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Julie Mackintosh

Centre for Tectonics, Resources and Exploration
School of Earth and Environmental Sciences
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Abstract

U-Pb zircon geochronology indicates deposition of the Cuddapah Supergroup,
Cuddapah Basin, India occurred for at least 986 million years. Deposition started
after 2502+17 Ma with the deposition of the Gulcheru Formation and ended after
913£11 Ma with the deposition of the Cumbum Formation. Maximum depositional
ages have been found for individual formations within the Cuddapah Supergroup; the
Pulivendla Formation has a maximum deposition of 1899+19 Ma and the
Bairenkonda Formation has a maximum depositional age of 1660+22 Ma. Thermal
events during the Palaeoproterozoic present a possible cause of basin formation. At
this early stage of the Cuddapah Basin’s evolution the provenance of sediments was
the Dharwar Craton, which currently underlies the basin and borders it on the north,
south and west sides. The uplift of the Eastern Ghats on the eastern margin affected
the evolution of the Cuddapah Basin, changing the shape and the sediments of the
basin. Uplift and deformation events in the Eastern Ghats folded the eastern side of
the Cuddapah Basin and are responsible for its present crescent shape. The formation
of the Eastern Ghats caused increased subsidence to the east, creating an asymmetry
in the depth of the basin. The provenance of the sediments of the Cuddapah
Supergroup changed to the Eastern Ghats for the deposition of the youngest

stratigraphic group, the Nallamalai Group.



Julie Mackintosh

Introduction

The Cuddapah Basin of Andhra Pradesh, India, is a crescent shaped Proterozoic
intracratonic (Fig. 1) basin nonconformably overlying the Archaean Dharwar Craton.
It covers an area of approximately 44500 km? (Dasgupta et al. 2005) and is one of the
largest intracratonic basins in India (French et al. 2008). The Cuddapah Basin is
bordered by the Eastern Ghats Belt, a highly deformed orogenic belt that has been
metamorphosed to high grade (Saha 2002, Singh & Mishra 2002), along the eastern
margin and bordered by the Dharwar Craton on all other sides. An easterly dipping
thrust fault along the eastern margin of the Cuddapah Basin thrusts metamorphic
rocks of the Eastern Ghats over the sediments of the Cuddapah Basin (Meijerink et al.
1984, Singh & Mishra 2002). The Cuddapah Basin is separated into two sequences;
the older Cuddapah Supergroup and the younger Kurnool Group which have been
attributed to the Proterozoic (Manikyamba et al. 2008). The Cuddapah Supergroup
consists predominantly of clastic and chemical sedimentary rocks with minor
intercalations of alkali to sub-alkali basaltic flows, mafic/ultramafic sills and ashfall

tuffs in the lower part of the succession (French et al. 2008).

The basin is divided into sub-basins (Fig. 1) representing the main stratigraphic
groups (Fig. 2). The Cuddapah Supergroup is divided in four sequences separated by
unconformities (King, 1872, Murphy, 1979), namely the Papaghni, Chitrayati and
Nallamalai Groups and the Srisailam Formation (from oldest deposited to youngest).
The Srisailam Formation does not crop out in the study area observed and for the
purposes of this study is assumed to be equivalent to the Kurnool Group, that overlies

the Cuddapah Supergroup. The Papaghni Group consists of the Gulcheru and
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Vempalle Formations, the Chitrayati Group consists of the Pulivendla, Tadpatri and
Gandikota Formations and the Nallamalai Group consists of the Bairenkonda and
Cumbum Formations. The unconformable relationships between the lithostratic

groups suggest a history of multiple stages of deposition and erosion.

Although the Cuddapah Basin is accepted by some authors as a foreland basin to the
Eastern Ghats orogen (Dasgupta & Biswas 2006, Manikyamba et al. 2008) due
largely to its shape and location adjacent to the Eastern Ghats the formation of the
basin is still a contentious subject. Chaudhuri et al. (2002) proposed an alternative
model; that the Cuddapah Basin and other intracratonic basins in India developed in
rift settings. This theory is based on the existence of deep faults within the Cuddapah
Basin exposed by gravity data (NGRI, 1975). Chaudhuri et al. (2002) suggest the
initial rifts may have followed pre-existing lineaments defined by either Archaean
greenstone belts of the Dharwar Craton, or belts of crustal convergence. Hou et al.
(2008) also suggest it was a rift-type basin formed during the breakup of the

Proterozoic Columbia supercontinent.

To better understand what caused the formation of the Cuddapah Basin more evidence
is needed on the provenance of the sediments and the tectonic setting at the initiation
of the basin. Knowing the time of deposition is essential in finding this evidence.
The depositional age of the Cuddapah Basin is not currently well constrained. Sills
and carbonates of the Vempalle and Tadpatri Formations have been dated, providing
minimum ages for carbonate sedimentation and minimum depositional ages for
formations below the sills; 1899+20 Ma. (French et al. 2008) is the earliest reported

minimum depositional age for the Tadpatri Formation. However, there have been no
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robust geochronological studies on the depositional ages of the full sequence of
sediments, despite the ~12 km thickness of unmetamorphosed sedimentary rocks
preserved. This is the first study to use U-Pb dating techniques to find maximum

depositional age constraints on sedimentation.

This study uses LA-ICPMS dating of detrital zircons, Hf isotopes, stable isotope
analysis and sequence stratigraphy to investigate the sedimentary evolution and
chronostratigraphy of the Cuddapah Supergroup. U-Pb dating of detrital zircons is
used to find maximum depositional ages, constraining the timing of deposition. Hf
isotope analysis of detrital zircons will be used with U-Pb data to further constrain the
source or sources of the sediments by indicating whether the source region is juvenile
or not. Sequence stratigraphy is used to determine how the depositional environment
changed during the evolution of the basin. An original E-W geological cross-section
across the Cuddapah Basin is presented and is used to discuss the structural evolution
of the basin. The petroleum potential of the Cuddapah Basin will be briefly discussed

using the new knowledge gained by this study of the history of the basin.

Geological Setting

Dharwar Craton

The Cuddapah Supergroup unconformably overlies the Archaean Dharwar Craton
(French et al. 2008). The Dharwar Craton comprises three main terranes, from west
to east; 1) an early to middle Archaean (3400-3000 Ma) tonalitic—trondhjemitic—

granodioritic basement (Jayananda et al. 2000); 2) volcano-sedimentary greenstone
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belts including an older 3580-3200 Ma Sargur Group and a younger 3000-2500 Ma
Dharwar Supergroup (Chadwick et al. 2000), (Jayananda et al. 2000); and 3) late
Archaean (2600-2500Ma) calc-alkaline to potassium rich granitic intrusions
interspersed with schist belts similar to those of the Dharwar Supergroup (Chadwick
et al. 2000). These dominate the eastern part of the Dharwar Craton and form the
latest magmatic event in the craton (Jayananda et al. 2000). Pandey et al. (1997)
presented Sm-Nd, Rb-Sr and Pb-Pb isotopic data from mafic dykes that suggests a
mafic dyke swarm, the Mahbubnagar swarm, was emplaced at ~ 2170 Ma. French et
al. (2008) dated mafic dykes and sills from the Bastar and Dharwar Cratons; from
these results they proposed the existence of a previously unrecognised 1900 Ma large
igneous province spanning the Bastar Craton, the Dharwar Craton and the Cuddapah

Basin.

Eastern Ghats Belt

The Eastern Ghats Belt, a metamorphosed and highly deformed orogenic belt, lies
along the eastern margin of the Cuddapah Basin (Fig. 1). The Eastern Ghats Belt
experienced multiple tectonothermal events from 1200 — 500 Ma (Upadhyay et al.
2009). At 1000 Ma the Eastern Ghats Belt was involved in orogenic events
associated with the assembly of the supercontinent Rodinia (Mezger & Cosca 1999)
(Upadhyay et al. 2009). The youngest tectonothermal event the Eastern Ghats Belt
was involved in was the Pan-African orogenesis (530 Ma) (Mezger & Cosca 1999),
(Upadhyay et al. 2009) related to the formation of Gondwana. The Ongole Domain is
a unit of the Eastern Ghats Belt near the eastern margin of the Cuddapah Basin (Fig.
1). It is believed to have a geological history distinct from the rest of the Eastern

Ghats Belt (Upadhyay et al. 2009). The Ongole Domain, consisting of a high-grade
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metasedimentary package, was intruded by felsic plutonic rocks at ~1720 Ma. It then
experienced an ultra-high temperature metamorphic and deformation event at 1630 —
1610 Ma which caused reequilibration of the U-Pb isotope system in most zircons in
the terrain (Upadhyay et al. 2009). At 1450 -1350 Ma the Ongole Domain terrain
experienced ductile brittle deformation associated with Mesoproterozoic rifting along
the margin of Proto-India (Upadhyay et al. 2009). This was followed by a moderate
thermal overprint during the early Neoproterozoic (1100 Ma) (Upadhyay et al. 2009).
A period of felsic magmatism in the Vinjamuru Domain (Fig. 1), near the Ongole
Domain gave magmatic zircon ages of 1868+6 and 1771+8 Ma (Dobmeier & Raith
2003). Detrital ages of the Eastern Ghats Belt of ~2500 Ma suggest a possible
Dharwar Craton provenance of the original sedimentary package (Upadhyay et al.

