
3D Real-Time Stockpile Mapping and
Modelling with Accurate Quality

Calculation using Voxels

Shi Zhao

School of Mechanical Engineering

University of Adelaide

This dissertation is submitted for the degree of

Doctor of Philosophy

Robotics Research Group February 2016





In loving memory of my grandparents . . .





Declaration

Originality

I certify that this work contains no material which has been accepted for the award of any
other degree or diploma in my name in any university or other tertiary institution and, to the
best of my knowledge and belief, contains no material previously published or written by
another person, except where due reference has been made in the text. In addition, I certify
that no part of this work will, in the future, be used in a submission in my name for any other
degree or diploma in any university or other tertiary institution without the prior approval of
the University of Adelaide and where applicable, any partner institution responsible for the
joint award of this degree.

Permissions

I give consent to this copy of my thesis when deposited in the University Library, being made
available for loan and photocopying, subject to the provisions of the Copyright Act 1968.
The author acknowledges that copyright of published works contained within this thesis
resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web,
via the University’s digital research repository, the Library Search and also through web
search engines, unless permission has been granted by the University to restrict access for a
period of time.

Shi Zhao
February 2016





Acknowledgements

I would like to take this opportunity to express my deepest and most sincere thanks and
expressions of gratitude to my principal supervisor, Tien-Fu, Lu. Your broad knowledge and
logical pattern of thought, combined with a generous and friendly manner, have always helped
me improving. Your encouraging guidance and mentorship have motivated me throughout
my candidature.

I would not have been able to continue without the financial and practical assistance offered
by my supervisor Ben Koch of MatrixGroup through the ARC Linkage LP0989780 Grant.
Thank you for providing me with the opportunity to do this unique research in an exciting
field. Your insightful discussions and industry experience make my Ph.D. experience more
productive and stimulating.

In the course of my research, I have been worked with many others in the Robotics Group at
the School of Mechanical Engineering, University of Adelaide. Their supports and advices
were invaluable. I thank all the current members of the team: Kuan Tan, Mohamed Awadalla,
Maung Myo, Da Sun and Di Gao.

Lastly, I owe my greatest thanks to my family. They deserve special gratitude for the support
and understanding of my research career. Without them I would not have been able to travel
and study in Australia. To my wife, Soyeon Oh, thank you for your abundant love and
support throughout the years.





Publications

Journal

1. Shi Zhao, Tien-Fu Lu, Ben Koch, Alan Hurdsman, "Automatic quality estimation in
blending using a 3D stockpile management model," Advanced Engineering Informatics,
Volume 29, Issue 3, August 2015, Pages 680-695, ISSN 1474-0346, http://dx.doi.org/
10.1016/j.aei.2015.07.002.

2. Shi Zhao, Tien-Fu Lu, Ben Koch, Alan Hurdsman, "Stockpile modelling and quality
calculation for continuous stockpile management," International Journal of Mineral
Processing, Volume 140, 10 July 2015, Pages 32-42, ISSN 0301-7516, http://dx.doi.
org/10.1016/j.minpro.2015.04.012.

3. Shi Zhao, Tien-Fu Lu, Ben Koch, Alan Hurdsman, "Dynamic modelling of 3D stock-
pile for life-cycle management through sparse range point clouds," International Journal
of Mineral Processing, Volume 125, 10 December 2013, Pages 61-77, ISSN 0301-7516,
http://dx.doi.org/10.1016/j.minpro.2013.09.009.

Conference

1. Shi Zhao, Tien-Fu Lu, Ben Koch, Alan Hurdsman, "3D stockpile modelling to improve
the quality control in iron ore handling," Proceedings of the International Conference
on Mining, Material and Metallurgical Engineering, Prague, Czech Republic, 11-12,
Aug., 2014.

2. Shi Zhao, Tien-Fu Lu, Ben Koch, Alan Hurdsman, "Stockpile modelling using mobile
laser scanner for quality grade control in stockpile management," 12th International

http://dx.doi.org/10.1016/j.aei.2015.07.002
http://dx.doi.org/10.1016/j.aei.2015.07.002
http://dx.doi.org/10.1016/j.minpro.2015.04.012
http://dx.doi.org/10.1016/j.minpro.2015.04.012
http://dx.doi.org/10.1016/j.minpro.2013.09.009


x

Conference on Control Automation Robotics & Vision (ICARCV), Guangzhou, China,
5-7 Dec., 2012.

3. Shi Zhao, Tien-Fu Lu, Ben Koch, Alan Hurdsman, "A simulation study of sensor data
fusion using UKF for bucket wheel reclaimer localization," 2012 IEEE International
Conference on Automation Science and Engineering (CASE 2012), Seoul, Korea
(South), 20-24 Aug., 2012.

4. Tien-Fu Lu, Shi Zhao, Shihong Xu, Ben Koch, Alan Hurdsman, "A 3DOF system
for 3 dimensional stockpile surface scanning using laser," 6th IEEE Conference on
Industrial Electronics and Applications (ICIEA), Beijing, China, 21-23 June, 2011.

Poster

1. Shi Zhao, Tien-Fu Lu, Ben Koch, Alan Hurdsman, "3D real-time stockpile modelling
and voxelization to estimate quality during blending operation, " 11th South Australian
Exploration and Mining Conference (SAEMC), Adelaide, Australia, 5 Dec., 2014.



Abstract

Stockpile blending is widely accepted as an effective method to reduce the short-term quality
variations and optimise the homogeneity of bulk materials, such as iron ore. Currently, both
industry practice and academic research focus on planning, scheduling and optimisation
algorithms to stack a stockpile that meets the predefined quality requirements. Namely,
using ‘selective stacking’ algorithms to optimise the quality of a stockpile and improve the
operational efficiency. However, it has been identified that stockpiled products are currently
being reclaimed at approximately 50% of their potential engineering productive rates after
applying such ‘selective stacking’ methods at most iron ore loading ports in Australia. There
is an evident lack of solutions to this issue in the literature. This study focuses on stockpile
modelling techniques to estimate the quality of a stockpile in both stacking and reclaiming
operations for consistent and efficient product quality planning and control.

The main objective of this work is to build an up-to-date geometric model of a stockpile
using laser scanning data and apply this model to quality calculations throughout the stacking
and reclaiming operations. The significant elements of the proposed research are to: (1)
upgrade a stockyard machine used to stack or reclaim the stockpile (i.e. a Bucket Wheel
Reclaimer) into a mobile scanning device using Kalman filtering to measure the stockpile
surface continuously; (2) build a 3D stockpile model from the measurement data in real time
using polynomial and B-spline surface modelling techniques and use this model to calculate
the quality of a stockpile with a great degree of accuracy when the quality composition
is available; (3) associate the 3D model with the reclaiming machine model to achieve
autonomous operation and predict the quality of the reclaimed material through voxelization
techniques. In order to validate the developed techniques, several experimental tests were
conducted using simulation and real scenarios. It was verified that the proposed 3D stockpile
modelling algorithms are adequate to represent the real geometric shape with great accuracy.
The percentage error in volume is better than 0.2%. Therefore, the combination of stock-
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pile and BWR (Bucket Wheel Reclaimer) models enables the reclaiming to be conducted
automatically.

To the best of author’s knowledge, this is the first time that a stockpile is modelled au-
tomatically in real-time and the integration of the stockpile and BWR model generates a
novel stockpile management model allows true reclaiming automation. Thus, the quality
of material composition after every stacking/reclaiming operation is calculated from the
geometric shape/volume, density and quality assay results.

Through accomplishing this project, the quality of a stockpile and its distribution inside the
stockpile can be tracked continuously and the stacking/reclaiming trajectory of the machine
can be controlled precisely. By making available such information, it is then possible to
develop proactive stacking or reclaiming pattern strategies with more accurate product quality
grade planning and control. Therefore, the workload of current selectively stacking and
reactive reclaiming algorithms can be relieved, and the production rates can be improved
with good output product quality control.
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Chapter 1

Introduction

The problems and aspects of iron ore production, transportation and blending operations,
which involve engineering and economic applications, often evoke immense interest from
researchers. This chapter firstly provides an introduction to this study and then explains the
motivation for pursuing the research work. The research objectives and the scope of the study
are followed. Finally, the structure of this thesis is presented.

1.1 Iron Ore Exportation

Australia is one of the major iron ore producers in the world and iron ore mining is a primary
industry and contributor to the Australian economy. According to the statistical data, 554,288
kilotons of iron ore and concentrate were produced from 2012 to 2013 and 527,109 kilotons,
equalling 95.1% of the total production, were exported overseas [1]. Nearly all the ore sold
in the market is fed into blast furnaces for steel making. Traditionally, iron ore was sold
at prices that were set in advance in long-term contracts between the suppliers and buyers
(steel makers). Also, customers took the responsibility for shipping the ore after the purchase.
However, the exporting business has changed in nature since the demand greatly outpaced
the supply, especially driven by the rapid booming of the steel market in China from 2009.
Although China’s consumption of iron ore slumped since 2014, most steel makers in China
still use spot prices at the point of purchase and they also want suppliers to deliver ore to
their mills directly.
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A finely tuned blast furnace is inflexible in terms of changes in grades. Iron ore fed into
the furnace must be prepared within a very tight burden specification that contains not only
the iron content but also any major contaminants, such as silica, phosphorus and alumina.
Therefore, the grade consistency is a main quality criterion in price and quantity negotiations,
and is closely monitored by customers on a short-term basis (i.e. the ship-by-ship variability).
However, because the mineral composition of raw iron ore varies even when the ore is mined
from the same source and there exist strong cross-correlations across minerals in the ore
body, great efforts are needed to plan the mine production so as to deliver a steady stream of
product that is close to the target grade.

1.2 Mining Operation and Quality Control

The iron ore production encompasses a broad spectrum of activities. Generally, it can be
divided into four major operations: finding, mining, processing and delivering [2]. Before
operating a mine, the tonnage and distribution of ore are explored through a range of
geological, geophysical and metallurgical techniques. Such information will assist the
suppliers to create a lifetime production plan. This lifetime plan is then separated into
yearly, monthly and even daily plans to achieve the pre-determined target tonnage and
grade requirements. These subsidiary plans indicate the specific areas, which have similar
geology, to be mined each time, in a particular sequence. Furthermore, all the plans are
updated continuously in light of changing knowledge about the ore deposit and operating
requirements.

Holes are drilled in an appropriate pattern and filled with an explosive to fulfil the require-
ments of the daily production plan. The blasting breaks the material into an appropriate size
for the digging process. Samples are taken after the blasting to provide a more accurate
estimation of the ore grade than the one obtained from previous exploratory operations. Ore
extracted from the mine is transported to the processing plant via haul trucks. At the plant,
the ore is crushed into small size particles and separated into the lump (with an approximate
particle size between 7 mm ∼ 25 mm) and fines products (with an approximate particle
size less than 7 mm). In some cases, a gravity separation system may also be involved to
extract top quality iron ore pellets (haematite) from the fines product [3]. Because the grades
between the lump and fines products are always different, they are stacked separately.
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In accordance with exporting requirements, train loading is scheduled and the stockpiled
iron ore is recovered, then transported to the port. At the port, offloaded iron ore can be
mixed with other high- or low-grade raw material to adjust the averaged quality. Tertiary or
quaternary crushing may also be applied when needed. Again, processed ore is stacked into
stockpiles accordingly. Sold iron ore are then recovered and transported by ship to customers.
Occasionally, instead of having two storage facilities, mined iron ore is loaded directly onto
trains and transported to the port. At the port, iron ore is processed and stacked into stockpiles.
A simplified transportation arrangement after the ore is blasted, demonstrating the flow of
the ore, is shown in Fig. 1.1.

