
University of Adelaide

Deep learning for multi-label scene

classification

by

Junjie Zhang

A thesis submitted in fulfillment for the

degree of Master

Under Supervised by

Chunhua Shen and Javen Shi

School of Computer Science

August 2016

Declaration of Authorship

I, Junjie Zhang, declare that this thesis titled and the work presented in it are my own.

I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at the University of Adelaide.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at the University of Adelaide or any other institution, this has

been clearly stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

Abstract

Scene classification is an important topic in computer vision. For similar weather con-

ditions, there are some obstacles for extracting features from outdoor images. In this

thesis, I present a novel approach to classify cloudy and sunny weather images. In-

spired by recent study of a deep convolutional neural network and the spatial pyramid

matching, I generate a model based on the ImageNet dataset. Starting with parame-

ters learned from other classification tasks, I fine-tune the model using outdoor images.

Experiments demonstrate that our classifier can achieve state-of-the-art accuracy.

Multi-label learning is a variant of supervised learning where the task is to predict a

set of examples, which can belong to multiple classes. This is a variant of popular

multi-class classification problems in which each sample has one class label only. It

can apply to a wide range of applications, which include text categorisation, semantic

image labelling etc.. A lot of research work has been done on multi-label learning with

different approaches. In this thesis, I train a neural network from scratch based on the

generated artificial images. The model is learned by minimising an error function based

on the Hamming distance, through the backpropagation optimisation. The model has

high capability of generalisation.

Acknowledgements

I am grateful to my main supervisor, Prof. Chunhua Shen, and co-supervisor, Dr.

Qinfeng Shi, whose expertise, understanding, and support made it possible for me to

work on the neural network that is of great interest to me. It is a pleasure working with

them. Prof. Shen’s dedication and keen interest to help his students had been solely

and mainly responsible for completing my work. His timely advice, meticulous scrutiny,

and scholarly advice have helped me to accomplish the tasks.

I would like to thank for my co-supervisor, Qinfeng Shi, for his time and effort on helping

me understand research work and knowledge of machine learning.

I thank PhD candidate Teng Li who cooperated to work on the Weather Classification

project. We set up experiment environment, analysed test results and discussed ap-

proaches. His prompt inspirations, timely suggestions with kindness, and enthusiasm

work attitude have helped to achieve the perfect classification accuracy.

I am extremely thankful to research fellow, Guoshen Lin, for his kind help and discussion

about the weather classification and the multi-label classification.

I would also like to thank staffs and visitors in the Australian Center for Visual Tech-

nologies (ACVT). Attending the reading group has enriched my knowledge in Computer

Vision and learned a lot from them.

Finally, I would like to warmly thank the staffs in the School of Computer Science at the

University of Adelaide. Julie Mayo, Sharyn Liersh and Jo Rogers have done excellent

jobs on administration which helps students to be focus on their research work.

iii

Contents

Declaration of Authorship i

Acknowledgements iii

List of Figures vii

List of Tables ix

Abbreviations x

I Weather Classification xi

1 Introduction 1

1.1 Overview . 1

1.2 Statistical Pattern Recognisation . 2

1.3 Artificial Neural Networks (ANNs) . 2

1.4 Weather Classification . 3

2 Background 4

2.1 Related Work . 4

2.2 Single-Layer ANNs . 5

2.3 Multi-Layer Networks . 8

2.4 Stochastic Gradient Descent (SGD) . 10

2.5 Backpropagation . 11

2.5.1 Training protocols . 12

2.6 Overfitting and Regularization . 13

2.6.1 Weight Decay . 14

2.6.2 Dropout . 15

2.7 Softmax Classifier . 16

2.7.1 Practical issues . 17

2.7.2 Error function . 18

2.8 Convolutional Neural Networks (CNN) . 19

2.8.1 Layers in CNN . 19

2.9 Spatial Pyramid Matching (SPM) . 21

2.10 Transfer Learning . 23

iv

Contents v

3 Methodology 25

3.1 Datasets . 25

3.2 Data Augmentation . 26

3.3 Spatial Pyramid Pooling (SPP) . 26

3.4 Convolutional Neural Networks Architecture 27

4 Experiment 30

4.1 Training Neural Networks . 30

4.2 Fine-tuning Model . 31

4.3 Companion . 32

4.4 Experimental Results . 32

4.5 Architecture Analysis . 34

4.6 Effects of SPP Layer . 36

4.7 Error Results . 37

4.8 Conclusion and Future Work . 37

II Multilabel Learning 39

5 Introduction 40

5.1 Overview . 40

5.2 Multi-Label Learning . 41

6 Background 44

6.1 Evaluation Metrics . 44

6.1.1 Example-based Metrics . 45

6.1.2 Label-based Metrics . 46

6.2 Learning Algorithms . 47

6.2.1 Problem Transformation Methods 47

6.2.1.1 Binary Relevance (BR) 47

6.2.1.2 Classifier Chains (CC) . 48

6.2.2 Algorithm Adaptation Methods . 49

6.2.2.1 Multi-label k-Nearest Neighbour (ML-kNN) 49

6.2.2.2 Collective Multi-label Classifier (CML) 50

7 Methodology 52

7.1 Artificial Dataset . 52

7.1.1 Generating Images . 53

7.2 Artificial Neural Networks (ANNs) . 53

7.2.1 Network Architecture . 54

7.2.2 Error Function . 56

7.2.3 Cross Entropy . 58

7.2.4 Training and Testing . 60

8 Experiment 63

8.1 Dataset . 63

8.2 Details of Network . 63

8.3 Results . 66

Contents vi

8.4 Conclusion and Future Work . 68

Bibliography 69

List of Figures

2.1 Diagram of a perceptron [1]. 5

2.2 Threshold function . 6

2.3 Linear function . 6

2.4 Sigmoid function . 6

2.5 Tanh function . 6

2.6 The error surface for a single layer neural network [2]. 8

2.7 Two types of dataset. The left one can be separated by a single layer
neural network. The right one cannot be separated by a single neural
network. Generated from [3]. 8

2.8 Diagram of a feedforward neural network [4]. 9

2.9 The error surface for a multi-layer neural network [2]. 10

2.10 A multi-layer neural network can separate a complicated dataset. Gener-
ated from [3]. 11

2.11 Overfitting example, the left one has a decent generalisation performance
and the right one is overfitting [5]. 14

2.12 Illustration of dropout [6]. 15

2.13 The left is a fully connect regular neural network. The right is a CNN in
3 dimensions [7]. 19

2.14 Diagram for depth in a convolutional layer [7]. 20

2.15 Diagram of the Spatial Pyramid Matching [8]. 22

2.16 The left is traditional machine learning method. The right is transfer
learning [9]. 23

3.1 2 Figures from the ImageNet [10]. 25

3.2 2 Figures from the Weather Dataset [11]. 26

3.3 A set of cropped patches from original image 27

3.4 Diagram of the SPP layer [12] . 28

3.5 Architecture of the AlexNet [13] . 28

4.1 Training Process . 33

4.2 Training Loss . 33

4.3 ROC Curve . 34

4.4 A cloudy image and the feature maps from convolutional layers 35

4.5 A sunny image and the feature maps from convolutional layers 36

4.6 Visiualisation of feature maps from the CNN model and the SPP model.
The upper images are from the CNN model and the lower images are from
the fine-tuned SPP model. 37

4.7 Histogram distribution of vectors from FC7. The left is from CNN model
and the right is from the SPP model. 37

vii

List of Figures viii

4.8 Misclassified images [11]. 38

5.1 Example Image . 40

7.1 Colour Wheel Diagram [14] . 52

7.2 Multilabel samples and the RGB colour histograms. Three labels mean
red, green and blue sequentially. 54

7.3 Network Topology For Multi-lable Classification 55

8.1 Network Topology . 64

8.2 The test results for different number of hidden neurons. Blue circle for
Sensitivity. Black plus for Specificity. Cyan star for Harmonic Mean. Red
dot for Precission. Green x for F1 Score. 66

8.3 The learning speed for 200 neurons in the hidden layer. Blue circle for
Sensitivity. Black plus for Specificity. Cyan star for Harmonic Mean. Red
dot for Precission. Green x for F1 Score. 67

8.4 The ROC curve for 200 hidden neurons 67

8.5 The ROC curve for 200 hidden neurons 68

List of Tables

3.1 Architecture of the model . 29

4.1 The first test is extracting features from the pre-trained CNN model and
training a SVM classifer. The second test is similar with the first except
for extracting features from the CNN model with a SPP layer. The third
test is fine-tuning the model with AlexNet architecture. The fourth test
is fine-tuning the CNN model with a SPP layer 32

5.1 Multilabel Y1, ..., YL ∈ 2L . 41

8.1 Test results for different number of hidden neurons. 66

ix

Abbreviations

SVM Support Vector Machine

ANNs Artificial Neural Networks

ROI Rogin of Interest

SIFT Scale Invariant Feature Transform

SGD Stochastic Gradient Descent

BP BackPropagation

MLE Maximum Likelihood Estimation

MAP Maximum A Posteriori

CNN Convolutional Neural Network

ReLU Rectified Linear Unit

SPM Spatial Pyramid Matching

SPP Spatial Pyramid Pooling

GPU Graphics Processing Unit

BR Binary Relevance Classifier

CC Classifier Chains Classifier

CML Collective Multi-Label Classifier

x

Part I

Weather Classification

xi

Chapter 1

Introduction

1.1 Overview

Computer is one of the most significant inventions in history. It provides huge power

in the data processing field, such as computer vision. Also, computer systems can aid

people in daily life, for example driverless vehicles. However, the human brain still has

compelling advantage in some fields, such as identifying our keys in our pocket. The

complex processes of taking in raw data and taking action based on the pattern are

regarded as pattern recognition. Pattern recognition has been important for people in

daily life for a long period and the human brain has developed an advanced neural and

cognitive capacity for such tasks.

Weather classification is one of the most important pattern recognition tasks which

relates to our work and lives. There are several major kinds of weather conditions, such

as sunny, cloudy, rainy. Human can classify them easily through their eyes. However, it

is not an easy task for machines, especially using computer vision techniques.

In this thesis, we describe an approach to this problem of weather classification based

upon the major trend in machine learning, and more precisely, deep learning. It differs

from those conventional methods, which extract features manually, and then train a

model to perform classification.

Compared to shallow learning which includes decision trees, SVM and naive bayes, deep

learning passes input data through several non-linearity functions to generate features

1

Chapter 1. Introduction 2

and performs classification based on those features. It generates a mapping and finds

the optimal solution.

1.2 Statistical Pattern Recognisation

In the statistical approach, a pattern is represented in terms of d-dimensional feature

vectors and each element of the vector describes some subjects of the example. In

summary, three components are essential for statistical pattern recognisation. The first

one is a representation of the model. The second one is an error function used to evaluate

the performance of the model. The third one is an optimisation method for learning a

model.

1.3 Artificial Neural Networks (ANNs)

Artificial neural networks were proposed in the mid-20th century. The term is inspired

by the structure of neural networks in the human brain. It is one of the most successful

statistical learning models used to approximate functions. Learning with ANNs yields

an effective learning paradigm and has achieved cutting-edge performance in object

classification.

Single-layer ANNs have shown great success for a simple model. For increasingly com-

plex models and applications, multi-layer ANNs have exhibited the power of features

learning. With hardware being developing at the same time, the demand for more

efficient optimising and model evaluation methods has increased promptly.

Recent development in ANNs has greatly advanced the performance of state-of-the-art

visual recognition systems. With implementing deep convolutional neural networks,

ANNs achieved top accuracy in the ImageNet Challenge. The model has been used in

related fields and performs well in pattern recognition.

Chapter 1. Introduction 3

1.4 Weather Classification

Weather classification is an important task in daily life. In this thesis, we focus on two

classes of weather conditions, sunny and cloudy.

There are some obstacles in front of weather classification. Firstly, because the number

of inputting pixels is high, for example a 500 × 500 RBG image containing 750, 000

pixels, computation is expensive. Secondly, some simple middle level image characters

are difficult to be recognised by machines, such as light, shading, and sun shine. It is still

not easy to detect these characters with high accuracy. Thirdly, there are no decisive

features, such as brightness and lightness, to classify scenes. Sun shine can be both

found in sunny and cloudy weather. Last but not least, outdoor images have various

backgrounds.

