEE International Conference on RFID (IEEE RFID), Orlando, FL, 2014, pp. 
39-46. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
NOTE:   

This publication is included on pages 29 - 36 in the print 
copy of the thesis held in the University of Adelaide Library. 

 
It is also available online to authorised users at: 

 
http://dx.doi.org/10.1109/RFID.2014.6810710 

 



Chapter 4

Addressing Location Uncertainty in
Tracking People

The article included in this chapter is a conference paper that proposes a novel method

for addressing wandering-off by revealing the traversal direction and path used by the

tag bearer in fine-grained precision.

R. Sankarkumar and D. C. Ranasinghe. Watchdog: A novel, accurate and reliable

method for addressing wandering-off using passive RFID tags. In Proceedings of the 11th

International Conference on Mobile and Ubiquitous Systems (MOBIQUITOUS) London,

UK, 2014. Ranked as A according to Core conference ranking 2014.

The address of the University is changed from North Adelaide to Adelaide in this pub-

lished paper in order to address the reviewer’s comments.
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Chapter 5

Development of a Generic Sensor Model

The article included in this chapter is a journal paper that proposes a generic sensor model

using Kernel Density Estimation to eliminate the need for a training data collection

phase while deploying the watchdog system in a new environment.

R. Sankarkumar and D. C. Ranasinghe. Watchdog: Practicable and unobtrusive mon-

itoring technology for addressing wandering-off with low cost passive RFID. In the Inter-

national Journal of Pervasive and Mobile Computing (PMC), Special Issue on Pervasive

Computing for Gerontechnology (Under Review). Ranked as B according to Core journal

ranking 2014.
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Abstract

Given ageing populations around the world, wandering-off, or elopement,

by older people at acute hospitals and nursing homes is a growing problem.

Wandering-off incidents can lead to serious injuries and even accidental morbid-

ity. Although various intervention technologies exist for monitoring wandering-

off behaviour (such as door alarms), they are expensive, often lead to false

alarms, and are unable to differentiate patients and carers, or patients with

different needs. In this article we introduce a system that relies on a particle

filtering (PF) based algorithm for accurate location monitoring to accurately

identify the traversal direction and traversal path used by a person instrumented

with a single batteryless (passive) RFID tag on their attire. We use commercial

RFID technology and provide an unobtrusive battery-less sensing approach to

continuously and automatically monitor wandering-off among older people, but

also facilitate individualized monitoring based on their care needs.

Keywords: Dementia; person tracking; particle filter; wandering off; RFID.

1. Introduction

Technologies such as alarms on exit doors [1] or battery powered, body-

worn sensors that rely on proximity based sensing approaches [1, 2, 3] are often

employed to provide an alarm based intervention to prevent older people from

eloping from cared areas. Numerous drawbacks have been reported with these5
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types of sensors; some are inefficient in differentiating caregivers from patients

(e.g. alarms on doors), leading to unnecessary alarms, falsely detecting that a

person has crossed the threshold of care giving area when they are still within a

cared area (false alarms) [1], and maintenance issues such as the need to moni-

tor and replace batteries. Caregivers using such technologies have reported the10

misleading nature of alarms, such as the alarm being unable to differentiate

whether the resident has left the room or has simply opened the door, as well

as the tendency to turn alarming systems off due to ‘false alarms’or alarm fa-

tigue from large number of false alarms [1]. A particular drawback of existing

approaches is the inability to support individualized interventions to prevent15

wandering-off.

Radio Frequency Identification (RFID) is a wireless, automatic and unique

identification technology [4] capable of addressing indoor tracking and moni-

toring problems using batteryless transponders that can be unobtrusively inte-

grated in clothing, such as in linen tracking applications and also capable of20

continuously monitoring current and past spatio-temporal information of an in-

dividual. In [5], we first proposed the use of a single commercial-off-the-shelf

(COTS) body-worn RFID (Radio Frequency Identification) tag for developing

an approach to address elopement. This was done by automatically detecting

the direction of travel as well as the unique identification of individuals, using25

a novel system capable of individualized interventions. Subsequently, in [6] we

proposed a new algorithm that was both highly accurate and fast for not only

identifying the traversal direction but also the path used by a person instru-

mented with a COTS RFID tag attached on their attire. The accuracy of the

system relies on a measured sensor model developed by conducting extensive30

scene analysis of the deployment environment to obtain highly accurate results

with low false alarms.

The ability to employ an unobtrusive batteryless sensor is specifically signifi-

cant since wearable devices have been intentionally damaged as a way of evading

existing alarming technologies [1]; therefore our approach using passive RFID35

with the ability to integrate into textiles is highly practicable. In this paper,

2



we demonstrate that the limitation posed by extensive scene analysis needed

for accurate traversal path and direction tracking to develop a wandering-off

alarm intervention can be eliminated to achieve a practicable system capable of

being deployed in real-life without the need for site specific investigations. Con-40

sequently, our proposed approach can reduce the cost of deploying our system

in practice without compromising accuracy. The key contributions of this paper

are:

• We propose a learnt model for RFID sensing infrastructure using Kernel

Density Estimation (KDE) that considers the nature of radio wave prop-45

agation as well as the limitations of RFID technology [7]. The proposed

model, developed using a training data set consisting of an RSSI (receive

signal strength) map of the monitoring environment, forms the sensor

model for our generalisable particle filtering based monitoring algorithm

so that the algorithm can be implemented in practice without the need50

for further training data and site investigations.

• We integrate Kullback-Leibler (KL) divergence into our sensor model to

overcome problems posed by information loss when the RSSI distribution

in the training data set is used to generate a learnt sensor model based on

approximating RSSI distribution over the monitoring region.55

• Finally, we implement and evaluate the developed algorithm for wandering-

off monitoring through experimental deployments with 10 volunteers to

evaluate the performance and accuracy of our PF based algorithm in a

supervised and unsupervised environment, with and without a learnt sen-

sor model. Furthermore, we investigate and demonstrate the need for the60

proposed four antenna configuration for monitoring a large spatial region

by comparing our results with a setting with two antennas. We show that

our apporoach using a COTS RFID tag attached to clothing can eliminate

false alarms when detecting wandering-off incidents and can subsequently

provide a highly accurate estimate of the path followed by a wandering-off65

person to facilitate search efforts by caregivers.

3



The rest of the paper is summarised as follows: The next section gives an

overview of the existing technologies that address wandering off and research

works that identify traversal direction. Section 3 gives a system overview. Sec-

tion 4 describes our generalisable PF based monitoring algorithm to determine70

the traversal path and direction used by the tag bearer and Section 5 provides

experimental evidence to demonstrate the feasibility of our system. We sum-

marise our contributions and discuss future work in the Section 6.

2. Related Work

Uses of alarms on door exits is a well known technology in monitoring el-75

derly. There are two types of alarm systems [1]: i) alarms that sound when

the door is opened; and ii) alarms that sound when a person wearing a sensor

(e.g. a battery powered wrist bracelet) approaches the door. However, these

kinds of alarms have several drawbacks such as caregivers not hearing the alarm,

inability to identify the room immediately, older people removing the bracelet,80

or battery of the worn device being flat [1, 8]. Some of the recent researchers

have used android powered phones [2] and battery powered WiFi tags [3] to

address wandering. However, a common drawback for all the above mentioned

technologies is the need to carry bulky battery powered devices. Furthermore,

automatically identifying an individual uniquely is still a challenging task be-85

cause door alarms sound simply when a person enters its readable range and

are not capable of differentiating caregivers from patients. As reported in [1],

even in the case of hearing an alarm, caregivers show negligence as they assume

that an employee would have triggered the alarm. In contrast to the existing

methods, our PF based tracking algorithm is robust and accurate in finding the90

tag traversing direction and thus drastically reducing the false alarm rate.

The number of works that utilise passive tags for determining tag traversal

direction is limited. In [9], authors use several antennas and record the tag

events as they are detected. Then, using the order of events, tag direction is

determined. However, their research is conducted using expensive active RFID95
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tags to determine the traversing direction of a tag. In [10], the time interval

between tag detections by the static reader antennas is used to find the tag

traversal direction, however, this method has only been successful with dense

tag deployments (10 or more tags) and cannot be implemented with a single

tag. In [11], a direction of arrival technique is proposed to discover the moving100

direction of a tag, however, experimental evaluation of their method is not

presented. In [5], we developed two methods using tag phase and its radial

velocity to determine tag direction of a passive tag worn by a moving person.