Fig. 1.1 A normal iron ore exportation procedure.

Finding, mining, processing and delivering operations construct a multi-level supply chain
to maintain the quality of the delivered product within acceptable tolerances of the target
grade. In most cases, other than the previously mentioned mine planning, ore processing, rail
scheduling, stockpile blending is also conducted in the supply chain to adjust the quality. A
stockpile is the simplest storage form for bulk material and it exists between delivery and
reception to provide sufficient reserves for continuous operations, i.e. to serve as a buffer
for iron ore shipments at exporting ports. Additionally, stockpiles are always built at the
processing plants to blend ore with different grades (potentially from multiple pits) in order
to meet the predefined target grade.

Blending is generally achieved through stacking iron ore into different geometric shapes layer-
by-layer and reclaiming the stockpiles slice-by-slice. Therefore, stacking and reclaiming are
collectively named blending throughout this thesis. For instance, a chevron stockpile, which



4 Introduction

is one of the most common stacking methods in iron ore exporting, is formed by moving the
stacker forwards and backwards over the predefined length at an almost constant speed. The
boom lifts a little at each end. Ideally, materials poured from the end of the boom form a
thin layer with a triangular cross-section. Layers are stacked on top of each other after the
zigzag motion is completed (see Fig. 1.2 a). When the stockpile is recovered using a Bucket
Wheel Reclaimer (BWR), which has a rotating wheel with buckets mounted at the tip of the
boom, the horizontal motion of the BWR and the circular motion of the bucket wheel result
in a sickle-shaped cutting geometry (see Fig. 1.2 b). Materials in different layers are almost
simultaneously scooped up by buckets and mixed inside the wheel. As a result, the variation
in the quality of the recovered material is reduced.

Fig. 1.2 A Stockpile with layers and a cutting geometry caused by a BWR. a) The ideal cross-section
of a chevron stockpile. Layers with different quality grades are represented by different colours. b)
The bucket wheel and a sickle-shaped cut.

1.3 Motivation

Blending aims to distribute ore selectively so as to improve the homogeneity of that specific
stockpile. Obviously, the chemical properties inside each layer, the geometric shape of each
layer, the number of layers and the cutting geometry of the reclaimer will determine the final
blending results. However, the mineral composition of the ore may be not known with the
highest degree of accuracy before blending due to the limitations of current sampling and
analysis techniques. For instance, the chemical composition cannot be accurately analysed
until the sampled iron ore is crushed. Therefore, there is always a delay of several hours
before obtaining the most accurate analytical results. Frequently, to save storage space and
maximize the production rate, stockpiles have to be built using prior quality data. Such
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prior data can be inaccurate and inappropriate because they are obtained before the iron ore
is processed. Thus, stacking may be unable to smooth out the quality fluctuations of the
stockpile. For instance, when the train delivery of iron ore is crushed and screened into the
lump and fines products, the separation will cause systematic differences in the chemical
compositions of the two products. Both pieces of quality information are needed to direct
these two products to specific stockpiles. Conversely, there is only one set of data that is
obtained before crushing and screening. The use of such inappropriate quality data may
cause the optimization algorithm to fail and the quality of a stockpile not to be known exactly
after stacking.

It is not surprised that the performance of a blending plant is poorer than expectations.
On-site investigations indicate that stockpiled products are currently being reclaimed at
only approximately 50% of their potential engineering productive rates [4]. There exist
many sources of disruption and irregularity in the blending process, key issues being that
the quality of a stockpile cannot be controlled accurately at the stacking phase; the quality
of reclaimed material cannot be predicted before reclaiming and the reclaimer is operated
semi-automatically. Thus, the first cut into a stockpile has to be decided and activated
manually, mainly based upon driver’s experiences. To adjust the quality of recovered material
regarding the end objective, the reclaiming has to be suspended frequently whilst waiting for
the quality information. If any changes in quality are needed, the reclaimer has to move to
another position to recover different grade material. Again, the decision is made through the
imperfect quality information of the stockpile. Meanwhile, because the cut is conducted by
human operators, it inevitably introduces more uncertainties into quality adjustments.

There is a real need to enhance blending efficiency with a capability to predict and control
the quality grade of stockpiled products, thereby increasing the productivity and export
potential, and reducing costs. The current research focus is to build a stockpile that satisfies
a particular target grade through scheduling the stacking sequence using optimisation theory.
Generally, a stockpile is modelled by an objective function with a set of constraints in such
mathematical optimisation approaches. On the contrary, this research intends to create a
new 3D stockpile management model featured with highly accurate 3D volumetric stockpile
models from real-time measurement data, precise quality data from chemical analysis and
machine operation models. Such a novel management model can be used not only for highly
accurate quality grade prediction and control but also assist in the decision-making process
to achieve stacking/reclaiming strategies pro-actively and with much higher efficiency than
current selective stacking approaches.
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1.4 Objectives

Achieving customer acceptable quality specifications has been the main focus for both
academic research and industry practice. Although various approaches have been reported for
this purpose, none of them has associated the stockpiling modelling and machine operations
together to form such an innovative and comprehensive system as is proposed in this project.
There is a definite lack of 3D real-time stockpile models for more efficient and effective
blending algorithms with consistent product quality grade planning and control capability.
Therefore, the general aim of this research is to develop a 3D stockpile management model
to deliver the relatively consistent grade of bulk solids required by customers in a highly
efficient and low cost manner. More specific objectives for this study are as follow:

1. To map the stockpile in real time using laser scanner
Contemporary measurement data is essential for stockpile modelling purposes. This
project aims to upgrade a stacking/reclaiming machine to a mobile laser scanner to
measure the stockpile profiles while it is being stacked/reclaimed. Through capturing
the dynamic profile data of the stockpile, the geometric shapes of a stockpile can be
profiled in detail. Meanwhile, to map the stockpile, the mobile laser scanner needs to
be localised. An Unscented Kalman Filter will be applied to obtain accurate positional
estimations from a GPS receiver and encoders.

2. To build accurate 3D mathematical models using measurement data
Continuously updating the geometric shapes of a stockpile will result in a huge amount
of 3D data points. It is expected to identify stockpile regions from point cloud data
automatically and handle them mathematically. The modelling error in volume is
expected to be less than 0.5%. Thus, these models can be visualized and utilized easily,
not only for quality control, but also for other relative applications, such as collision
detection. Besides, data to be stored will be much less. Two different mathematical
models are presented in the thesis for this purpose.

3. To enable automatic blending using 3D stockpile models
Most reclaimers currently operated in the stockyard are semi-automatically controlled.
Stockpile models and BWR operations are not tightly coupled with each other. This
study aims to couple them together to achieve automatic blending which is able
to convert the ‘selective stacking’ mode into a ‘proactive stacking/reclaiming’ mode.
Thus, detailed knowledge of a stockpile can be updated and learned through controlling
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the trajectory of the stacking/reclaiming machine. Meanwhile, the trajectory of the
BWR can be predicted and planned using dynamic stockpile models which will enable
fully automatic control of the BWR. A 3D stockpile management model that links a
stockpile and a BWR will thus be studied.

4. To estimate the quality in blending using voxels
Both stacking and reclaiming operations can be considered as discrete operations
because the geometric shape of a stockpile changes step by step. Additionally, the
quality of the discharged material from the conveyor belt during stacking is not uniform.
Therefore, a better way to estimate the quality of a stockpile or recovered material is
to use the discrete voxel space. Two different voxel models and quality calculation
procedures are investigated and detailed in the thesis.

1.5 Thesis Structure

Chapter 2 provides literature review and motivation for this thesis. Through reviewing stock-
pile modelling algorithms, paying special attention to applications in blending optimisation
and automatic algorithms employed in BWR automation, the need to build a novel 3D
stockpile management model is exemplified.

Chapter 3 details the development of a mobile laser scanning device and experimental
facilities built in a laboratory environment to scan a scaled-down chevron stockpile. An
Unscented Kalman filter (UKF) based sensor data fusion algorithm is proposed to improve
the positioning accuracy of the end-effector (the bucket wheel) of a BWR. A simulation study
is presented to demonstrate the localization results. An indoor experimental environment for
modelling data collection is also detailed in this chapter.

Chapter 4 addresses the stockpile modelling. Whilst a variety of approaches are available
for surface reconstruction from point cloud data, this study focuses on the building of
mathematical models in real time without human supervision. These models are proven to be
generated automatically almost in real time using a variety of point data.

Chapter 5 investigates the 3D stockpile management model. The stockpile models proposed
in Chapter 4 are used to solve BWR automation problem. The joint angles of BWR and
slewing range of the boom are calculated from the 3D stockpile. This will provide a true
automation in quality control. Stockpiles are therefore voxelized into two formats for quality
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estimations. The advantages of these voxelization methods are discussed and the quality of
reclaimed material is calculated accordingly.

Chapter 6 presents conclusions and points out the contributions. Additionally, it outlines
directions for future research which may further benefit the industry.



Chapter 2

Literature Review

The nature and quality of a stockpile plays a key role in bulk material handling. Stockpiles
are where bulk materials are buffered and quality adjustments are normally performed.
This chapter provides a review of the work in the field relevant to stockpile management.
The review focuses on blending optimisation and quality estimation for a stockpile. Then
it extends to a broad spectrum of relative techniques in bulk material handling, such as
machine automation and stockyard management. The literature reviewed in this chapter
helps to identify the need to build a 3D stockpile model for stockyard management and the
importance of applying this model in quality estimation for blending control.

2.1 Stockpile Blending

Bulk materials, such as iron ore, limestone and coal, are never consistent in terms of
quality, even they are mined from the same source. Such raw materials, with different
chemical compositions, need to be blended into one in order to meet the required specification
before further use. Stockpile blending is one of the few techniques available that converts
heterogeneous raw materials into a relatively stable homogeneous product. It is considered to
be indispensable in bulk material delivery and preparation. In industry practice, the sequence
of operations in building a stockpile is described by two terms: blending and grade targeting.
Blending refers to mechanical operations, including stacking and reclaiming. Grade targeting
refers to the decisions that have been made prior to commanding the machine operations [5].
For example, to direct ore to a specific stockpile so as to improve the homogeneity of quality
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of that stockpile or to recover material from multiple stockpiles during the ship loading
operations, in order to meet the required quality and quantity combinations. Essentially,
stockpile blending aims to meet the predefined target grade and reduce the variations in
quality of any given stockpile.