Chapter 2

Background

2.1 Related Work

There has been much research done on the task of weather classification. Most works

follow the procedure of extracting features and then performing classification [15–18].

Some works use low-level features, such as colour [19], texture [20, 21]. Some works use

filters or segmentation [20, 22] to extract high-level features, such as sky, shadow [11].

Some works use statistical measurement methods [12, 16] to analyse low-level feature

distributions.

Generally, the traditional methods follow three basic steps [16, 23]. First, some Regions

of Interest (ROIs), such as sky and shadow, are extracted from a weather image. Then,

histogram descriptors are used to represent the difference between them. Finally, a

classifier is trained based on the extracted features.

Most previous works are based on the discriminative model. They extract human recog-

nisable features to classify images. This type of shallow learning depends mainly on the

quality of features and human’s prior knowledge. An image without prior features or

with poor features is difficult to be classified. Furthermore, the methods require a lot of

work on data pre-processing and are not flexible. The approaches depend on structural

information to categorise an image into one of the classes. Structural information is

concluded from illumination invariant features, such as SIFT. However, previous works

have limitation on classifying diverse images. It is difficult to list all the factors which

determinate the weather conditions.

4

Chapter 2. Background and Related Work 5

2.2 Single-Layer ANNs

Artificial neurons were introduced as information processing devices more than fifty

years ago [24]. Following the early work, perceptrons were deployed in layers to perform

pattern recognition tasks. A lot of resources were invested in the research capability

of learning perceptrons theoretically and experimentally. As shown in Figure 2.1, a

perceptron computes a weighted summation of its n inputs and then thresholds the

result to give a binary output y. We can treat n input data as a vector with n elements,

and represent the vector as either class A (for output +1) or class B (for output -1).

Figure 2.1: Diagram of a perceptron [1].

Each output is computed according to the equation:

yi = f(hi) = f

∑
j

wijxj

 (2.1)

where xj is the jth input, yi is the ith output, and hi is the net input into the node.

The weight wij connects the jth input and the ith output, and the threshold function

f(h) is the activation function and usually makes up the form

f(x) = sign(x) =

−1 h < 0

1 h ≥ 0

(2.2)

and it is plotted out in Figure 2.2

Besides the threshold function, there are several deterministic activation functions.

Chapter 2. Background and Related Work 6

Figure 2.2: Threshold function

• Linear function

f(x) = x (2.3)

Figure 2.3: Linear function

• Sigmoid function

f(x) =
1

1 + e−x
(2.4)

Figure 2.4: Sigmoid function

• Tanh function

f(x) =
ex − e−x

ex + e−x
(2.5)

Figure 2.5: Tanh function

Chapter 2. Background and Related Work 7

We can also represent Equation 2.2 in vector notation, as in

y = f(h) = f(w · x) (2.6)

where w and x can be regarded as n × 1 dimensional column vectors, and n is the

dimension number of the input data. The term w · x in Equation 2.6 constructs a

(n − 1)-dimension hyperplane which passes the origin. The hyperplane can be shifted

by adding a parameter to Equation 2.1, for example

y = f(h) = f(w · x+ b) (2.7)

We can have the same effect by putting a constant value 1 and increasing the size of x

and w by one. The extra weight w with fixed value 1 is called bias weight. It is adaptive

like other weights and provides flexibility to hyperplane. Then we get:

y = f(h) = f(
n∑
i=0

wixi) (2.8)

The aim of learning is to find a set of weights wi so that:

y = f(

n∑
i=0

wixi) = 1 x ∈ ClassA

y = f(

n∑
i=0

wixi) = 0 x ∈ ClassB

The single-layer neural network is simple to implement, while it can only support a linear

decision boundary. We can build a simple neural network to acquire intuition behind

the mathematical theory. The network has no bias and one neuron which means it has

one weight, w1. We implement a logistic sigmoid activation function on the dot product

of input data and the weight w1. Therefore, the network can map the input data a0

onto an output aout based on the function

aout = f(a0w1) (2.9)

where f() is the logistic function. Given that an input data maps to an output label,

we can compute the value of the error function for each possible value of w1. Feeding

value of w1 in range (−10, 10), we can plot the error surface in Figure 2.6.

Chapter 2. Background and Related Work 8

Figure 2.6: The error surface for a single layer neural network [2].

The single-layer neural network has a linear decision boundary. However, the boundary

is limited. The limitation can be illustrated by two types of datasets in Figure 2.7 .

Figure 2.7: Two types of dataset. The left one can be separated by a single layer neu-
ral network. The right one cannot be separated by a single neural network. Generated

from [3].

2.3 Multi-Layer Networks

Single-Layer networks have limitation of representing complex functions. We are seeking

to learn the nonlinearity from samples. To improve the representation capability, we

can stack network layers. This is the approach of multi-layer neural networks. Multi-

layer neural networks implement linear discriminants through mapping the input data

to a nonlinear space. They can use fairly simple algorithms to learn the form of the

nonlinearity from training data.

Chapter 2. Background and Related Work 9

In the thesis, we limit multi-layer neural networks in the subset of feedforward neural

networks. Feedforward neural networks can provide a general mechanism for represent-

ing nonlinear functional mapping between a set of input data and a set of output labels.

Figure 2.8 is a feedforward neural network having two layers of adaptive weights.

Figure 2.8: Diagram of a feedforward neural network [4].

In this example, the middle column perceptrons act as hidden neurons. The network

has n inputs, 4 hidden neurons and m output neurons. The network diagram represents

the function in the form

ym = f̂
(m∑
j=0

w
(2)
j4 f

(n∑
i=0

w
(1)
4i xi

))
(2.10)

In Equation 2.10, the outer activation function could be different with the inner one.

There are some activation functions, including sigmoid and tanh functions. The sigmoid

function, also named the logistic function, can be represented as:

f(x) =
1

1 + e−x
(2.11)

Its outputs lie in the range (0, 1). We can do a linear transformation x̂ = x/2 on the

input data and a linear transformation ŷ = 2y − 1 on the output. Then we can get an

equivalent activation function tanh which can be represented as:

f(x) = tanh(x) =
ex − e−x

ex + e−x
(2.12)

Chapter 2. Background and Related Work 10

With enough hidden neurons, a three-layer neural network is capable of approximating

any function. In theory, the network performs an arbitrary accuracy to classification

problems.

We can use a simple example to illustrate the power of multi-layer neural networks. In

this example, we have one input, one hidden neuron and one output. There is no bias

in the input layer and the hidden layer. There are two weights existing in the network,

(w1, w2), and the output can be calculated through

aout = f(f(a0w1)w2) (2.13)

where f() is the sigmoid function. With varying w1 and w2, the error surface can be

represented in Figure 2.9. And the samples, which cannot be separated by a single-layer

Figure 2.9: The error surface for a multi-layer neural network [2].

neural network, can be classified by a multi-layer neural network correctly.

2.4 Stochastic Gradient Descent (SGD)

Because the weight space in neural networks is continuous, optimal weights values can

be learned through optimisation algorithms. The error function is defined as:

L(fw) =
∑

L(y, fw(x)) (2.14)

Chapter 2. Background and Related Work 11

Figure 2.10: A multi-layer neural network can separate a complicated dataset. Gen-
erated from [3].

Gradient descent is a first-order optimisation algorithm which starts from a random

point, and finds a nearby minimum point. It can converge to a minimum value.

The SGD is a type of gradient descent. It only considers a subset of samples for com-

puting the gradient and moves to a nearby point based on

w = w − η∆L(w) = w − η
n∑
i=1

∆Li(w) (2.15)

where η is the learning rate and Li(w) is the value of the error function at the ith

sample. The Robbins-Siegmund theorem [25] provides the approaches to almost surely

convergence to a global minimum under relatively mild assumptions. Moreover, SGD is

fast and effective in most circumstances.

2.5 Backpropagation

Multi-layer neural networks can represent mapping from the input data to the output

classes. One challenge is to learn a suitable mapping method from the training data.

This will be resolved by a popular learning algorithm, backpropagation.

Because activation functions are differentiable, the activation of output neurons can be

propagated to the hidden neurons with respect to weights and bias. If we have an error

function, we can evaluate derivatives of the error and update the weights to minimise

the error function through some optimisation methods.

Chapter 2. Background and Related Work 12

Backpropagation can be applied to find the derivatives of an error function related to the

weights and bias in the network through two stages. First, the derivatives of the error

functions, for instance sum-of-squares and Jacobian, must be evaluated with respect to

the weights. Second, a variety of optimisation schemes can be implemented to compute

the adjustment of weights based on the derivatives. After passing data through the

network, we can get the predicted classes. It updates weights based on the grandient

descent. Given that the network has i inputs, h hidden neurons and k outputs. The

update equation can be represented as:

w(j + 1) = w(j) + ∆w(j) (2.16)

where ∆w(j) is defined as:

∆w(j) = −η∂E
∂w

(2.17)

The weights, connecting the hidden layer and the output layer, are updated by

∆w(jk) = −η ∂E

∂wjk
= −ηδkyj (2.18)

where

δk =
∂E

∂ak
= (yk − tk)yk(1− yk)

The weights in the other hidden layers are updated by

∆w(ij) = −η ∂E
∂wij

= −ηδjyi (2.19)

where

δj =
∂E

∂aj
=
∑
k

δkwjkyj(1− yj)

The δj of a hidden neuron is based on the δk of the output linked neurons. To minimise

the error function E by gradient descent, it needs the backwards propagation of errors.

2.5.1 Training protocols

In supervised learning, training samples consist of data with labels. We can use the

neural networks to find the output of the training data and learn optimal weights. There

Chapter 2. Background and Related Work 13

are mainly three types of training protocols, stochastic, batch and online training. In

stochastic training, we randomly choose samples from the training data and update

weights every time. In batch training, all samples are passed through the network, and

weights are updated after one epoch. In online training, each sample of the training

data is used once and weights are updated each time. We usually define one time of

passing all training data through neural networks as one epoch.

It is worth mentioning batch learning. In large scale applications, the training data can

contain over millions of samples. It is time-consuming to compute the error function

over all training data points in order to update weights once. It is a practical approach

to compute the gradient over a batch of training data. Does it have harmful effects on

generalisation? It depends on the correlations among the training data. Consider that

there are more than one million images in the ImageNet dataset which is made up of

only 1000 categories. If the images in a batch are selected evenly from each category,

the gradient from the batch is a reasonable approximation of the full training data.

Therefore, batch learning leads to faster convergence by evaluating the batch gradients

to update weights frequently.

2.6 Overfitting and Regularization

Overfitting is a common phenomenon that a model has high performance on the training

data, but the model performs poorly on the testing data. Thus, a classification problem

with two classes and two input variables, (left Figure in 2.11), shows decent decision

boundaries. With increasing complexity of the model, the decision boundaries become

more complex and fit the training data extremely well. From the example in Figure

2.11, it is clear that a model, whose complexity is neither too small nor too large, has

the best generalisation performance.

In order to find the optimal complexity of the neural network, there are mainly two

approaches. One is to change the adaptive parameters, such as neuron numbers in

hidden layers. This is named structural stabilisation. It can be approached from two

directions. We can start from a small network and increase layer numbers or neuron

numbers in the training process and arrive at an effective neural network architecture.

The other one is to start from a large network and prune out layers or neurons in the

Chapter 2. Background and Related Work 14

Figure 2.11: Overfitting example, the left one has a decent generalisation performance
and the right one is overfitting [5].

training process to achieve the optimal neural network architecture. Another method is

regularisation which includes adding a penalty term in the error function. The degree of

regularisation can be adjusted by scaling the term through a multiplicative parameter.

Regularisation helps to smooth the decision boundary surface by introducing a penalty

term Ω to the error function

Ê = E + λΩ (2.20)

where E is the actual error value, then λ adjusts the extent of the penalty Ω effect on

the solution. The task of learning is to minimise the total error value Ê. It needs to

compute the derivatives of Ω with respect to the weights efficiently. A model, which

has high accuracy in the training data, has a small value for E. At the same time, the

smooth error surface of neural networks gives a small value on Ω.