However, the accuracy of this system is below 90% and it is also likely to be

affected by walking speed of the tag bearer. To the best of our knowledge, we105

were the first to study the traversing direction and path of a tag bearer using

passive RFID tags attached to their attire and using fixed antennas [6]. In this

paper, we have extended our work by eliminating the need for the site specific

scene analysis technique by developing a learnt sensor model integrated with

KL divergence to develop a generalisable algorithm.110

A related research problem can also be found in research works in the area

investigating Mobile robots’ trajectories [12, 13] by utilising mobile antennas

and fixed tags. Mobile robots are mounted with RFID antennas and their

trajectories are determined from the location of the static tags attached to

walls or fixed infrastructure. These techniques rely on dense tag deployments115

to determine the trajectory used by the robot. They have been specifically

designed for scenarios such as inventorying stocks in supermarkets [12] where

static tags are placed in a shelf. If these approaches are directly implemented

in our problem context then more resources are needed than what we currently

use, for example, multiple tags have to be attached to the ground over the120

monitoring area. Also, patients have to carry wrist worn battery powered RFID

readers [8] instead of light weight tags. In contrast, our approach is capable of

accurately and reliably identifying the traversal direction and path used by a

person instrumented with a single passive RFID tag.

Alongside research into continuous path estimations, a number of existing125

RFID tag localisation methods may be used to infer the tag bearer’s location
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over time. These localisation techniques can be broadly classified into three

main categories [14] summarised and discussed below.

Distance based estimation: This kind of estimation depends upon the

use of the properties of triangles such as triangulation and trilateration [14, 15].130

The range measurement parameters are obtained from Received Signal Strength

Indicator (RSSI) [16], Time of Arrival (TOA) [9], Angle of Arrival (AOA) [17],

Time Difference of Arrival (TDOA) [10] and Received Signal Phase (RSP) [5].

For instance, in [10] the authors proposed a method using time difference of

signal arrival, which is measured by the strength of the received signal at two135

antennas, to estimate the tag TDOA.

Scene analysis: Scene analysis consists of two distinct steps [16, 18, 19, 20].

In step 1: information about the features of the environment is collected; and

in step 2: obtained real-time measurements are compared with the previously

collected data (from step 1) to infer the current location of the object. Landmarc140

[18] utilises the scene analysis technique to identify the spatial position of a

desired tag from the reference tags whose locations are known previously. They

first locate the reference tags that are near to the desired tag and then using

their RSSI value and the k -NN algorithm, the nearest tag location is calculated.

Some of the other works that utilise scene analysis to localise the desired tag145

location with the help of reference tags are discussed in [19, 20, 21]. In [19],

the authors localise the desired tag’s location by utilising a 2D grid of reference

tags and a proximity map, while in [20], a Kalman filter based technique is used

in locating the desired tag and in [21] weighted centroid localisation together

with a PF is employed to track objects. However, all of the above discussed150

methods, regardless of the technique they use, rely on reference tags to localise

the position of the desired tag.

In [22] indoor spatial queries are evaluated from a PF based method. In

contrast to other studies discussed, this work does not need reference tags but

introduces nodes and edges all along the state space and assume that the object155

is moving only along the nearest edges by compromising on fine-grain localisa-

tion of objects. Also, the discontinuity in their antenna setup does not allow
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continuous tracking of an object. Instead, if the object is missing for a while,

then it is assumed that the object should be in one of the rooms that are nearest

to the last seen location. Although such methods can be beneficial in a local-160

isation system, it cannot be directly implemented in determining the traversal

direction and path. However, the research approach used in [22] which deviated

from the use of a reference tag to model the sensor for a PF in a localisation

technique serve as a basis for our work.

Our Watchdog system identifies the tag traversing direction (e.g. moving out165

of a room) and tag traversal path from the raw RSSI readings obtained from

a passive tag by tracking the tag in real time and preserving the information

gathered in the past. Except [22], all the localisation techniques discussed above

successfully localise a tag only using expensive active RFID tags. In contrast

to active (battery-powered) RFID tags, we use low cost, passive (battery-less)170

RFID tags which power themselves when they are interrogated by an RFID

reader, however, they often generate noisy signals and can only be used in a

limited working range. We are interested in using passive RFID tags for our

study because of their low-cost, lightweight, unobtrusiveness, and battery-less

nature. Also, hospitals are places where hygiene is a high priority and these low175

cost tags can be easily disposed. In the next section we give an overview of our

system.

3. An Overview of Watchdog

We briefly introduce our approach named Watchdog, a real-time approach

capable of reliably identifying the traversal direction and traversal path used180

by a person wearing a passive RFID tag on their attire. We named our ap-

proach Watchdog because usually watch dogs are trained to protect people from

hazardous situations and, furthermore, their keen sense of smell is capable of

identifying the traversing path used by a particular person. The components we

used in Watchdog to address wandering off are: i) a four port RFID reader; ii)185

four RFID antennas; iii) a passive RFID tag attached over clothing; and iv) two
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Figure 1: (a) Overview of our system (b) Measured sensor model (c) Learnt sensor model

algorithms, detecting the tag traversal direction and the traversing path used

while eloping. Fig. 1 (a) depicts an overview of our system.

When a passive RFID tag enters the monitoring zone (e.g., the doorway

in Fig. 1 (a)), the 4 mounted RFID antennas power and interrogate the tag in190

order to obtain the time of the read, t, EPC (Electronic Product Code) assigned

for each person, patientID, antenna ID, ant, that identifies the antenna reading

the tag and the RSSI value, rssi. Thus, raw RFID reads r obtained here

can be represented by the schema: [t, patientID, ant, rssi ]. In contrast to the

existing RFID localisation systems, Watchdog accurately identifies the traversal195

path and direction used by a tag bearer without any reference tags deployed

in the state space. Instead, Watchdog employs RSSI readings obtained from

interrogating passive RFID tags attached to clothing. Typically, and as we have

illustrated [6], RSSI based derivations of location information is highly noisy;

therefore, Watchdog uses a particle filtering based approach to overcome the200

location uncertainty emanating from noisy RSSI measurements to provide a

highly reliable approach for monitoring older people in real-time. We describe

the particular approach investigated in this article in the following sections.

4. Generalisable Particle Filtering based Monitoring Algorithm

Our approach based on a particle filter works in an iterative fashion to es-205

timate the posterior distribution of a hidden state (e.g., location of a patient)
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using the observations obtained (e.g., RSSI value) from the RFID infrastruc-

ture [23]. Our system explores an approach that is capable of continuously

tracking the location of the tag bearer. Our approach is also capable of over-

coming missed reads (false negatives) common in raw, real-time RFID data210

streams [24, 25]. Next, we explain the two critical models that are used to infer

the location of a tag (i.e. person) in a dynamic system. They are: i) motion

model; and ii) sensor model.