2009).

Cuddapah Basin

The deposition ages of the sediments in the Cuddapah Basin are not very well
constrained. Zachariah (1999) used 2°°Pb-***Pb systematics to date U-mineralized
carbonate horizons of the Vempalle and Tadpatri Formations. A 2°°Pb-*Pb age of
1779485 Ma was obtained for a U-mineralized sample from the Tadpatri Formation
and 1752+41 Ma from the Vempalle Formation, interpreted as minimum ages for
carbonate sedimentation and dolomitization within the Cuddapah Supergroup. A Rb-
Sr whole rock mineral age of 1817+24 Ma for a sill from the Pulivendla was reported
by Baskar Rao et al. (1995). Anand (2003) found “°Ar-**Ar laser-fusion ages for the
Tadpatri mafic sills to be 1899+20 Ma. French (2008) obtained U-Pb dates of
1885.4+3.1 Ma from baddeleyite for a mafic sill from the Tadpatri Formation. Dating

of these sills gives a minimum depositional age for the sediments intruded by the sills.
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A period of potassic magmatism produced kimberlite dykes which intruded the
Dharwar Craton and the Nallamalai Group of the Cuddapah Basin (Chalapathi Rao et
al. 1996). The kimberlites that intruded the lower section of the Nallamalai Group,
the Bairenkonda Formation, have been dated using whole rock Rb-Sr methods by
Crawford and Compston (1973) giving an age of 1200 Ma and by Rao (1996) using

K-Ar dating to give an age of 1350+52 Ma.

The formation and evolution of the Cuddapah Basin is not well understood. It is often
interpreted as being a foreland basin to the Eastern Ghats orogen (Dasgupta & Biswas
2006); (Manikyamba et al. 2008) largely due to its position next to the Eastern Ghats.
However, Singh and Mishra (2002) proposed a different model for the formation of
the basins. Gravity profiles across the basin show a broad gravity high and high
seismic velocity at shallow depth over the Eastern Ghats and a gravity low towards
the eastern side of the Cuddapah Basin and gravity high towards the south western
side (Singh and Mishra, 2002). According to these authors, the margin at the time was
a suture zone formed by the collision between two continents. Considering this would
have occurred in the early Proterozoic it may have been associated with the
amalgamation of the supercontinent Columbia. Using this theory they suggest the
Cuddapah Basin may have formed as a peripheral foreland basin evolved through
Proterozoic continent-continent collision. They also attribute the crescent shape and
curvilinear contact zone to continental collision. Another line of evidence for this
model would be that the sedimentary sequences are compatible with a shelf to marine

origin.
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Chaudhuri et al. (2002) developed an alternative model where the Cuddapah Basin
and other intracratonic basins in India developed in a rift setting. This is based on the
existence of deep faults within the Cuddapah Basin exposed by gravity data (NGRI,
1975). They suggest the initial rifts may have followed pre-existing lineaments
defined by either Archaean greenstone belts or belts of crustal convergence. Similarly,
Hou et al. (2008) proposed that the Cuddapah Basin was a rift-type basin formed

during the breakup of the Proterozoic Columbia supercontinent.

Gravity modelling based on the results of a deep seismic sounding survey (Kaila et al.
1979) across the Eastern Ghats, Cuddapah Basin and Dharwar Craton was carried out
by Kaila and Bhatia (1981). The results show a steep positive gradient anomaly
observed in the eastern margin of the Cuddapah Basin, which corresponds at the
surface to the thrust contact with the Eastern Ghats. Kaila and Bhatia (1981)
attributed this anomaly to the presence of a high density mass at shallow depth along
the low-angle fault in the region. This high-density material could be deep mantle
rocks brought up along the thrust at the eastern margin of the Cuddapah Basin.
Further evidence of deep-seated faults are reported throughout the Cuddapah Basin
(Kaila and Bhatia, 1981), supporting theories of a rift-setting or suggesting the

possibility that this was a fault controlled basin.

Methods

Sequence Stratigraphy

Three stratigraphic sections were logged in the Cuddapah Basin (Fig. 13-15). These

covered the (1) Gulcheru Formation and base of the Vempalle Formation, (2) the

10
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Pulivendla and Tadpatri Formations and (3) the Bairenkonda Formation and the base
of the Cumbum Formation. A pseudo-gamma ray log, as well as a log of uranium,
thorium and potassium content for the sediments was measured for each section,
using a portable Gamma Ray Spectrometer. These stratigraphic and geophysic logs
are used for assisting in the interpretation of the depositional environment and basin

evolution of the Cuddapah Basin.

Cross Section

Structural data was collected along a section east-west across the basin (Fig. 4).
These data, along with map data imported from a georeferenced geological map of the
Cuddapah Basin (Meijerink et al. 1984), were used to create an unbalanced cross-

section of the basin.

U-Pb zircon geochronology

Samples were selected from the Papaghni, the Chitravati and Nallamalai Groups for
U-Pb zircon geochronological analysis to constrain maximum depositional ages and
changes in provenance up the sequence. Whole rock samples were crushed using a
jaw crusher then milled using a tungsten carbide mill and sieved through a 425um
mesh and a 75um mesh. Sample that was between 425 and 75um was washed with
water and detergent to remove dust and hand panned to separate heavy minerals. This
concentrate was then passed through methylene iodide heavy liquid separation to
isolate minerals with a density greater than 3.3 g cm™. The heavy mineral separate
was then washed with acetone, dried and passed over with a neodymium magnet to

remove heavy magnetic minerals. After this step, sample CU10-21 was found to have

11
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no grains that were identified as zircons in the separate, some crushed but unpanned
sample was then sent to Minsep Laboratories in Denmark, WA, to be separated.
Zircons were then hand picked from the other three samples and mounted in epoxy
resin. Mounts were then polished and carbon coated for imaging using a Philips
XL20 scanning electron microscope. Images were obtained using backscattered

electron and cathodoluminescence to view zonation in individual grains.

Laser Ablation — Inductively Coupled Plasma Mass Spectrometry (LA-ICMPS) U-Pb
analysis was carried out using an Agilent 7500cs ICPMS coupled with a New Wave
213 nm Nd-YAG laser at Adelaide Microscopy. Zircons were ablated in a helium
atmosphere, using a beam diameter of 30 um, frequency of 5 Hz and a laser intensity
of 75%. Data acquisition involved 40 seconds of background measurement, 10
seconds of beam stabilisation, and 50 seconds of sample ablation. Ablation and
machine fractionation was corrected using the GEMOC GJ-1 standard (normalisation
data: 2°’Pb/*°Pb = 608.3 Ma, °Pb/?®U = 600.7 Ma and *’Pb/**°U = 602.2 Ma)
(Jackson et al. 2004) and was further monitored using an internal standard Plesovice
(337.13 £ 0.37 Ma, (Slama et al. 2008)). GJ-1 gave a mean age of 600.5+1.6 Ma and
MSWD 0.36 and Plesovice gave a mean age of 331.7+2.7 and MSWD 3.3. These
results are within error of the TIMS ages known for the standards, ages calculated are
therefore valid. Age calculations were conducted using GLITTER software (Van
Achterbergh et al. 2001). Concordia diagrams and probability distribution curves
where constructed using the Isoplot macro (version 4.11) (Ludwig 2003). For zircons
older than 1 Ga the ?®°Pb/?°’Pb age was used. For zircons younger than 1 Ga the

206pp/238| age was used.

12
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Hf Isotope Analysis

In-situ Hf isotope data were collected with a Thermo-Scientific Neptune Multi
Collector ICP-MS coupled to a New Wave UP-193 Excimer laser (193nm) at Waite
Campus, University of Adelaide, following procedures of Payne et al. (in prep). The
samples analysed were two of the four used for LA-ICPMS analysis. Concordant
zircon grains (90-110% concordance) were analysed in the same CL domain as they
were for U-Pb LA-ICPMS geochronology. The laser conditions were 4ns pulse
length, 5 Hz with a 50 um spot size (~10J/cm?). The ablated material travelled
through a He ablation atmosphere mixed with Ar sample gas. Set-up of the system
prior to ablation sessions was conducted using analysis of IMC475 Hf solution and an
AMES Hf solution. *"*Yb, *"®Yb, *"°Lu, "°Hf, Y"Hf, ®Hf, °Hf and *°Hf were
measured on Faraday detectors with 10**Q amplifiers and an integration interval of
0.232 seconds. Hf mass bias was corrected using exponential law fractionation
correction using a stable Hf isotope ratio of *"°Hf/*’’Hf=0.7325. Yb isobaric
interference on *"®Hf was corrected by direct measurement of Yb fractionation using
yp/r*Yb coupled with the Yb isotopic values of (Segal et al. 2003). The
applicability of these values were verified by analysing JMC 475 Hf solutions doped
with varying levels of Yb with interferences up to *"°Yb/*”’Hf= ~0.5. Lu isobaric
interference on *"°Hf was corrected using a *"°Lu/*"°Lu ratio of 0.02655 (Vervoort et
al. 2004) assuming the same mass bias behaviour as Yb. For Yb signals below 10
mV, interference corrections were made using an empirically derived *"®Yb/*"*Yb
ratio and the Hf mass bias factor similar to the method described by (Griffin et al.
2000). This was done as the potential errors involved in the method are outweighed
by the significantly greater uncertainty caused by the small Yb beam. In this case an

empirically derived ratio of 0.739689 was used. This was derived by analysis of a
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series of Yb and Hf doped glass beads. Confirmation of accuracy of the technique for
zircon analysis was monitored using a combination of the Plesovice (Slama et al.