A number of regularisers have been performed in applications, such as weight decay,

early stopping, training with noise, and weight sharing etc..

2.6.1 Weight Decay

In order to smooth the decision boundary surface, weight values should be small. The

weight decay regulariser can be represented as:

Ω =
1

2

∑
i

w2
i (2.21)

Chapter 2. Background and Related Work 15

where the sum includes all weights and bias. Weight decay of this form leads to major

improvement in empirical generalisation [26]. Intuitively, in Equation 2.21, the smaller

the weights are, the better the regulariser is. Usually, the derivatives of the total error

function with respect to the weight are used to train neural networks. The network is

trained by gradient descent in the continuous time limit. The weights will evolve with

time t
∂w

∂t
= −η∇E = −ηλw (2.22)

where η is the learning rate. And the equation has solution

w(t) = w(0)e(−ηλt) (2.23)

and the exponential function reduces weights to zero quickly. Weight decay is also named

L2 regularisation.

2.6.2 Dropout

Neural networks with deep layers and a large amount of neurons is a powerful learning

machine. However, the more parameters the network has, the easier it is overfitting.

Recently, dropout [6] is a simple and extremely effective regularisation technique which

complements the other methods. At the training process, random neurons are selected

with a probability p to update their associated weights, and the others are inactive.

In other words, only a reduced network is trained. At the testing process, there is

Figure 2.12: Illustration of dropout [6].

no dropout applied and all neurons are active. The dropout method is replaced by

Chapter 2. Background and Related Work 16

performing a scaling of layer outputs by the same probability p. This method can

maintain the outputs of neurons to be the same in both training and testing process.

For example, if a neuron has p probability to be dropped out in the training process, the

neuron should give an output l without dropout in the testing process. Then we should

apply (p ∗ l + (1 − p) ∗ 0) on the output, because the output has (1 − p) probability to

be 0.

2.7 Softmax Classifier

Softmax function, also named normalised exponential, is a generalisation of the logistic

function which squeezes a d-dimension arbitrary real values vector to the same dimension

vector of real values in the range (0, 1) that add up to be 1. Because softmax function

is the gradient log normaliser of categorical probability distribution, it can be used in

probabilistic multiclass classification problems.

Softmax function derives from log linear models and interprets the weights in terms of

convenient odds ratios. It can constrain the input values of the final layer to be positive

and sum of them to be 1.

A softmax layer begins the same way as the normal layer which forms the weighted

inputs zLj =
∑

k w
L
jkx

L−1
k + bLj where L is the layer number, k is the input data number

and j is the output neuron number. Then it implements a softmax function to the zLj

and activates the j output neuron:

fj(z) =
ezj∑
k e

zk
(2.24)

Equation 2.24 implies that the output values are all positive and the sum of all values∑
k e

zk is 1.

The softmax classifier can be used to handle multiclass classification. For the training

data (x1, y1), . . . , (xm, ym), yi ∈ {1, 2, . . . ,K} of m labelled samples, the label ys have K

different values.

Given an unseen sample x, we will use a hypothesis to estimate the probability P (y =

k|x) for each value k = 1, . . . ,K. For example, we want to compute the probability

of the class label on each of K different possible values. The neural network will then

Chapter 2. Background and Related Work 17

output a K dimensional vector which represents K estimated probabilities.

hW (x) =

P (y = 1|x;W)

P (y = 2|x;W)
...

P (y = K|x;W)

 =
1∑K

j=1 exp(W (j)>x)

exp(W (1)>x)

exp(W (2)>x)
...

exp(W (K)>x)

 (2.25)

Where W j are the weights of the model and the normalised distribution ensures that

the sum is one.

The cross entropy can interpret the softmax classifier. The cross entropy between actual

distribution p and a predicted distribution q is represented as:

H(p, q) = −
∑
x

p(x) log q(x) (2.26)

Hence, the task of the softmax classifier is to minimise the cross entropy between the

actual distribution and the predicted distribution.

In summary, the softmax classifier can be interpreted in probability view. Given a

sample (xi, yi) and parameters W , we can compute the normalised probability:

P (yi | xi;W) =
efyi∑
j e

fj
(2.27)

where fyi is the score predicted by the model with weights W . Therefore the nor-

malised probabilities are computed by exponentiating the values and divided by the

sum of all values. We can minimise the negative log likelihood of the ground truth

labels by performing Max Likelihood Estimation(MLE). Aside from MLE, Maximum a

Posteriori(MAP) can evaluate the performance of a model as well.

2.7.1 Practical issues

From a numerical view, the exponential computation is apt to overflow. Thus, the out-

put of the softmax function is not numerically stable through computing efyi and
∑

j e
fyj

Chapter 2. Background and Related Work 18

directly. The implementation requires a normalisation trick. It is mathematically equiv-

alent to multiplying a constant C with both the top and bottom of the fraction.

efyi∑
j e

fj
=

Cefyi

C
∑

j e
fj

=
efyi+logC∑
j e

fj+logC
(2.28)

where C can be any positive value. The constant C does not change the output value,

but it improves the numerical stability of the computation. An experienced choice of C

is to set logC = −max fj , and it can shift the vector f to preserve the highest value as

0.

2.7.2 Error function

An error function is used to evaluate performance of a model. We will generate an error

function for softmax regression. An indicator function, I{·}, is introduced to represent

the accuracy for each label. If the predicted result corresponds to the actual label, say

y(i) = k, the indicator function returns 1, otherwise 0. The error function will be defined

as:

L(W) = −

[
m∑
i=1

K∑
k=1

I
{
y(i) = k

}
log

exp(W (k)>x(i))∑K
j=1 exp(W (j)>x(i))

]
(2.29)

where this generates the logistic regression error function

L(W) = −

[
m∑
i=1

(1− y(i)) log(1− hW (x(i))) + y(i) log hW (x(i))

]
(2.30)

= −

[
m∑
i=1

I∑
k=0

I
{
y(i) = k

}
logP (y(i) = k|x(i);W)

]
(2.31)

Similar to the logistic regression error function, the softmax error function sums over

the predicted different K values of the classes. In the softmax regression, the posterior

probability distribution can be represented:

P (y(i) = k|x(i);W) =
exp(W (k)>x(i))∑K
j=1 exp(W (j)>x(i))

(2.32)

It is difficult to solve Equation 2.30. Usually an optimisation algorithm can approximate

optimal values. Taking derivative with respect to weights, we can compute the entire

Chapter 2. Background and Related Work 19

gradient

∇W (k)L(W) = −
m∑
i=1

[
x(i)

(
1{y(i) = k} − P (y(i) = k|x(i);W)

)]
(2.33)

We can take partial derivative of L(W) with respect to the jth element of W (k).

2.8 Convolutional Neural Networks (CNN)

Convolutional Neural Networks [27] are widely applied in image understanding and

achieve top rank in the image classification competetion [13]. Compared to regular

neural networks, CNN architecture assumes that the inputs are images and pixels are

related in the local region.

CNN architecture has neurons arranged in 3 dimensions, width, height and depth. For

example, there is an image which has dimensions 32×32×3. The neurons in a layer will

connect to a customised region of the previous layer. Moreover, the final output layer

has dimensions 1× 1× d, where d is the number of classes. The dimensions are reduced

from 3, 072 to d. The output is a single vector of class scores.

Figure 2.13: The left is a fully connect regular neural network. The right is a CNN
in 3 dimensions [7].

2.8.1 Layers in CNN

CNN has four main types of layers, including convolutional layers, Relu layers, pooling

layers and fully connected layers. Every layer transforms the input to the output through

a differentiable function.

1. Convolutional Layer

2. ReLU Layer

Chapter 2. Background and Related Work 20

3. Pooling Layer

4. Fully Connected Layer

Following the layers, CNN transforms an image from a set of pixel values to final class

scores.

Convolutional Layer is the key component of CNN and its output can be represented

as neurons shaped in 3D volume. A set of learning filters make up the convoultional

layer’s parameters. Although the size of filter is flexible, it usually chooses small size.

During the feedforward process, each filter slides across the input volume and produces a

2-dimensional feature map. In each slide, the input and the filter perform a dot product

computation. If there are some specific features at some spatial positions, they can be

learnt by the filters.

Local connectivity is the key properties of CNN. Regular neural networks use fully

connected layers. Computation is unaffordable for normal size images, even with high

capability hardware. Instead, each neuron connects a local region of the input only.

There are two main benefits from local connectivity. One is reducing parameters sig-

nificantly and controlling overfitting. The other is for a key image property. Pixels are

strongly correlated with nearby pixels. This can be regarded as a local receptive field

which can retrieve information from subregions of an image.

Figure 2.14: Diagram for depth in a convolu-
tional layer [7].

To control the output volume arrange-

ment, three parameters are introduced.

They are depth, stride and zero-padding.

In a convolutional layer, depth controls

the number of neurons which connect the

same subregion of the input volume. All

the neurons learn the different features

from the input volume. For example, the

neurons along the depth in the convolu-

tional layer can activate existence of var-

ious edges, colour, etc.. Stride is another

parameter which controls the spatial po-

sition of the nearby depth column of neurons. The smaller the stride is, the more

Chapter 2. Background and Related Work 21

overlapping receptive fields are shared by the nearby columns. Zero-padding on border

helps to resize output volume to the same dimension with the input volume.

A scheme, named parameter sharing, is implemented in convolutional layers to limit the

number of parameters. The scheme supposes that a filter, which is helpful to compute

at some spatial positions, should be helpful to compute another position.

ReLU Layer is the abbreviation of Rectified Linear Units. The neurons in the layer

operate the non-saturating activation function f(x) = max(0, x) over the result of dot

product in convolutional layers. The layer increases non-linearity to the network without

losing the receptive fields of convolutional layers.

Pooling Layer is a mechanism of downsampling. It is usually appended after convo-

lutional layers to progressively decrease the spatial size of feature maps. It decreases

network parameters. At the same time, it makes the neurons in the layer to be relatively

insensitive to small shifts of images.

Fully Connected Layer takes feature maps, which have high level representation, from

previous layers. The difference with convolutional layer is that it connects to all neurons

in the previous layer instead of a receptive field.

2.9 Spatial Pyramid Matching (SPM)

Spatial pyramid matching [8] is used to classify high-level semantic attributes, based

on low-level features. The method subdivides an image in several different levels of

resolution and counts the features falling in each spatial bin. It extends bags of features

method and derives spatial information from images.

Let two sets of vectors X and Y be in a d-dimensional feature space. SPM could

find the approximate correspondence between them. In summary, SPM places a chain

of grids over the feature space and counts sum of matches occurring at each level of

resolution. The points falling into the same grid are matched and the match points in

finer resolutions have higher weights. Specifically, a chain of grids at resolutions 0, . . . , L,

have 20, . . . , 2L cells respectively. H l
X and H l

Y are the histograms of X and Y at the l

resolution, thus the number of points in the i-th cell from X and Y can be represented as

H l
X(i) and H l

Y (i). The histogram intersection function denotes the number of matches

Chapter 2. Background and Related Work 22

Figure 2.15: Diagram of the Spatial Pyramid Matching [8].

at level l

I(H l
X , H

l
Y) =

D∑
i=1

min(H l
X(i), H l

Y (i)) (2.34)

Because the match points found in the l level include the match points found in the finer

level l + 1, the number of new match points at level l is I l − I l+1. The weight assigned

to level l is 1
2L−l . Putting all together, the pyramid match kernel can be represented:

KL(X,Y) = IL +
L−1∑
l=0

1

2L−l
(I l − I l+1) (2.35)

=
1

2L
I0 +

L∑
l=1

1

2L−l+1
I l (2.36)

We perform SPM in a 2-dimensional image space and apply standard vector quantisation

in the feature space. All feature vectors are quantised into M discrete types and only

the same type of features match to one another. Two sets of 2-dimensional vectors, Xm

and Ym, represent the coordinate of the features of type m in the individual image. The

match kernel of two images is the sum of total channel kernels

KL(X,Y) =

M∑
m=1

KL(Xm, Ym) (2.37)

Chapter 2. Background and Related Work 23

2.10 Transfer Learning

In the literature on machine learning, transfer learning [28] focuses on storing knowledge

from one domain and applying it to a related problem. In other words, the relevant

knowledge, learned from previous tasks, can be applied to new tasks. The closer a new

task relates to previous knowledge, the more easily it can be solved. In contrast, other

machine learning methods solve problems independently.