4.1. Motion Model

Motion model or system dynamics describe how the system evolves from the

time step t− 1 to the time step t.

lt = ft(lt−1, vt−1) (1)

where lt is the true state of the tag, and vt−1 is the independently and identically

distributed (i.i.d.) process noise.

p(lt|lt−1) = p(lt|s, θ, lt−1) (2)

The motion model used in our system is shown in (2), where l = (x, y) is the215

coordinate revealing the state of a tag. The conditional probability p(lt|s, θ, lt−1)

specifies the possible motion of the tag from the previous iteration to the current

iteration, given the learning velocity factors: speed, s; and direction, θ. We have

considered building a model that can dynamically adapt to the walking speed

and direction of a person. Initially we considered the moving speed s to be220

the mean gait speed reported in [26] for people aged 40 and above and the

probability of moving in any of the given direction θ to be equiprobable where

θ = {0o, 45o, 90o,..., 315o}. After every iteration we consider the difference

between the predicted location and the estimated location to additively increase

the speed s to adapt to increasing walking speeds and multiplicatively decreasing225

speed to adapt to the decreasing walking speeds and halts. The direction θ

is updated by multiplicative increases in the probability in the direction of

traversal in the previous time t-1 and decreases in the probability of moving in

all other directions.
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4.2. Sensor Model230

Before explaining the sensor model we give an overview of the development

of our learnt model. In general, we can consider RFID tag readings reported by

an RFID reader as a time series. In practice, a time series of tag readings r1:m

= {(ti, rssii, anti)}mi=1 is partitioned into non-overlapping fixed time segments

of duration δt for a given patientID where t is the time stamp of a tag read,

rssi is the Received Signal Strength Indicator (RSSI) value and ant is the ID of

the antenna that captured the tag read at time t. From the sequence r1:m, we

obtain the observation zt by calculating the mean and standard deviation RSSI

value rssiant for each antenna, ant, that obtained a tag read; or

zt = {rssiant}ant=w
ant=1

where the first time stamp t1 in r1:m is used as the time t for the observation

z and w denotes the number of antennas that captured a tag response in the

sequence r1:m.

Then, to develop a sensor model specific to the deployment settings of the

sensing infrastructure, in our case the RFID reader antennas, we estimate the235

RSSI characteristics of the state space (the region or the area over which we are

interested in monitoring a person). In our application context, we divided the

state space with an equidistant grid [6]. The approximate distance of each grid

is 25 cm × 25 cm. We obtained the training data by collecting the RSSI values

in each of these grid intersections, as described in [6]. Using the data collected240

over a period of 4 seconds at each of the intersection points, we generate a RSSI

map rssi map that holds both mean and standard deviation for each of these

grid locations. (Note: In [6], rssi map only holds mean RSSI values whereas in

this paper rssi map holds both mean RSSI and standard deviation)

In [6], we demonstrated that the RSSI value reported by an RFID reader245

of a tag used to instrument a person, rssiant, can be used in conjunction with

the previousl y developed RSSI map, rssi map, to obtain an accurate location

estimate of a person over time to infer the tag bearer’s location and then sub-

sequently determine traversal direction and traversal path of the person using a
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Figure 2: Particle filtering algorithm

particle filter [6]. However, this approach is limited by the need to conduct a la-250

borious scene analysis to develop the RSSI map rssi map for each deployment

setting; therefore such an approach is not suitable for practical deployments

which ideally require a learnt model that is agnostic to the deployment envi-

ronment. We describe how we derived an effective learnt sensor model in the

following section.255

4.2.1. Learn a generic model

Our sensor model is built on a finite training data set collected using the

scene analysis technique which we refer to as supervised environment. Now our

goal is to learn a generic model using the collected data set, so that the algorithm

can be implemented in practice without the need for further site investigation.260

So, we chose to smooth the finite data using Kernel Density Estimation (KDE).

KDE is a method used to estimate the probability density function of a

random variable [27] given a finite data sample. A bivariate Kernel is often

used in estimating probability densities in two dimensions. Using the training

data (rssi map) and by utilising the bivariate KDE method we learn the generic265

sensor model which we refer to as learnt model. For a bivariate random sample

X1, . . . ,Xn drawn from a probability density f , the kernel density estimate is

defined by

f̂m(x) =
1

n

n∑

i=1

1

m2
K
(
x−Xi

m

)
(3)

where x = (x1, x2)> and Xi = (Xi1, Xi2)>, i = 1, 2, . . . , n. Overall, from

Eqn. 3 we estimate the probability density of our 2-dimensional random vector,270
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(Xi1, Xi2), where we use Xi1 to represent the x axis of our state space and

Xi2 to represent the y axis of our state space centered at (x1, x2), K denotes a

multivariate kernel function operating on the random variables. As we assume

that the training data set’s distribution is Gaussian and we use a Gaussian

kernel, it can be shown that the optimal value of m is m = 1.06σn
−1
5 [7], where275

σ is the sample standard deviation, i.e, the standard deviation of the training

dataset (RSSI map).

The f̂m(x) is our learnt model, which is the joint PDF of the random vari-

ables Xi1 and Xi2. The measured sensor model of Antenna 1 and its corre-

sponding generic sensor model learnt using Antenna 1 training data are shown280

in Fig. 1 (b) and (c), respectively. The rest of this section discusses how we

utilise the learnt sensor model in our tracking algorithm.

4.2.2. KL divergence enhanced sensor model

Once there is an observation, the sensor (or measurement) model describes

how the observation zt relates to the true state lt of the system.

zt = ht(lt, ut) (4)

where ht is a possible non-linear function, and ut is i.i.d. measurement noise.

Now we define the sensor model that we used in our system as shown below.

p(zt|lt) = p(rssiant|lt, ant, learnt model) (5)

where p(zt|lt) specifies the likelihood of obtaining a measurement zt given the

predicted state lt. The conditional probability p(rssiant|lt, ant, learnt model)
specifies the mean RSSI and standard deviation of the raw reads, r, which is

rssiant, given given the predicted states of the tag, lt, antenna ID, ant and

learnt map, learnt model. Since rssiant and each of the grid intersections in

learnt model are two different probability distributions and we are interested in

measuring the most similar probabilistic distribution in learnt model of rssiant,

we employ the metric called Kullback-Leibler (KL) divergence. KL divergence

is an effective metric used to measure the difference between two different prob-

abilistic models [22]. For two probability distributions P and Q, KL divergence
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is defined to be,

DKL(P ||Q) =
∑

i

P (i) ln
P (i)

Q(i)
(6)

where DKL(P ||Q), measures the information lost when the probability distribu-

tion Q is given to approximate the probability distribution P [22]. Therefore,

in our sensor model, KL divergence is used to find the maximum-likelihood

location by replacing p(rssiant|rssi maparea) in Eqn. (5) as shown below.

p(zt|lt) = DKL(rssiant||learnt model) (7)

The learnt model is the learnt sensor model generated for the whole of the state

space. Using the predicted current location we can determine the area of interest

in the learnt sensor model, learnt modelarea, which is the region that specifies

the most probable tag movement in the learnt sensor model, learnt model. We

identify the area of interest, learnt modelarea, in order to neglect the trivial area

in the learnt model while determining the final location after an observation zt.

In the motion model we defined how lt specifies the possible probability of

the current state given speed, s, direction θ and previous location of the tag

lt−1. Since the area of interest, learnt modelarea, strongly depends on lt, the

tag bearers speed, direction and previous location decides the area of interest’s

boundaries. Also, by replacing learnt model as learnt modelarea in the KL

Divergence Eqn. 7, we can minimize the area to be calculated for information

lost.

p(zt|lt) = DKL(rssiant||learnt modelarea) (8)

4.3. Recursive Filter

Below we discuss briefly the steps involved in one iteration of the PF. The285

flow of the PF based algorithm is illustrated in Fig. 2 (a).

Initialise: Particles corresponding to the state of an object are initialised

according to lN0 ∼ p(l0), N = 1, .., n, where n is the number of particles used to

represent the posterior state distribution of the object.

Predict: Predict the location of an object using the motion model at each290

time step. At t the state particles l are predicted to be in a location considering
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(a) (b) (c)

Figure 3: (a) Four antenna setup (b) Two antenna setup (c) Traversal path

the state at t − 1 and the observations obtained so far z1:t . For N = 1, ..., n,

predict particles, lNt ∼ q(lt|lNt−1, z1:t), where q(.) is an importance function[23].

Update: On receiving an observation zt, the predicted particles’ locations

are updated by weighting the particles using the measurement model to obtain295

importance weights wt, w
N
t = p(zt|lNt ), where high weights are given to the

particles nearer to the measurement.

Normalize: The weights are normalised. For N = 1, .., n, normalize the

importance weight, wN
t = wN

t /
∑n

j=1 w
j
t .

Resample: Increasing number of PF iterations leads to sample degeneracy,300

which means only few particles would have non-negligible weights while the

remaining would have near-zero weights [23]. The resampling step eliminates

the lower weighted particles and replicates higher weight particles to generate

a new set of particles with equal weights [22]. The new set of particles thus

obtained is equal to the original number of particles. For N = 1, .., n, set,305

wN
t = 1/n.