2008), Mudtank and QGNG standards.

Stable Isotopes

Carbonate samples were cut to expose a clean surface, which was then drilled to
produce a fine powder. 613C and 5180 isotope data were acquired simultaneously on
a Micromass Isoprime dual inlet mass spectrometer at L'Université du Quebec a
Montréal. Approximately 100 pg of powder was reacted in singular glass reaction
cells with purified H*PO* at 90°C for 10 minutes while being constantly cryogenically
trapped. Evolved CO? was cryogenically distilled then measured against an in-house
reference gas. 6180 was corrected for equilibrium with H20 during reaction using the
Craig (1957) equation and both 613C and 8180 samples were calibrated to VPDB
using an in-house calcite standard. All 613C and 8180 are reported with respect to

the Vienna Pee Dee Belemnite (VPDB) as per mil deviations.

Sedimentary Observations

Gulcheru Formation

The Gulcheru Formation is the basal formation of the Cuddapah Supergroup,
unconformably overlying the Archaean Dharwar Craton, which forms the basement of
the Cuddapah Basin. The stratigraphic log of the Gulcheru Formation (Fig. 13) was

made at GPS location 15°46°6.9”N, 78°3°23.4”E (Fig. 1), near the village of

14
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Tandrapadu. The Gulcheru Formation displays different thicknesses and facies
changes laterally but generally shows a fining up followed by a coarsening up. The
basal facies is characterised by alternating 0.5-2 m beds of conglomerates with 1-
10cm angular quartz grains in a fine grained clay matrix and beds of unsorted
sandstone with 1-3 mm quartz grains and medium grained sand matrix (Fig. 6a).
Clasts are predominately of vein quartz with some dark layers rich in mafic minerals.
This facies displays channels with depths up to 10cm, planar cross bedding (Fig. 6b)
and trough cross bedding (Fig. 6¢) and laminations from elevation 3 to 17 m on the
stratigraphic log (Fig. 13). Sediments gradually fine up, starting at elevation 17 m on
the stratigraphic log (Fig. 13) and consist mostly of coarse grained sandstone with
sub-rounded white quartz grains with some finer grained sandstone beds developing.
Cross-bedding at the base of the formation gives palaeocurrent towards 65° and 129°
(Fig. 13). Trough bedding and ripples give directions 237° to 320° (Fig. 13) through
the rest of the sequence. Cross bedding and channels are common throughout the
sequence and mudcracks occur in the upper section of the formation. Conglomerate
beds mark the upper contact of the Gulcheru Formation with a sudden transition to
shales, characteristic of the Vempalle Formation. In another location to the south,
GPS location 15°32°47.8”N, 78°2°21.8”E, the lower contact (Fig. 6d) was seen again
and varied very slightly. Here, shale beds started developing 3 m from the base of the
formation and channels were filled with shales or very coarse grained conglomerates

(Fig. 6e). Conglomerate layers contained sub-angular quartz clasts up to 5 cm (Fig.

6f).
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Vempalle Formation

The stratigraphic log of the base of the Vempalle Formation (Fig. 13) was made at
GPS location 15°46°6.9”N, 78°3°23.4”E (Fig. 1), near the village of Tandrapadu.
This formation was also seen near the village of Gattimanikonda, GPS location
15°31°8.9”N, 78°10°34.6”E and further south; 15°30°38.4”N, 78°10’17.5”E and in a
mine near Kolumalapalle, GPS location 15°28°31.9”N, 78°7°58.5”E. The upper part
of the Gulcheru Formation displays very coarse sandstone. A sharp transition occurs
then to a thick lithified package consisting mostly of shales with some minor
interbedded fine-grained sandstone with symmetric ripples at the base of the
formation and mudcracks (Fig. 7a) on fine sand beds 6 m from the base of the
formation. This facies corresponds to the basal part of the Vempalle Formation.
Gamma ray spectrometry data correlates well the lithology at this transition point
between the Gulcheru Formation and the Vempalle Formation; an increase in
potassium, uranium and total gamma count at elevation 38 m on the stratigraphic log
(Fig. 13) represents a sudden transition to shales from coarse grained sandstones. The
formation then develops into interbedded dolomites, dolomitic limestones and shales
(Fig. 7b). The transition between the shale rich basal facies and these carbonate rich
facies that are characteristic for the rest of the formation was not observed.
Laminated stromatolitic dolomite beds (Fig. 7c¢) occur interbedded with grainstone
(Fig. 7d) made up of broken stromatolite, ooids (layered spherical calcium carbonate
sedimentary grains) and oncoids (layered spherical structures formed by
cyanobacterial growth, similar to stromatolites) that fill the gaps between
stromatolites and thin (0.5-10 cm) layers of chert that often cap (Fig. 7e) stromatolite
beds. Purple-pink shales beds are also found interbedded throughout the stromatolitic

dolomites (Fig. 7).
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Pulivendla Formation

The upper 20 m of the Pulivendla Formation was located at GPS location
15°21°3.5”N, 78°85°10.5”E (Fig. 1), 44 km WSW from Nandyal, this is the location
of the stratigraphic log (Fig. 14) of this sequence of the Pulivendla Formation. The
contact between the Vempalle Formation and the Pulivendla Formation was not
observed. Some authors (Meijerink et al. 1984, Riding & Sharma 1998, Dasgupta et
al. 2005) have reported an unconformity at this contact. The Pulivendla Formation
consists of medium grained sandstones with pale sub-rounded well sorted quartz
grains. These sandstones display dark laminations, cross bedding (Fig. 8a), mud
cracks (Fig. 8b), reactivation surfaces, parting lineations and symmetrical ripples (Fig.
8c). Symmetrical ripples had a crest lineation dipping in the direction 268° suggesting
a bidirectional palaeocurrent of 178°/358°. Near the top, contact sandstones become
finer grained with more angular, less sorted grains and develop shale beds which mark
the gradual transition into the Tadpatri Formation (elevation 12-22 m on the
stratigraphic log, Fig. 13); this corresponds to an increase in potassium, uranium,
thorium and total gamma count in the stratigraphic log (Fig. 14) as would be expected

when changing from sands to shales.

Tadpatri Formation

The stratigraphic log (Fig. 14) of the Tadpatri Formation was located at GPS location
15°21°3.5”N, 78°85°10.5”E (Fig. 1), 44 km WSW from Nandyal. This formation was
also seen in a mine near Yagantipalle, GPS location 15°18°59.7”N, 78°11°40.8”E,

near Komarolu (15°33°39.4”N, 78°10°17.9”E) and near Sugali Mitta (15°33°41.9”N,
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78°70°22.7”E). The lower contact of the Tadpatri Formation is a gradual change from
fine grained sandstones of the Pulivendla Formation to interbedded shale and
sandstone beds that develop into continuous shale beds seen at elevation 22-48 m on
the stratigraphic log (Fig. 14). Fine grained sand beds develop; seen at elevation 48-
53 m on the stratigraphic log (Fig. 14) fining up into a 10 m sequence of laminated
silts and 50-100 cm silicified carbonate beds with stromatolites (Fig. 9a) and
channels. The carbonate beds correspond with a drop in potassium, uranium, thorium
and total gamma count to below detection level at elevation level 62 m on the
stratigraphic log (Fig. 14). At a mine near Yagantipalle (15°18°59.7”N,
78°11°40.8”E) volcanics and intrusive igneous rocks were observed in the Tadpatri
Formation. A highly weathered 40m thick intermediate sill (Fig. 9b) with CO;
alteration intrudes over a black carbon rich shale layer (Fig. 9c). Above the sill are
shale and dolomite beds. At an outcrop near Komarolu (15°33°39.4”N, 78°10°17.9”E)
a bed of dark mafic volcanic rock of unknown thickness was found in contact with a
sequence of grey laminated dolomite (Fig. 9d) with thin chert layers and beach
rosettes (shallow water sedimentary features that indicate lightly breaking wave
movement in an upper tidal environment) (Fig. 9e). The top contact of the Tadpatri
Formation is an unconformity; the only area where this was observed was at
15°21°3.5”N, 78°85°’10.5”E, 44 km WSW from Nandyal. In this area the top of the
Tadpatri Formation was an angular unconformity (Fig. 9f) overlain with sandstones of

the Banaganpalle Formation of the younger Kurnool Group.

