3D Real-Time Stockpile Mapping and Modelling with Accurate Quality Calculation using Voxels

Shi Zhao

School of Mechanical Engineering University of Adelaide

This dissertation is submitted for the degree of Doctor of Philosophy

Robotics Research Group

February 2016

In loving memory of my grandparents ...

Declaration

Originality

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint award of this degree.

Permissions

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Shi Zhao February 2016

Acknowledgements

I would like to take this opportunity to express my deepest and most sincere thanks and expressions of gratitude to my principal supervisor, Tien-Fu, Lu. Your broad knowledge and logical pattern of thought, combined with a generous and friendly manner, have always helped me improving. Your encouraging guidance and mentorship have motivated me throughout my candidature.

I would not have been able to continue without the financial and practical assistance offered by my supervisor Ben Koch of MatrixGroup through the ARC Linkage LP0989780 Grant. Thank you for providing me with the opportunity to do this unique research in an exciting field. Your insightful discussions and industry experience make my Ph.D. experience more productive and stimulating.

In the course of my research, I have been worked with many others in the Robotics Group at the School of Mechanical Engineering, University of Adelaide. Their supports and advices were invaluable. I thank all the current members of the team: Kuan Tan, Mohamed Awadalla, Maung Myo, Da Sun and Di Gao.

Lastly, I owe my greatest thanks to my family. They deserve special gratitude for the support and understanding of my research career. Without them I would not have been able to travel and study in Australia. To my wife, Soyeon Oh, thank you for your abundant love and support throughout the years.

Publications

Journal

- Shi Zhao, Tien-Fu Lu, Ben Koch, Alan Hurdsman, "Automatic quality estimation in blending using a 3D stockpile management model," Advanced Engineering Informatics, Volume 29, Issue 3, August 2015, Pages 680-695, ISSN 1474-0346, http://dx.doi.org/ 10.1016/j.aei.2015.07.002.
- Shi Zhao, Tien-Fu Lu, Ben Koch, Alan Hurdsman, "Stockpile modelling and quality calculation for continuous stockpile management," International Journal of Mineral Processing, Volume 140, 10 July 2015, Pages 32-42, ISSN 0301-7516, http://dx.doi. org/10.1016/j.minpro.2015.04.012.
- Shi Zhao, Tien-Fu Lu, Ben Koch, Alan Hurdsman, "Dynamic modelling of 3D stockpile for life-cycle management through sparse range point clouds," International Journal of Mineral Processing, Volume 125, 10 December 2013, Pages 61-77, ISSN 0301-7516, http://dx.doi.org/10.1016/j.minpro.2013.09.009.

Conference

- Shi Zhao, Tien-Fu Lu, Ben Koch, Alan Hurdsman, "3D stockpile modelling to improve the quality control in iron ore handling," Proceedings of the International Conference on Mining, Material and Metallurgical Engineering, Prague, Czech Republic, 11-12, Aug., 2014.
- 2. Shi Zhao, Tien-Fu Lu, Ben Koch, Alan Hurdsman, "Stockpile modelling using mobile laser scanner for quality grade control in stockpile management," 12th International

Conference on Control Automation Robotics & Vision (ICARCV), Guangzhou, China, 5-7 Dec., 2012.

- Shi Zhao, Tien-Fu Lu, Ben Koch, Alan Hurdsman, "A simulation study of sensor data fusion using UKF for bucket wheel reclaimer localization," 2012 IEEE International Conference on Automation Science and Engineering (CASE 2012), Seoul, Korea (South), 20-24 Aug., 2012.
- 4. Tien-Fu Lu, Shi Zhao, Shihong Xu, Ben Koch, Alan Hurdsman, "A 3DOF system for 3 dimensional stockpile surface scanning using laser," 6th IEEE Conference on Industrial Electronics and Applications (ICIEA), Beijing, China, 21-23 June, 2011.