4.4. Traversing Path Detection and Traversing Direction Algorithms

The traversing path detection algorithm and the traversing direction algo-

rithms used in this paper follow algorithms 1 and 2 used in [6]. However, the
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sensor model in [6] utilizes a scene analysis based technique for building a mea-310

sured sensor model. Instead, our algorithm utilizes the rssi map that has RSSI

mean and standard deviation to develop a learnt model with the help of KDE.

In our proposed PF algorithm, on an observation, the KL divergence is used

to measure the difference between a real time reading and the learnt model to

obtain a better description of the relationship between the given observation315

and the true state of the person.

5. Experiments and Results

We conducted extensive experiments in two laboratory environments (su-

pervised and unsupervised) to evaluate the ability of our algorithms with and

without learnt models and with and without KL divergence to accurately iden-320

tify the traversing path and the traversal direction used by the tag bearer. We

further compared the results of our four antenna setup PF based TD and TPD

algorithm with a two antenna setup PF based TD and TPD algorithm for to

investigate the performance of our approach using a lower cost deployment op-

tion.325

5.1. Settings and Data Collection

Our state space includes an area with 6 m length, 2 m width and 2.65 m

height from the ground level. We considered the wooden frame (shown in

Fig. 3 (a) and (b)) of 2 m width and 2.65 m height as the threshold that par-

titioned the inside (cared area) and the outside. Two antennas were deployed330

on the inner side of the frame and two were deployed on the outer side. The

antennas were located 0.75 m from the side of the frame. All four antennas

were inclined at 45◦ from the horizontal plane because a better illumination of

the state space was obtained at this angle. The four antennas employed are

circularly polarised antennas of model no: Impinj IPJA1000-USA. We used an335

Impinj Speedway Revolution UHF (Ultra High Frequency) RFID reader (R420)

and ‘Squiggle’ passive tags. In the learnt model we rely on KDE where the value

of d is 13 and n is 9 in Eqn. 3.
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We considered 12 paths illustrated in Fig. 3 (c) where Right-out to Left-in,

Right-out to Right-in, Straight-out to Straight-in, Left-out to Left-in and Left-340

out to Right-in were considered as moving in paths and Left-in to Right-out,

Left-in to Left-out, Straight-in to Straight-out, Right-in to Left-out and Right-

in to Right-out were considered as moving out paths. Two non-traversal paths,

namely No-traversal out and No-traversal in were included to consider situations

that involve activities inside the room or simply walking towards the outside345

and turning back.

We conducted our experiments first with two sensor models, namely learnt

and measured. Then we integrated KL divergence into our sensor model and

conducted experiments to evaluate the use of KL divergence in the above two

sensor models. Our experiments investigated all the possible combinations of350

KL divergence and sensor models in the two environments, namely supervised

(where initial measurements were taken) and unsupervised (a new, similar but

different environment), in order to evaluate the robustness of our algorithms

in different environments and using different models. Further, we have devel-

oped and used two approaches to evaluate the accuracy of the path estimation355

algorithm.

Then, we also utilized a new antenna setup with one antenna on either side

(inside and outside) to evaluate the accuracy of the TPD and TD algorithms

using a lower cost RFID infrastructure deployment (i.e fewer antennas and a 2

port RFID reader as opposed to a 4 port reader). The experimental setup is360

shown in Fig. 3 (b) where the antennas are placed in the center 1 m apart from

either end of the wooden frame.

Fourteen healthy, young adults aged between 25 to 35 participated in the lab-

oratory experiments. The mean±SD height of our participants was 169±8 cm.

However, only the first 6 participants were involved in both the experiments.365

The passive RFID tag was attached to each participant’s attire using double

sided adhesive tape over the right shoulder as shown in Fig. 3 (a). Our par-

ticipants performed a routine of 25 moving in path trials (a list of 25 paths

randomly selected from moving in paths), a routine of 25 moving out path tri-
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Table 1: Performance of our proposed TPD algorithm in the 2 antenna setting

Scenarios TPD Algorithm TP FN TN FP Recall Precision Accuracy

Two ant. with 9 segments Without KL 108 392 47 153 21.6± 3% 41.5± 3% 22.3± 2%

Two ant. with 9 segments With KL 113 387 51 149 23.0± 3% 43.7± 3% 23.9± 2%

Two ant. with 6 segments Without KL 130 370 60 140 26.6± 3% 48.5± 2% 27.7± 3%

Two ant. with 6 segments With KL 138 362 65 135 28.4± 2% 51.2± 3% 29.2± 2%

Table 2: Performance of our Proposed TPD Algorithm using Learnt Model in the Four An-

tenna Settings

Scenarios TPD Algorithm TP FN TN FP Recall Precision Accuracy

In a supervised envi. Without KL 366 134 141 59 73.2± 6% 86.0± 3% 72.4± 5%

In an unsupervised envi Without KL 313 187 125 76 62.6± 4% 80.5± 2% 62.5± 3%

In a supervised envi With KL 371 129 146 50 74.2± 5% 88.2± 3% 74.3± 4%

In an unsupervised envi With KL 325 175 129 71 65.0± 3% 82.1± 2% 66.9± 3%

6 segmented supervised envi. Without KL 393 107 161 39 78.6± 3% 91.0± 2% 79.1± 2%

6 segmented unsupervised envi. Without KL 350 150 157 43 70.0± 3% 89.1± 2% 72.4± 3%

6 segmented supervised envi. With KL 398 102 163 37 79.6± 2% 91.6± 2% 80.1± 2%

6 segmented unsupervised envi. With KL 363 137 161 39 72.6± 5% 90.4± 3% 74.9± 4%

als (25 randomly selected from moving out paths) and 20 non-traversing path370

trials in total. All the participants were asked to walk at their normal speed

and were not instructed to walk at any specified speed or manner.

5.2. Statistical Analysis and TPD Algorithm Evaluation Method

In this study, we evaluated the performance of both TPD and TD algorithms

by determining: i) Recall = True Positives / (True Positives + False Negatives)375

and ii) Precision = True Positives / (True Positives + False Positives); and iii)

Accuracy = True Positives + True Negatives / (True Negatives + True Positives

+ False Positives + False Negatives).

Since we are interested in determining if the supervised environment is simi-

lar to the unsupervised environment, we evaluated if the results in the supervised380

environment were statistically significantly different from the unsupervised en-

vironment. We used a two-tailed t-test where statistical significance was at

p-values less than 0.05. In order to evaluate the performance of our TPD algo-

rithm we partition our state space 2 m × 6 m into 9 equal partitions as explained
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Figure 4: (a) Performance of our algorithm with and without KL Divergence (b) Accuracy in

terms of speed for four antennas deployment (c) Accuracy in terms of speed for two antennas

deployment

in [6] and evaluated accuracy by counting the number of final location estima-385

tions in each of these partitions.

5.2.1. Traversing Path Detection Algorithm

When evaluating the TPD algorithm: True positives (TP) were the paths

that were correctly identified (e.g. Right-in to Left-out); True negatives (TN)

were paths of no interest that were correctly identified (e.g. No-traversal in);390

False negatives (FN) (i.e. missed reads) were paths that were not identified

due to lack of readings reported from the reader antennas (e.g. Left-in to Left-

out is being reported as No-traversal out); and False positives (FPs) are other

movements that were identified as a moving direction of interest.

5.2.2. Traversing Direction Algorithm395

Here, we define the terms used in TD algorithms. TPs were movements that

were correctly identified (e.g. moving out). TNs were movements of no interest

that were correctly identified (e.g. No-traversal in). FNs were movements

that were not identified (i.e. moving out not being reported). FPs are other

movements that were identified as a moving direction of interest (e.g. No-400

traversal in being identified as moving out).
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5.3. Results

To evaluate the performance of our TPD algorithm in both the antenna

setups we initially divided our state space into 9 equal parts. However, in most

of the incorrect path detections the first segment prediction was wrong because405

our motion model is still dynamically adapting to the walking speed and moving

direction of a tag bearer during the entry of the person to the cared area. After

few iterations our PF based algorithm closely adapts to the moving person’s

direction and speed which resulted in better prediction. Further, when we are

analysing data to identify the path used by a person we are only interested in410

the direction in which the person has left (i.e. eloped) the cared area as opposed

to their entry. Therefore, we performed a further evaluation with six segments

where the first three horizontal segments were removed from the evaluation

without loss of information.