Stacking is the beginning of a blending process. Currently, in the mining industry, stockpiles
are normally created in a longitudinal direction and stacked layer by layer through automatic
control of the trajectory of a stacking machine. Besides the most popular chevron method
used in the majority of the iron ore exporting facilities in Australia, other methods include
cone-shell, strata and windrow stacking [6]. Each method has its unique stacking trajectory
that creates a certain pattern in the cross-section of a stockpile (see Fig. 2.1). It should not
be too hard to deduce the moving path of the stacker from the cross section of a stockpile.
For example, a chevron stockpile is created through driving a stacker slowly at an almost
constant speed from one end of the stockyard to the other. Ideally, poured material has an
inverted V-shaped pattern over the entire length of the stockpile. Before turning the stacker
back at each end, the boom lifts a little to create a space for adding a new layer onto the
pile.

Fig. 2.1 The ideal cross sections of stockpiles after stacking.

Reclaiming allows material to be mixed to improve the homogeneity in quality. In iron ore
handling, a boom-type reclaimer with a bucket wheel, which has the combined features of a
stacker and a reclaimer, is commonly used (see Fig. 2.2). Its boom slews across the body of
a pile and the buckets on the rotating wheel scoop materials from the pile simultaneously.
Hence, recovered materials from different layers are mixed inside the wheel.

General reclaiming methods include long travel, bench (terrace) and pilgrim step reclaiming.
A chevron stockpile is normally reclaimed by the bench (terrace) or pilgrim step reclaiming.
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Fig. 2.2 A rail mounted BWR operated at the Brockman 4 mine in the Pilbara region of Western
Australia. Image source: Wikipedia, under GNU Free Documentation Licence.

In bench reclaiming, the lateral motion of the boom is performed perpendicularly to the
stacking direction. The slewing speed of the boom is controlled to achieve a constant
conveying output. The slewing movement of the boom and the circular movement of the
bucket wheel result in a sickle-shaped cut. After the bucket wheel cuts through the pile,
the slewing motion stops and the machine advances along the stacking direction. Then the
boom is reversed back from its stopped position to make a new cut. In most cases, the swing
motion mechanism repeats until the material above the specified height of the stockpile is
totally recovered. As a result, such operations cause a flat bench on the stockpile. The bucket
wheel is lowered to another height to create another bench.

Pilgrim step reclaiming is, in principle, built upon bench reclaiming. However, only a limited
number of cuts are conducted at each bench height [7]. It starts from the topmost bench with
an even number of cuts. After that, the reclaimer travels back and lowers the bucket wheel
to resume a sequence of new cuts. When bucket wheel is down to the lowest bench and
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pre-set the cuts are completed, the reclaimer will travel to the first tranche of the stockpile
and use the same method of reclaim. Since a single sickle-shaped cut obtained from bench
or pilgrim step reclaiming contains materials of different grades (from different layers) and
these materials are mixed inside the rotating bucket wheel, reclaiming will improve the
homogeneity of a stockpile.

According to the blending operations, the quality of a stockpile is tightly connected with its
geometric shape. More specifically, it is determined by the geometric shapes of its layers
because the material quality of each layer is different. The reasoning behind is that the quality
of a single element from the chemical analysis is represented as a weight percentage of the
whole composition and the density of the ore can be considered as a constant after crushing
and screening. In this thesis, a stockpile is considered to have four phases across its life
cycle, as shown in Fig. 2.3. These phases are stacking, awaiting reclaiming, reclaiming and
awaiting stacking. At the stacking and reclaiming phases, the geometric shapes of a stockpile
change continuously with the machine movement. Therefore, to calculate the quality of
a cut or a stockpile accurately, it is necessary to record such changes faithfully. While a
stockpile is at awaiting reclaiming or awaiting stacking phase, it is the best opportunity to
integrate the recorded geometric information with the chemical analysis results to estimate
the quality of a stockpile. Obviously, the estimation results will guide operations conducted
at stacking or reclaiming phase. Thus, the quality management can be controlled effectively
and efficiently.

Fig. 2.3 The ideal cross sections of stockpiles after stacking.
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Grade targeting is essential in blending because it is how quality control takes place. To meet
the quality specification required by a client, material stacked onto the stockpile or recovered
from the stockpile needs to be carefully arranged in appropriate proportions. At the stacking
phase, decisions are made based on the knowledge of the quality of the current materials and
the ore already in the stockpiles. It aims to assign the current materials selectively onto a
specific stockpile without causing significant changes in the grade of that stockpile. In turn,
mine production scheduling and train sequencing are also involved as control factors for such
selective stacking operations. At the reclaiming phase, grade targeting is achieved through
moving BWRs in the stockyard to reclaim different materials. Again, decisions are made
based on the knowledge of the stockpiles and required product quality. Approaches used to
optimise the blending and assist the decision making in grade targeting are reviewed in the
next section.

2.2 Stockpile Modelling

Obtaining the best results from minimum blending is vital because blending raises operating
costs and lowers system efficiency. Therefore, stockpile models have been developed to
analyse blending activities and guide grade targeting operations. Generally, two types of mod-
elling approaches have been introduced for blending optimisations and quality estimations.
The first one treats the quality of iron ore as a function and uses mathematical equations to
describe a stockpile. The second one extracts geometric features and builds a volumetric
model of a real stockpile.

2.2.1 Mathematical Model

A statistical approach was first suggested by Gerstel to estimate the quality after blending
in 1977 [8]. In his bed blending theory, the material flow into and out of a stockpile was
named input and output flow, consecutively. These material flows were considered as discrete
signals for the estimations of the quality variations. Several assumptions were made to
describe the characteristics of such signals, including the average, standard deviation, the
variance and the covariance. An exponential function was used to approximate the covariance
function, to estimate the standard deviation of the signal. Gerstal defined a factor called
blending efficiency, which was the quotient of the standard deviations of the input and output
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signals, and suggested that it is inherently connected with the number of layers in a stockpile.
Furthermore, he pointed out that stockpiles can be used to control the long-term fluctuations
in bulk material handling.

Soon after, Gy presented a new variographic theory for bed blending, to suppress the
continuous input variations for a steady output quality grade [9]. He claimed that Gerstel
wrongly assumed that the standard deviations of the input and output signals are uncorrelated
with each other. However, some assumptions in both blending theories do not hold true
in real operations, such as that all cross-sections of a stockpile are identical, all layers
have the same uniform thickness and that materials in each layer are uniformly distributed
along the pile length. Additionally, both authors suggested that stockpile blending was only
effective for adjusting long-term variations, not for short-term ones. However, with the
further understanding and developments in mathematical optimisation and scheduling since
this date, their proposals have been superseded.

In 1996, Everett presented a simulation model to schedule iron ore handling procedures
and improve performance in quality control. He introduced a stress vector to describe the
deviations of four quality elements (iron, silica, alumina and calcium oxide) in iron ore [10].
The quality of the arrived iron ore is evaluated by its stress vector and aggregation of the
stress vectors will finally result in a stockpile being in ‘pain’. Accordingly, the best strategy
is to minimize the increment in the stress vector of a stockpile when it is stacked. In the
meantime, he also applied this stress vector approach to ship loading operations. Through
selecting the optimum mix from multiple stockpiles in a stockyard, the ship-to-ship variability
in quality is also minimized. Simulation results indicated that this approach had cumulative
effects in reducing the short-term variations in iron ore handling.

Building on the previous research, Everett further explored the stress vector approach in
iron ore production scheduling. He created a diagram that contains four stages to describe
the production sequence from a mining site to a ship, schematically [11]. He suggests that
opportunities to adjust the quality of the final products exist throughout these stages: for
example, to select specific mine blocks at multiple mining sites, or to schedule train sequences
to transport ore from source mines to the port. Again, the key selection criterion at each stage
is the quality composition, which is reflected as a stress vector. Through scheduling individual
operations at each stage, the stockpiles built at the port will have a uniform composition
in accordance with the predefined specifications for shipping. Additionally, a recent paper,
published by Everett in 2010, reported a simulation model designed for short-term grade
control during ore handling [12]. It simulated real day-to-day operations of an iron ore
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mining company in Western Australia. Optimizing decisions in the process are made by
human operators, based on the optimisation results deduced by the stress vector algorithm.
Everett’s research proves that stockpiles can be used to adjust the short-term grade constancy,
which is believed to be a great contribution to stockpile blending.

Kumral designed a stockpile model to minimize the grade variations in stockpile output in
2006 [13]. He called the blending efficiency, which is defined by Gerstel [8], VRR (Variance
Reduction Ratios) and used it to evaluate the homogenization effect of a stockpile. To obtain
a sufficient number of VRRs, a stockpile is partitioned into a number of discrete blocks. The
VRR of each block is predicted through multiple regression modelling. A genetic algorithm
(GA) is employed to determine optimal stockpile parameters, including the stockpile length,
the number of layers and the speed of a stacker. These parameters are given in terms of
the number of blocks that minimize the VRR. Two case studies were presented to validate
his optimisation algorithm. According to the simulation results, he suggested that windrow
stacking would result in a much greater variance reduction effect than chevron stacking
does. However, such a conclusion has been challenged by Robinson at the end of Kumral’s
paper [14].

Wharton described three case studies in blending optimisation using linear programming
techniques provided by the Whittle Strategic Mine Planning package [15]. Extractive
blending is defined as a process that uses blending to meet quality constraints prior to future
processes. Materials are taken from different stockpiles and are represented by tonnage
and grade, which forms the basis for the linear programming problem. Constraints for the
linear programming optimisation are: the product limits, the minimum or maximum element
grade limits and the stockpile quantity limits. All case studies are based on practical stations
on existing mine sites and each case study has a specific aim: to improve the throughputs,
reduce costs and increase recoveries. The results demonstrate that extractive blending based
on linear programming techniques can improve the quality of the input material.

Lyu et al. incorporated a goal programming (GP) model to a coal blending management sys-
tem. The model assists the manager to determine the appropriate quantities of coal recovered
from different stockpiles to meet the environmental and boiler performance requirements.
In this paper, the quality of stockpiles and the quality requirements for boilers are assumed
to be known in advance. The optimisation aims to blend materials recovered from different
stockpiles to minimize the deviation requirements of coal with a view to maintaining uni-
form usage of stockpiles for all boilers [16]. They introduced a number of real operation
constraints into the GP model and solved it using a mathematical programming software
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package called ‘LINDO’, which is available on the commercial market. Lyu et al. believe
that their model is also applicable to assist with the coal distribution system, namely, to assist
in the decision-making process in stacking operations.

Mathematical models have demonstrated their capability to improve the homogeneity of a
stockpile through selective blending operations. A stockpile is considered as an abstract con-
cept and is described through one or more objective functions in these modelling approaches.
With operational constraints, the objective function(s) is/are then solved using mathematical
optimisation algorithms. However, they are still insufficient for realistic problems because
quality data in current mathematical models are assumed to be available with the highest
degree of accuracy before stacking, despite current limitations in sampling and chemical
analysis techniques.