Poster

 Shi Zhao, Tien-Fu Lu, Ben Koch, Alan Hurdsman, "3D real-time stockpile modelling and voxelization to estimate quality during blending operation, "11th South Australian Exploration and Mining Conference (SAEMC), Adelaide, Australia, 5 Dec., 2014.

Abstract

Stockpile blending is widely accepted as an effective method to reduce the short-term quality variations and optimise the homogeneity of bulk materials, such as iron ore. Currently, both industry practice and academic research focus on planning, scheduling and optimisation algorithms to stack a stockpile that meets the predefined quality requirements. Namely, using 'selective stacking' algorithms to optimise the quality of a stockpile and improve the operational efficiency. However, it has been identified that stockpiled products are currently being reclaimed at approximately 50% of their potential engineering productive rates after applying such 'selective stacking' methods at most iron ore loading ports in Australia. There is an evident lack of solutions to this issue in the literature. This study focuses on stockpile modelling techniques to estimate the quality of a stockpile in both stacking and reclaiming operations for consistent and efficient product quality planning and control.

The main objective of this work is to build an up-to-date geometric model of a stockpile using laser scanning data and apply this model to quality calculations throughout the stacking and reclaiming operations. The significant elements of the proposed research are to: (1) upgrade a stockyard machine used to stack or reclaim the stockpile (i.e. a Bucket Wheel Reclaimer) into a mobile scanning device using Kalman filtering to measure the stockpile surface continuously; (2) build a 3D stockpile model from the measurement data in real time using polynomial and B-spline surface modelling techniques and use this model to calculate the quality of a stockpile with a great degree of accuracy when the quality composition is available; (3) associate the 3D model with the reclaiming machine model to achieve autonomous operation and predict the quality of the reclaimed material through voxelization techniques. In order to validate the developed techniques, several experimental tests were conducted using simulation and real scenarios. It was verified that the proposed 3D stockpile modelling algorithms are adequate to represent the real geometric shape with great accuracy. The percentage error in volume is better than 0.2%. Therefore, the combination of stock-

pile and BWR (Bucket Wheel Reclaimer) models enables the reclaiming to be conducted automatically.

To the best of author's knowledge, this is the first time that a stockpile is modelled automatically in real-time and the integration of the stockpile and BWR model generates a novel stockpile management model allows true reclaiming automation. Thus, the quality of material composition after every stacking/reclaiming operation is calculated from the geometric shape/volume, density and quality assay results.

Through accomplishing this project, the quality of a stockpile and its distribution inside the stockpile can be tracked continuously and the stacking/reclaiming trajectory of the machine can be controlled precisely. By making available such information, it is then possible to develop proactive stacking or reclaiming pattern strategies with more accurate product quality grade planning and control. Therefore, the workload of current selectively stacking and reactive reclaiming algorithms can be relieved, and the production rates can be improved with good output product quality control.

Table of contents

List of figures xv							
Li	List of tables xxi						
Li	st of a	acronyms xxi	ii				
1	Intr	oduction	1				
	1.1	Iron Ore Exportation	1				
	1.2	Mining Operation and Quality Control	2				
	1.3	Motivation	4				
	1.4	Objectives	6				
	1.5	Thesis Structure	7				
2	Literature Review 9						
	2.1	Stockpile Blending	9				
	2.2	Stockpile Modelling	3				
		2.2.1 Mathematical Model	3				
		2.2.2 Geometric Model	7				
	2.3	Machine Operation Control	9				
	2.4	Stockyard Management	21				
	2.5	Research Gap	2				
		2.5.1 Summary	3				
		2.5.2 Innovations	4				
3	BW	R Localization for Stockpile Scanning 2	5				
	3.1	Mobile Laser Scanning	5				
		3.1.1 Kalman Filter	27				