Gandikota Formation

The Gandikota Formation was observed near Itikyala, GPS location 15°3’21”N,

78°5°48.4”E. The Gandikota Formation is a well bedded medium grained mature
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sandstone (Fig. 10a) with rounded quartz grains and 2-3 cm sandstone concretions
(Fig. 10b) that have weathered away in areas and conjugate quartz veins (Fig. 10c). It
displays trough bedding in two directions, 180° from each other, ripples, cross
bedding (Fig.10d) and evidence of dune movement. Symmetric ripples show a

bidirectional palaeocurrent of 070°/250°.

Bairenkonda Formation

The stratigraphic log of the Bairenkonda Formation (Fig. 15) was located primarily at
Gandleru River, near Gajulapalli (15°23°34.2”N, 78°39°48.4”E). The formation was
also observed at 15 locations along Giddalur Road between Gandleru River, near
Gajulapalli (15°23°34.2”N, 78°39°48.4”E) and Nandikanama Pass (15°25°24.3”N,
78°45°42.2”E) when data for a cross section was collected. The lowest sequence of
the Bairenkonda Formation that was observed (>9 m thick) is composed
predominantly of quartz rich medium grained laminated sandstones (Fig. 15). A bed
of dark fine grained mafic volcanogenic sediments (elevation 4-7 m on the middle
section of the stratigraphic log, Figure 15) lies over the laminated sandstone and
contains large rafts of quartz rich medium grained laminated sandstone, very similar
to the underlying sandstone, suggesting the volcanic layer flowed over semi-
consolidated sediments below. Directly above the volcanic layer is a 10 m sequence
of sandstones; the basal facies of this sequence is a fine grained sandstone (Fig.11a)
with small ripples and parting lineations. The parting lineations and symmetric
ripples give bi-directional palaeocurrent directions 12°/192° and 90°/270° (Fig. 15).
This facies gradually develops into a pale homogenous coarse grained 30-40 cm
sandstone bed (Fig.11b) with crossbedding and localised concentrations of medium

grained red chert clasts, then makes a sharp transition to a heavy mineral laminated
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medium grained sandstone followed by a very thin layer of clay, mostly eroded away.
This pattern is then repeated twice at elevation 8 -15 m on the middle section of the
stratigraphic log (Fig. 15). The top of the formation elevation 0-3 m on the top
section of the stratigraphic log (Fig. 15) is a pale massive sandstone with beds up to 2
m thick, very quartz rich (Fig. 11c) except for thin layers with high concentrations of
well rounded red chert clasts. This sandstone also contains some 10-20 cm tuffaceous
layers. This facies shows bar migration (Fig. 11d) and adhesion ripples, sedimentary
structures formed by wind blowing dry sand over moist sand (Fig. 11e). The
transition into the Cumbum Formation is marked by an appearance of shale beds and
an increase in uranium, potassium, thorium and total gamma count at elevation 1.5-3
m on the top section of the stratigraphic log (Fig. 15). Near the top contact of the
formation symmetric ripples (Fig. 11f) give consistent bi-directional palaeocurrents of

75°/255°,

Cumbum Formation

The Cumbum Formation was observed at Nandikanama Pass (15°25°24.3”N,
78°45°42.2”E), at the contact between the Bairenkonda Formation and the Cumbum
Formation. This is where the stratigraphic log (Fig. 15) showing the base of the
Cumbum was recorded. The basal contact of the Cumbum Formation is a gradual
change from sandstones (Fig. 12a) to shale beds (Fig. 12b) showing a transitional
change from the Bairenkonda Formation to the Cumbum Formation. Uranium,
potassium, thorium and total gamma count all increase significantly at the transition
to the Cumbum Formation. The basal shales and sandstones then develop into finely

laminated, very fine grained sandstone or shales with small ripples. Overlying these
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are dark grey shales with ~1 cm bedding (Fig. 12c) and layers that are rich in tabular

limestone clasts (Fig. 12d).

Stratigraphic evolution and model of deposition

Gulcheru Formation

Coarse sand beds featuring asymmetrical ripples, mudcracks and channels suggest a
fluvial system or shallow marine environment. The presence of ripples indicates the
presence of running water at the time of deposition; asymmetrical ripples indicate a
current running in one direction; for example a river or stream. Ripples can also give
a palaeocurrent, the direction the current was running at the time of deposition.
Mudcracks suggest the presence and then removal of water; they are formed by moist
muds or sands drying, causing cracking and being covered by more sediment before
they are destroyed. The grain shape and sorting of the conglomerate beds suggests
the sediments did not travel far before deposition. The asymmetrical ripples suggest a
current moving in one direction. Current was measured to be towards the east at the
base of the formation (Fig. 13). Sedimentary features and grain shape and size
suggest the base of the formation was deposited in an alluvial fan setting with high
energy sheet flows. Sediments fine up throughout the formation; this could be due to
lateral movement of the alluvial fan and these sediments could represent the outer
limits of the fan, or the depositional environment could be changing to a fluvial
setting. Asymmetrical ripples and cross bedding higher in the Gulcheru Formation
show palaeocurrent direction towards the west (Fig. 13). The top of this formation

shows a sharp flooding surface with an abrupt change in energy from a conglomerate
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bed to a thick sequence of shales corresponding to an increase in uranium, potassium
and total gamma count at elevation 38 m on the stratigraphic log (Fig. 15); suggesting
a transition to deep a marine environment or a loss of sediment supply. The Gulcheru

Formation is interpreted to represent an alluvial fan to fluvial depositional setting.

Vempalle Formation

Sequences of stromatolitic limestones and dolomites alternating with grainstone beds
made up of grains of stromatolite, ooids and oncoids and chert layers suggest strong
storms causing break up of stromatolites and deposition of grainstone beds, where
cherts are interpreted as erosional surfaces indicating periods of exposure. This is
interpreted as a supertidal environment. Shale beds generally indicate low energy
depositional environments; within this sequence they could indicate transitions to
lagoonal depositional environments or a slightly deeper environment with a loss of
sediment source. The Vempalle Formation is interpreted to have been deposited in a
shallow marine or lagoonal setting. This formation represents a period of either

relative sea level rise or a loss of sediment source.

Pulivendla Formation

The Pulivendla Formation consists of medium to coarse grained sands, cross-bedding,
reactivation surfaces, symmetrical ripples and parting lineations within the Pulivendla
Formation. Parting lineations are sedimentary structures in which sand grains are
aligned in parallel lines on the surface of a sand layer, they can be used to determine
the depositional environment as they indicate the presence of running water and can

be used to find palaeocurrent direction. Symmetrical ripples are formed by a current
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moving in two opposite directions; for example, wave movement. Symmetrical
ripples showed a bi-directional palaeocurrent trending north-south (Fig. 14). The

Pulivendla Formation was deposited in a high energy shallow subtidal environment.

Tadpatri Formation

The base of the Tadpatri Formation displays a transition from sands to a 30 m thick
sequence (Fig. 14) of shales. This is interpreted to represent a rise in sea level to a
low energy deep subtidal environment or indicate a loss of sediment source. Higher
up in the Tadpatri Formation at elevation 55 m and 63 m on the stratigraphic log (Fig.
14) beds of carbonate rich sediment are abundant in stromatolites. The stromatolitic
carbonates suggest a shallow subtidal environment with little or no sediment supply.
Beach rosettes, observed in shales interbedded with dolomitic beds observed within
the Tadpatri Formation, indicate an intertidal to foreshore environment, with beach
rosettes suggesting breaking waves. The Tadpatri Formation represents a low energy

shallow marine environment.

Gandikota Formation

The Gandikota Formation consists of medium grained, mature quartzite with
asymmetrical ripples and evidence of dunes. Asymmetrical ripples indicate the
presence of water with a unidirectional current. Palaeocurrent direction was from the
west to east. Dunes suggest aeolian influences, possibly a shoreline environment.
The Gandikota Formation was deposited in a fluvial to shoreline environment with a

lot of sediment that travelled far from its source.
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Bairenkonda Formation

The Bairenkonda Formation generally consists of medium to coarse grained
sandstones. Parting lineations, bar migration and symmetrical ripples are evident
throughout the Formation and all suggest the presence of water. Palaeocurrent
indicators, ripples and parting lineations, give a range of bidirectional currents. Both
north-south to west-east directions were measured. These features indicate an
intertidal environment. Laminations and thin layers of clay observed in some of the
facies suggest cycles of high and low energy, particularly at elevation 8 -15 m on the
middle section of the stratigraphic log (Fig. 15), although the clay layers may also
represent periods of loss of sediment source. The sediments of the Bairenkonda
Formation represent shoreface, shallow to emergent environments. There is evidence
of wvolcanism during the deposition of the Bairenkonda Formation, mafic
volcanogenic beds were observed within the formation (elevation 4-7 m on the middle

section of the stratigraphic log, Figure 15).