As pointed out by Everett, the quality composition of the ore cannot be accurately assayed
until it is crushed [17]. A complete element analysis needs two to three hours. In turn, there
is always a delay of several hours in obtaining the grade information of the ore. Conversely,
to save storage space and enhance the effective time management of the machinery, materials
have to be stacked right after the iron ore is processed (i.e. after crushing and screening,
or after gravity separation). Consequently, the quality information used in these selective
stacking approaches is normally imperfect or insufficient because they are obtained before
such processing. For example, crushing and screening will yield lump and fines products
and the grades of these two products are different. However, there is only one type of quality
data before the iron ore is crushed. Thus, the use of such imperfect or insufficient quality
data may wrongly estimate the quality of a stockpile and cause optimisation algorithms to
fail. If a stockyard receives materials from different sites, such estimations are liable to be
biased since there exist large differences in ore grades. Furthermore, since mathematical
models cannot represent the real geometric shape of the stockpile, no correction can be
made to improve the accuracy of the estimation even after the chemical analysis results are
acquired. Another problem inherent in these mathematical models is that they require a very
tight operational coupling between mining, delivering, sampling and blending operations.
A minor perturbation may disrupt the entire optimisation process and lower operational
efficiency.

Of course, mathematical models are designed for assisting decision-making but not for
machine automation. In these models, stockpiles are abstract concepts and represented in
tabular or pictorial formats with quality data attached to them. Consequently, these models
are not able to guide the machine operations because the geometric parameters of actual
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stockpiles are not known. A stockpile is believed to have an almost uniform quality in
each grade after stacking. Namely, the stockpile meets a certain quality specification. Thus,
machines can simply reclaim that stockpile until the required quantity (mass) is reached.
However, real reclaiming operations are much complex than such assumptions allow, as
inaccurate quality data are used at the stacking phases. Quality control is also needed during
reclaiming phases and so detailed operational procedures will be discussed in the ‘machine
operation control’ (Section 2.3) of this thesis.

2.2.2 Geometric Model

Geometric models intend to represent real stockpiles using geometric shapes and they
are normally created in order to calculate the quality of a stockpile. Robinson and Ross
introduced three differential equations to approximate a semi-infinite chevron stockpile (with
one end open) and solved these differential equations using a numerical approach [18]. To
simplify the question, the repose angle of the stockpile was assumed to be of 45◦. Thus, a
multilayer stockpile can be modelled through changing the parameters of three equations.
The quality of a stockpile portion is determined by the volume of each layer inside that
portion and the grade of that layer. This modelling approach introduces a novel idea for
stockpile quality calculation. However, the geometric model is based on the theoretical shape
of a stockpile. No real measurement data are involved in the modelling. To accommodate
this model to a real stockpile with an arbitrary repose angle, they advised a change in the
density of the material. For example, if the repose angle of a stockpile is 35◦ and the density
of the material is 2000 kg/m3, the modified density would be 2000tan(35) kg/m3 according
to their suggestions. Clearly the adjustments are notional, designed for theoretical models
rather than actual models.

Pavloudakis and Agioutantis ignored the two conical ends of a chevron stockpile and assumed
it has perfect isosceles triangular cross-sections along its stacking (longitudinal) direction [19].
Thus, a chevron stockpile is modelled as a triangular prism. To calculate the quality after
stacking, the stockpile model was partitioned into a group of sub-prisms evenly along its
longitudinal axis, a process which is called the ‘method of section’ in this paper. Every
sub-prism or section is considered as a quality unit in the blending operations. Therefore,
the quality of a pile is a combination of the grades of all the sections. The quality grades
of these sections are simulated from the daily average properties plus normally distributed
noise. Also, they introduced the ‘method of bench’ through dividing a stockpile along its
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vertical axis to estimate the quality of recovered material at the reclaiming phase. The
name, bench, comes from the bench reclaiming method because it results in a bench after
materials above a certain elevation are recovered by a BWR. They also suggested the most
economical way to accomplish a stockpile was to use three bench levels. The quality of
the reclaimed material was also estimated through combining the method of section and
the method of bench for comparison purposes. They also concluded that the increase in
the number of layers improved the blending efficiency and such an improvement is more
obvious in windrow stockpiles with the bench reclaiming method. Additionally, Lu and Myo
described an algorithm to optimise the BWR reclaiming trajectory to meet the target grade
required by customers [20]. In their paper, a stockpile was also modelled as an isosceles
triangular prism. However, such triangular prism models are far from a good representation
of a real stockpile. Specifically, the two conical ends of a stockpile cannot be adequately
described by a triangular prism.

In the commercial context, QMASTOR [21] and Indurad [22] choose laser or radar to
perceive the stockpile and thereby to model stockpiles. 3D models were used to predict the
quality grade of the stockpile and avoid collisions between stockpiles and BWRs. Also, a
3D stockpile model was developed and was stored with information for each cubic meter
in regard to quantity and quality [23]. Even though no published paper that describes these
systems can be found, it is evident from their websites, images, videos and contact emails
that these systems are either highly customized, which means they are not mobile and thus
be configured according to site specifications, or they are working off-line without the ability
to update information in real time.

An advantage of volumetric models, when they are compared with the mathematical models,
is that the quality of the stockpile can be calculated in more accurate manner when the
quality assay results are available. It is easy to draw such a conclusion because the chemical
composition is presented as a percentage of the weight and the density of the material
can be considered as a constant after crushing and screening. However, current geometric
modelling approaches are not able to record the real shape of a stockpile or update this shape
continuously. Conversely, as discussed in the ‘stockpile blending’ section, a stockpile has
four phases and these phases switch from one to another in blending operations frequently.
Such switch between phases results in significant changes in geometric shapes and also
changes the quality of the stockpile. For precise calculations, a geometric model is required
to represent not only the external shape but also the internal shapes (layers) of a stockpile
faithfully and update these shapes immediately after the blending operations. Without such
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ability, the quality of the stockpile is difficult to estimate over time, using current geometric
models.

Again, geometric models are not tightly associated with machine automation. In the literature,
a number of authors considered the machine’s operating mechanism and used such operational
procedures in their quality calculation. Stockpile models were partitioned into a sequence
of sections by orthogonal planes that lie parallel to the horizontal and vertical axis of the
stockpile. The chemical grades in these sections were calculated separately because each
section was considered to be recovered as an entity during reclaiming. However, these simple
shapes (triangular or trapezoidal prisms) are not good approximations of a real cut created by
a BWR. Furthermore, current geometric models are not associated with machine operations.
Consequently, BWRs are still operated manually or semi-automatically in stockyards.

2.3 Machine Operation Control

Full automation characterizes the latest developments in nearly all industrial fields, as it does
in bulk material handling. Bucket Wheel Reclaimers (BWRs) which can be used for both
stacking and reclaiming are one of the most popular choices for iron ore exporting. These
machines are versatile in size and style for different applications. Since the 1980s, BWRs
have been adapted to automatic operations. In the case of a stacker, the machine was able
to follow a predetermined travel program to build chevron, cone-shell, strata and windrow
piles [24]. In terms of these reclaimers, semi-automatic operations have been achieved using
a positional sequence control system, which contains contactless control circuits and digital
position measurement sensors [25]. Currently, most BWRs operated in Australia are supplied
with encoders to measure the travelling distance, slewing and luffing angles. The position of
the bucket wheel (BW) in 3D space can be calculated directly from encoder measurements.
Also, measurement data are delivered to the feedback control programs to control the motion
of the BWR. However, the operation is not fully automatic. The first cut into a stockpile has
to be activated by human operators because it is not possible to predict whether there will
be collisions between the wheel and the stockpile body under such control logic. Only after
the first cut, can the BWR follow a specific reclaiming pattern to recover materials from a
stockpile.

When a stockpile is recovered using the bench reclaiming method, an operator selects a
landing point on the stockpile’s surface manually and approaches the BW to that point with
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great care. When the contact between the BW and the stockpile surface is about to occur,
the operator activates the circular motion of the buckets to make sure the buckets can pick
up materials from the stockpile simultaneously with the landing. Normally, the rest of the
operations are controlled automatically until the height of the BW is changed. The slewing
range is determined by the feedback from the loading sensor. The lateral motion begins to
stop until a lack of resistance is detected from the sensor. After a single cut, the BWR is
advanced with a fixed cutting depth (i.e. 0.9×bucket width) to perform a new cut. The BW
is lowered to start a new reclaim when all materials at that terrace are recovered. Again, the
operator needs to choose the right landing point for the new reclaim. When other reclaiming
methods are used, the moving trajectory of the BWR may be different but the operating
procedures are similar to the bench reclaiming method.

Research in the field of BWR automation is very limited in the literature. To land the BW
onto the stockpile automatically, Choi et al. extracted 2D contour map from 3D laser scanning
data and used inverse kinematic equations to calculate the joint angle of the BWR from the
contour map [26, 27]. The points along the contour lines were evaluated over the slewing
trajectory of the BW. The validated landing points will not cause collision between the wheel
body and the 2D contour map. Such idea was adopted by Lee et al. in 2006. They built a
contour map from scanning data to optimize the trajectory of a BWR in terms of the safety,
energy consumption and transfer time [28]. Obviously, these 2D stockpile models are not
focused in blending optimisation and the quality of a stockpile cannot be calculated from
2D contour maps. Additionally, the boom and BW are assumed to be on the same slewing
plane in these papers. Thus, the 3D collision detection problem is simplified as a 2D case.
Conversely, in practice, to reduce the cutting resistance, the BW is tilted at a small angle.
Therefore, such 2D approximation may be not able to identify all potential collision points in
3D space.

To achieve the contractual grade consistency required by the client with the minimum travel-
ling distance, Lu and Myo employed a 3D stockpile model (a triangular prism) and partitioned
it into a number of sections which are called voxels in their paper. A voxel is assumed to have
excavated by the BWR in one cut and the quality variations of these voxels are assumed to
satisfy a normal Gaussian distribution [20, 29]. Together with other operational constraints,
a BWR trajectory optimisation system was developed. Thus, the system they have developed
assists the BWR to reclaim stockpiles (two in their papers) selectively, in terms of the quan-
tity requirements. However, these voxels (triangular/trapezoidal prisms) are different from
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the sickle-shaped cuts caused by the BWR and the two conical ends of a stockpile are not
involved in the modelling.

There is definitely a lack of a novel stockpile model that is able to guide the reclaiming
operations. The main reason for such need lies in the low recovering rate and operating
efficiency of the system at the reclaiming phase. As pointed out by Lu, on-site investigations
show that stockpiled products have currently been reclaimed at only approximately 50% of
their potential engineering productive rates [4]. Because the quality of a stockpile is not
known exactly after stacking, quality control is still a complex process at the reclaiming
phase. To monitor the quality of recovered material regarding the final objective, the
reclaiming has to be suspended frequently whilst waiting for the quality assay results. If any
changes in quality are needed, it has to move to another position to recover different grade
materials. Again, such decisions are made by humans using imperfect quality information.
Furthermore, because the first cut is controlled by human operators, it inevitably introduces
more uncertainties into the adjustments. Therefore, the entire operation is working in an
inefficient and high-cost mode.

2.4 Stockyard Management

Other than optimizing the blending operations, some researchers aim to optimize the entire
operation of iron ore handling. A port simulation model, including both mine sites and
export ports, was introduced by Dahal et al. in 2003. This simulation model contains most
of the handling facilities, such as stockpiles, conveyors, stackers and reclaimers, and a
group of real operational constraints. The optimisation problem aims to find a sequence of
feasible daily activities for the processing plant and material-movement systems that meet
the overall production targets [30]. They suggest this problem will have two conflicting
criteria: to minimise the total operating cost and to maximise component utilisation. A
metaheuristic approach, based on a GA, was proposed to provide an optimized solution for
these two criteria. Ayu and Mantoro studied the disturbance in train transportation which
may affect daily stockyard operations at an exporting port [31]. They built a three-step
system to simulate operations in a stockyard. The stockpiling system is the intermediate
link between the train and ship loading systems. Their stockpile model is relatively simple
in comparison with other modelling approaches. The ore has to follow a First in, First out
(FIFO) strategy. Additionally, a completed stockpile is not allowed to receive new arriving
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material and an incomplete stockpile cannot be recovered. Restrictions specified in this paper
limit its application to real operation environment.