		3.1.2	UKF	30
		3.1.3	UKF Sensor Data Fusion for BWR Localization	32
	3.2	Simula	ation Framework	37
		3.2.1	Encoder Module	37
		3.2.2	GPS Module	38
	3.3	Simula	ation Results	39
	3.4	Indoor	Laser Scanning System	44
		3.4.1	Mechanical and Electrical Aspects	44
		3.4.2	Preliminary Experiment	46
	3.5	Summ	ary	51
4	Stoc	kpile M	Iodelling from Point Cloud Data	53
	4.1	Proble	m Statement	53
	4.2	Wirefr	ame Modelling from Raw Scanning Data	54
	4.3	Point C	Cloud Segmentation	58
	4.4	Surfac	e Modelling	60
		4.4.1	Polynomial Approximation	60
		4.4.2	B-Spline Interpretation	64
	4.5	Experi	ments and Results	68
		4.5.1	Data Preparation	68
		4.5.2	Experiment Design	69
		4.5.3	Blending Simulation	71
		4.5.4	Modelling Result	73
4.6 Summary		ary	97	
5	Qua	lity Est	imation and BWR Automation	101
	5.1	3D Sto	ockpile Management Model	101
		5.1.1	BWR Automation	102
		5.1.2	Landing Point Estimation	104
		5.1.3	Slewing Range Estimation and Model Updating	108
	5.2	Quality	y Estimation in Blending	109
		5.2.1	Grade Variability Modelling	110
		5.2.2	Stockpile Voxelization for Quality Prediction	111
	5.3	Experi	ment and Result	123
		5.3.1	Cubic Stockpile Voxelization	123
		5.3.2	Quality Volume Calculation in Cubic Model	125

	0.2	Tuture	WOIK	. 141
	6.2	Future	Work	. 141
	6.1	Conch	usions	139
6	Con	clusion	and Future Work	139
	5.4	Summ	ary	. 136
		5.3.4	Sickle-shape Stockpile Voxelization	. 131
		5.3.3	Quality Predication from Cubic Voxel Models	. 127

List of figures

Fig. 1.1	A normal iron ore exportation procedure	3
Fig. 1.2	A Stockpile with layers and a cutting geometry caused by a BWR	4
Fig. 2.1	The ideal cross sections of stockpiles after stacking	10
Fig. 2.2	A rail mounted BWR operated at the Brockman 4 mine in the Pilbara	
regi	on of Western Australia	11
Fig. 2.3	The ideal cross sections of stockpiles after stacking	12
Fig. 2.4	3D stockpile management model for quality control	24
Fig. 3.1	Upgrading a BWR into a mobile 3D laser scanner	28
Fig. 3.2	The KF algorithm for a linear dynamic system	30
Fig. 3.3	The UKF algorithm for a nonlinear dynamic system	33
Fig. 3.4	The structure of a typical Kalman filter for data fusion	33
Fig. 3.5	BWR coordination system and motion axes definition	34
Fig. 3.6	Data flow in the encoder module	37
Fig. 3.7	Data flow in the GPS module	39
Fig. 3.8	Simulated GPS and encoder data against the true trajectory in the first	
200	<i>s</i>	41
Fig. 3.9	UKF localization results for the 1 st dataset	42
Fig. 3.10	UKF localization results for the 6 th dataset	43
Fig. 3.11	A 3D drawing of the indoor laser scanning system used for laboratory	
scal	e stockpile scanning	45
Fig. 3.12	Coordinator definition for stockpile modelling	46
Fig. 3.13	Experiment setup and dimension of the discharge chute	47
Fig. 3.14	1 st layer of the cone stockpile	48
Fig. 3.15	2 nd layer of the cone stockpile	49
Fig. 3.16	3^{rd} layer of the cone stockpile	50