Cumbum Formation

The base of the Cumbum Formation showed a short transitional sequence from
sandstones to shales. A change to shales suggests a low energy environment. Large
(2-10 cm) pieces of dolomite (Fig. 12) within shales suggest strong storms breaking
up limestone and rapid transportation to deep water. Uranium, thorium, potassium
and total gamma count values increase at the transition to the Cumbum Formation.
The high values of radioactive elements may reflect the change to more shale rich
facies or could suggest a different source of sediments or a high influx of sediments
adding more radioactive minerals to the basin. The Cumbum Formation is interpreted

to represent a rise in sea level, with the environment gradually getting deeper.
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Cross Section

Two cross sections of the same transect were created, with different interpretations of
what occurs at depth. The western side of both cross sections displays simple shallow
east dipping beds. The Kurnool Group overlie Cuddapah Supergroup sediments with
an unconformable relationship.  Kurnool Group sediments are not deformed
suggesting they were deposited after Nallamalai Group sediments were deformed. At
least one fault related fold is evident at the eastern margin of the basin. This fault
originates in the Tadpatri Formation. It has been interpreted this way due to the high
levels of shales in the Tadpatri Formation. This fold is asymmetrical with shallow
dipping limbs on the east side suggesting thrusting is coming from that direction.
This indicates the deformation of the Eastern Ghats as the source of the main stress.
Folds slightly to the west of these folds are detachment folds showing less shortening
than the fold to the east; this supports the theory that the main stress is coming from

the east.

The deep thrust fault that is shown in the first cross section is indicated by Meijerink
et al. (1984)’s map and is included because very little is known about the contact
between the Nallamalai Group sediments and the Kurnool Group, as this contact was
not observed. This cross section suggests the Nallamalai Group sediments were
deposited after this faulting event and it is unclear what the relationship between the
Nallamalai Group sediments and the Kurnool Group sediments is. The second cross

section shows all the formations continuing along the basin and indicates a
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depositional history in which the Nallamalai Group sediments were deposited onto the
older Cuddapah Supergroup sediments. These were deformed, some sediments were

eroded away and then the Kurnool Group was deposited.

U-Pb zircon geochronology results

CU10-01

This sample was taken 20 metres up from the base of the Gulcheru Formation which
corresponds to the base of the stratigraphic succession in the Cuddapah Basin (Fig. 2)
at GPS location 15°46°6.9”N, 78°3°23.4”E (Fig. 1), near the village of Tandrapadu.
The sample was taken from a microconglomerate with 0.2 — 1.5 cm size sub-angular
quartz grains and a fine grained matrix with centimetre scale planar and cross
bedding. This microconglomerate was part of a 15 m sequence that graded from a
coarse conglomerate with cobble sized grains through the sampled
microconglomerate and into bedded sandstone. Fifty analyses were obtained from 48
zircon grains. U-Pb analyses yielded 2°’Pb/*®Pb ages that ranged from 2198+18 -
2599+18 Ma. The eight 90-110% concordant analyses yielded 2°’Pb/?°®Pb ages that
ranged from 2502+17 - 2588+17 Ma with major peaks in probability density
distribution plots at 253220 Ma and 2583121 Ma. The youngest 90-110%
concordant analysis (spot cul0 01 _15) yielded a ?°” Pb/*°® Pb age of 2502+17 Ma

(91% concordant) (Fig. 16).
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CU10-19

This sample was taken from the Pulivendla Formation near the transitional contact
with the Tadpatri Formation (Fig. 2) at GPS location 15°21°3.5”N 78°85°10.5”E (Fig.
1), 44 km WSW from Nandyal. The sample was taken from a coarse grained
sandstone with 1 — 15cm beds and sub-angular lithic clasts. This sandstone was the
base of a sequence that graded gradually into shale beds. Fifty analyses were
conducted from 48 zircon grains. Eight of these were 90-110% concordant. U-Pb
analyses yielded 2°’Pb/?°°Pb ages that ranged from 1112+22 - 3070+15 Ma. The eight
90-110% concordant analyses yielded 2°’Pb/*®Pb ages that ranged from 1899+19 -
2552+17 Ma with major peaks in probability density distribution plots at 1931+17 Ma
and 2514+83 Ma. The youngest 90-110% concordant analysis (spot CU1019 41)

yielded a °" Pb/*® Pb age of 1899+19 Ma (100% concordant) (Fig. 17).

CU10-10

This sample was taken from the Bairenkonda Formation, which is stratigraphically
below the Cumbum Formation; these two formations make up the Nallamalai Group;
the highest group in the Cuddapah Supergroup sequence (Fig. 2). The sample was
taken from GPS location 15°23”34.2”N 78°39740.4”E (Fig. 1) near the town of
Gadzulapalle. This coarse grained sandstone was part of a 6 m sequence of 30 - 40
cm sand beds with thin millimetre-scale clay beds between sand beds. Fifty analyses
were obtained from 49 zircon grains. Fourteen of these were 90-110% concordant.
U-Pb analyses yielded 2°’Pb/?°®Pb ages that ranged from 1580424 - 3459+17 Ma. The
fourteen 90-110% concordant analyses yielded %’Pb/*®Pb ages that ranged from

1659+22 - 3007+16 Ma with major peaks in probability density distribution plots at
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1805+25 Ma and 2514+20 Ma. The youngest 90-110% concordant analysis (spot

cul0_10_40) yielded a ?°” Pb/?°® Pb age of 1660+22 Ma (96% concordant) (Fig. 18).

CU10-21

This sample was taken from the Cumbum Formation, the stratigraphically highest
formation in the Cuddapah Supergroup (Fig. 2) at GPS location 15°25°21.9”N
78°45°18.4”E (Fig. 1). The sample was taken from a fine to medium grained
sandstone with stylolites. The sandstone was part of a 2 m sequence of alternating
sand and shale 10 — 40 cm beds. This was near the transitional contact between the
Bairenkonda Formation and the Cumbum Formation. Twenty analyses from 20
zircon grains were conducted. Seven of these were 90-110% concordant. U-Pb
analyses yielded “°Pb/?*® U ages that ranged from 326+5 - 2561+29 Ma and 2% Pb/*%’
Pb ages that ranged from 512+32 - 3400+26 Ma. The seven 90-110% concordant
analyses yielded 2°°Pb/***U ages that ranged from 913+11 - 2790.2+17 Ma and *%
Pb/?®" Pb ages that ranged from 919+24 - 2790+17 Ma with a major peak in
probability density distribution plots at 1753+60 Ma. The youngest 90-110%
concordant analysis (spot cu1021_01) yielded a *® Pb/?*® U age of 913+11 Ma (99%

concordant) (Fig. 19).

Hf Isotope Results

Results from the Hf isotope analysis (Table 3) plot above the depleted mantle line
(Fig. 5), this indicates that there is something wrong with the data (Payne, pers.

comm.), to try to identify the problem the *"®Hf/*"’Hf and *"®Yb/*""Hf ratios within
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four single zircon analyses were plotted against each other (see Fig. 5) and some of
these showed a positive correlation of °Hf/*’Hf and '"°Yb/*”’Hf.  Positive
correlation between these two ratios is generally considered to be an analytical error
as this is unlikely to occur naturally, although there are some possible scenarios where
this could occur naturally, such as if the depleted mantle is unusually enriched in rare
earth elements and depleted in Hf. However this is unlikely and would not explain
both problems with the data so the data will not be used in this study. This error may
have been caused by direct rare earth element interference from °Lu and ®Yb.
However this should not have been an issue as standards and initial set up suggest this
error was being over corrected (Payne, pers. comm.). Alternatively it may have been
caused by rare earth oxide interference caused when **Gd and **Dy combine with

160,

Stable Isotopes Results

Three samples were analysed to collect 813C and 6180 isotope data (Table 4). Two
samples; T1 and T2, taken from the Tadpatri Formation were analysed. These
samples were from stromatolitic dolomites 1.5 m stratigraphically apart
(15°33°39.4”N, 78°10°17.9”E). One sample; V1, from the Vempalle Formation was
from a stromatolitic dolomite (15°30°38.4”N, 18°10’17.5”E). The 613C values of
these samples range between -1.54 and +1.45 %.. Comparison of isotopic values with
published data indicates that moderately positive 613C values (up to +4.0%o) are
characteristic of the interval between 1250 and 800 Ma (Bartley et al. 2001). This

pattern is distinct from that of younger Neoproterozoic successions, which typically

29



Julie Mackintosh

record values >+5%o, and older Mesoproterozoic successions, which record values
near 0+1%o, and suggests that these moderately positive values may be useful for
broad time correlation (Kah et al. 1999, Bartley et al. 2001). The 813C values of
these samples can be correlated with known early Mesoproterozoic (before 1300 Ma)
613C values. Sample V1 with a 813C value of 1.45%. could have been formed at the
times between 1250 and 800 Ma when 613C values dropped, however this would not
correlate with that age data for the Vempalle Formation, which is the oldest formation
in the Cuddapah Basin containing carbonates. Ideally more stable isotope data is
needed for the carbonates deposited in the Cuddapah Supergroup to be able to

correlate them with more confidence.