Transfer learning has three benefits. The first one is to save time on preprocessing data.

Collecting and processing raw data are time consuming and expensive in each task. It

can reduce volume of required data significantly, because of existing knowledge extracted

from previous learning tasks. The second one is to reduce time on training a model from

scratch. Usually, training a model from scratch is time consuming. The last one is to

avoid the risk of overfitting. With insufficient training data, a complicated model is apt

to overfitting. Transfer learning can control overfitting.

Figure 2.16: The left is traditional machine learning method. The right is transfer
learning [9].

A domain can be represented

D = {X,P (X)} (2.38)

where X is the feature space and P (X) is the marginal probability distribution.

In transfer learning, there are two main challenges:

Chapter 2. Background and Related Work 24

1. Which part of previous knowledge is useful to the new task?

2. How to represent the existing knowledge in the new model?

The first challenge arises, when we evaluate the relation between the previous knowledge

and the current task. The correlated knowledge for the task can improve the performance

of a model. Meanwhile, the unrelated and negative correlated knowledge are useless,

even harmful. After evaluating the useful knowledge, new learning algorithms should

be developed to transfer the knowledge. This leads to the second challenge. Because

knowledge have different representations, translation process must keep accuracy and

minimise loss of knowledge.

Chapter 3

Methodology

3.1 Datasets

There are over 15 million labelled images in the ImageNet database which has 22,000 cat-

egories. The images were collected from the Internet and labelled manually. From 2010,

the competition, named the ImageNet Large-Scale Visual Recognition Challenge(ILSVRC)

[10], has been held annually. The competition uses a subset of dataset which contains

more than 1000 images in 1000 categories. With 50,000 validation images and 150,000

testing images, there are over 1 million images in total.

Figure 3.1: 2 Figures from the ImageNet [10].

The weather dataset [11] contains 10,000 images for two categories evenly, cloudy and

sunny. They were collected from three sources, the Sun Dataset [29], the Labelme

25

Chapter 3. Approach of Weather Classification 26

Dataset [30] and the website, Flickr. They were classified manually and similar images

were removed. No unambiguous images exist in the dataset.

Figure 3.2: 2 Figures from the Weather Dataset [11].

In general, the two datasets are different. The ImageNet dataset is for object classifica-

tion and the weather dataset is for scene classification.

3.2 Data Augmentation

CNN architecture [13] has about 60 million parameters, and it is easy to overfit. Data

augmentation can reduce the risk of overfitting. The dataset is artificially enlarged by

cropping and horizontal reflecting images. For each 256 × 256 image, five 224 × 224

patches are extracted from four corners and center, then they are reflected horizontally.

10 patches are extracted from one image in total. Figures 3.3 illustrates the method of

data augmentation.

3.3 Spatial Pyramid Pooling (SPP)

Features, which are useful for scene classification, can be at any spatial position in an

image. This could be a problem to CNN, because the architecture suits to recognise

objects in the center of images. A SPP layer can help to solve the problem.

A SPP layer is deployed behind the fifth convolutional layer. A set of bins are set

to discern different local information from the output of the fifth convolutional layer.

Chapter 3. Approach of Weather Classification 27

(a) original image (b) cropped from left up (c) cropped from left down

(d) cropped from right up (e) cropped from right down (f) cropped from center

Figure 3.3: A set of cropped patches from original image

Assuming dimensions of feature maps are a×a and the bin size is n, each window size is

da/ne and stride size is ba/nc, where d e and b c denote the ceiling and flooring operations.

For the l level pyramid, there are l SPP layers. The layers will be concatenated into a

fully connected layer. The bin sizes can be set to 1, 2, 3 and 6 for the SPP layers.

With the help of the SPP layer, most features of different scales are taken into account.

3.4 Convolutional Neural Networks Architecture

Due to significant performance of the AlexNet [13] which is a deep neural network, we

train a model based on the network architecture. The architecture of the network has

seven hidden adaptive layers, which are five convolutional layers and two fully connected

layers. The network is very deep and has a huge number of parameters. It was trained

on two GPUs in the original experiment. The model achieves 62.5% accuracy rates with

one prediction and 83% accuracy rates with five predictions in the competition.

Chapter 3. Approach of Weather Classification 28

Figure 3.4: Diagram of the SPP layer [12]

Figure 3.5: Architecture of the AlexNet [13]

The network uses ReLU [31] as the activation function, which learns a model faster than

tanh function does.

In the network, there are three types of layers and they play different roles in the model.

The input data dimension is 224 × 224 × 3. In the first convolutional layer, there are

98 kernels with size 11 × 11. The stride size is 4 and the outputs are 96 neurons. A

following max pooling layer downsamples the spatial dimension. The second layer scans

the output of the previous pooling layer with 256 kernels with size 5×5. The third layer

owns 384 kernels with size 3 × 3. The fourth layer has 384 kernels with size 3 × 3 and

the last layer has 256 kernels with size 3 × 3. After the convolutional layers, two fully

connected layers have 4096 neurons each. At the end of the network, there is a softmax

layer with 1000 outputs.

Chapter 3. Approach of Weather Classification 29

Layer Name Layer Description

Input 224 × 224 RGB image

CONV1 11 × 11 conv, 96 ReLU neurons, stride 4

POOL1 3 × 3 max pooling, stride 2

CONV2 5 × 5 conv 256 ReLU neurons, stride 1

POOL2 3 × 3 max pooling, stride 2

CONV3 3 × 3 conv 384 ReLU neurons, stride 1

CONV4 3 × 3 conv 384 ReLU neurons, stride 1

CONV5 3 × 3 conv 256 ReLU neurons, stride 1

POOL5 3 × 3 max pooling, stride 2

SPP bin size 1,2,3,6

FC6 fully connect, ReLU 4096 neurons

FC7 fully connect, ReLU 4096 neurons

FC8 fully connect, ReLU 1000 neurons

SOFTMAX 1000 way softmax

Table 3.1: Architecture of the model

Chapter 4

Experiment

The experiment environment includes hardware, which is i7 CPU, 8G RAM and a

GeForce GTX 770, and software, which is Ubuntu Linux 14.04 and Caffe [32], a deep

learning software framework.

4.1 Training Neural Networks

We trained the model with the 1000-category ImageNet2012 dataset. We used the

network architecture [33] which achieved an excellent accuracy in the 2013 ImageNet

Competition. We implemented SPP with CUDA C language and deployed it before the

first fully connected layer.

In the experiment, a subset of the ImageNet dataset, which contains 1.2 million labelled

high-resolution images depicting 1,000 object categories and 50,000 validation images,

was used as training data. Most images are multi-scale and some are grey. To feed

them into the network conveniently, the images were converted to the same dimensions

, 256 × 256. Grey images were combined triple times to simulate RGB images. The

model was trained on raw RGB values of pixels. The activation function is the ReLU,

which guarantees fast training of the neural network.

f(x) = max(0, x) (4.1)

30

Chapter 4. Experiment 31

The model 3.5 was trained with a descent optimisation method, SGD. The batch size is

128, and the momentum is 0.9. In each layer, the weights are initialised with a Gaussian

distribution which has the mean of 0, and the standard deviation of 0.01. The neuron

bias, in the Conv2, Conv4, Conv5 and fully connected layers, was initialised with value

1, while the other bias was initialised with value 0.

The learning rates are set equally for all layers. They are initialised at 0.01 and decrease

with the stepdown policy which means that they would drop by a factor of 10 after

each 100,000 iterations. In total, the learning rates drop 3 times and the accuracy keeps

stable after 370,000 iterations.

The training is regularised via the techniques, including dropout and weight decay. The

dropout regularisation is implemented at the two fully connected layers and the dropout

ratio is 0.5. The neurons, which are dropped out, output zero and do not participate in

the backpropagation process. Therefore, the neural network samples different architec-

tures each time. This significantly decreases complex co-adaptations of neurons because

they do not depend on the existence of other neurons. The weight decay, ε, is set to

0.0005 which means the new weights are shrunk according to

wnew = wold(1− ε) (4.2)

after each updating.

4.2 Fine-tuning Model

There are two challenges to training on the original model. Firstly, the original CNN

model is trained to classify images of 1, 000 categories. However, the current task is

to classify two weather scenes. This can be solved by reducing the outputs of the last

fully connected layer from 1, 000 to 2. Secondly, the CNN architecture contains about

60 million parameters which are too many for the weather classification dataset. The

target dataset has only 10, 000 images in total. The number of images is insufficient and

the model is feasible to overfit. It can be solved by training a new model based on the

pre-trained CNN model. Because the pre-trained model is close to optimism, it only

needs a tiny adjustment.

Chapter 4. Experiment 32

The fine-tune transfers the weights of each layer from the pre-trained model to the new

model except for the last fully connected layer. The last layer is taken over by a new layer

which contains the same amount of neurons equally to the class number. The weights in

the replaced layer are initialised with random values. One advantage of fine-tune is to

minimise risk of overfitting. The other one is that weights reach optimal values quickly.

9, 000 images are used for training and 1, 000 images are reserved to test the model. The

batch size is 128. There are 10, 000 iterations in the training process totally. Then the

total training image number is 128× 9, 000. One epoch is that the total training images

are fed into the network once. The training epochs are 142. The initial base learning

rate is 0.001 and the rate is divided by 10 every 10 epochs. Because the weights in FC8

are randomly initialised and they are not close to final optimisation value, the learning

rate for FC8 is 10 times of the base learning rate to converge quickly.

4.3 Companion

In order to compare performance of the fine-tuned model, we did extra tests with ex-

tracting feature methods. We used a pre-trained model with the AlexNet architecture

and extracted features from the layer FC7. We trained a SVM classifier based on the

features and classified the test samples.

4.4 Experimental Results

The results in Table 4.1 illustrate that the models, trained by the neural networks, have

better performance than the extracting features method.

Methods CNN+SVM SPP+SVM Finetune on CNN Finetune on SPP

Accuracy 84.8% 82.1% 93.1% 93.98%

Table 4.1: The first test is extracting features from the pre-trained CNN model and
training a SVM classifer. The second test is similar with the first except for extracting
features from the CNN model with a SPP layer. The third test is fine-tuning the model
with AlexNet architecture. The fourth test is fine-tuning the CNN model with a SPP

layer

The fine-tuning process converges quick. After about 30 epochs, the accuracy rate

exceeds 90%.

Chapter 4. Experiment 33

Figure 4.1: Training Process

The learning process may overfit and it will definitely damage model generalisation

capability. From Figure 4.1, it shows that there is no overfitting in the fine-tuning

process.

In order to have a more detailed information of the fine-tuning process, we investigate

the training loss values. We plot the curve and the loss values during the first 200

iterations.

Figure 4.2: Training Loss. Figures show that loss curve has a better convergence on
the finetuned model.

From Figure 4.2, it is clear that the fine-tuning process produces a smoother loss curve

and ceases at a higher accuracy rate. In the left figure, the loss value of the fine-tuning

procedure is higher than the value of the non fine-tuning process at the beginning. Then

it shrinks sharply and maintains lower than the value of the non fine-tuning process. In

Chapter 4. Experiment 34

the right figure, we can find that the initial loss value is less than that in the left figure.

And the loss value of the fine-tuning process is less than the value in the non fine-tuning

process. In summery, fine-tuning is an effective approach to training a new model. The

model with SPP layers achieved high performance.

Figure 4.3: ROC Curve

4.5 Architecture Analysis

CNN has achieved excellent accuracy in object classification, although a full understand-

ing of the mechanism is ambiguous. In order to have some intuition about CNN, we will

analyse the network outputs.

The outputs of each convolutional layer have been treated as visual descriptors [34],

and the vectors present some information from the outputs of previous layers. The

front layers encode low-level features, and the rear layers are able to capture high-level

features. In summary, information in an image is retrieved heuristically when it passes

the convolutional layers.