In Table 1 we introduce the results for the two antenna setup evaluated with415

the measured sensor model. From the Table 1 it is clear that the algorithm with

KL divergence performed better than the algorithm without KL and 6 segment

results are always slightly better than the 9 segment scenarios in two antenna

setup. However, from the results it is clear that the two antenna setup are

highly prone to false alarm rate of up to 59%.420

The results from Table 2 and Table 3 show the performance of our TPD

algorithm (detecting the path used by the tag bearer) using a learnt and mea-

sured model in various scenarios for four antenna setup. In four antenna setup,

overall, measured model results in Table 3 performed better compared to the

learnt model because measured models are concise formulation whereas learnt425

models are approximations made using KDE.

Similar to two antenna setup, it is clear from the Table 2 and Table 3 that our

scenarios with KL divergence performed better in all the settings. In Fig. 4 (a),

we have given the performance result of the sensor model with and without KL

divergence for the same data set where the ground truth is Left-in to Right-430

out. This shows that our sensor model embedded with the KL divergence can

better overcome problems posed by information loss when the RSSI distribution
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Table 3: Performance of our Proposed TPD Algorithm using Measured Model in the Four

Antenna Settings

Scenarios TPD Algorithm TP FN TN FP Recall Precision Accuracy

In a supervised envi. Without KL 397 103 161 39 79.4± 5% 91.1± 3% 79.7± 4%

In an unsupervised envi Without KL 343 157 143 57 68.6± 4% 85.8± 3% 69.4± 4%

In a supervised envi With KL 404 96 167 33 80.8± 5% 92.5± 2% 81.6± 4%

In an unsupervised envi With KL 367 133 150 50 73.4± 5% 88.0± 3% 73.9± 4%

6 segmented supervised envi. Without KL 417 83 175 25 83.4± 3% 94.4± 2% 84.6± 3%

6 segmented unsupervised envi. Without KL 385 114 159 41 77.2± 3% 90.4± 2% 77.8± 3%

6 segmented supervised envi. With KL 424 76 179 21 84.8± 3% 95.3± 2% 86.14± 3%

6 segmented unsupervised envi. With KL 392 108 166 34 78.4± 2% 92.2± 3% 79.7± 2%

in the training data set is used to generate a learnt sensor model based on an

approximating RSSI distribution over the monitoring region. The results of our

6 segmented scenarios for both the models, with and without KL divergence,435

are also included in the Table 2 and Table 3. The evaluated results show that

6 segmented scenarios reduce the false alarm rate in path detection by 4% to

9% in the four antenna setup. This shows that our sensor model is considerably

feasible in adapting to the walking pattern of the tag bearer after few iterations.

On comparing the results in the context of antenna setup, the results with440

the four antenna setup in Table 2 and Table 3, clearly out performs those ob-

tained with the two antenna setup (e.g. highest false alarm rate of 59%). This

is because the readable area covered by two antennas was significantly lower

when compared with four antennas setup. Moreover, the four antenna setup

has several areas covered by two or more overlapping read zones from multiple445

antennas so the tag bearer’s position was more precisely calculated with the

mean estimation. In contrast, the two antenna setup yielded low read rates in

some areas and the rest of the areas were covered by only single antenna, so the

lack of information had led to often imprecise location estimations.

Table 4 gives an overview of our TD algorithm results in all our possible450

settings discussed above. Our four antenna setup resulted in 100% accuracy

in finding the tag traversal direction in all the circumstances. However, our

two antenna setup resulted in a number of incorrect direction prediction in the
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Table 4: Performance of our proposed TD algorithm

Scenarios TD Algorithm TP FN TN FP Recall Precision Accuracy

Four ant. with 9 & 6 segments With & without KL 500 0 200 0 100% 100% 100%

Two ant. with 9 & 6 segments With & without KL 453 47 200 0 90.6% 100% 93.9%

traversal paths that resulted in 93.3% in accuracy and 90.6% in recall due to the

limited area readability of tags offered by the use of only two antennas. However,455

since the non-traversal paths were all correctly identified 100% precision was

still maintained in the two antenna setup.

We also evaluated the effect of a tag bearer’s traversing speed with the ac-

curacy of our algorithms. We varied the walking speed from approximately 0.18

km/h (0.05 m/s) to 9 km/h (2.5 m/s). As shown in Fig. 4 (b) and (c) walk-460

ing speed had some impact on the accuracy of our algorithm in both antenna

setups. When the speed was increased from 0.18 km/h to 0.9 km/h there is a

small reduction in the accuracy of all our TPD algorithms in both antenna se-

tups. This is because our motion model is initialized with a constant speed with

additive increases or multiplicative decreases to adapt to the walking speed of465

the tag bearer over several iterations. Therefore, the first few iterations may not

accurately model the speed of the tag bearer and consequently resulted in poor

location estimates. However, our TD algorithm was able to maintain 100% ac-

curacy in determining the tag direction with walking speeds less than 7.2 km/h,

beyond which the accuracy fell slightly lower to 99%. Although walking speed470

had some impact on the accuracy of our algorithms, our results were consistent

in the normal walking speed (approx. 4.5 km/h to 5.25 km/h) according to mean

gait speed reported in [26] for people aged 40 and above.

6. Conclusions

We developed a highly practicable and unobtrusive monitoring technology475

for addressing wandering off with a low cost passive RFID tag. Our proposed

learnt model using KDE performed well by providing 100% accuracy in terms of

detecting eloping incidents and virtually eliminating all false alarms. In partic-
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ualr there was no change in performance when employing the measures sensor

model and the learnt model in either supervised or unsupervised environments.480

In terms of detecting the eloping path, our learnt PF based TPD algorithm

provided a false alarm rate ≤ 8% in a 6 segmented supervised environment in

conjunction with the KL divergence algorithm. It is also clear from the results

in Table 2 and Table 3 that after integrating KL divergence into the sensor

model the false alarm rate decreased by at least 2%.485

Our approach is a considerable enhancement when compared to existing ap-

proaches. The new KL divergence integrated generalised sensor model is likely

to result ease of deployment and therefore reduced cost of deploying the Watch-

dog system. Furthermore, given the elimination of false alarms in correctly

identifying eloping incidents and being able to provide individualized interven-490

tions is likely to find higher levels of acceptance among caregivers. Even though

our algorithm performed well throughout the study, certain path results such

as Right-in to Right-out still performed poorly due to the higher occurrences of

missed reads. Furthermore, compared to the results obtained in our previous

work [6] our current results with KL in a 6 segmented analysis has improved495

by 4% to 6% in all three analysis in a supervised environment. Whereas, in an

unsupervised environment our current results with KL in a 6 segmented analysis

were comparable to the results obtained in our previous work [6].

One approach to overcome the limitations posed by the occlusion of the

tag resulting in missed observations is to consider employing another tag above500

the second shoulder. Future work, should also investigate the accuracy of our

algorithms with multiple participants and evaluate the system in a longitudinal

trial in a clinical environment. These activities will form our future work.
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Chapter 6

Tracking in a Complex Multiple People
Environment

6.1 Introduction

Tracking multiple people present in a tracking area is vital in aged care and hospital

environments as the presence of two or more people at the same time in the given

region is quite common in these applications. Wandering-off is common behavior among

cognitively impaired patients and there may be several reasons for this, such as changed

environment, searching for the past, and expressing boredom [2]. It is also noted that if one

patient has the intention to wander out of the cared area then that can be a catalyst for others

to follow them [1]. Therefore, in an aged care or hospital environment there is a high chance

of having two or more patients leaving or entering the cared area at the same time. There is

also a possibility of patients trailing at the back of the carer to escape from the cared area.

Therefore, it is vital to identify critical circumstances like when two or more patients leave

the cared area, or to identify the act of an escaping patient who is hiding and trailing behind

a care giver.