Most recently, He et al. pointed out that yard crane scheduling has been studied consistently,
but few scholars have considered energy-saving in their management models. Thus, they
integrated a GA and the particle swarm optimisation algorithm that considers the trade-off
between efficiency and energy consumption for yard crane scheduling [32]. The seaport
container terminal simulated in their study, which is divided into many blocks and owns many
yard cranes, is quite similar to an iron ore exporting terminal. Therefore, their scheduling
model and algorithm are applicable to BWR movement optimisation. However, the quality
and quantity constraints also need to be added into the management model.

Innes et al. developed an approach to track and fuse information on excavated materials
throughout the process chain, in a mine site, using a decentralized sensor network [33].
The sensor network contains multiple sensors to track the excavated material. For example,
GPS receivers and suspension strut pressures are mounted onto haul trucks. Further to this,
the load and bucket volume fill level sensors are mounted on the buckets of an excavator.
The ore tracking system is formulated with a dynamic state vector to enable material at
each stage to be recorded. An augmented state Kalman filter with constrained system
models was used to fuse data from information sources. They believed this method allowed
probabilistic reconciliation of the materials, whilst ensuring that the total mass in correlated
states remained constant. The data fusion approach reported by Innes et al. with the purpose
of accurately tracking the ore, will undoubtedly lead to great financial benefits to the mining
industry. However, the cost of building such a network from the mine site to the export port
could be an issue. Meanwhile, this approach is not applicable after iron ore is stacked onto
stockpiles.

Similar to most mathematical modelling approaches, a stockpile in above reviewed stockyard
management systems is only an abstract concept. The general aim of these studies is more
likely to increase productivity and lower costs rather than achieving the target grade in
effective and efficient manner.

2.5 Research Gap

This section first summarises the literature review and outlines the research gaps. Then, it
presents the innovations in this study.
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2.5.1 Summary

Existing work in the field has demonstrated the need for building a real-time 3D stockpile
management model to track for quality during the entire life cycle of a stockpile. This chapter
first describes the stockpile’s functions and details how such functions are achieved in daily
operations (Section 2.1).Then, current research interests are catalogued into three sections
and presented separately (Section 2.2, Section 2.3 and Section 2.4). Section 2.2 reviews
the current stockpile modelling approaches and points out their incompatibilities. Section
2.3 presents the progress in machine automation and indicates the need to integrate both
stockpile and machine operation to achieve full automation in stockpile blending. Section
2.4 introduces optimisation algorithms used for stockyard management and transportation
scheduling and identifies their limitations in bulk material handling.

The classification method used in the literature may be not very rigorous. There are some
overlapping areas in stockpile modelling, machine automation and stockyard management,
as the quality control and optimisation can be conducted at every level throughout the
delivery chain. It is also worth pointing out that there still exist other modelling algorithms.
For example, the use of mathematical models to predict spontaneous combustion in coal
stockpiles [34], to simulate the deterioration of stockpiled coal [35]and to estimate the
temperature change behaviour of a coal stockpile using statistical analysis techniques [36].
However, they are obviously beyond the scope of this research. To the best of the author’s
knowledge, there are limited studies looking into achieving pre-defined grade constancy with
great accuracy through stockpile blending. Although considerable stockpile models and
management systems have been developed, it is still necessary to build a highly accurate
3D real-time volumetric model which is able to represent a stockpile dynamically and
continuously guide the blending operations throughout a stockpile’s life-cycle.

To summarize, the research gaps identified in this study are:

• A real-time measuring device and stockpile modelling method is needed for accurate
quality estimation in stockpile blending operations.

• A novel 3D stockpile management model that links the stockpile and BWR is needed
for efficient and effective quality control in stockpile blending operations.
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2.5.2 Innovations

In this project, a mobile laser scanning device is proposed to measure a stockpile accurately.
A BWR can be upgraded into a mobile scanner after installing such a device and can then
scan the profiles of a stockpile continuously in stacking/reclaiming operations. Also, two ge-
ometric modelling algorithms will be presented to create dynamic models of a stockpile from
3D surface measurements. Unlike previous stockpile management modelling approaches,
the quality of a stockpile in this project is not considered as an entity, it is estimated through
creating a group of quality volumetric pixels (voxels). The quality of each voxel is calculated
from its own geometric shape and the geometric shapes of the layers inside. No project has
been identified to implement such a deep insight into stockpile management previously.

This research also presents an algorithm to calculate the BWR joint angles for machine
automation. Through combining the 3D stockpile and BWR models, the collision free
trajectory can be computed and the initial location of the BWR, along with the slewing
and luffing angles during the reclaiming, can be obtained in advance. Thus, the quality of
recovered material can be estimated and the machine is able to perform automatic missions
using the calculated results, which will lead to real-time optimum stacking/reclaiming
operations with consistent product grade control.

The overall block diagram of the proposed 3D stockpile management model is shown in
Fig. 2.4.

Fig. 2.4 3D stockpile management model for quality control.



Chapter 3

BWR Localization for Stockpile
Scanning

To build an accurate and up-to-date 3D model of a stockpile, a measuring device is needed to
scan the stockpile’s surface continuously. A cost saving solution is to mount a 2D scanning
device onto a BWR. Thus, the BWR can drive the scanning plane and measure the stockpile
during stacking or reclaiming operations. This chapter details the laser scanning system
design and a mobile robot localization algorithm, designed to improve the positioning
accuracy for future modelling purposes. Additionally, an indoor laser scanning system used
for the laboratory experiment is presented.

3.1 Mobile Laser Scanning

There is no doubt that all processes require infrastructure to be operated cost-effectively.
Therefore, the stockpile scanning system in this study is designed with a mind to utilizing
existing facilities as much as possible. Considering its popularity and mobility, a BWR is the
best choice for the scanning mission. Therefore, a BWR has been selected to be upgraded
into a mobile laser scanner to measure the most recent shapes of a stockpile.

A laser range finder (LRF) is an excellent choice to measure the environment due to its
high accuracy in terms of both range and bearing measurements and its lower dependency
on any given surface’s texture. LRFs have been widely used for mobile robot navigation
and mapping in various sceneries. For example, in the literature review, 2D contour maps
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of stockpiles are extracted from laser measurements [27, 28]. Additionally, Newman et
al. [37] have reported that LRFs provide accurate measurements in outdoor environments.
More importantly, Scheding et al. used a LRF sensor to map a dusty underground mining
tunnel [38].

Ryde and Hillier also point out that although radar sensors are robust in rain and mist
conditions whilst suspended dust conditions, they provides lower range and angular precision
and scanning rate than the laser systems [39]. They examined the performance of two LRFs
and one millimetre-wave radar in a test chamber, which is able to generate dust and rain of
varying densities. The results shows that both LRFs fail to acquire a target at a 25 m distance
from the sensor when the visibility of the environment is less than 10 m, while the millimetre-
wave radar does not. However, in a separate experiment, they installed these sensors onto a
P&H 2100 BLE electric face shovel for terrain mapping. Results indicates that measurements
from millimetre-wave radar contain significant data noise with uncertainty in the ground plane
(typically near 0.5 m and up to 1.25 m in some instances). This uncertainty in measurement
and low cloud density made identification of objects less than 2 m in size difficult in the radar
data [39]. Conversely, both LRFs demonstrate high precision and accuracy for environment
modelling. Although these measurements are susceptible to corruption in environments
with high mist and dust loading, they still believe that LRFs are best sensors in terms of
price/performance ratio for outdoor mapping.

Supported by these results, the sensor considered for this study is a 2D LiDAR (Light
Detection and Ranging). It emits a narrow laser beam and sweeps the beam towards to the
objects to be scanned, which results in a fan-shaped scanning plane. When the scanner is
mounted at the end of the boom of a BWR and faced toward a stockpile, the motion of
the boom is exploited to move the scanning plane and produce a de-facto 3D scanner (see
Fig. 3.1). Under such configuration, the laser beam can cover the entire stockpile at the
stacking phase.

The measuring accuracy of the 3D scanner is not only determined by the LiDAR itself but
also by the positioning accuracy of the end-effector (where the LiDARdar is mounted on the
BWR, in this study, it is the centre of the bucket wheel). When the BWR is stationary, the
noise from the LiDAR is the main characteristic that pollutes the measurement. However,
when the BWR is moving whilst simultaneously scanning a stockpile, the measurement
accuracy is largely affected by errors generated from the BWR positioning system. According
to the feedback from industry partner, MatrixGroup, to enable automatic operation and avoid
collisions, most BWRs operated in Australia are supplied with encoders to measure the
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travelling, slewing and luffing motions. Thus, the positioning information of the end-effector
can be calculated in real-time. However, encoders’ measurements suffer from quantization
errors and degrade without boundary over time. With the travelling encoder, errors are
eliminated by placing many calibration points along the moving track. With the slewing and
luffing angular encoders, no calibration can be applied due to the technical difficulties in
mounting extra calibration devices to such large-scale machinery. As a consequence, the
estimated position errors of the end-effector are more than 30 cm, resulting in a significant
corruption of the LiDAR measurements. Furthermore, this error range does not contain the
sources caused by the imperfect mechanical linkage and the vibration of the boom during
machine movements. Such positioning accuracy is not favourable for stockpile modelling.
Therefore, a localization algorithm is first studied.

The capability of a mobile robot to elaborate the sensor measures and find out its position
with respect to a coordinate system is called localization. Once the robot is localized, it
is able to build a map of its surroundings. The localization is a key problem for mobile
robots and many approaches have been developed and evaluated. One of these approaches
is to use Kalman filtering techniques that fuse sensory data according to their statistical
properties. A Kalman filter (KF) is an optimal recursive estimation method that can be
applied in real-time processing to handle noisy measurements. Its success has been well
proved using both indoor and outdoor mobile robots [40–42]. Therefore, the author proposed
an UKF (Unscented Kalman Filter) based sensor data fusion technique. The UKF fuses GPS
and on-board encoder sensor data to provide a better position estimation of the end-effector
for stockpile modelling. Fig. 3.1 indicates the proposed mounting position of the GPS and
laser sensor, as well as the encoders used to measure the joint angles of a BWR.

3.1.1 Kalman Filter

A Kalman filter addresses a general problem of estimating a state vector that is governed
by linear dynamic system equations. The vector X, consisting of n variables, describes
some properties of the system, i.e. the location of the BWR in 3D space, consisting of three
variables x, y and z coordinates. In Kalman filtering, the state of the vehicle at a specific time
is predicted using a dynamic model based on the previous state information and the control
input. Then, the measurements from the sensors are employed to update the estimation of
the vehicle’s state. The translation from sensory measurements to the vehicle state is made
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Fig. 3.1 Upgrading a BWR into a mobile 3D laser scanner. The green parts illustrate how the position
of the end-effector is measured through encoders. The GPS and laser sensors are mounted at the same
position. The fan-shaped scanning plane is illustrated in red.
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by a sensor or measurement model. Kalman filtering is also a data fusion technique because
both the dynamic and sensor models are interpreted through sensory information.