Discussion

Age Constraints on Deposition of the Cuddapah Supergroup

The only direct age constraints previously published have provided minimum
depositional ages for single formations within the Cuddapah Supergroup (1752 Ma
(Zachariah et al. 1999) for the Vempalle Formation, 1817 Ma (Baskar Rao et al.
1995) for the Pulivendla Formation, 1779 Ma (Zachariah et al. 1999), 1899 Ma
(Anand et al. 2003) and 1885 Ma (French et al. 2008) for the Tadpatri Formation and
1200 Ma (Crawford and Compston 1973) and 1350+52 Ma (Rao et al. 1996) for the

Bairenkonda Formation).
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This study provided new maximum depositional ages on the different sedimentary
packages within the Cuddapah Supergroup. All zircons are interpreted as being
detrital zircons as all samples were taken from sandstones that have undergone no
tectonothermal event that would create or alter zircons. The age given by the youngest
90-110% concordant analysis is interpreted as the maximum depositional age for the

formation.

U-Pb zircon geochronology on four sandstones from four formations (Gulcheru
Formation, Pulivendla Formation, Bairenkonda Formation, and Cumbum Formation)
throughout the Cuddapah Supergroup constrains the maximum depositional age of
each of these formations and of the Cuddapah Basin. The maximum depositional age
of the Gulcheru Formation, is 2502+17 Ma. The Gulcheru Formation corresponds to
the base of the stratigraphic succession in the Cuddapah Basin, thus this age marks the
onset of sedimentation and maximum age for the formation of the basin. Maximum
depositional ages obtained in this study are 1899+19 Ma for the Pulivendla
Formation, 1660+22 Ma for the Bairenkonda Formation and 913+11 Ma is interpreted
as being the maximum depositional age for the Cumbum Formation. This Cumbum

Formation is the youngest formation dated in this study.

My results, together with previous work (Crawford & Compston 1973, Baskar Rao et
al. 1995, Chalapathi Rao et al. 1996, Zachariah et al. 1999, Anand et al. 2003, French
et al. 2008), constrain the timing of deposition of the different formations constituting
the Cuddapah Supergroup:

e The Gulcheru Formation and Vempalle Formation had been deposited

between ~2502 and 1899 Ma.
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e The Pulivendla Formation and Tadpatri Formation were deposited between
1919 and 1879 Ma

e The Bairenkonda Formation was deposited after 1660+22 Ma and intruded by
Kimberlites at 1350+£52 Ma, constraining deposition to this time interval

e The Cumbum Formation was deposited after 913+11 Ma.

In total, deposition of the Cuddapah Supergroup extended for ~986 million years.

Stable isotope data from the Tadpatri and Vempalle Formations appear to correspond
with known late Palaeoproterozoic to early Mesoproterozoic values. This data is not
very conclusive as it was not a robust stable isotope study, however it can be used to

support the U-Pb geochronological data.

Provenance of Sediments

Samples analysed are from sediments that have undergone no tectonothermal event
that would create or alter zircons deposited in the sediments. Laser ablation spots
were also taken from cores of zircon grains and any rims identified in CL imaging
were avoided. This means all zircon ages reflect tectonothermal events affecting the
area the sediments are sourced from.  The assignment of source regions based
entirely on age correlations with detrital populations is prone to error (Howard et al.
2009) - largely due to events of similar ages occurring in multiple locations.
However, it is possible to constrain the source of sediments by matching the age of
detrital zircons in sediments with the age of potential sources. Detrital peaks from U-
Pb geochronology in this study (Fig. 16-19) are here compared to reported ages of
rocks of the Dharwar Craton and the Eastern Ghats, in order to speculate on sediment

provenance. Detrital zircons analysed vary greatly in morphology, but most are
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fragmented and often have rounded edges (Fig. 15-18). This wide range of zircon

populations suggests numerous sediment sources draining into the Cuddapah Basin.

Hf isotope data was collected in the hope of constraining potential source regions
more accurately; however, due to errors in the Hf isotope results, this data can not be
used for this purpose in this study. Future work involving new Hf isotope data on
these samples would be very useful in correlation with the U-Pb geochronological

results from this study.

Detrital peaks at ages 2600-2500 Ma are evident in probability density distribution
plots of samples CU10-01 (2532+20 Ma and 2583+21 Ma), CU10-19 (2514+83 Ma)
and CU10-10 (2514+20 Ma) indicating a possible shared source for the Gulcheru
Formation, Pulivendla Formation and Bairenkonda Formation. These zircons are
potentially sourced from the late Archaean (2600-2500 Ma) granitic intrusions that
dominate the eastern part of the Dharwar Craton which form the latest magmatic
event in the craton (Jayananda et al. 2000). A geochemical analysis by Chakrabarti et
al. (2009) of the Mesoproterozoic clastic sedimentary rocks of the basal Gulcheru
Formation of the Cuddapah Basin point to a mixed felsic-mafic provenance of the
Gulcheru rocks occurring as crystalline granites and gneisses and greenstone belts of
eastern Dharwar Craton. This supports the geochronological evidence of this study

for a Dharwar Craton provenance for the Gulcheru Formation.

There is a peak in the probability density distribution plot at 1931+17 Ma in the

sample CU10-19 from the Pulivendla Formation. The zircons making up the

1931+17 Ma peak may be from a 1900 Ma event of large scale mafic/ultramafic
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magmatism associated with intracontinental rifting and basin development (French et
al. 2008). This large igneous province spans the Bastar Craton, the Dharwar Craton

and the Cuddapah Basin.

Peaks in density distribution plots at 1805+25 Ma and 1753+60 Ma from samples
CU10-10 and CU10-21 respectively could possibly represent the same event as the
uncertainties on both ages are reasonably high. A period of felsic magmatism in the
Vinjamuru Domain, near the Ongole Domain of the Eastern Ghats has produced ages
of 1868+6 and 1771+8 Ma (Dobmeier & Raith 2003) that may have been the source
of these peaks, however this event is not very well constrained. The Ongole Domain
of the Eastern Ghats (Fig. 1) was intruded at 1720-1700 Ma (Dobmeier & Raith

2003); this may be the source of the 1753+60 Ma peak.

Detrital zircon ages suggest that the Gulcheru Formation and the Pulivendla
Formation are both sourced from the Dharwar Craton. At least two sources for the
Pulivendla Formation appear to be from within the Dharwar Craton. The
Bairenkonda Formation contains zircons that may be sourced from the Dharwar
Craton and the Eastern Ghats. The Cumbum Formation appears to be sourced solely
from the Eastern Ghats. Further evidence for this is the presence of a 913+11Ma
zircon grain, probably associated with the deformation and metamorphism that
occurred around 1100-920 Ma due to the Eastern Ghats’ involvement with the
assembly of the supercontinent Rodinia (Mezger & Cosca 1999, Upadhyay et al.
2009). Although there is only a single zircon of this age it does support the theory

that these sediments are sourced from the Eastern Ghats. There is also an increase in
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radioactive elements (Fig. 15) from the Bairenkonda Formation to the Cumbum

Formation which is compatible with erosion from the uplifted Eastern Ghats.

The provenance of the sediments filling the Cuddapah Basin is largely consistent with
the Dharwar Craton. Some variations appear through time. The base of the Cuddapah
Supergroup is sourced exclusively from the Dharwar Craton. But through time,
specifically during the deposition of the Nallamalai Group, the Bairenkonda and
Cumbum Formations the main source of the sediments shifts to the east compatible

with the rise of the Eastern Ghats orogen.

However, an alternative interpretation is possible, where the detrital zircons are all
sourced from the Eastern Ghats to the east of the Cuddapah Basin. In this model,
original sediments sourced from the Dharwar Craton would have been recycled
during the Eastern Ghats orogeny before being finally deposited in the Cuddapah
Basin. The complex tectonic evolution of the area of study, along with the long
duration of the sedimentation, would be translated into a multi-stage history of

sedimentation.

Basin Evolution

The Cuddapah Supergroup was mostly deposited in a shallow marine environment.
The base of the sequence appears to be deposited in an alluvial fan to fluvial
environment; the rest of the sequence is interpreted as various marine environments.
The Cuddapah Supergroup starts with the Papaghni Group consisting of
conglomerates and medium to coarse grained sandstones progressing into shales and

dolomitic carbonates followed by a break in sedimentation represented by an
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unconformity. This is followed by the Chitravati Group comprising coarse to medium
grained sandstones developing into shales, dolomitic carbonates and limestones
followed by a unconformity. The Nallamalai Group follows with medium sandstones
and at least one volcaniclastic layer progressing into shales and concluding with an
unconformity. This sequence can be separated into three clear cycles of coarse to
medium grained sandstones progressing into interbedded shales and dolomites ending
with an unconformity. This pattern of sediments suggests a cyclicity in depositional
setting, starting with shallow marine then a transgression to deeper waters followed

by a break in sedimentation.

The age data from this study and previous studies suggests the Cuddapah Basin is not
a foreland basin caused by the formation of the Eastern Ghats, as deposition of the
Cuddapah sediments started before ~1900 Ma. This is before the Ongole Domain of
the Eastern Ghats - the region of the Eastern Ghats directly adjacent to the Cuddapah
Basin (Fig. 1) - was deformed at ~1600 Ma (Upadhyay et al. 2009). There was a
large igneous intrusion into the upper crust in the south western Cuddapah region of
Dharwar Craton between 2400 and 2000 Ma (Chatterjee & Bhattacharji 2001). This
intrusion would have caused uplift followed by subsidence and faulting, possibly the
cause of the initiation of the basin. This intrusion could explain the gravity high in
the south west region of the basin reported by Kaila et al. (1979). This may suggest
the Cuddapah Basin developed as an intracratonic sag type basin resulting from
thermal subsidence. Pandey et al. (1997) presented data that suggests a mafic dyke
swarm, the Mahbubnagar swarm, was emplaced at ~ 2170 Ma. They suggest these

dykes caused an episode of heating leading to crustal extension and fracturing which
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resulted in the formation of the Cuddapah Basin. This timing fits in with the time

constraints on deposition of the Gulcheru Formation.