In this chapter, we evaluate the performance of our developed algorithms that were dis-

cussed in the previous chapters to successfully track multiple persons. We utilize the sensor

model used in Chapter 5 for our PF based multiple people tracking algorithm. In addition, in

order to improve the recognition of the path used by the tag bearer, we have utilized a well

established speech pattern recognition technique called Dynamic Time Warping (DTW)

[41, 49].
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(a) Defined path

(b) Undefined path

Fig. 6.1 Motivation for DTW (Dynamic Time Warping)

6.2 Dynamic Time Warping

In Chapter 4, Section 6.3 we have defined how we evaluate the path used by a person. We

divide the state space into 9 partitions and evaluated accuracy by counting the number of

location estimations in each of these partitions and flag that partition as shown in Fig. 6.1a

which shows the defined path Straight-in to Straight-out. On the other hand, there is a

possibility for the partition results to show an undefined path as shown in Fig. 6.1b (ii).

Now the chance of having a final path prediction closely relates to two possible paths as

shown in Fig. 6.1b (iii) & (iv). In this situation, DTW is used to efficiently identify the path

used by the tag bearer.

Dynamic Time Warping (DTW) is a method to measure the similarity between any two

temporal data. DTW allows two time series that are locally out of phase to align in a non-

linear manner in order to overcome the weakness of Euclidean distance metric [10]. In

designing our people tracking profiles, DTW have a list of trial walking paths as reference

paths and these were collected during the initial training phase. On receiving real time read-

ings, the new path readings are compared with the possible paths as shown in Fig. 6.1b (iii)

& (iv) to make an inference about the real path used by the tag bearer.
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6.3 Generalizable PF based Monitoring with DTW

The generalizable PF based tracking algorithm used in Chapter 5 is utilized with the DTW

algorithm for the multiple people tracking scenario. When a situation, such as that shown in

Fig. 6.1b (ii), arises as a result of the TPD algorithm, then the DTW algorithm is triggered

i.e., since the TPD algorithm resulted in an unknown path (do not resemble any of the

predefined paths) the DTW algorithm is involved to infer the path used by the tag bearer.

In this case, the possible predefined paths that would match with the unknown path are first

identified. For example, consider Fig. 6.1b (ii) coming from top to bottom of the figure, the

first two partions are believed to be true and the third partition is believed to be false. In order

to finish the path, and assuming that the first two partition are true, we conclude that the

third partition should be in the middle (see Fig. 6.1b (iii)). Also, as shown in Fig. 6.1b (iv),

we can see that the first partition may be incorrect. This process leads to a collection of

possible paths. After having a collection of possible paths, RFID tag read data for each path

obtained from training data is individually compared with the real time RFID tag read data

using DTW as described below.

Fig. 6.2 Warping Cost Matrix
This figure is adapted from this presentation www.psb.ugent.be/cbd/papers/gentxwarper/DTWAlgorithm.ppt,

created by Elena Tsiporkova
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6.3.1 DTW Algorithm

Given two sequences from real time unknown path A and a possible path Bu from the col-

lection of possible path B, composed respectively of m and n feature vectors,

A = a1,a2,a3, ...,ai, ....am

Bu = b1,b2,b3, ...,b j, ....bn where Bu ∈ B

DTW searches for the best alignment that minimizes the total cost C [41] calculated

using a cost matrix that defines the cost of mapping two points cs as the euclidean distance

in each cell.

C = c1,c2,c3, ...,cs, ....ck

cs = |ai−b j|

The algorithm is better explained using Fig. 6.2. The two time sequences that are being

compared are shown along the two axes of c. Each cell in cs gives the cost of aligning ai

and b j. Since we are interested in the path that has close alignment with a predefined path,

we find the sum of all the cell values and the lowest among all the possible routes is the

final cost of the matrix. The green dots in Fig. 6.2 shows the smallest value of cs for each

sequence and the final cost for the sequence Bu is calculated using

Costu = ∑C where Costu ∈Cost

. Then, Costu will result in the cost of mapping the two sequences A and Bu. Now DTW is

performed for the next pair of sequences i.e., A and another element in B. Once the cost of

all the sequences in B are computed, the sequence that holds the minimum cost in Cost will

be concluded as the path used by the tag bearer.

6.3.2 Multi People Tracking Algorithm

We extended our algorithm to track multiple people instrumented with a passive RFID tag

entering and leaving our state space. Multiple people tracking formulation can be efficiently

implemented since each person of interest can be uniquely identified using the worn passive

RFID tag’s identifier and hence we not do have a data association problem. Whenever a

person instrumented with a tag enters the monitoring area an independent PF based tracking
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algorithm is triggered to track the particular tag ID i.e., an independent PF based TPD

and TD algorithm is spawned for the first observation of every new tag ID currently not

being monitored. Here we have made the simplifying assumption that the motion of each

individual is completely independent from any other individual.

For example, in Fig. 6.3a, person 1 with a tag ID patient1 started walking in the path

Straight-in to Straight-out at time 9.01. Now a PF based TPD and TD algorithm is run for

every δ t observation for that patient ID patient1. Later, at time 9.03, we observe a reading

for person 2 with a tag ID patient2 in the left corner. Now a new PF based tracking algorithm

is triggered with an initializations step, where particles are scattered all over the state space

except the current position of patient1. The TPD and TD algorithm is now initiated to track

the path and direction of patient2. The tag reading partition in Chapter 4, Section 4.1 works

as below.

We partition a sequence of tag reading r1:m = {(patientID, ti,rssii,anti)}m
i=1 in a non-

overlapping fixed time segment δ t for a given patientID where patientID is the patient iden-

tification number, t is the time stamp of a tag read, rssi is the Received Signal Strength

Indicator value and ant is the ID of the antenna that captured the tag read at time t. This

is the same partitioning technique used in Chapter 4 and 5 except for the introduction of

patientID as one of the partitioning variable in addition to t and ant. From the sequence

r1:m, we obtain the observation zt for each patientID, by calculating the mean RSSI value

rssiant for each antenna ant that obtained a tag read.

zt(patientID) = {rssiant}ant=w
ant=1

where, the first time stamp t1 in r1:m is used as the time t for the observation z, and w

denotes the number of antennas that captured a tag response in the sequence r1:m. The

obtained mean RSSI value rssiant is compared with the previously developed rssi_map to

infer the tag bearer’s location and then subsequently determine TD and TPD.

6.4 Experiments and Results

We conducted extensive experiments in a laboratory environment to evaluate the ability of

our DTW included multi-people tracking algorithm to accurately identify the traversing path

and the traversal direction used by the tag bearers.
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(a) Path 1
patient1 - Straight in to Straight out
patient2 - No Traversal left in to right in

(b) Path 2
patient1 - Straight out to Straight in
patient2 - No Traversal right in to left in

(c) Path 3
patient1 - Left in to Right out
patient2 - Straight in to Straight out

(d) Path 4
patient1 - Right out to Left in
patient2 - Straight out to Straight in

(e) Path 5
patient1 - No Traversal Right in to Left in
patient2 - Right in to Left out

(f) Path 6
patient1 - No Traversal Left in to Right in
patient2 - Left out to Right in

(g) Path 7
patient1 - Left in to Left out
patient2 - Right out to Right in

(h) Path 8
patient1 - Left out to Left in
patient2 - Right in to Right out

Fig. 6.3 Path Used by the Tag Bearers
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(b) Path 5

Fig. 6.4 Performance of our TPD Algorithm in the Detection of Path 1 & 5

6.4.1 Settings

We have utilized the same state space that has been used in Chapter 4 and 5. We also

conducted our experiment in the same environment described in Chapter 4 and 5.

The state space includes an area with length = 6 m, width = 2 m and height = 2.65 m from

the ground level. We considered the same wooden frame of 2 m width and 2.65 m height

as the threshold that partitioned the inside (cared area) and the outside. Two antennas were

deployed on inner side of the frame and two were deployed on the outer side. The antennas

were located 0.75 m from the side of the frame. All four antennas were inclined at 45◦

because a better illumination of the state space was obtained at this angle. The four antennas

employed are circularly polarised antennas of model no: Impinj IPJA1000-USA. We used

an Impinj Speedway Revolution UHF (Ultra High Frequency) RFID reader (R420) and

‘Squiggle’ passive tags.