Fig. 3.17	Surface measured by the indoor 3DOF laser scanner	50
Fig. 4.1	The fitted Fourier curve of a single scan	56
Fig. 4.2	Locating the global minimum using optimized iteration searching	58
Fig. 4.3	Point segmentation and boundary detection using image processing	59
Fig. 4.4	Point segmentation result	59
Fig. 4.5	Grid partitioning reduces the residuals and avoids Runge's phenomenon	62
Fig. 4.6	Over-fitting is detected automatically through the comparison of the	
surf	ace normal vectors before and after modelling	63
Fig. 4.7	A (6 th , 1×1) B-spline surface model $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	67
Fig. 4.8	Stockpile modelling procedure from laser measurement data	67
Fig. 4.9	Experiment setup for the bench scaled stockpile in the laboratory	70
Fig. 4.10	Variation in the layers of the stockpile during the experiment	73
Fig. 4.11	Systematic errors may occur at some positions when laser scans the	
alur	ninium prism	74
Fig. 4.12	Fit a single scan in the standard prism data using an 8 th order Fourier series	75
Fig. 4.13	The triangular prism modelled by the Fourier and the universal Fourier	
func	ctions	75
Fig. 4.14	R-squared and residuals when fitting a single scan obtained at the	
stac	king phase	77
Fig. 4.15	R-squared and residuals when fitting a single scan obtained at the	
recl	aiming phase	77
Fig. 4.16	Large residuals always locate around sharp corners	78
Fig. 4.17	The laboratory scaled stockpile modelled by the Fourier and the universal	
Fou	rier functions	78
Fig. 4.18	Fitting a profile from the full scale stockpile using a 8 th Fourier series .	80
Fig. 4.19	Fitting a profile from the full scale, simulated stockpile using a 8 th	
Fou	rier series	80
Fig. 4.20	A zoomed view of the imperfect boundary detection results for the 4 th	
laye	er at the stacking phase	81
Fig. 4.21	Detecting boundary from the simulated stockpile data	82
Fig. 4.22	Laser measurement against the ideal prism surface. The point measure-	
mer	tts are plotted in grey	83
Fig. 4.23	3^{ru} polynomial model of the triangular prism created from 8×8 patches	83
Fig. 4.24	Polynomial surface models obtained using the grid partitioning method	85

Fig. 4.25	Surface rending of the full scale stockpile	87
Fig. 4.26	A polynomial surface model of the 4^{th} layer from the full scale data \therefore	88
Fig. 4.27	A polynomial surface model of the 13^{th} layer from the full scale data.	88
Fig. 4.28	The (7 th , 15 × 15) surface model of the ideal stockpile \ldots	91
Fig. 4.29	The (7 th , 15×15) surface model created for the noise measurement data	91
Fig. 4.30	A comparison of two same degree B-spline models from different	
wire	frame model	92
Fig. 4.31	B-spline surfaces model of a partially reclaimed stockpile	93
Fig. 4.32	B-spline and polynomial model comparisons of the partially reclaimed	
stoc	kpile after 15 cuts	95
Fig. 4.33	The B-spline surface model of the 15^{th} cut $\ldots \ldots \ldots \ldots \ldots \ldots$	98
Fig. 4.34	The B-spline surface model of the noise measurement data	98
Fig. 5.1	Ideal torus generated through superimposing the rotation motion of the	
BW	and the slewing motion of the boom	103
Fig. 5.2	The maximum cutting depth (H) of the BW in regard to the bank surface	105
Fig. 5.3	Landing the bucket wheel on the stockpile	106
Fig. 5.4	Evaluating the landing point set using a stockpile management model .	107
Fig. 5.5	Updating the shape of the stockpile after the BW cut out the stockpile	
usin	g the trajectory generated from the BWR kinematic model	110
Fig. 5.6	A quality distribution model of a one-layer stockpile	111
Fig. 5.7	A cubic voxel model created for the bench scale stockpile	114
Fig. 5.8	QVOs inside a voxel	115
Fig. 5.9	Table of the 2D region R used for automatic double integral calculation	116
Fig. 5.10	Identification of reclaimed voxel based on the trajectory of the bucket	
whe	el	118
Fig. 5.11	Calculating the volume of a QVO object using the QMC method	120
Fig. 5.12	Partitioning a voxel into octants and linking them with the quality	
dist	ribution model	122
Fig. 5.13	Quality calculation using the QMC method for the 2^{nd} cut $\ldots \ldots$	122
Fig. 5.14	A 40 mm-resolution voxel model superimposed onto the bench scale	
stoc	kpile	124
Fig. 5.15	A 1 <i>m</i> -resolution voxel model superimposed onto the full scale stockpile	124
Fig. 5.16	Standard voxel models for quality calculation	126
Fig. 5.17	Material removed in the first cut	128