The stratigraphy of the Cuddapah Supergroup is consistent with a series of cycles of
thermal events, resulting in the heating of the crust and uplift, corresponding to a
break of sedimentation, followed by cooling and subsidence corresponding to a stage
of normal faulting and syn-rift sedimentation. (Chatterjee & Bhattacharji 2001). This
history of events would explain the pattern of shallow to deep sediments terminating
in an unconformity. The oriental edge of the Dharwar Craton records a succession of
magmatic intrusions which may be indicators of this cyclic thermal event, coeval with
the deposition of the Cuddapah Supergroup. Dykes and sills in the Vempalle
Formation of the Papaghni Group and similar features in the Tadpatri Formation of
the Chitrayati Group could be the consequence of two igneous events causing crustal
heating and uplift causing the unconformities that follow these groups. Heating
during the deposition of the Nallamalai Group may have been caused by extensive
alkaline and acidic volcanic activity (Chatterjee & Bhattacharji 2001) as well as the
emplacement of kimberlite dykes. The depositional areas may have shifted as a result
of gravity induced faulting producing the isolation of post-Cuddapah Supergroup sub-

basins.

As the Eastern Ghats was deformed and uplifted it would have affected the evolution
of the basin. The sediments of the younger Nallamalai Group appear to have come
from the Eastern Ghats and it is possible that lithospheric flexure due to the crustal
thickening in the Eastern Ghats caused increased subsidence of the basin, particularly

in the eastern part of the basin, adjacent to the Eastern Ghats, where the Nallamalai
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Group sediments are found and the basin is deepest. This represents a foreland basin
stage of evolution of the Cuddapah Basin. Deformation events in the Eastern Ghats
may also be responsible for the crescent shape of the Cuddapah Basin. The folded
Nallamalai Group sediments (Fig. 4) suggest deformation occurred after deposition of

the sediments.

Petroleum Potential

Previous studies regarding the petroleum potential for the Cuddapah Basin have
concluded that there are potential hydrocarbon reserves in the Cuddapah Basin
(Prasanna et al. 2008, Kalpana et al. 2010). The Directorate General of Hydrocarbons
(DGH), India have grouped the Cuddapah Basin under Category IV sedimentary
basins of India meaning the basin is potentially prospective, by having possible
existence of hydrocarbons (Kalpana et al. 2010). Stromatolitic algae and bacteria
have been identified as potential sources capable of generating petroleum (Kalpana et
al. 2010). There are multiple stromatolitic carbonate rich sediments in the Cuddapah
Basin (Vempalle Formation and Tadpatri Formation) that could potentially be source
rocks for hydrocarbons. In a mine for road rock near Yagantipalle (15°18°59.7”N,
78°11°40.8”E) there was a 1.5 m thick black carbon rich shale observed in the
Tadpatri Formation (Fig. 9). There are potentially much more carbon rich shales in
the basin that have not been discovered yet. Bertram (2010) has identified carbonates
in the younger Kurnool Group, stratigraphically above the Cuddapah Supergroup, that
have oxygen and carbon isotopic values indicating deep marine deposition; this would
provide a good environment for hydrocarbon accumulation. An understanding of the
history of burial and uplift of the basin and heat flow in the area is important, as this

would indicate when petroleum would have been generated. This would be crucial to
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knowing if any hydrocarbons are still likely to be present, because if they were
generated too long ago it is likely they would no longer be present due to leakage and
dispersion. This study has contributed to increasing the understanding of the history

of the basin.

Sandstones with high porosity are plentiful in the Cuddapah Basin and provide a good
potential reservoir for petroleum. To the east of the basin sandstones of the
Nallamalai Group have been folded (Fig. 4) and thrust over by high grade
metamorphosed rocks of the Eastern Ghats, providing a good trap for potential
accumulation. This large, deep thrust may also be a potential seal or migration path.
Any studies focusing on finding reservoirs would therefore be best to concentrate on

the eastern margin of the basin.

Shales make good seals due to their low porosity. Each sequence of sandstones in the
Cuddapah Supergroup is overlain with shales which provide a potential stratigraphic
seal for reservoirs within any of the sandstones. In the folded Nallamalai Group at the
eastern side of the basin, shales of the Cumbum Formation cap thick sandstone beds
of the Bairenkonda Formation. These are ideal stratigraphic and structural traps and
represent a good target for petroleum exploration. There are also potential
stratigraphic traps in the western part of the Cuddapah Basin; shale beds in the
transition from the thick beds of sandstone of the Pulivendla Formation to the

Tadpatri Formation are a good seal.

Kalpana et al. (2010) did a study looking for traces of hydrocarbons in surface soils of

the Cuddapah Basin. Surface geochemical prospecting of hydrocarbons comprises
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investigation of near surface soils/ sediments for occurrence of hydrocarbons that may
indicate the location of subsurface petroleum reservoirs. The basic assumption of all
near surface geochemical prospecting techniques is that the hydrocarbons migrate to
the surface from the sub-surface petroleum accumulations through faults and fractures
and leave their signatures in the near surface soils (Kalpana et al. 2010). The study
found occurrences of C;—C, (methane-C;, ethane-C,, propane-C; and butane-Cy4
(Prasanna et al. 2008)) hydrocarbons, demonstrating that the Cuddapah Basin has
hydrocarbon resource potential. Prasanna et al. (2008) also found evidence for
hydrocarbon micro-seepage from the subsurface through their study, using a similar
method to Kalpana et al. (2010), that is geo-microbial prospecting in the surface soils
or sediments of the Cuddapah Basin, measuring levels of bacteria that exclusively use
light gaseous hydrocarbons (C;-C4) as a carbon source. Prasanna et al. (2008)
detected levels that suggested that hydrocarbon micro-seepage of subsurface origin is
present in the basin and this together with other surface geochemical prospecting
results (Kalpana et al. 2010) indicate that the area is worth visiting for conventional

petroleum exploration.

The Cuddapah Basin shows evidence of some hydrocarbon leakage at the surface,
indicating potential petroleum reserves in the basin. Porous sandstones throughout
the basin provide a good reservoir. Shales, folds and the large thrust fault at the
eastern margin of the basin give multiple potential seals and traps. There are no
known source rocks but there are potential source rocks, with extensive stromatolitic
carbonate layers present in both the Vempalle Formation and Tadpatri Formation.
The eastern margin of the basin appears to be the best target for conventional

petroleum exploration.
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Conclusion

Sequence stratigraphy shows that the Cuddapah Supergroup was deposited in a
shallow marine environment. U-Pb zircon geochronology indicates deposition
occurred for c. 986 million years starting in the Palaesoproterozoic and ending in the
Neoproterozoic. Basin formation was caused by thermal subsidence related to
thermal events during the Palaeoproterozoic. The uplift of the Eastern Ghats changed
the shape and the evolution of the Cuddapah Basin, increasing subsidence along the
eastern part of the basin. Samples contain detrital zircon cores that indicate that the
Cuddapah Supergroup sediments were sourced from a predominantly
Palaeoproterozoic to Mesoproterozoic source region compatible with the Dharwar

Craton and the Eastern Ghats.
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Figure Captions

Figure 1 (a) Regional setting of the Cuddapah Basin, Dharwar Craton and Eastern
Ghats, modified after French et al (2008); (b) Cuddapah Basin with sub-basins
representing stratigraphic groups. The locations of the three sections are shown.

Modified after Anand et at. (2003).
Figure 2 Stratigraphy of the Cuddapah Supergroup with previous ages and ages from

this study. Modified after Manikyamba et al. (2008) and Murphy (1979) originally

based on King (1872).
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Figure 3 Space-time plot showing major tectonothermal events affecting the Dharwar
Craton and Eastern Ghats regions with events located exclusively in the Ongole
Domain outlined. All events are possible sources of detrital zircons found in the
Cuddapah Basin. Events: (a) volcano-sedimentary greenstone belts, Sargur Group
(Chadwick et al. 2000); (b) tonalitic—trondhjemitic—granodioritic basement
(Jayananda et al. 2000); (c) volcano-sedimentary greenstone belts, Dharwar
Supergroup (Chadwick et al. 2000), (Jayananda et al. 2000) (d) calc-alkaline to
potassium rich granitic intrusions (Jayananda et al. 2000); (e) the Mahbubnagar mafic
dyke swarm (Pandey et al. 1997); (f) large igneous province spanning the Bastar
Craton, the Dharwar Craton and the Cuddapah Basin (French et al. 2008); (g) period
of felsic magmatism (Dobmeier & Raith 2003); (h) felsic plutonic intrusion
(Upadhyay et al. 2009); (i) ultra-high temperature metamorphic and deformation
event (Upadhyay et al. 2009); (j) ductile brittle deformation associated with
Mesoproterozoic rifting along the margin of Proto-India (Upadhyay et al. 2009); (k)
partial melting event (Upadhyay et al. 2009); (I) thermal event (Upadhyay et al.
2009); (m) orogenic event associated with the assembly of the supercontinent Rodinia
(Mezger & Cosca 1999) (Upadhyay et al. 2009); (n) orogenic event associated with
assembly of the supercontinent Gondwana (Mezger & Cosca 1999), (Upadhyay et al.