Chapter 4. Experiment 35

Fully connected layers can be represented as a d-dimensional vector. The layer takes

multidimensional outputs from the previous layer and flats the feature maps into a

d-dimensional vector. The outputs of the second fully connected layer are fed into a

classifier.

When a cloudy image is fed into the CNN, Figure 4.4 shows the feature maps of convo-

lutional layers. Because the filter size is too many, only parts of the filters are plotted

in b-f.

(a) raw image (b) conv1 output (c) conv2 output

(d) conv3 output (e) conv4 output (f) conv5 output

Figure 4.4: A cloudy image and the feature maps from convolutional layers

In Figure 4.5, a sunny image is fed into the CNN and the according outputs are plotted.

The outputs of CONV 1 and CONV 2 are still partly recognisable by people. The

outputs of CONV 3 and CONV 4 are unrecognisable. From the outputs of CONV 5 for

the sunny image, the position of sun light is highlighted by several filters. However, the

according filters show no signs about the cloudy image.

Chapter 4. Experiment 36

(a) raw image (b) conv1 output (c) conv2 output

(d) conv3 output (e) conv4 output (f) conv5 output

Figure 4.5: A sunny image and the feature maps from convolutional layers

4.6 Effects of SPP Layer

The outputs of SPP layers cannot be represented as visual descriptors, then only the

feature maps of the convolutional layers are compared in the models. The outputs of

CONV 1 and CONV 2 show that more features are recognisable in the SPP model. It

illustrates that the SPP model has stronger representation capability than the CNN

model does.

In Figure 4.7, the histograms of the outputs from the layer FC7 are displayed. Com-

paring histogram difference, the generated features of the SPP model is more divisible

than those of the CNN model.

From the feature maps and histogram distributions, it is clear that the SPP model has

strong representing capability and can generate divisible features to classifiers.

Chapter 4. Experiment 37

Image Conv1 Conv2 Conv3 Conv4 Conv5

Image Conv1 Conv2 Conv3 Conv4 Conv5

Figure 4.6: Visiualisation of feature maps from the CNN model and the SPP model.
The upper images are from the CNN model and the lower images are from the fine-tuned

SPP model.

Figure 4.7: Histogram distribution of vectors from FC7. The left is from CNN model
and the right is from the SPP model.

4.7 Error Results

The images in Figure 4.8 are misclassified by the CNN model and the SPP Model. They

are difficult to judge sunny or cloudy, even for people.

4.8 Conclusion and Future Work

In this experiment, we present an effective approach to perform weather classification

through CNN and transfer learning. The results illustrate the strong capacity of CNN

and the convenience of transfer learning. Compared with the shallow learning methods,

which extract features and train a classifier, the CNN method does not depend on specific

feature detectors and achieves high accuracy.

In the future, the full understanding of the CNN mechanism is a demanding work. And

the work can be extended to multi-class weather classification and will be implemented

in industry widely.

Chapter 4. Experiment 38

(a) sunny (b) sunny (c) sunny

(d) cloudy (e) cloudy (f) cloudy

Figure 4.8: Misclassified images [11].

Part II

Multilabel Learning

39

Chapter 5

Introduction

5.1 Overview

In the literature of machine learning, multi-label classification is a variant of classifica-

tion problems where each sample has several labels. In general, the task of multi-label

learning is to train a model that can map inputs x to a set of binary vectors y. It differs

with multi-class classfication in terms of output label space.

Figure 5.1: Example Image

The difference between single-label classification and multi-label classification is the

number of output labels. In Figure 5.1, we can classify it as an image of a beach in

40

Chapter 5. Introduction 41

X1 X2 X3 X4 X5 Y1 Y2 Y3 Y4
1 0.4 0.2 0 1 0 1 1 0
0 0.2 0.6 1 1 1 0 1 0
0 0.5 0.8 1 1 0 0 1 0
1 0.1 0.4 0 1 1 1 1 0
1 0.8 0.2 0 1 0 1 1 0

0 0.5 0.3 1 1 ? ? ? ?

Table 5.1: Multilabel Y1, ..., YL ∈ 2L

single-label classification problem ∈ {Y es,No}. In multi-label classification, we can tag

beach, sea, chairs, sand for the image ∈ {beach, sea, chairs, sand}.

In general, there are two main approaches to tackle the multi-label classification prob-

lem. One method is to transfer a multi-label problem into a set of binary classification

problems which can be handled by a set of binary classifiers. The other one applies

algorithms to classify multi-label images directly.

Several problem transformation methods can be applied to multi-label classification. A

baseline method, the binary relevance method [35], trains one binary classifier for each

label independently. Depending on the results of the classifiers, the combined model

predicts all labels for a test sample. The method divides the problem into multiple

binary works which are common in something with the one-vs-all method for multi-class

classification. Problem transformation methods benefit from scalability and flexibility

because single-label classifier can be implemented easily. SVM, Naive Bayes, and k

Nearest Neighbor have been used in the methods [35].

Other transformation methods include label powerset transformation. The method

builds up one binary classifier for each label combination verified in the training data

[36]. The random k-labelsets algorithm [37] utilises a multi-label powerset classifier

which is trained on a random subset of the labels. Finally, a voting scheme predicts test

samples through an ensemble method.

5.2 Multi-Label Learning

Let X = Rd represent the domain of dataset and let Y = 1, 2, .., L be the finite set of

labels. Given that we have a set of training data T = (x1, Y1), (x2, Y2), ..., (xl, Yl)(xi ∈

X,Yi ⊂ Y) which are extracted from an unknown distribution D. The target of task

Chapter 5. Introduction 42

is to learn a multi-label classifier h : X → 2y based on optimising specific evaluation

metrics. However, instead of learning a multi-label classifier, we will learn a function f

while f(X) → Rd. Given that a high performance classifier can output a closer subset

for labels in Yi than those missing or exceeding in Yi, then f(xi, y1) > f(xi, y2) if y1 ∈ Y i

and y2 /∈ Y i. We can transfer real valued function f(·, ·) to a ranking function r(·, ·)

that maps the outputs of f(xi, y1) to any y ∈ Y if f(xi, y1) > f(xi, y2). It is worth

mentioning that the multi-label classifier h(·) can be derived from the function f(·, ·),

where h(xi) = y|f(xi, y) > t(xi), y ∈ Y , and t(·) is a threshold function.

Single-label and multi-class classification can be regarded as two degenerated variants

of multi-label learning problems if each sample has only one single label. However,

multi-label problems are much more difficult than single-label problems because of high

dimensional output space. For example, the number of label sets increases exponentially

with increasing number of class labels. If there are 10 class labels for data, there are 210

possible label sets maximun.

A huge combination of output labels is a challenge. One of methods is to investigate

dependency among labels to reduce label space. For example, if an image labelled with

castle, it is possible to be labelled with brick and mountain. A movie, is labelled with

comedy, is unlikely to be relating to a documentary. Therefore, successful exploitation

of label correlations is regarded as an effective approach to high accuracy multi-label

learning machine. There are three strategies, depending on the order of label correla-

tions, to find the relation between labels. They are first order strategy, second order

strategy and high order strategy.

The first order strategy treats the label by label independently and ignores correlation

between labels. It can be regarded as decomposing a multi-label learning problem into

a set of binary classification problems based on each label. The method benefits from

simple computation and high efficiency. However, accuracy could be suboptimal because

of ignoring the correlation of labels.

The second order strategy considers pairwise relations between labels. For example, the

interaction between any pair of labels, or the ranking between related and unrelated

labels. The method achieves good generalisation performance because the label correla-

tions are investigated in some extent. In real world, there are higher order correlations

than second order assumption in many applications.

Chapter 5. Introduction 43

The high order strategy investigates more than 2 order correlations among labels which

can be the influence on each label or addressing connections among sub-space of output

labels. It is obvious that the high order strategy is more capable than the previous two

strategies on the cost of complexity and intensive computation.

Chapter 6

Background

Compared to general classification, multi-label classification has different evaluation met-

rics and learning algorithms.

6.1 Evaluation Metrics

In supervised learning, different methods, such as accuracy and area under the ROC

curve, are used to evaluate the generalisation performance of a model. In the multi-label

learning, evaluating performance is more complicated than single-label classification

problems because of increasing number of labels simultaneously. Therefore, two main

types of evaluation methods are implemented in multi-label learning, example-based

metrics [38] and label-metrics [37].

The two types of metrics evaluate outputs of classifiers from different perspectives. Given

that S = (xi, Yi) is a test sample and h(·) is the learned multi-label classifier. The con-

cept of example-based metrics is to achieve all class labels of each test sample, and then

compute the mean value of the test samples to evaluate generalisation performance.

Compared with considering all class labels simultaneously, label-based metrics evalu-

ate performance by treating each class label separately and computing macro/micro-

averaged value of all class labels.

In supervised learning, the ground truth output and the predicted output are compared

for each test sample. So the results of each test sample can be assigned to one of the

four categories:

44

Chapter 6. Background 45

• True Positive (TP) - label is positive and prediction is also positive

• True Negative (TN) - label is negative and prediction is also negative

• False Positive (FP) - label is negative but prediction is positive

• False Negative (FN) - label is positive but prediction is negative

Here we define a set D of N examples and Yi to be a family of ground truth label sets

and Pi = h(xi) to be a family of predicted label set. The union set of all unique labels

is

L =
N−1⋃
i=0

Li (6.1)

While the definition of indicator function IA on a set A is presented as:

IA(x) =

1 if x ∈ A

0 otherwise

(6.2)

6.1.1 Example-based Metrics

Hamming Loss evaluates performance by counting the number of misclassification

labels. The smaller value of hamming loss is, the better performance the model has.

1

N · |L|

N−1∑
i=0

|Li|+ |Pi| − 2 |Li ∩ Pi| (6.3)

Subset Accuracy evaluates the fraction of correctly predicted examples while the

predicted label set is identical to the ground truth label set. It is equivalent to traditional

accuracy metrics.

1

N

N−1∑
i=0

I{Li}(Pi) (6.4)

Precision is defined as:
1

N

N−1∑
i=0

|Li ∩ Pi|
|Pi|

(6.5)

Recall is defined as:
1

N

N−1∑
i=0

|Li ∩ Pi|
|Li|

(6.6)

Chapter 6. Background 46

Accuracy is defined as:

1

N

N−1∑
i=0

|Li ∩ Pi|
|Li|+ |Pi| − |Li ∩ Pi|

(6.7)

F1 Measure is an integrated version combined by harmonic mean of Precision and

Recall.
1

N

N−1∑
i=0

2
|Pi ∩ Li|
|Pi| · |Li|

(6.8)

6.1.2 Label-based Metrics

Macro Precision (precision averaged across all labels) is defined as:

PPV (`) =
TP

TP + FP
=

∑N−1
i=0 IPi(`) · ILi(`)∑N−1

i=0 IPi(`)
(6.9)

Macro Recall (recall averaged across all labels) is defined as:

TPR(`) =
TP

P
=

∑N−1
i=0 IPi(`) · ILi(`)∑N−1

i=0 ILi(`)
(6.10)

F1 Measure by label is the harmonic mean between Precision and Recall.

F1(`) = 2 ·
(
PPV (`) · TPR(`)

PPV (`) + TPR(`)

)
(6.11)

Micro Precision (precision averaged over all example/label pairs) is defined as:

TP

TP + FP
=

∑N−1
i=0 |Pi ∩ Li|∑N−1

i=0 |Pi ∩ Li|+
∑N−1

i=0 |Pi − Li|
(6.12)

Micro Recall (recall averaged over all the example/label pairs) is defined as:

TP

TP + FN
=

∑N−1
i=0 |Pi ∩ Li|∑N−1

i=0 |Pi ∩ Li|+
∑N−1

i=0 |Li − Pi|
(6.13)

Chapter 6. Background 47

Micro F1 Measure by label is the harmonic mean between Micro Precision and

Micro Recall.

2 · TP

2 · TP + FP + FN
= 2 ·

∑N−1
i=0 |Pi ∩ Li|

2 ·
∑N−1

i=0 |Pi ∩ Li|+
∑N−1

i=0 |Li − Pi|+
∑N−1

i=0 |Pi − Li|
(6.14)

For the label-based metrics, larger metrics value means higher generalisation perfor-

mance.