The detailed paths that have been used by patient1 and patient2 in different scenarios

are listed in Fig. 6.3. These scenarios are designed to take into consideration some of the

possible movements in a hospital or aged care environment. For example, Path 5 explains

the possible trailing behind a caregiver, where caregiver is the patient1 (blue path) moving

inside the cared path and the patient is the patient2 who is trailing behind the caregiver until

he reaches the door and then escapes by moving out using the Right-in to Left-out path.
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Table 6.1 Multi-People Tracking Results with and without DTW

Person TD TPD Accuracy TPD Accuracy Heading Out
(without DTW) (with DTW) Accuracy

Path 1 patient1 100% 36% 44% 60%
patient2 100% 0% 4% -

Path 2 patient1 100% 36% 40% -

patient2 100% 0% 0% -

Path 3 patient1 100% 41% 52% 64%
patient2 100% 32% 36% -

Path 4 patient1 100% 44% 48% -

patient2 100% 24% 32% -

Path 5 patient1 100% 0% 4% -

patient2 100% 36% 40% 60%

Path 6 patient1 100% 0% 0% -

patient2 100% 36% 44% -

Path 7 patient1 100% 52% 60% 72%
patient2 100% 52% 56% -

Path 8 patient1 100% 48% 56% -

patient2 100% 56% 60% 68%
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6.4.2 Statistical Analysis

The evaluation of both TPD and TD algorithms follow the same statistical analysis as de-

scribed in Chapter 4, Section 6.4 in the explanation of TP, TN, FP and FN for the TPD and

TD algorithms. However, we have only evaluated the accuracy of the algorithm and did not

calculate the recall or precision because of the nature of the evaluation. To evaluate recall

and precision we need all four factors (TP, TN, FP, FN). However, while interpreting the

results in terms of paths, it is possible to have all four factors in a single path shown in Fig.

6.3. Therefore, we have only evaluated the accuracy. In Table 6.1, we have provided the

results for the multi-people tracking experiments in terms of the path used by patient1 and

patient2.

6.4.3 Results

The results from Table 6.1 show that our multi-people tracking algorithm with a DTW

algorithm performs better than the multi-people tracking algorithm without DTW algorithm.

This is because our DTW algorithm was capable enough to identify some of the undefined

paths that were actually predicted by the PF based TPD algorithm and compare them against

the possible predefined paths to determine the actual path used by the tag bearer.

However, the DTW algorithm did not provide a significant improvement in accuracy and

provide results comparable to experiments conducted with a single person. This is a result

of the RFID system failing to read the tags worn by the participants in the experiments,

especially for the patient2. These missed reads are caused due to human interference in the

state space which seriously affects the received signal strength as a result of fading, absorb-

ing and scattering as well as instances where the body worn tag is completely occluded from

the RFID infrastructure. In fact, one of the biggest challenges we faced while evaluating this

data was missed reads. For example, the second person involved in the experiment often had

on few tag detections in most traversal paths when patient1 was walking closely before or

after patient2. The RF waves were completely absorbed and blocked by the patient1 who

was standing in between patient2 and the antennas. Nevertheless, our algorithm was still

able to identify the traversing direction used by the tag bearer with 100% accuracy in all the

discussed paths.

The No-traversal paths were rarely identified in paths 1, 2, 5 and 6. As explained before,

due to the significantly large number of missed reads our TPD algorithm was often unable to

estimate the exact path used by the tag bearer, for example, Left-in to Right-in. Even though
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Fig. 6.5 Performance Discussion of our Heading Out Accuracy in the Path 1

the algorithm failed to predict the whole path used by the tag bearer due to the missed reads

and noisy RSSI data, in most of the circumstances, partial paths were correctly identified

as shown in Fig 6.4. Consequently, No-traversal, i.e. the person is staying in the care area,

was correctly identified by the TD algorithm but the path used was either partially identified

or completely missed and subsequently evaluated as being incorrectly identified.

Therefore, we have investigated the accurate estimation of heading out direction or elop-

ing direction as in practice that is the most important information to be provided to a care-

giver. These results are presented in Table 6.1. Here, our intention is to evaluate whether

the algorithm is able to identify the heading out direction used by the tag bearer i.e. Left-out

or Right-out or Straight-out. Correctly predicting the heading out direction can be helpful

in narrowing down the search space in the event of searching for a eloped patient. The last

column in the Table 6.1 discusses the heading out direction accuracy for all the traversing

out paths. On comparing the accuracy of the multi-people traversal paths, evaluating the

heading out direction considerably improves the accuracy of the TPD algorithm by since

we now allow partial paths to be counted as correct path estimations.

The obtained heading out direction prediction accuracy was≤ 72%. However, the head-

ing out accuracy is significantly less than the accuracy of our previous results, which were

95.3% for the 6 segmented supervised scenario with KL divergence discussed in Chapter 5

and 91% for the PF based technique discussed in Chapter 4.

Taking a detailed look at the experiments we can see that, in path 1, patient1 is moving

in the Straight-in to Straight-out path whereas patient2 was using the No-traversal Left-in

to Right-in path. Once patient1 has passed the central region there is no interference from

patient2 to the patient1 tag bearer. However, the accuracy of the heading out direction is
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60%. Next, path 7 and path 8 hardly have human interference in tag readability, and their

accuracy is only slightly higher when compared to rest of the heading out accuracy. There

might be two reasons for this issue addressed below.

Firstly, the initial RSSI readings obtained for patient1 are noisy because of patient2’s

interference in the radio wave propagation environment. In this circumstance, our PF algo-

rithm starts predicting the path with the noisy readings and can lead to wrongly predicting

the initial path of the tag bearer as shown in Fig. 6.5. In Fig. 6.5a, the real initial path the

person started walking was in the Straight-in path, but due to the interference this path was

wrongly identified as Left-in by our prediction algorithm. At the later prediction stages,

the PF algorithm is unable to rectify the error because of the huge difference between the

continuous prediction and the real path used as shown in Fig. 6.5a which also resulted in

the wrong heading out direction as shown in Fig. 6.5b (ii). Secondly, for path 7 and path 8,

even though the tag bearers are walking parallel to each other, there is some impact on the

tag readability due to the thermal noise [55], phase noise [9] and occlusion of the tag. Also,

the number of reads per reader for a tag decreases with the increase in the number of tags

which leads to fewer tag readings and lower accuracy in finding the heading out direction.

6.5 Conclusion

Our approach can efficiently address wandering-off behavior by recognizing the direction

and path used by multiple tag bearers simultaneously. In particular, our approach identified

the tag bearer’s traversal direction with an accuracy of 100%. Even though our TPD algo-

rithm partially or completely failed in some path detections, the heading out direction of the

in to out path’s accuracy was ≥ 60%.

Even though our heading out accuracy was considerably lesser than our previous results,

due to the inability to recover from the initial wrong predictions and thermal noise, our

algorithm was able to predict the final exit partition as shown in Fig. 6.5. In Fig. 6.5a, the last

prediction of our algorithm was in the Straight-out path. On having a look on the Fig. 6.5a,

there is a high chance of estimating that patient1 should have taken the Straight-out path.

However, due to the nature of our TPD evaluation with relies strictly on the prediction count

on each partition our algorithm predicted the actual path as Left-out.

For future works, the complexity of natural environments and users of these technologies

will need to be taken into account in the evaluation through clinical trials. Also, the reported
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improvement in Table 6.1 due to using DTW in all cases is about 4%, which is overall only

a slight improvement. This might be because the backscatter signal from an RFID tag is

orientation sensitive i.e., the reader antenna’s power reflected by the tag is not always the

same and it is highly dependent on the orientation of the tag. This leads to RSSI value

fluctuation. As discussed in [49] such sensitivity might degrade the performance of the

DTW algorithm. This is because, the DTW algorithm fails to find obvious and natural

alignment in two profiles caused by RSSI values fluctuation [49]. It is expected that by

computing the derivatives of each paths before comparison might considerably increase the

performance of our system and this is left as future work.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis presents a generalizable approach to manage location uncertainty in RFID

based object or person tracking, and explores two specific application areas; returnable

asset tracking; and automatic monitoring of wandering-off in aged care and hospital settings.