Fig. 5.18	Quantity of the material recovered in the 1^{st} case $\ldots \ldots \ldots$	128
Fig. 5.19	Voxels recovered in each cut	129
Fig. 5.20	Quantity of the material recovered in the 2^{nd} case	130
Fig. 5.21	Automatic landing and reclaiming simulation	132
Fig. 5.22	The volume of the 2^{nd} cut calculated using QMC method	133
Fig. 5.23	Validate the potential landing point from the B-spline model	134
Fig. 5.24	Voxelization of the top bench based on the real cutting trajectory	134
Fig. 5.25	Stockpile after the reclaiming	135
Fig. A.1	Coordinator defined for kinematic analysis	150

List of tables

Table 3.1	Parameters of the BWR	39
Table 3.2	Noise characters used in the GPS module	41
Table 3.3	Average RMSE of the UKF estimation	44
Table 3.4	Cone shape stockpile stacked using quartz aggregate	47
Table 4.1	Particles used to create stockpile layers	70
Table 4.2	Fitting accuracy versus computation time for a single scan	76
Table 4.3	Volume calculated from different wireframe models	79
Table 4.4	Ground detected from the boundary detection algorithm	81
Table 4.5	Polynomial surface modelling results	84
Table 4.6	Surface modelling accuracy versus calculation time when apply grid	
partit	ioning to the 15 th reclaiming data	84
Table 4.7	Volume calculated from the surface model	86
Table 4.8	Surface modelling accuracy versus calculation time when apply grid	
partit	ioning to a full scale stockpile	89
Table 4.9	Volume of polynomial models of the full scale data	90
Table 4.10	B-spline surface modelling results	93
Table 4.11	The volume calculated from the B-spline surface model	94
Table 4.12	Surface modelling accuracy versus calculation time when apply grid	
partit	ioning to a full scale stockpile	96
Table 4.13	The volume of the full scale B-spline models	97
Table 5.1	Voxel modelling using different resolutions	124
Table 5.2	Volume calculation results for the standard prism	126
Table 5.3	Volume of each layer calculated from the cubic voxel model	126
Table 5.4	Quality data used in the simulation	127
Table 5.5	BWR Parameters used in case study	127

Table 5.6	Quality of reclaimed material for the 1 st case using cubic voxels 12	29
Table 5.7	Quality of reclaimed material and their percentages in the 2 nd case	
using	cubic voxels	30
Table 5.8	Quality of reclaimed material for the 1 st case using sickle-shape voxels 13	33
Table 5.9	Quality of reclaimed material for the 2^{nd} case $\ldots \ldots \ldots$	36
Table A.1	LMS200 scanning configurations	49
Table A.2	Link analysis of the 3DOF laser scanning system	51

List of acronyms

BW	Bucket Wheel
BWR	Bucket Wheel Reclaimer
CAD	Computer Aid Design
DCM	Direction Cosine Matrix
DGPS	Differential Global Positioning System
DOF	Degree of Freedom
ECEF	Earth Centred Earth Fixed
EKF	Extended Kalman Filter
FIFO	First in, First out
GA	Genetic Algorithm
GP	Goal Programming
GPS	Global Positioning System
GPU	Graphical Processing Unit
KF	Kalman Filter
LiDAR	Light Detection and Ranging

LRF	Laser Range Finder
LTP	Local Tangent Plane
MSE	Mean Squared Error
NED	North East Down
PF	Particle Filter
QMC	Quasi-Monte Carlo
QVO	Quality Volume Object
RMSE	Root Mean Square Errors
SSE	Sum of the Squared Error
UKF	Unscented Kalman Filter
UT	Unscented Transformation
UWB	Ultra-wide Band
VRR	Variance Reduction Ratios