With the previous metrics, there are diverse methods to evaluate model generalisation

performance. In most multi-label classification, learning algorithms optimise one of the

metrics. To make evaluation fair and precise, learning algorithms should be tested on

different metrics to evaluate performance.

Most metrics are non-convex and discrete, and most algorithms turn to optimise alterna-

tive multi-label metrics. Recently, some researchers have been studying the consistency

of multi-label learning [39].

6.2 Learning Algorithms

Algorithms play a key role in the literature of machine learning, and there is no exception

in multi-label learning. The capability of representation is important to evaluate the

performance of an algorithm. Moreover, some relating criterions can be used to measure

performance. First, the broad spectrum should be considered. An algorithm should

cover a range of algorithmic design strategies with unique characteristic. Second, it is

reasonable to evaluate the impact which the algorithm poses on the multi-label learning

settings. Last, computational complexity is a critical factor to evaluate an algorithm.

6.2.1 Problem Transformation Methods

6.2.1.1 Binary Relevance (BR)

The Binary Relevance method is an elementary algorithm which decomposes a multi-

label learning problem into a set of independent binary classification problems, and

each problem harmonises one label in the set L = y1, y2, ..., yq. The approach initially

Chapter 6. Background 48

transforms the multi-label dataset into q binary datasets Dyi(i = 1, 2, ..., q), where each

DyI includes all samples of the multi-label dataset and has a single binary label to

instruct if the dataset has or has no attribute to the relevant label. For example,

if a sample has a positive value means that the sample owns the correlation label,

otherwise, it does not own it. After transforming the dataset, a set of q binary classifiers,

Hi(E)(i = 1, 2, ..., q), have been built up using the respective training data Dyi .

H = {Cyi(x, yi)→ y′i ∈ {0, 1}|y ∈ L, i = 1, 2, ..., q} (6.15)

To classify a test sample, the BR method outputs the collection of labels which are

predicted with positive value by the independent binary classifiers.

The BR method combines computational efficiency and simple implementation. With

a constant number of samples, the algorithm scales with size q of label set L. Suppos-

ing that each classifier has complexity f(|X|, |D|), the method has complexity O(q ×

f(|X|, |D|)). With a limit number of q, the method learns a model quickly and has an

reasonable performance.

One of the disadvantages is the limitation to label relationship information. Unless all

labels are independent, the method losses the correlations among them.

6.2.1.2 Classifier Chains (CC)

To pursue a better performance, the CC method has been introduced in multi-label

classification [35]. The method transforms a multi-label learning problem into a chain

of binary classifiers based on label dependence.

For a set of q labels L, the CC method learns q classifiers as BR does. In addition, it

links all classifiers in feature space. Given that there are a set of samples D(x, yi)(i =

1, 2, ..., q) where yi is a subset of labels L and x is the domain of dataset. The original

dataset is transformed into a set of q datasets in which the j-th example is based on the

previous dataset.

H = {Cyi(x, y1, y2, ..., yi−1)→ y′i ∈ {0, 1}|y ∈ L, i = 1, 2, ..., q} (6.16)

Chapter 6. Background 49

Thus it forms a chain of binary classifiers C1, C2, ..., Cq. Each classifier Ci learns and

predicts the binary association of label yi based on the dataset x and all prior binary

relevance predictions yj , j = 1, 2, ..., i− 1. The learning process starts from C1 and fol-

lows the chain sequentially. Therefore, C1 determines p(y1|x), and sequential classifiers,

C2, ..., Cq, determine p(yi|xi, y1, ..., yi−1).

The CC method propagates label information through classifiers, and latter classifiers

take account of previous predictions. This method can retrieve lost information among

labels partly. At the same time, the method maintains advantages of BR, such as com-

putation efficiency and memory efficiency. The computational complexity of the method

is close to BR in terms of the number of labels and complexity of elemental classifiers Ci.

As previous statements, the computational complexity of BR is O(q×f(|X|, |D|)) where

f(|X|, |D|)) represents the elemental classifier. With extra computation introduced by

previous labels, the computational complexity of the CC is O(q× f(|X|+ q, |D|)), while

the computation will be unaffordable in case of q � |X|.

6.2.2 Algorithm Adaptation Methods

6.2.2.1 Multi-label k-Nearest Neighbour (ML-kNN)

The algorithm adapts the K-nearest Neighbour technique to propose multi-label data

and utilise the MAP to make prediction through reasoning embodied labelling informa-

tion among neighbours [40].

Given dataset X and its label set Y , y represents an output vector for x where i-th

element y(i) is positive if i ∈ Y , otherwise it is negative. Given that N(x) is the set

of neighbours of x in the training data, we can compute a membership counting vector

which represents the number of neighbours of x owning the l-th label.

Cx(i) =
∑

a∈N(x)

ya(i), i ∈ Y (6.17)

To test a new sample t, the algorithm sorts out its category in the training data by kNN

N(t). H l
1 denotes that t has the label l and H l

0 denotes that t do not have the label l.

Chapter 6. Background 50

If j samples have the label l, Elj(j ∈ 0, 1, ..., k), the category vector yt is determined by

the MAP principle:

yt(l) = arg max
b∈{0,1}

P (H l
b|ElCt(i)

)l ∈ Y (6.18)

With the Bayesian rule, equation 6.18 can be represented as:

yt(l) = arg max
b∈{0,1}

P (H l
b)P (ElCt(i)

|H l
b)l ∈ Y (6.19)

As stated in Equation 6.19, the output of a test sample t is yt(l). It can be com-

puted through prior probability P (H l
b)l ∈ Y, b ∈ {0, 1} and the posterior probability

P (Elj |H l
b)(j ∈ {0, 1, ..., k}).

6.2.2.2 Collective Multi-label Classifier (CML)

Given that labels are highly interdependent in some scenarios, the CML explores multi-

label conditional random field (CRF) classification models which learn parameters for

each pair of labels directly [38].

In dataset (X,Y), each sample has a corresponding random variables representation

(x, y), in which y = (y1, y2, ..., yq) yi ∈ {−1, 1} is a binary label vector. If the sample

contains j-th label, the j-th element of y is 1, otherwise −1. Then the aim is to learn

the joint probability distribution p(x, y).

The entropy of (x, y) is represented as Hp(x, y) and gives the distribution p(·, ·) of (x, y).

The principle of maximum entropy can be achieved by maximising Hp(x, y). The fact

is expressed with constrains on the expectation of function f(x, y). The expected value

can be estimated from the training data:

Fk =
1

m

∑
(x,y)∈D

fk(x, y) (6.20)

According to the normalisation constraint on p(·, ·), the optimal solution can be repre-

sented as:

Chapter 6. Background 51

p(y|x) =
1

Z(x)
exp(

∑
k∈K

λk · fk(x, y)) (6.21)

Yielding to the Gaussian distribution, parameters can be found in a convex log-posterior

probability function. For a test sample x, the predicted label set follows to:

yx = arg max
y

p(y|x) (6.22)

It is notable that the exact inference is only suitable for small label space by arg max,

because it needs to reduce the search space of arg max significantly through the pruning

strategy. The CML is a second order approach.

Chapter 7

Methodology

7.1 Artificial Dataset

The dataset is generated artificially. Each image has three labels to represent colours,

red, green and blue. The representation of colour combination follows colour wheels. If

an image is a red hue only, it has a label for red while the label values of green and blue

are negative. If an image has a hue close to purple, it has positive labels for red and

blue, and negative label for green.

Figure 7.1: Colour Wheel Diagram [14]

For each sample xi, it owns 3 labels y0, y1, y2, yj ∈ {−1, 1} which represent red, green

and blue respectively.

52

Chapter 7. Methodology 53

7.1.1 Generating Images

The RGB and HSV coordinate systems represent a geometric shape in colour space. The

distance among colours contains little meaning. However, corresponding distance makes

some intuitive sense and enable conversion possible between RGB and HSV coordinates.

The dataset consists of images with size 16×16, therefore each image has 256 pixels. To

generate an image, I generate a random floating point number h in the range [0.0, 1.0)

and use it as the value for a hue via formulation

H = h+ r ∗ 0.4− 0.2 (r ∈ [0.0, 1.0)) (7.1)

where r is another random float number. 2 random float numbers are generated for

Saturation(S) and Value(V) values. The HSV values are converted to the RGB values

and timed 255 for each pixel. Following that, an image with 256 pixels is generated.

Because a RGB image is converted to a HSV image, the label values are based on the

previous value h.

The dataset contains 1000 images in total. 960 images are training data and 40 are test

data.

7.2 Artificial Neural Networks (ANNs)

ANNs is to learn a non-linear function which maps a sample to several labels. The

neurons in the first layer take a raw image, while the neurons in the last layer produce

outputs. Between the first and last layer, the middle layer is called hidden layer because it

does not connect to the external world directly. A 3 layer neural networks can represent

any bounded degree polynomial under certain conditions [41]. The weights of neural

network are learned by algorithms deployed over the training data. One of the successful

learning algorithms is backpropagation algorithm which updates weights by propagating

error values computed by comparing prediction for each sample.

Two factors will be modified to adapt a neural network to perform multi-label classi-

fication. One factor is to design a new error function which fits the characteristics of

Chapter 7. Methodology 54

(a) Label:1 -1 1

(e) Label:1 1 -1

(i) Label:-1 1 -1

(m) Label:-1 -1 1

Figure 7.2: Multilabel samples and the RGB colour histograms. Three labels mean
red, green and blue sequentially.

multi-label samples instead of single-label ones. The other one is to select a moderate

metric according to the new error function.

7.2.1 Network Architecture

Define X = Rd as the sample space and Y = 1, 2, ..., Q as the set of output labels. The

training data is composed of m multi-label samples, (x1, Y1), (x2, Y2), ..., (xm, Ym), while

each sample xi ∈ X is represented as a d-dimensional feature vector and a set of q labels

associated with the feature vector. A neural network, in Figure 7.3, can be built up to

learn a model .

Chapter 7. Methodology 55

Figure 7.3: Network Topology For Multi-lable Classification

The network has d input neurons which correspond to a d-dimension feature vector,

while the last Q neurons represent a combination of output labels. There is a hidden

layer in Figure 7.3 which owns n hidden neurons. The input layer is fully connected

with the hidden layer and the same connecting method is deployed between the hidden

layer and the output layer. There are d×n weights (Wih, 1 ≤ i ≤ d, 1 ≤ h ≤ n) between

the first two layers, and n × q weights (Who, 1 ≤ h ≤ n, 1 ≤ o ≤ q) between the latter

two layers. The bias parameters are represented as I0 and H0.

Because the task of multi-label learning is to predict labels of test samples, it needs to

evaluate the global error of the model as:

E =

m∑
i=1

Ei (7.2)

Ei is the error on the sample xi which can be defined as:

Ei =

Q∑
j=1

(cij − dij)2 (7.3)

where cij = cj(xi) is the predicted j-th label on sample xi, and dij is the actual j-th label

of sample xi. The actual label has value of either +1(j ∈ Y〉) or −1(j /∈ Y〉).

Chapter 7. Methodology 56

Various learning algorithms can be used to learn a model based on the training data.

The backpropagation algorithm is used to learn from errors. However, the algorithm

could be improper in multi-label learning because the error function 7.3 neglects the

correlations among labels of a sample. In original BP algorithm, the error function 7.3

limits on individual label discrimination, whether a specific label j ∈ Y belongs to the

sample xi or not. It should take into consideration that labels in Yi are more important

than those outside of Yi. A new global error function is defined as:

E =
m∑
i=1

Ei =
m∑
i=1

1

|Yi||Ŷi|

∑
(k,l)∈Yi×Ŷi

exp(−(cik − cil)) (7.4)

In the error function 7.4, the i-th errors on the i-th sample (xi, Yi) are accumulated. Ŷi

is complementary set of Yi in Y and | · | computes the cardinality of a set. Specifically,

the item, cik − cil, represents the difference between the predicted labels and the actual

labels. The error function shows that bigger difference leads to better performance. Ad-

ditionally, the negation of the difference is put into the exponential function to sharply

penalise the i-th term if cik is much smaller than cil. The sum of i-th error term accumu-

lates difference between outputs of any pair of labels which are the one belonging to the

sample and the other one not belonging to it. The sum is normalised by the numbers

of all pairs, |Yi||Ŷi|. And then, the correlations between pair labels are computed. In

summary, labels in Yi should get larger output values than labels in Ŷi.