2009).

Figure 4 Cross section created using formation boundaries from Meijerink et al.
(1984)’s map and observations in the field showing the Cuddapah Basin from point A
to B on Figure 1, two interpretations of structures at depth are shown: (a) scenario one
with deep thrust fault cutting off Nallamalai fold belt; (b) scenario two, all formations

continue across the basin with no major interruptions.
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Figure 5 Graphs showing Hf isotope data (a) ages from U-Pb zircon geochronological
analysis against epsilon Hf, blue points are from Gulcheru Formation, purple points
are from Bairenkonda Formation (b) 176Hf/177Hf vs 176Yb/177HTf ratios for four
zircon grains, Each point on the graph is one measurement (0.232 seconds) during the
analysis, blue points are JM_Hf 01 15, red points are JM_Hf _01_30, green points are
JM_Hf 01 30 Initial, purple points are JM_Hf 01 33, yellow points are

IM_Hf 01_37.

Figure 6 Photographs of sediments and sedimentary features of the Gulcheru
Formation: (a) basal facies of Gulcheru Formation showing conglomerate beds; (b)
cross-bedding; (c) trough bedding; (d) contact between basement rock and Gulcheru

Formation; (e) channel filled with conglomerate sediments; (f) conglomerate beds.

Figure 7 Photographs of sediments and sedimentary features of the Vempalle
Formation: (a) mudcracks in fine grained sandstone; (b) dolomite and shale beds; (c)
stromatolite in a laminated dolomite bed; (d) grainstone beds made of broken
stromatolite, ooids and oncoids; (e) chert bed capping stromatolitic dolomite layer; (f)

purple shales.

Figure 8 Photographs of sediments and sedimentary features of the Pulivendla

Formation: (a) cross-bedding; (b) mudcracks; (c) symmetrical ripples.

Figure 9 Photographs of sediments and sedimentary features of the Tadpatri

Formation: (a) stromatolite within a dolomite bed; (b) intermediate sill showing
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contact with shales of the Tadpatri Formation below and above; (c) black carbon rich
shale layer; (d) grey laminated dolomite; (e) beach rosette in dolomite layer
interbedded with thin chert layers; (f) angular unconformity between Tadpatri

Formation (bottom) and Banaganapalle Formation (above) of the Kurnool Group.

Figure 10 Photographs of sediments and sedimentary features of the Gandikota
Formation: (a) bedded medium grained sandstone; (b) sandstone concretions; (c)

conjugate quartz veins; (d) cross-bedding.

Figure 11 Photographs of sediments and sedimentary features of the Bairenkonda
Formation: (a) fine to medium grained sandstone showing cross-bedding (b) coarse
grained sandstone; (c) massive thickly bedded sandstone near to top contact of the

formation (d) bar migration; (e) adhesion ripples; (f) symmetrical ripples.

Figure 12 Photographs of sediments and sedimentary features of the Cumbum
Formation: (a) transition from the Bairenkonda Formation to the Cumbum Formation,
sandstones with thin shale beds; (b) shales near the base of the formation; (c) grey

shales; (d) stretched tabular clasts of limestone within shale beds.

Figure 13 Stratigraphic log of the Gulcheru Formation and the base of the Vempalle
Formation. The position of geochronological sample CU10-01 is shown with
maximum depositional age (1o error). Total, Potassium, Uranium and Thorium
columns show results from analysis by portable gamma ray spectrometer.

Palaeocurrent column shows summary of palaeocurrent data collected.
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Figure 14 Stratigraphic log of a section of the Pulivendla Formation and a section of
the Tadpatri Formation. The position of geochronological sample CU10-19 is shown
with maximum depositional age (1c error). Key for sedimentary structures and facies
descriptions is given in Figure 13. Total, Potassium, Uranium and Thorium columns
show results from analysis by portable gamma ray spectrometer. Palaeocurrent

column shows summary of palaeocurrent data collected.

Figure 15 Stratigraphic log comprising sections of the Bairenkonda Formation and
the base of the Cumbum Formation.. The position of geochronological samples
CU10-10 and CU10-21 are shown with maximum depositional age (1o error). Key
for sedimentary structures and facies descriptions is given in Figure 13. Total,
Potassium, Uranium and Thorium columns show results from analysis by portable
gamma ray spectrometer. Palaeocurrent column shows summary of palaeocurrent

data collected.

Figure 16 Sample CU10-01 LAICPMS U-Pb geochronological data for detrital
zircons; (a) Conventional U-Pb concordia plot for all zircon ages with youngest
analysis with concordancy greater than 90% and less than 110% labelled. Inset:
Concordia plot for zircons with concordancy greater than 90% and less than 110%;
(b) Relative probability distribution for all zircon ages — light blue and for zircons
with concordancy greater than 90% and less than 110% - dark blue, peaks are
labelled; (c) Cathodoluminescence image of a representative zircon from sample

CU10-01.
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Figure 17 Sample CU10-19 LAICPMS U-Pb geochronological data for detrital
zircons; (a) Conventional U-Pb concordia plot for all zircon ages with youngest
analysis with concordancy greater than 90% and less than 110% labelled. Inset:
Concordia plot for zircons with concordancy greater than 90% and less than 110%;
(b) Relative probability distribution for all zircon ages — light blue and for zircons
with concordancy greater than 90% and less than 110% - dark blue, peaks are
labelled; (c) Cathodoluminescence image of a representative zircon from sample

CU10-19.

Figure 18 Sample CU10-10 LAICPMS U-Pb geochronological data for detrital
zircons; (a) Conventional U-Pb concordia plot for all zircon ages with youngest
analysis with concordancy greater than 90% and less than 110% labelled. Inset:
Concordia plot for zircons with concordancy greater than 90% and less than 110%;
(b) Relative probability distribution for all zircon ages — light blue and for zircons
with concordancy greater than 90% and less than 110% - dark blue, peaks are
labelled; (c) Cathodoluminescence image of a representative zircon from sample

CU10-10.

Figure 19 Sample CU10-21 LAICPMS U-Pb geochronological data for detrital
zircons; (a) Conventional U-Pb concordia plot for all zircon ages with youngest
analysis with concordancy greater than 90% and less than 110% labelled. Inset:
Concordia plot for zircons with concordancy greater than 90% and less than 110%;
(b) Relative probability distribution for all zircon ages — light blue and for zircons

with concordancy greater than 90% and less than 110% - dark blue, peaks are
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labelled; (c) Cathodoluminescence image of a representative zircon from sample

CU10-21.

List of Tables

Table 1 Summary of age data collected from the Cuddapah Basin; previous work and

from this study.

Table 2 U-Pb zircon LAICPMS data for samples CU10-01, CU10-19, CU10-10 and

CU10-21.

Table 3 Hf isotope data for samples CU10-01 and CU10-19.

Table 4 Stable isotope data for samples T1 and T2 from the Tadpatri Formation and

V1 from the Vempalle Formation.
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Tables
Formation Dating Method Age in Ma Reference
Cumbum U-Pb on zircons from sandstone 913+11 This study
Bairenkonda  Rb-Sron intruded Kimberlite 1200 Crawford and Compston (1973)
K-Ar on intruded Kimberlite 1350452 Rao ef al. (1996)
U-Pb on zircons from sandstone 1660+22 This study
Tadpatri 25pp2¥ph on U-mineralized carbonate 1779485 Zachariah (1999)
U-Pb on mafic sill 188543 French (2008)
Car-**Ar on mafic sill 1899420 Anand (2003)
Pulivendla Rb—Sr on sill 181724 Baskar Rao ef al. (1995)
U-Pb on zircons from sandstone 1899+£19 This study
Vempalle 5pp-2¥pp on U-mineralized carbonate 1752441 Zachariah (1999)
Gulcheru U-Pb on zircons from sandstone 250217 This study
Table 1
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Age and Basin Evolution of the Cuddapah Supergroup

Anakyia No. Interf.  Total Hf "*H/ T HI axp. VRHACTTHE  USYRITTHET Lul TTHE pge TTUHETTHI 8u(t] Tou Tow CHEUTHE 238
Corr. Meth, beam (V) 2se facter' 2se 2se (Ma}  pitlal 2 se (Ga) Crustal cerr. Using Hf cerr.
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Sample Sample Mass d13C (%) d180 (%)
I125°33'39.4"N, 78°1017.9'E) 124ug -1.5449 -16.8622
2-115"33'39.4'“, 78°10'17.9'E) ug 0.2553 -17.0593
?:15%0'33.4"”, 18°10'17.5'E) 134ug 1.4502 -6.8339
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