The problem context is described in Chapter 1 where we have explained the two application

areas and the challenges faced by passive RFID tag based tracking systems. Chapter 2 gives

an overview of the current technology for both of the applications and reviews the state-of-

the art in RFID based tracking approaches in the context of other technologies.

In Chapter 3, we have discussed our initial results while tracking assets in a coarse-

grained, simple 1-Dimensional state space using a PF based tracking algorithm in Section

3.1. Our algorithm exclusively deals with missed reads in the asset tracking problem. Later

in Section 3.2, we have analysed the problem more in depth and provided an improved so-

lution for the problem considered in Section 3.1 with the following new contributions: i)

introduced an object flow graph to model the possible moving path of objects in a 2D space

and support the creation of a dynamic motion model; ii) provided, in detail, the particle

filtering algorithm used in our approach to predict the location of objects under uncertainty

caused by missing reads; iii) investigated a new motion model (dynamic motion model) and

evaluated its ability to attain the same accuracy as that of the previously discussed static mo-

tion model; iv) improved the optimization technique by exploiting business related contex-

tual information to aggregate objects that travel together instead of aggregating objects that

travel together within a fixed time window as done in the previous paper; v) investigated the



Conclusion and Future Work 88

performance of our approach with respect to a growing business with an increasing number

of customer locations; vi) presented results and extensively discuss: 1) the effect of num-

ber of particles used in the PF; 2) accuracy at locations where missing reads are highest in

practice (loading docks and back entrance); 3) overall accuracy; 4) overall accuracy with

increasing nodes in the object flow graph (i.e. increasing client base); 5) processing time

(scalability); 6) memory usage (scalability); and vii) we also investigated the proposed the

dynamic motion model and its accuracy.

In Chapter 4, we discuss a related but different problem which requires fine grained

location tracking accuracy using noisy raw RFID data in the context of tracking people in

an aged care environment. Our newly developed real-time system was able to accurately

identify the traversal path and the traversal direction used by a tag bearer. Our approach was

a significant enhancement when compared to existing approaches. Our approach can also

be generalized to solve other problems like tracking goods that need fine-grain localization,

for example, in a warehouse context.

In Chapter 5, we provide a more generalizable, practicable and unobtrusive monitoring

technology to overcome the need for collecting training data while deploying our people

tracking approach in a new environment. To achieve this, we proposed a generic sensor

model for the PF based algorithm by utilising kernel density estimation. Furthermore, we

integrate KL divergence into our sensor model to overcome problems posed by information

loss when the RSSI distribution in the training data set is used to generate a generic sensor

model based on an approximate RSSI distribution over the monitoring region.

Chapter 6 provides a fusion of all the discussed methods for fine grained tracking in the

context of tracking people in an aged care environment consider the problem of tracking

multiple people. Furthermore, we have utilized the DTW approach in our PF based tracking

algorithm to identify the actual path used by the tag bearer.

Our thesis provides an approach for addressing location uncertainty, a significant chal-

lenge that would potentially degrade the performance of passive RFID systems in track-

ing applications. We particularly concentrated on two applications (i.e. asset tracking and

tracking people) to identify generalizable solutions for the tracking problems. On having an

option of either cleaning or managing uncertain data, we opt to manage the uncertain data.

This is because cleaning data may identify missed reads but fail to identify the probable lo-

cation of the moving object in case of missed reads. We successfully managed the uncertain

RFID data by utilizing an effective PF based approach as a base and developed solutions



Conclusion and Future Work 89

for both the applications to overcome the location uncertainty caused by the uncertain RFID

data. Our PF based asset tracking algorithm can be generalized to for use in any goods

tracking application with minor or no changes in the algorithm. Similarly, our watchdog

system can be used in any indoor based spatial monitoring system that needs fine grained

details of a person’s or object’s position in an indoor space. Therefore, our algorithms can

be generalized to solve location uncertainty problems in other tracking applications, such as

baggage tracking in airports monitoring the location of goods in large warehouses, with few

or no changes in the algorithm according to the application context and needs.

7.2 Future Work

Even though, our algorithm can be generalized to solve RFID based location tracking prob-

lems, it is not without limitations.

In the asset tracking application, although the dynamic model based tracking algorithm

can quickly adapt to the changing nature of a business, the adaptability highly depends on

the number of transactions made in a day. Also, the efficiency of the optimization of the

tracking algorithm relies on the contextual information and the system is scalable because

the objects that travel together are grouped and compressed as one object. If the objects

travel independently then it is expected that the scalability of the system will reduce. Fur-

ther, the results shown and discussed in Chapter 3 are from a simulation experiment, as

practical implementation of the project was not possible due to the time constraints of the

project. However, data requirements are derived from ILS company and the simulation was

designed to closely match the actual data flows. At last, our approach works on the assump-

tion that the object is not stolen. If an object is stolen at the first expected reading area,

the object is assumed to have been missed by the RFID system, only when the object is

continuously missed in the consecutive reading areas will our approach give an indication

of the possibility of the object being stolen. Thus future work should focus on not only

addressing missed reads but also differentiating insertions into the supply chain and as well

as shrinkage (goods stolen) from the supply chain.

In tracking people, even though our algorithm performed well throughout the study,

certain path results such as No-Traversal, discussed in Chapter 6 under the multiple people

tracking scenario, frequently performed poorly due to the higher occurrences of missed

reads caused by the interference of people present in the tracking space. As discussed in
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the chapter, since there were no reads for the tag at the beginning or the end of the path,

it lead to the algorithm predicting an incorrect path. Positioning multiple tags such as one

tag on both the shoulders i.e., replacing the single tag on the right shoulder with a tag

on both shoulders may lead to better visibility of the tag. Similarly other combinations will

also be trialed, for example, placing the tags on the front and back, only front and only back.

Validating the multiple tag approach to improve the accurate identification of traversal paths

is left as future work. We have not conducted experiments to evaluate the performance of

our algorithm with more than two patients being tracked at the same time. We expect the

accuracy of the direction and path estimation to reduce as we increase the number of people

to be tracked. However increasing the number of particles used for prediction might mitigate

this issue. On the other hand increasing the particles count will lead to high computational

cost.

PF can perform better state estimation in non-linear/non-Gaussian models, albeit at ad-

ditional computational effort. The number of particles used for prediction and the estima-

tion accuracy of the hidden state are directly propositional. Lower number of particles will

eventually lead to poor predictions about the hidden state. On the other hand large number

of particles will lead to related high computational cost. In both of our applications, we

have conducted experiments to evaluate the compromise between the number of particles

(computational complexity) and state estimation accuracy.

From the discussion in the Chapter 6, it is clear that the TPD algorithm evaluation fails

to identify the heading out path in some cases, such as, where the initial path was wrongly

estimated as shown in Fig. 6.5. This shows that our PF based TPD algorithm needs a more

sophisticated sensor model. In addition to the RSSI values, modern RFID readers can also

provide phase angle measurements which can be utilised in estimating the distance between

the tag bearer and the reader. As described in [36], by measuring the phase of the tag signal

at two different frequencies the distance between the tag and the reader can be estimated

using this formula.

d =− c
4π

.
∂ϕ

∂ f

At present, the likelihood function we use relies only in the obtained RSSI values. Instead,

joint likelihood function that can analyse obtained RSSI and change in phase measurements,

might improve the location estimation accuracy. In future, utilisation of the phase angle

measurements is expected to be one of the potential enhancement to the current system.

Furthermore, the complexity of natural environments and users of these technologies
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should be taken into account in an evaluation performed in clinical trials in the future. It is

expected that deploying the system in an aged care environment might raise issues such as

the appropriate positioning of sensors in nursing home buildings due to constraints imposed

by the building. It should also be noted that we have not considered the extreme scenario in

which the patients might completely remove their attire (attached with tags) from the body

and still wander-off from a care area. Developing a solution to such a scenario may require

investigating implantanble RFID tags.
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