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ABSTRACT

This thesis presents magnetotelluric (MT) imaging of the Tendaho con-
ventional geothermal system in the Afar Depression in north eastern
Ethiopia and the Habanero Enhanced Geothermal System (EGS) in
the Cooper Basin in South Australia. The aims of this dissertation
are twofold. The first was to characterize the resistivity structure of
the Tendaho conventional geothermal system. This includes delineat-
ing fluid pathways and heat sources and determining the connectivity
of geothermal localities in the Tendaho field using 2D and 3D resistiv-
ity models. The second aim was to investigate the viability of MT to
monitor permeability enhancement in an unconventional EGS reservoir
during fluid injection using continuous MT measurement at Habanero
EGS in the Cooper Basin, South Australia.

The 2D and 3D resistivity models of the Tendaho high temperature field
reveal three main resistivity structures to a depth of 20km. The surface
conductive structure (typically ≤ 10Ωm and >1km thick) is interpreted
as sediments, geothermal fluids or hydrothermally altered smectite clay.
The underlying high resistivity structure is interpreted as Afar Stra-
toid Series basalts or chlorite-epidote alteration mineralogy. At a depth
greater than 5km, low resistivity is observed across the whole of the Ten-
daho geothermal field. This structure is inferred to be the heat source of
the geothermal system. Based on geochemical and borehole information
and a bulk resistivity from the resistivity model, a melt fraction of about
13% by volume has been estimated for the structure. The most striking
feature in the 2D and 3D models is a conductive fracture zone in the
basalts, which is likely to increase the permeability and temperature of
the deep reservoirs in the basalts and provide an upflow zone. Analysis
of 3D resistivity models and the geochemistry of geothermal fluids sug-
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ABSTRACT

gests that the Dubti and Ayrobera geothermal localities at the Tendaho
field are not connected. The inferred presence of a conductive fracture
zone and shallow magma reservoirs make the Tendaho geothermal field
a promising prospect for geothermal power development.

An MT survey was conducted at Habanero EGS during stimulation of the
Habanero-4 well, where 36.5ML of water with a resistivity of 13Ωm (at
25�) was injected at a relatively continuous rate of between 27−53L/s
into the EGS reservoirs at a depth of 4077m. Analysis of pre- and post-
injection MT responses showed possible conductive fractures oriented in
a N/NNE direction. Apparent resistivity maps also revealed that the
injected fluids likely propagated towards N/NNE direction. This re-
sult is consistent with the propagation direction of the dominant micro-
seismic events, as well as the orientation of pre-existing N-S striking
sub-horizontal fractures susceptible to slip on stimulation. The MT re-
sponses close to the injection point show on average a 5% decrease in
apparent resistivity for periods >10 s. The main reasons for detecting
only subtle changes in resistivity at the Habanero EGS is the screening
effect of the conductive thick sedimentary cover (about 3.6 km thick)
and the presence of pre-existing saline fluids with resistivity of 0.1Ωm
(equivalent to a salinity of 16.1 g/L at 240�) in the natural fractures in
the EGS reservoirs. This is further compounded by the physics of the
problem, that is, the small volume of injected fluid compared to the large
volume averaging by an MT sounding at the depth of interest. For MT
sites close to the EGS well, the analysis of time-lapse inversion models
indicated an increase in total cumulative conductance of about 25S over
a depth range of 2−5km in the N-S direction compared to the E-W di-
rection. This likely indicates anisotropic permeability generated by the
hydraulic stimulation. Overall, the MT monitoring at Habanero EGS
highlights the need for favorable geological settings and/or controlled
source methods and down-hole methods to measure significant changes
in resistivity in EGS reservoirs.
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