Dynamic Model. The dynamic model describes how the true state of the system changes
through time due to its dynamics. Given an n×1 state vector (X) of a linear system, its true
state at time k, Xk, depends on its previous state Xk−1, the control input, Uk, at time k, and
some Gaussian noise at time k−1.

Xk = AXk−1 +BUk +Wk−1 (3.1)

where A is an n×n state transition matrix that transforms the previous state to the
current state. B is an n× l control matrix that maps the control input vector Uk (consisting of l

variables) to the state vector. Although Uk is sometimes provided by a robot’s odometry, these
odometry measurements are still treated as control signals in most mobile robot applications.
Wk−1 is also an n×1 vector that represents process noise terms for each element in the state
vector.

Measurement Model. The measurement model describes the relationship between the
sensor measurement and the state vector. The KF uses this model to correct the state
prediction when sensor measurements are acquired. The true measurement vector (m×1) at
time k, depends on the state of the system Xk and measurement noise at time k.

Zk =CXk +Vk (3.2)

where C is an m×n transformation matrix that maps the state vector to the measurement
domain. Vk is a noise vector containing m noise terms.

Noise Characteristics. A very important assumption in Kalman filtering is that the linear
dynamic system is corrupted by independent, white, zero-mean, Gaussian noise. Thus, the
system noise Wk in eq. 3.1 and the measurement noise Vk in eq. 3.2 are random variables
that satisfy independent, white, zero-mean Gaussian probability distributions. The system
noise Wk and the measurement noise Vk are described as:

Wk∼N(0,Qk)

Vk∼N(0,Rk)
(3.3)

where Qk and Rk denotes the process noise covariance matrix and measurement noise
covariance matrix of the Gaussian distribution, respectively.
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Kalman Filter Algorithm. The KF algorithm can be broken down into two phases: the
prediction and the correction phase. At the prediction phase, the belief of state vector Xk at
the current state is estimated using the previous state Xk−1 and the control input. Also the
covariance Σk that indicates the confidence of the state estimation is calculated through the
linear matrix A. At the correction phase, the Kalman gain Kk is firstly calculated and then
the state estimation Xk and covariance Σk is refined using measurement data and the Kalman
gain, respectively. The KF algorithm is depicted in Fig. 3.2.

Fig. 3.2 The KF algorithm for a linear dynamic system with Gaussian state transitions and measure-
ments.

3.1.2 UKF

The success of a KF depends on the accuracy of its prediction model. It has been pointed out
that the use of a KF in a nonlinear system directly will cause significant errors in predicting
the state of the system [43]. The simplest and most widely used approach is to linearize the
nonlinear function using the Taylor expansion, which is called the Extended Kalman Filter
or EKF. EKF has become a very popular tool for the state estimation for nonlinear systems
in robotics [41, 44].

The use of linear Taylor expansions to approximate state transition and measurement ma-
trices has limitations. The performance of such linearization depends on two main factors:
the degree of nonlinearity of the system and the degree of uncertainty of the state vector.
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Generally, the greater the amount of the state vector is affected by nonlinearities in the state
transition and measurement matrices; the less certainty there is in the state vector; the wider
the Gaussian behaviour of the noise; thus the less likely it is that the posterior belief can be
estimated using an EKF [44]. Conversely, a particle filter (PF) estimates the sequence of
hidden system states based on the observed measurements only and has proved to be very
successful in the estimation of nonlinear, non-Gaussian state-space systems [45, 46]. This
is mainly because it does not rely on any local linearization techniques or crude functional
approximations. However, the computational complexity is the main issue that prevents its
implementation in real-time applications.

Recently, an Unscented Kalman filter (UKF) has been proven to be able to deliver better
estimation results than the EKF [47, 48]. A UKF performs a stochastic linearization through
an unscented transformation (UT). The UT generates a set of weighted sigma points, which
are located at the mean and symmetrically along the main axes of the covariance, to represent
the Gaussian distribution and linearize the nonlinear system function. The use of these
weighted sigma points in UT propagates more accurate mean and covariance results than the
use of the first-order Taylor expansion in the linearization. A UKF can be considered as a KF
based on the UT.For a nonlinear dynamic system governed by nonlinear functions G and H,
can be described as:

Xk = G(Xk−1,Uk)+Wk−1

Zk = HXk +Vk
(3.4)

Again, Xk is an n-dimensional state vector and Uk is an n-dimensional control vector. The
UT creates 2n+1 sigma points χ [i] to represent the propagation of the state vector through the
nonlinear function G according to the following equation [48]:

χ [0] = µ i = 0
χ [i] = µ +(

√
(n+λ )Σ)i i = 1, ...,n

χ [i] = µ − (
√
(n+λ )Σ)i−n i = n+1, ...,2n

(3.5)

where λ = α2(n+κ)− n, with α and κ being scaling parameters that determine the
spread of sigma points around the µ . Commonly, α is set to be a small positive value (i.e.
1e-3) and κ is set to be 0. The weight w[i]

m used to calculate the mean is:{
w[0]

m = λ

n+λ
i = 0

w[i]
m = 1

2(n+λ ) i = 1, ...,n
(3.6)
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The weight w[i]
c used to calculate the covariance is:{

w[0]
c = λ

n+λ
+(1−α2 +β )) i = 0

w[i]
c = 1

2(n+λ ) i = 1, ...,n
(3.7)

The parameter β aims to incorporate additional knowledge of the distribution underlying the
Gaussian representation. An optimal choice is β = 2 if the distribution is an exact Gaussian.
When these sigma points are passed through G, the mean and the covariance of resulting
Gaussian representation can be calculated according to eq. 3.8:

γ
[i] = G(χ [i]))

µ
′ =

2n

∑
0

w[i]
m γ

[i]]

Σ
′ =

2n

∑
0

w[i]
c (γ

[i]−µ
′)(γ [i]−µ

′)T

(3.8)

At the prediction stage, the UKF algorithm firstly utilizes the UT eq. 3.6 to generate sigma
points of the previous belief Xk−1 and then propagates these sigma points through noise-free
state estimation function G. Secondly, the predicted mean and covariance of these sigma
points are computed. The noise matrix Qk is added to model the additional uncertainty
whistle calculating the covariance. Finally, a predicted observation γk is calculated for each
sigma point and then it is used to calculate the predicted observation Ẑk. At the correction
stage, the uncertainty of the Ẑk is first calculated. Secondly, the cross-covariance between
the state and the observation is computed and the Kalman gain is obtained. Finally, the state
estimation and the covariance are updated. The innovation procedure is identical to the one
used in the Kalman filter. The UKF algorithm is depicted in Fig. 3.3.

3.1.3 UKF Sensor Data Fusion for BWR Localization

Because BWRs are heavily engaged and stretched to their limits in production, it should
be expected that fewer hardware changes will need to be made to upgrade a BWR into a
mobile laser scanner with localization capability. Additionally, in contrast with encoders, the
accuracy of the GPS degrades neither over time nor distance. Due to their complementary
characters, the integration of GPS and encoders through Kalman filtering techniques is a
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Fig. 3.3 The UKF algorithm for a nonlinear dynamic system.

perfect match to improve the position estimations of the BWR in 3D space. Fig. 3.4 shows a
structure of a UKF based GPS/encoder fusion.

Fig. 3.4 The structure of a typical Kalman filter for data fusion.
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BWR Odometer Motion Model. A kinematic model of a BWR was studied by Lu in
2009 [49]. Both forward and reverse kinematic equations have been deduced and proved to
be efficient and accurate for BWR motion control [50]. The forward kinematic equations [49]
are used as a dynamic model for Kalman filtering in this study.

x(t) =sinθ2(t)(L5 cosθ2 +L4)

y(t) =L5 cosθ2(t)cosθ3(t)+L4 cosθ2 +d1

z(t) =−L5 cosθ3(t)−L2 −L3

(3.9)

where θi is the angle between xi−1 and xi measured about zi. Li is the distance from zi to
zi+1 measured along xi. di is the distance from xi−1 to xi measured about zi. The xi, yi and zi

represent the BWR motion axes, respectively, which are defined in Fig. 3.5.

Fig. 3.5 BWR coordination system and motion axes definition, original image adopted from Lu’s
work [49].

This kinematic model of the BWR is defined in a world coordination frame which is centred
at Ow as shown in Fig. 3.5. To simplify the transformation matrix in the measurement
model, the coordinate definition follows the North-East-Down (NED) coordinate system.
The NED system is Local Tangent Plane (LTP) coordinate system and its x axis points
toward the ellipsoid north and the y axis points toward the ellipsoid east. The z axis points
downward along the ellipsoid normal. Thus, the state vector for the end-effector position is
X = [xNED,yNED,zNED]

T . The relative difference between any two poses is represented by a
concatenation of three motions: a translation (d1) and two rotations (θ2, θ3). Consequently,
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the true position, Xk, obtained from Xk−1 by the encoder measurements which are used for
calculating the BWR motion, is:xk

yk

zk

=

xk−1

yk−1

zk−1

+
 sinθ2(t)(L5 cosθ2 +L4)

L5 cosθ2(t)cosθ3(t)+L4 cosθ2 +d1
−L5 cosθ3(t)−L2 −L3

 (3.10)

where d1, θ2, θ3 is the increment measured by on-board encoders from time k−1 to
time k. Thus, the motion information Uk in eq. 3.1 is transformed into odometer information.
Obviously, the BWR motion model is nonlinear. Equation 3.10 can be simplified as:

Xk = F(Xk−1,Uk)+Wk−1 (3.11)

However, in computer based systems, calculations are performed in discrete time. Therefore,
it is necessary to transfer dynamic matrix F to state transition matrix Φ. The transformation
can be approximated by the power series expansion of the exponential function [51]:

Φk = eF(tk−1)∆t = I +F(tk)∆t +
(F(tk)∆t)2

2
(3.12)

where I is the identity matrix and ∆t is the sampling interval. Thus, eq. 3.11 can be
rewritten into:

Xk = Φ(Xk−1,Uk)+Wk−1 (3.13)

The system noise Wk is modelled on the assumption of three independent sources of error,
one for a translational encoder, two for angular encoders. The covariance Qk is:

Qk =

σ2
d1

0 0
0 σ2

θ2
0

0 0 σ2
θ3



Sensor Measurement Model. Measurements from GPS receivers are normally given in the
Earth-Centred-Earth-Fixed (ECEF) coordinate system. Conversely, the coordinate system
used in BWR localization is the NED frame as shown in Fig. 3.5. A simple technique to
perform the transformation (from the ECEF to the NED) is through the application of an
appropriate Direction Cosine Matrix (DCM), which is detailed in several textbooks, such
as [52] and [53]. However, due to the limitation of the experimental venue, only a simulation
study was performed. Therefore, it is assumed that the GPS measurements are also given in
the same NED coordinate as the BWR. Thus, the transformation matrix H is a 3×3 identity
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matrix. The measurement model can be expressed as:

Zk = H(Xk)+Vk (3.14)

The noise covariance matrix Rk for noise vector Vk is:

Rk =

σ2
x 0 0

0 σ2
y 0

0 0 σ2
z


UKF Data Fusion. The UKF based localization algorithm starts with the construction of the
argument state vector Xa

k = [XT
k ,W T

k ,V T
k ]T . The initial estimate of the argument state vector

Xa
0 is:

Xa
0 = [XT

0 ,0,0]T

Σ
a
0 =

Σ0 0 0
0 Q 0
0 0 R

 (3.15)

The sigma points constructed using the UT for Xk measured by encoders are given by
eq. 3.11: 

χ0
a,k−1 = Xa

k i = 0

χ i
a,k−1 = µa

k−1 +(
√

(n+λ )Σa
k−1)i i = 1, ...,N

χ i
a,k−1 = µa

k−1 − (
√

(n+λ )Σa
k−1)i i = N +1, ...,2N

(3.16)

where N is the dimension of the argument state vector. In this case, N = 9. As described
in the section 3.1.2, the rest of the implementation of the UKF is quite straightforward. The
constructed sigma points are passed through a motion model and the Gaussian statistics are
computed using eq. 3.8. Then the estimation is updated in the measurement model and the
state-measurement cross-covariance matrix Sk is used to calculate the Kalman gain. The rest
is virtually identical to the KF correction step.
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3.2 Simulation Framework

After consulting with MatrixGroup, informedit is confirmed that it is currently not possible
to mount a laser scanner on a BWR and scan a real stockpile for the required experiments
because it is hard to find the right experimental venue and a spare BWR for the research.
Thus, a simulation system is proposed at this stage to evaluate the UKF localization algorithm.
The simulation system contains an encoder, a GPS and a UKF module. Both the GPS and
encoder modules take the real trajectory of the end-effector as an input. Pseudo-random noise
is then added to simulate the sensor measurement. The UKF localization module integrates
the sensory measurements and updates the position estimation using a UKF.

3.2.1 Encoder Module

A three-step procedure is employed to simulate encoder measurements (see Fig. 3.6). Firstly,
the real end-effector trajectory is converted into joint measures and these measures are
rounded down regarding to their resolutions. Secondly, Gaussian noises are added to these
datasets individually. Finally, these noisy data are rounded down again to simulate the
encoders’ measurements.

Fig. 3.6 Data flow in the encoder module.
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3.2.2 GPS Module

When a GPS receiver operates in the yard, its errors can be considered to contain Gaussian
and non-Gaussian characteristics. Most common errors, such as atmospheric errors and user
equipment errors are Gaussian-based; while environmental noises, such as impulsive noise,
ultra-wideband noise, demonstrate the non-Gaussian behaviour. These two different types of
noises are simulated separately.

A differential GPS is a technique that applies corrections from a reference station to a
normal GPS receiver. That is to say, it works at the differential mode when corrections are
available and at the normal mode when connections are lost. Therefore, to simulate DGPS
measurements faithfully when it is operated in the stockyard, these two scenarios are both
considered in the GPS module. Gaussian noises are compensated when the receiver acquires
the correction signal broadcasted from the reference station. However, the compensation
suffers a certain degradation due to the separation between the reference station and the
receiver. When corrections are available, the degradation can be described by a function of
the distance between the reference station and the receiver [54]:

σcorrection(95%) = 0.41+0.2S (3.17)

Equation 3.17 means that 95% of the DGPS error is approximately equalled to 0.41 m plus
0.2 m for each 100 km distance from the reference station. When the connection between the
receiver and the reference station is lost, the standard deviation of the GPS error is:

σno_correction = σephemeris +σionosphere +σtroposphere (3.18)

where σephemeris means the ephemeris error, σionospheremeans the ionosphere error and
σtroposphere means the troposphere error. The ephemeris error is caused by the difference
between the expected and actual orbital position of GPS satellites. The ionosphere and
troposphere will slow down radio waves and cause time delays between signal transmission
and reception. In the simulation, only ephemeris, ionosphere and troposphere errors are
considered because they are the major error sources [52]. Further information regarding these
three errors can be found in the following texts [52, 53] The Gaussian noise is simulated
by:

σGuassian =
l
3
(
σno_correction −σcorrection

4−12
)+σave (3.19)
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where 12 represents that the maximum number of satellites that can be seen in the sky
and 4 represents the minimum number of satellites that can be seen in the sky. l is the number
of satellites locked by the GPS receiver. σave is the average GPS positioning accuracy without
selective availability, which is 15 m in this paper. The standard deviation of Gaussian noise
is divided by three, based on the three-sigma rule, which means the error produced has about
a 99.7% chance to be within the maximum error. Non-Gaussian noise considered in the GPS
module is mainly based on the working environment of the BWR. Operated in a stockyard
with numbers of heavy-duty machines, major noise sources could consist of impulsive noise,
motor ignition noise and ultra-wideband (UWB) noise. All these noise sources applied in the
simulation are based on the models conducted by Liu and Amin [55]. The data flow of the
DGPS module is shown in Fig. 3-7.

Fig. 3.7 Data flow in the GPS module.

3.3 Simulation Results

Two real trajectories of the BWR were prepared for the simulation. The first one comes from
Lu’s study [50] and the second one is derived from the bench reclaiming strategy. With the
second dataset, it is assumed that the boom of the BWR raises from 0◦ to 10◦ and then slews
from one side of the stockpile, with a slewing angle of 90 degrees. Afterwards, the machine
is advanced for a new cutting depth (0.8 m) and the boom reverses back after the travelling
motion. The trajectory was generated by replicating such procedures five times. These two
trajectories were the inputs of the UKF simulation system. The dimensions of the BWR used
in the simulation are listed in Table 3.1.

Table 3.1 Parameters of the BWR (unit: m)

d0 L2 L3 L4 L5

0 6 5 5 50
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Similar to the trajectory data, a group of two encoder specifications were created. The first
one is provided by the industry partner, MatrixGroup. In this set, the travelling encoder
has a resolution of 0.5 mm. The slewing encoders can measure up to 0.001◦ and the luffing
encoder is limited to approximately 0.01◦ due to the slop in the linkages. In the second
set, the resolution of travelling, slewing and luffing encoder is 1 mm, 0.02◦ and 0.01◦,
respectively.

With the GPS module, the BWR was assumed to be operated at the Rio-Tinto Cape Lambert
facility, which is one of major upgrading works performed by MatrixGroup. The position
of the Cape Lambert facility is 20◦39′35.06′′ S; 117◦4′42.59′′ E in the WGS84 coordinator
system and the nearest reference station is about 31km away in Karratha (20◦42′24.840′′ S;
116◦46′26.152′′ E). Two GPS receivers were chosen for the simulation: the first one refers to
OEMV-1 from NovAtel. The accuracy for this receiver is 1.5 m when working under a single
point L1 mode. The second one is a generic DGPS with 5 m positioning accuracy. Three
different configurations were used to generate GPS measurements:

1. The first assumed that the OEMV-1 receiver was used to receive L1 signal and cor-
rections from the reference station. Meanwhile, six satellites were locked by the
receiver.

2. The second assumed that OEMV-1 was working under the local DGPS mode. The
rover (receiver) was assumed to receive corrections from the local reference station.
It offers 40 cm positioning accuracy in real time. In this case, the ionospheric and
tropospheric errors were not considered.

3. The third was generated based on the generic DGPS system with 7 satellites in the sky.

Table 3.2 shows the noise characters used in the GPS module regarding the above configura-
tions. Paired with the real trajectory and the GPS configuration, a collection of six datasets
were obtained to examine the UKF localization algorithm. Fig. 3.8 plots the simulated GPS
and encoder measurements of the first dataset in the x, y and z-axis, separately.

In the simulation, all sensors are assumed to be sampled every 1 s. The positioning er-
ror/accuracy is expressed in the root mean square errors (RMSE) based on distance error.
The localization program was set to run 10 times to average the RMSE and the results are
listed (see Table 3.3). Fig. 3.9 and 3.10 illustrate the GPS and encoder measurements against
the UKF estimations of the 1st and the 6th dataset.
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Table 3.2 Noise characters used in the GPS module (unit: m)

Configuration 1 2 3

Gaussian σmax 11.942 N/A 15.472
σmin 1.972 N/A 5.472

σGaussian 2.5 0.4 2.08
Non-Gaussian σmiddleton 9.99E-06 9.99E-06 9.99E-06

σcauchy 0.25 0.25 0.31
σignition 0.293 0.293 0.285
σUWB 0.4 0.4 0.42

Fig. 3.8 Simulated GPS and encoder data against the true trajectory in the first 200 s.

According to the simulation results, implementing UKF is able to provide more accurate
position estimations from noisy measurements. The maximum position errors obtained in the
simulations were mostly detected at the very beginning of the filtering (from 0 to 5 s). The
reason behind this is the sudden changes in the encoder data. Because both θ2 and θ3 are
assumed to be 0 at the beginning and increase gradually, even a small error caused by random
noise will result in large variations in measurement data. Another interesting finding is that
UKF provided good estimations regardless of different GPS’ error ranges. All the reporting
errors are of the same order in magnitude, giving a useful consistency of results. This may be
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Fig. 3.9 UKF localization results for the 1st dataset.



3.3 Simulation Results 43

Fig. 3.10 UKF localization results for the 6th dataset.
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Table 3.3 Average RMSE of the UKF estimation

Dataset
Real

trajectory
Encoder

specification
GPS

configuration
RMSE

Encoder (cm) GPS (m) UKF (m)

1 1 1 1 66.11 1.47 15.60
2 1 1 2 67.42 1.24 15.58
3 1 1 3 64.74 3.02 15.69
4 2 2 1 122.43 4.02 26.64
5 2 2 2 121.69 3.35 27.20
6 2 2 3 120.69 6.65 27.48

because the RMSEs of the GPS receivers are very close to each other. In the simulation, the
UKF is able to reduce measurement noise and the positioning accuracy of the end-effector
(bucket wheel) can be improved to around 15 cm, which is believed to be a desirable situation
for stockpile scanning and modelling. Because the laser sensor is proposed to be mounted
close to the end-effector, its position can be also estimated using the same UKF.

3.4 Indoor Laser Scanning System

For data collecting purposes, a 3DOF scanning system designed for monitoring the ship
loading process was adopted to scan the laboratory scale stockpiles. This system was
designed to detect obstacles above the deck of a cargo ship and supervise product levels
within each cargo hold using lasers [56]. It has a similar scanning mechanism of the proposed
mobile laser scanner for this project.