In the previous statements, the error function calculates the difference between output

labels. The task of learning is minimising the error function via enlarging output values

of labels belonging to the training samples and diminishing the output values of the labels

not belonging to it. If the training data can cover the distribution of the whole sample

space, the model can learn it through minimising error function by feeding training

samples.

7.2.2 Error Function

The basic goal of regression problems is to figure out the conditional distribution of

the output labels with the input samples. It is common to use a sum-of-squares error

function.

Chapter 7. Methodology 57

The basic aim of classification problems is to figure out the posterior probabilities of

class types with the input samples. Except for the sum-of-squares error function, there

are some more approximate error functions which can be considered.

The central goal is to model the hidden generator of the samples instead of memorising

the training samples. Therefore, the best prediction of an input sample can be found if

the network can present a new value for the sample. Because the general and complete

characterisation of the dataset is the probability density p(x, t) (t is target value and x

is network input variable), it is available to decompose a joint probability density into

the product of the conditional density of the labels, the input data and the density of

the data,

p(x, t) = p(t|x)p(x) (7.5)

where p(t|x) represents the probability density of t if x is a distinct label and p(x)

represents the density of x

p(x) =

∫
p(x, t)dt (7.6)

Most error functions can be obtained from the idea of maximum likelihood. For the

training data,

L =
∐
n

p(tn|xn)p(xn) (7.7)

where each sample is chosen randomly from the same distribution and their probabilities

can be multiplied. The error function can be represented by minimising the negative

logarithm of the likelihood since the negative logarithm is a monotonic function.

E = −lnL = −
∑
n

lnp(tn|xn)−
∑
n

lnp(xn) (7.8)

where E is notated as an error function. The task of learning is to model the conditional

probability density p(t|x). The second term is also independent with the parameters in

neural networks. We can simplify the equation 7.8 to

E = −lnL = −
∑
n

lnp(tn|xn) + C (7.9)

It is worth mentioning that error functions are dependent on different assumptions of

the forms of the conditional distribution p(t|x). In this classification task, t represents

labels which act as class members or the prediction of the probabilities of class members.

Chapter 7. Methodology 58

7.2.3 Cross Entropy

The MSE is a common risk metric comparable to the predicted value of the squared

error loss. It is easy to implement and its value is non-negative. However, it has the

disadvantage of heavily weighting outliers [42].

Given that there are two discrete distributions p(x) and q(x) over the same variable

x. The relative entropy, relating to the cross entropy, is a measurement of the distance

between samples:

Dpq(p(x), q(x)) =
∑
x

q(x)ln
q(x)

p(x)
(7.10)

where the relative entropy is not a true metric because equation 7.10 could not be

symmetric in the interchange p↔ q and probably not satisfy the triangle inequality.

Cross entropy loss, also named logistic regression loss, is an alternative measurement of

a probability distribution. The measure is commonly used in neural networks. It can

be used to evaluate the posterior probabilities of class membership.

Given that training a neuron, which has several input data, x1, x2, ..., with weights

w1, w2, ..., and a bias, b, the outputs, for example two classes, can be represented as the

weighted sum of the input data.

a = f(x) =
∑
i

wixi + b (7.11)

Then the cross entropy loss function is

C = − 1

n

∑
x

[y ln a+ (1− y) ln(1− a)] (7.12)

where n is the number of training samples, a is the predicted label and y is the actual

label.

The cross entropy acts as an error function because of two properties. First, C is non-

negative, because the items of logarithms are in the range [0, 1]. Second, if the prediction

output is close to the actual value for all training samples, the loss value, C, will be close

to 0. Given that y = 0 and the prediction value a ≈ 0, the first item in equation 7.12 is

0 and the second is − ln(1 − a) ≈ 0. The similar situation occurs for conditions, y = 1

Chapter 7. Methodology 59

and a ≈ 1. Therefore, the value of loss function will be small, if the prediction value is

close to the actual value.

In summary, the cross entropy tends to 0, when the neuron acts better at predicting the

output y for total training inputs x. The two properties are basic to a loss function.

Although the quadratic loss function satisfies the properties, the cross entropy has the

advantage on avoiding the issue of learning curve slowing down. To illustrate the advan-

tage, the partial derivative of the cross entropy loss function can be done with respect

to the weights. Applying the chain rule twice on equation 7.12

∂C

∂wj
= − 1

n

∑
x

(
y

f(x)
− (1− y)

1− f(x)

)
∂f

∂wj
(7.13)

= − 1

n

∑
x

(
y

f(x)
− (1− y)

1− f(x)

)
f ′(x)xj . (7.14)

where the second one can be represented as

∂C

∂wj
=

1

n

∑
x

f ′(x)xj
f(x)(1− f(x))

(f(x)− y) (7.15)

Because the defination of sigmoid function is f(x) = 1/(1 + e−x) and the derivative of

sigmoid function is f ′(x) = f(x)(1−f(x)). Then the items f ′(x) and f(x) = 1/(1+e−x)

are cancelled in the equation and the equation becomes

∂C

∂wj
=

1

n

∑
x

xj(f(x)− y) (7.16)

The equation 7.16 shows that the rate of learning weights is controlled by f(x)−y. The

larger the error is, the faster the neuron learns. In particular, the property avoids the

learning slowdown because the derivative item f ′(x) gets cancelled out in the quadratic

cost.

In similar way, the bias can be computed by the partial derivative.

∂C

∂b
=

1

n

∑
x

(f(x)− y) (7.17)

Chapter 7. Methodology 60

7.2.4 Training and Testing

Following the training process, gradient descent is used to minimise the global error

function with backpropagation.

To train a sample (Xi, Yi), in which Xi is the input data and Yi is the associate labels,

the predicted output labels computed by the neural network is

ck = f(netck + θk) (7.18)

where θk is the bias neurons of k layer, f() is the activation function for the output

neurons which is the tanh function 2.12 in the task. netck is the input data of the layer:

netck =
M∑
s=1

bswsk (7.19)

where wsk is the weights for the layer s and layer k, bs is the input vector, and M is the

number of neurons in the hidden layer.

As tanh function is differentiable, the general error of the k-th output neuron can be

defined as:

dk = − ∂E

∂netck
(7.20)

combining with equation 7.18, we can get

dk = −∂Ei
∂cj

∂cj
∂netck

= −∂Ei
∂cj

f ′(netck + θk) (7.21)

Considering global error function 7.4

∂Ei
∂cj

=

− 1
|Yi||Ŷi|

∑
l∈Ŷi exp(−(cj − cl)) if j ∈ Yi

1
|Yi||Ŷi|

∑
k∈Yi exp(−(ck − cj)) if j ∈ Ŷi

(7.22)

with derivation of tanh function, and substituting it with equations 7.21 and 7.22 we

can get

dk =

(
− 1
|Yi||Ŷi|

∑
l∈Ŷi exp(−(cj − cl))

)
(1 + cj)(1− cj) if j ∈ Yi(

1
|Yi||Ŷi|

∑
k∈Yi exp(−(ck − cj))

)
(1 + cj)(1− cj) if j ∈ Ŷi

(7.23)

Chapter 7. Methodology 61

According to the previous method, we define the general error of the s-th hidden neuron:

es = − ∂Ei
∂netbs

(7.24)

with bs = f(netbs + λs) and chain rule,

es = −∂Ei
∂bs

∂bs
∂netbs

= −
(Q∑
j=1

∂Ei
∂netcj

∂netcj
∂bs

)
f ′(netbs + λs) (7.25)

For dj = − ∂Ei
∂netcj

and netcj =
∑M

s=1 bswsj , then

es =
(Q∑
j=1

dj ×
∂(
∑M

s=1 bswsj)

∂bs

)
f ′(netbs + λs) =

(Q∑
j=1

djwsj
)
f ′(netbs + λs) (7.26)

As f() is tanh function, we get

es =
(Q∑
j=1

djwsj
)
(1 + bs)(1− bs) (7.27)

The SGD is used to approximate the function.

∆wsj = −α ∂Ei
∂wsj

= α
∂Ei
∂netcj

∂netcj
∂wsj

= αdjbs (7.28)

∆vhs = −α ∂Ei
∂vhs

= α
∂Ei
∂netbs

∂netbs
∂vhs

= αesah (7.29)

while the bias is updated according to

∆θj = αdj ∆λs = αes (7.30)

In previous equations, α is the learning rate whose value is in the range of [0.0 1.0].

In the training process, a learning algorithm has been set up with backpropagation.

Moreover, training samples are fed into the neural network. After all training samples

(X,Y) fed into the network, weights and bias are updated through equations 7.28 and

7.30. The training samples are fed into the network iteratively while global error value

decreases. Finally, the error value converges to a minimum value.

In the testing process, the network predicts a sample which has a set of actual labels

Chapter 7. Methodology 62

cj(j = 1, 2, ..., Q). Because the output value of each label is in range [−1.0, 1.0], a thresh-

old function t(x) is used to determine the associate label set for the sample x. A large

margin ranking system [43] is adopted to generalise the sets. t(x) is a linear function,

t(x) = wT ·c(x)+b, where c(x) = (c1(x), c2(x), ..., cQ(x)) is a Q-dimensional vector which

represents j output labels of the sample. For every training sample (Xi, Yi)(1 ≤ i ≤ m),

the relation between c(xi) and target value t(xi) is:

t(xi) = arg maxt(|{k|k ∈ Yi, cik ≤ t}|+ |{l|l ∈ Ŷi, cil ≥ t}|) (7.31)

If there are several minimum values and optimal values are in a division, the middle value

of the division is chosen. The task of learning the parameters of threshold function is to

solve the matrix equation Φ ·w′ = t. The matrix Φ has dimensions m× (Q+ 1) in which

i-th vector is (ci1, c
2
2, ..., c

i
Q, 1), and w′ is a (Q+ 1) dimensional vector (w, b) and t is the

m-dimensional vector (t(x1), t(x2), ..., t(xm)). Linear least squares is used to find the

solution of the equation. Given a sample x, the network predicts the output label vector

c(x) and the threshold value for x is gotten by solving equation t(x) = wT · c(x) + b.

The computational complexity of evaluating derivatives of the error function is linear

with the neuron numbers. Three main components are composed of computation, feed-

forward process, backpropagation process and updating weights process. In the feed-

forward process, to compute bi and cj , the computation cost is mainly on evaluating the

sums and activation function. In the backpropagation process, the computational com-

plexity of dk and es is O(Q). In the updating weights process, the overall computational

complexity is O(W) where W is the total number of weights .

Chapter 8

Experiment

The experiment has the identical hardware and software environment as described in

the weather classification experiment.

8.1 Dataset

I generate 1, 000 raw RGB images with size 16×16. 40 images are reserved for testing and

960 images are used for training. Each image has 3 labels yi ∈ (−1, 1) representing three

attributes, red, green and blue. If the image has a colour attribute, the corresponding

label value is 1, otherwise −1.

8.2 Details of Network

The neural network is built from scratch. First, It needs to determine how many layers

needed for the network. In [44], Lippmann proved that two hidden layers were able

to create classification regions of arbitrary desired shape. However, Kolmogorov [45]

showed that the superposition of continuous one-dimension function can represent a

continuous function with several variables. Then I set up a neural network with one

fully connected hidden layer between the input and output layers. Between two layers,

A ReLU layer acts as the non-saturating activation function f(x) = max(0, x) which

helps the decision function increase the non-linear properties.

63

Chapter 8. Experiment 64

Figure 8.1: Network Topology

Following that, it needs to determine how many neurons needed in the hidden layer.

The number of neurons in the hidden layer depends mainly on

1. Number of input and output neurons

2. Number of training samples

3. Layer connecting types

4. Training algorithms

5. Type of activation function

Chapter 8. Experiment 65

6. Regularisation

It is difficult to determine the best number of hidden neurons without evaluating several

trained models and comparing the generalisation error rates among the models. Lacking

hidden neurons will lead a high training error rate and poor generalisation performance

because of underfitting and high bias. On the other hand, exceeding neurons will achieve

a high training error rate and poor generalisation performance because of overfitting and

high variance. One of crucial considerations is to evaluate the hidden neuron effects on

the bias/variance trade-off.

There are many rules of thumb to determine the number of hidden neurons [46]

1. 2
3 of the sum of the input neurons plus the output neurons.

2. Less than twice the size of the input layer.

3. Following geometric pyramid rule, between the number of input neurons and the

output neurons.

It is time consuming to find the optimal number of hidden neurons. I started from a

number of neurons which was small and increased the number gradually by evaluating

the performance of network.

The different layers are fully connected because I want to map each patch to the labels

of the image. The information of each colour distributes in different positions of the

image. The values of the weights and bias are initialised randomly. For weights, the

xavier algorithm is applied to determine the scale of initialisation depending on the

number of input and output neurons. The bias is simply initialised as a constant 0. The

batch size is 40.

In the training process, the base learning rate is 0.0001. The learning rate of weights

is equal to base learning rate, while the learning rate of bias is two times of the base

learning rate. The parameter momentum is 0.9 to smooth the weight updating curve

across iterations so that the learning process will be fast. The weight decay is 0.0005.

The evaluation metric is label-metric. Each label will be counted separately and statistics

will be calculated in total.

Chapter 8. Experiment 66

Neuron number Sensitivity Specificity Harmonic Mean Precission F1 Score

4 0.9245 0.9552 0.9396 0.9423 0.9333
50 0.9245 0.9701 0.9468 0.9608 0.9423
100 0.9623 0.9701 0.9662 0.9623 0.9623
150 0.9057 0.9552 0.9298 0.9412 0.9231
200 0.9811 1.0000 0.9905 1.0000 0.9905
250 0.9434 1.0000 0.9709 1.0000 0.9709
300 0.9811 0.9701 0.9756 0.9630 0.9720
350 0.9434 0.9701 0.9566 0.9615 0.9524
400 0.8868 0.9701 0.9266 0.9592 0.9216
450 0.9245 0.9701 0.9468 0.9608 0.9423
500 0.9622 0.9701 0.9662 0.9623 0.9623

Table 8.1: Test results for different number of hidden neurons.

8.3 Results

The test results with different number of hidden neurons are showed in Table 8.1 and

Figure 8.2. Results show that the model with 200 neurons in the hidden layer has the

best performance.

Figure 8.2: The test results for different number of hidden neurons. Blue circle for
Sensitivity. Black plus for Specificity. Cyan star for Harmonic Mean. Red dot for

Precission. Green x for F1 Score.

In Figure 8.3, it shows that the learning speed is quick. After reaching high accuracy,

the accuracy maintains stable.

Chapter 8. Experiment 67

Figure 8.3: The learning speed for 200 neurons in the hidden layer. Blue circle for
Sensitivity. Black plus for Specificity. Cyan star for Harmonic Mean. Red dot for

Precission. Green x for F1 Score.

In figures 8.4 8.5, the ROC curve of test results shows that the average accuracy is high.

In detail, the micro-accuracy for label 0(red) is the highest, followed by accuracies for

label 1(green) and label 2(blue).

Figure 8.4: The ROC curve for 200 hidden neurons

Chapter 8. Experiment 68

Figure 8.5: The ROC curve for 200 hidden neurons

8.4 Conclusion and Future Work

I have presented an effective approach to classifying multi-label images. With increasing

label numbers, the correlation between data and labels is complex. The neural network

maps data and labels efficiently and accurately. The updated loss function evaluates the

model efficiently and quickly leads to optimisation.

The experiment shows that the neural network is able to do complex multi-label classi-

fication perfectly. In the experiment, classifying the artificial images achieves the high

generalisation performance. It needs to update the network architecture for practical

datasets in the future.

Bibliography

[1] Machine learning: Introduction to the artifi-

cial neural network. http://www.durofy.com/

machine-learning-introduction-to-the-artificial-neural-network/,

2014. Accessed: 2015-12-30.

[2] A gentle introduction to artificial neural networks. https://theclevermachine.

wordpress.com/tag/regression/, 2014. Accessed: 2016-1-10.

[3] Convnetjs demo: toy 2d classification with 2-layer neural network. http://cs.

stanford.edu/people/karpathy/convnetjs/demo/classify2d.html, 2014. Ac-

cessed: 2016-1-10.

[4] Khursiah Zainal-Mokhtar and Junita Mohamad-Saleh. An oil fraction neural sensor

developed using electrical capacitance tomography sensor data. Sensors, 13(9):

11385–11406, 2013.

[5] Big data and hadoop- drivers of future. https://affineanalytics.wordpress.

com/, 2013. Accessed: 2016-1-15.

[6] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.

The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[7] Cs231n convolutional neural networks for visual recognition. http://cs231n.

github.io/convolutional-networks/, 2015. Accessed: 2015-11-15.

[8] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of features: Spa-

tial pyramid matching for recognizing natural scene categories. IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2006.

69

http://www.durofy.com/machine-learning-introduction-to-the-artificial-neural-network/
http://www.durofy.com/machine-learning-introduction-to-the-artificial-neural-network/
https://theclevermachine.wordpress.com/tag/regression/
https://theclevermachine.wordpress.com/tag/regression/
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
https://affineanalytics.wordpress.com/
https://affineanalytics.wordpress.com/
http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/

Bibliography 70

[9] A survey on transfer learning. http://www.slideshare.net/azuring/

a-survey-on-transfer-learning, 2012. Accessed: 2015-11-5.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:

A large-scale hierarchical image database. In Computer Vision and Pattern Recog-

nition, 2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE, 2009.

[11] Cewu Lu, Di Lin, Jiaya Jia, and Chi-Keung Tang. Two-class weather classification.

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pooling

in deep convolutional networks for visual recognition. The 13th European Confer-

ence on Computer Vision (ECCV), 2014.

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in neural information pro-

cessing systems, pages 1097–1105, 2012.

[14] Epilog laser systems. http://www.yourhomeok.com/color-wheel-schemes, 2016.

Accessed: 2015-11-5.

[15] Christopher M. Bishop. Neural networks for pattern recognition. Clarendon press

Oxford, 1995.

[16] Martin Roser and Frank Moosmann. Classification of weather situations on single

color images. Intelligent Vehicles Symposium, IEEE, 2008.

[17] Navid Serrano, Andreas Savakis, and Jiebo Luo. A computationally efficient ap-

proach to indoor/outdoor scene classification. In Pattern Recognition, 2002. Pro-

ceedings. 16th International Conference on, volume 4, pages 146–149. IEEE, 2002.

[18] Demir Gokalp and Selim Aksoy. Scene classification using bag-of-regions repre-

sentations. In Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE

Conference on, pages 1–8. IEEE, 2007.

[19] Martin Szummer and Rosalind W Picard. Indoor-outdoor image classification. In

Content-Based Access of Image and Video Database, 1998. Proceedings., 1998 IEEE

International Workshop on, pages 42–51. IEEE, 1998.

http://www.slideshare.net/azuring/a-survey-on-transfer-learning
http://www.slideshare.net/azuring/a-survey-on-transfer-learning
http://www.yourhomeok.com/color-wheel-schemes

Bibliography 71

[20] Jamie Shotton, John Winn, Carsten Rother, and Antonio Criminisi. Textonboost

for image understanding: Multi-class object recognition and segmentation by jointly

modeling texture, layout, and context. International Journal of Computer Vision,

81(1):2–23, 2009.

[21] Aditya Vailaya, HongJiang Zhang, Changjiang Yang, Feng-I Liu, and Anil K Jain.

Automatic image orientation detection. Image Processing, IEEE Transactions on,

11(7):746–755, 2002.

[22] Matthew R Boutell, Jiebo Luo, Xipeng Shen, and Christopher M Brown. Learning

multi-label scene classification. Pattern recognition, 37(9):1757–1771, 2004.

[23] Xunshi Yan, Yupin Luo, and Xiaoming Zheng. Weather recognition based on images

captured by vision system in vehicle. In Advances in Neural Networks–ISNN 2009,

pages 390–398. Springer, 2009.

[24] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in

nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[25] Herbert Robbins and David Siegmund. A convergence theorem for non negative

almost supermartingales and some applications. In Herbert Robbins Selected Papers,

pages 111–135. Springer, 1985.

[26] Geoffrey E Hinton. Learning translation invariant recognition in a massively parallel

networks. In PARLE Parallel Architectures and Languages Europe, pages 1–13.

Springer, 1987.

[27] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–

2324, 1998.

[28] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. Knowledge and

Data Engineering, IEEE Transactions on, 22(10):1345–1359, 2010.

[29] Bryan C Russell, Antonio Torralba, Kevin P Murphy, and William T Freeman. La-

belme: a database and web-based tool for image annotation. International journal

of computer vision, 77(1-3):157–173, 2008.

[30] Jianxiong Xiao, James Hays, Krista Ehinger, Aude Oliva, Antonio Torralba, et al.

Sun database: Large-scale scene recognition from abbey to zoo. In Computer vision

Bibliography 72

and pattern recognition (CVPR), 2010 IEEE conference on, pages 3485–3492. IEEE,

2010.

[31] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltz-

mann machines. In Proceedings of the 27th International Conference on Machine

Learning (ICML-10), pages 807–814, 2010.

[32] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross

Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture

for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[33] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional

networks. CoRR, abs/1311.2901, 2013. URL http://arxiv.org/abs/1311.2901.

[34] Ali S Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. Cnn

features off-the-shelf: an astounding baseline for recognition. In Computer Vision

and Pattern Recognition Workshops (CVPRW), 2014 IEEE Conference on, pages

512–519. IEEE, 2014.

[35] Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. Classifier chains

for multi-label classification. Machine learning, 85(3):333–359, 2011.

[36] Grigorios Tsoumakas and Ioannis Katakis. Multi-label classification: An overview.

Dept. of Informatics, Aristotle University of Thessaloniki, Greece, 2006.

[37] Grigorios Tsoumakas and Ioannis Vlahavas. Random k-labelsets: An ensemble

method for multilabel classification. In Machine learning: ECML 2007, pages 406–

417. Springer, 2007.

[38] Nadia Ghamrawi and Andrew McCallum. Collective multi-label classification. In

Proceedings of the 14th ACM international conference on Information and knowl-

edge management, pages 195–200. ACM, 2005.

[39] Wei Gao and Zhi-Hua Zhou. On the consistency of multi-label learning. Artificial

Intelligence, 199:22–44, 2013.

[40] Min-Ling Zhang and Zhi-Hua Zhou. Ml-knn: A lazy learning approach to multi-

label learning. Pattern recognition, 40(7):2038–2048, 2007.

http://arxiv.org/abs/1311.2901

Bibliography 73

[41] Andrew R Barron. Universal approximation bounds for superpositions of a sig-

moidal function. Information Theory, IEEE Transactions on, 39(3):930–945, 1993.

[42] Sergio Bermejo and Joan Cabestany. Oriented principal component analysis for

large margin classifiers. Neural Networks, 14(10):1447–1461, 2001.

[43] André Elisseeff and Jason Weston. A kernel method for multi-labelled classification.

In Advances in neural information processing systems, pages 681–687, 2001.

[44] Richard P Lippmann. An introduction to computing with neural nets. ASSP

Magazine, IEEE, 4(2):4–22, 1987.

[45] Andrei Nikolaevich Kolmogorov. On the representation of continuous functions

of many variables by superposition of continuous functions of one variable and

addition. Amer. Math. Soc. Transl, 28:55–59, 1963.

[46] Jeff Heaton. Introduction to neural networks with Java. Heaton Research, Inc.,

2008.

	TITLE: Deep learning for multi-label scene classfication
	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations

	Part I Weather Classification
	Chapter 1 Introduction
	Chapter 2 Background
	Chapter 3 Methodology
	4 Experiment

	Part II Multilabel Learning
	Chapter 5 Introduction
	Chapter 6 Background
	Chapter 7 Methodology
	Chapter 8 Experiment

	Bibliography