3.4.1 Mechanical and Electrical Aspects

Major components for this system include a pan&tilt platform QPT-50, a linear track, a motor
with controller, an optical distance sensor O1D100 and a 2D laser range finder LMS200. As
shown in Fig. 3.11, the QPT-50 together with a track roller is mounted on an aluminium
linear track and driven by a chain pulley system. The pulley system is controlled by the EPOS
24/5 motor controller. The LMS200 manufactured by Sick was mounted on the QPT-50.
Thus, the mechanism allows the LMS200 to scan objects underneath the linear track in both
forward and reverse directions. The optical distance sensor (O1D100) is fixed on one end of
the frame to measure the displacement of the LMS200 along the track.
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The LMS200 is operated as a time of flight sensor. It sends out an infra-red laser pulse
and measures the time taken for the pulse to be reflected and returned to the sender. The
measured range is proportional to the time of flight of the pulse. A rotating mirror (with a
speed of 75 Hz) housed inside the LMS200 reflects the laser beam to allow it to scan objects
in front of the device. The LMS200 can be configured to scan a 100◦ or 180◦ sector with
0.25◦/0.5◦/1◦ in angular resolution. With an angular range of 180◦ and scanning resolution of
1◦, it is capable of completing 13575 measurements per second. The O1D100 is an industry
level punctual distance sensor. Its sampling rate is adjustable with the maximum of 50 Hz.
However, the high sampling rate will also decrease the measurement accuracy. Therefore,
for the work described throughout this thesis, its sampling rate is 15 Hz.

Fig. 3.11 A 3D drawing of the indoor laser scanning system used for laboratory scale stockpile
scanning [56]

Both the LMS200 and the O1D100 are connected to a computer through RS232 protocols.
An internal computer timer is created to synchronize the measurement data from both sensors.
The recorded data are then represented in a 3D Cartesian coordinate system on the computer
screen in real time through a GUI which is implemented in C#. Fig. 3.12 illustrates the
orientations of the x, y and z-axes, as defined for scanning in the laboratory environment.
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Based on this coordinate definition, the plane that lies in parallel to the Y Z plane and passes
through the centre of the stockpile is named the coronal plane. The plane that parallels to the
XY plane and passes through the centre of the stockpile is named the sagittal plane. The plane
that parallels to the XZ plane and passes through the bottom surface of the stockpile is named
the transverse plane. More detailed coordinate definitions and kinematic equations of the
laser scanning system are presented in Appendix A. The GUI plots the scanning data in real
time and exports the data into three separated txt files (each file contains the measurements
for one axis) after scanning.

Fig. 3.12 Coordinator definition for stockpile modelling.

3.4.2 Preliminary Experiment

A pilot experiment was designed to build a cone shape stockpile for testing and calibration
purpose. The stockpile was stacked using round quartz aggregate with a rough diameter
of 7 mm but in three lots to create three layers. A temporary discharge chute with a frame
was attached to the track roller to generate the material flow. The chute can hold a 6.6
kg quartz gravel maximum and the initial drop-height between the chute and supporting
platform is 17.3 cm (see Fig. 3.13). In the experiment, a human operator fed pebbles into
the chute manually and opened it once it was full. The observed average flow speed was
0.43 kg/second. When the stockpile was scanned by the laser, the chute and the frame
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were removed from the track roller. The scan range and the angular resolution used in the
experiment is 100◦ and 0.25◦, respectively.

Fig. 3.13 Experiment setup and dimension of the discharge chute.

Table 3.4 shows the geometric shape and the weight of the stockpile measured by the human
operator. Fig. 3.14, 3.15 and 3.16 draw the 3D surfaces of the three layers using the laser
measurement data. For comparison purposes, the actual image and data cloud are also
presented.

Table 3.4 Cone shape stockpile stacked using quartz aggregate.

Layer No. Diameter (cm) Height (cm) Weight (kg) Falling height (cm)

1 37 9.6 6.6 17.3
2 45 12 6.6 28.5
3 56 14.3 6.6 28.5

The preliminary experiment also identifies an inclined plane angle of 1.7◦ between the surface
obtained from the laser measurement and the tabletop (the supporting platform), which can
be seen in Fig. 3.17. The error source for such an inclined angle could be the imperfect
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Fig. 3.14 1st layer of the cone stockpile. a) real stockpile b) point data c) triangular surface.
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Fig. 3.15 2nd layer of the cone stockpile. a) real stockpile b) point data c) triangular surface.
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Fig. 3.16 3rd layer of the cone stockpile. a) real stockpile b) point data c) triangular surface.

Fig. 3.17 Surface measured by the indoor 3DOF laser scanner. The red line indicates the true surface
while the green line shows the fitting result.
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mounting conditions or the measurement noise from the QPT-50 (to allow the LMS200 to
face towards to the ground, the QPT-50 has to be rotated with an angle of 90◦). This angle is
compensated for before the laser measurements were converted from the polar coordinator to
the Cartesian coordinator.

Laser measurement noise is also observed in the experiment. For example, in Fig. 3.17,
points obtained from the tabletop are not on the same plane. Assuming the tabletop is a
perfectly smooth surface, the standard deviation of the laser measurements are 1.45 cm on
average. Also, it appears that the false returns (may also call phantom points [57] or mixed
pixels [58]) occur when the laser beam hit the edge of an object. As shown in Fig. 3.17, these
false returns exist on the both sides of the supporting platform. This is because that only a
portion of the beam is reflected from platform, while another portion is reflected from the
ground. Thus, it will create some phantom points between the two surfaces.

The results indicated that laser scanning performed quite well on determining the shape of the
stockpile. Geometric information can be acquired more easily than the use of other sensors,
such as a digital camera. Meanwhile, due to the wide availability in outdoor LiDAR scanners,
algorithms developed in the study can be applied to real operation environments.

3.5 Summary

In this chapter, a BWR is proposed to be upgraded into a mobile laser scanner to measure the
profiles of a stockpile when it stacks or reclaims the stockpile simultaneously. An UKF based
sensor data fusion is detailed to localize the laser scanner. Simulation results indicate that the
employment of a UKF can improve the positioning accuracy to better than 20 cm, which is
acceptable and feasible considering the size of a real stockpile. In the meantime, an indoor
laser system which has similar scanning mechanism of the mobile scanner is presented in the
chapter. Preliminary experiments have been conducted to evaluate the laboratory scanning
system. Point data collected after scanning show a good accuracy in terms of range and
bearing measurement.





Chapter 4

Stockpile Modelling from Point Cloud
Data

Point-sampled objects are flexible for handling highly complex or dynamically changing
shapes. However, a loose representation for a stockpile with multiple layers will occupy
valuable computer storage space. Additionally, such a data structure cannot be utilized for
other applications directly, such as to assist in the collision detection between a BWR and a
stockpile, or to estimate the quality of a stockpile from chemical analysis results, directly.
This chapter describes a sequence of algorithms for automatic generation of mathematical
surface models from 3D point clouds. These algorithms are evaluated by a variety of point
clouds collected from different sources. The results prove the efficiency and accuracy of the
proposed modelling algorithms.

4.1 Problem Statement

A point-based geometric representation of a stockpile is obtained through measuring the
surface of a stockpile using a de-facto 3D Lidar scanner, as described in Chapter 3. Point
data acquired after scanning are organized as three separate column vectors. Each column
vector with O elements represents one axis in the Cartesian coordinate system. Therefore, a
point representation of a stockpile in the 3D Cartesian space is a O×3 matrix P(px, py, pz).
This matrix is so called a point cloud in this thesis.
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A single scan is defined as an array of points obtained after one complete sweep of the laser
beam. For instance, when the LMS200 performs a 100◦ sweep with an angular resolution of
0.25◦, it will result in 401 points and these points form a single scan. Because the longitude
movement of the BWR is much slower than the speed of light, these points are on the same
plane that lies in parallel to the sagittal plane. Therefore, a point cloud that represents a
complete measurement of a surface of a stockpile contains a collection of single scans and
the planes formed by these single scans are parallel to each other. Accordingly, a column
vector in a point cloud can be converted into an M-by-N matrix, where N is the number of
the single scans in a point cloud and M is the number of points in one single scan. Obviously,
O equals to M×N. Thus, a point cloud is converted into three 2D measurement matrices
X , Y and Z and each matrix represents the x, y and z coordinates respectively.The goal of
surface modelling is to create a mathematical function S from a point cloud automatically to
approximate the true stockpile surface. Based on the coordinates defined in Fig. 3.12, the
surface model can be represented as a function py = S(px, pz).

The modelling procedure consists of three steps. The first step employs a curve fitting
operation for every single scan completed by the laser. It aims to filter out the measurement
noise and store scanning data using mathematical functions. At this step, each fitting
operation requires a real-time response and noise filtering should not create a significant
shrinkage effect. A wireframe model is generated after this step. The second step retrieves
the point data from the wireframe model and partitions the point cloud into two subsets
using image processing techniques: the ground and the stockpile subset. Points belonging
to the ground represent the ground plane which also yields the height of the stockpile.
Points in the stockpile subset will be used for surface modelling. The execution time of the
segmentation algorithm also needs to meet the real-time stockpile modelling requirement.
The last step builds a mathematical surface model from the point data. Only the coefficients
of the mathematical functions are stored after modelling. Again, a good trade-off between
the computation time and modelling accuracy is expected.

4.2 Wireframe Modelling from Raw Scanning Data

A real stockpile is around 100 ∼ 200 m long and may contain more than 100 layers. When it
is scanned by a LiDAR, it could result in much more than thousands of points. Therefore, it
would be better to store these raw measurements using mathematical functions in real time
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for further processing. Therefore, a wireframe model is designed. In this model, every single
scan accomplished by the LMS200 is fitted into the model by a Fourier series. Therefore, a
single scan can be described by 2l +2 coefficients, where l is the number of the terms in the
Fourier expansion, which is also known as an order of the Fourier series. For this reason, a
4th term Fourier series is called a 4th order Fourier series, or a 4th Fourier series for short. In
turn, a wireframe model created by a group of 4th Fourier functions is called a 4th Fourier
model in short. Another benefit of Fourier approximation is that it acts as a low-pass filter
that smooths the measurement noise but will not produce an obvious shrinkage effect. A
Fourier series representation of a single scan is given by:

y = f (x,a0,a1, ...,an,b1, ...,bn)

= a0 +
l

∑
n=1

(an cosnωx+bn sinnωx)
(4.1)

where a0,a1, ...,an,b1, ...,bnandω are the Fourier coefficients. A least square regression
for Fourier coefficients estimation is to minimize the residual sum of squares E:

E2 ≡
M

∑
i=1

w(xi)( f (xi − yi))
2 (4.2)

where M is the number of measurements taken by the LMS200 in a single scan, w(xi) is
the weight function and default value is 1. This minimum requires:

∂E
∂a0

= 0,
∂E
∂a1

= 0, ...,
∂E
∂an

= 0

∂E
∂b1

= 0, ...,
∂E
∂bn

= 0

∂E
∂ω

= 0

(4.3)

Equation 4.3 can be solved using the trust-region-reflective method [59], which is an improved
version of the Newton iterative method. To shorten the runtime of the iterative searching, an
initial value of a0 and ω is estimated, while other high order coefficients are not, because
from the signal processing point of view, the shape of the signal is largely determined by the
direct component a0 and fundamental frequency ω . The initial guess is based on the ideal
triangular prism model of a real stockpile. Because the height of a stockpile and the repose
angle of a particular bulk material are always easy to obtain in advance, the initial value of
a0 and ω can be solved if the cross-section of a stockpile is considered as a non-periodic
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triangular wave. By setting the searching range in the iteration, the speed of convergence of
the trust-region-reflective method is further improved. Fig. 4.1 plots a single scan and the
Fourier curve fitted by an 8th order Fourier series.

Fig. 4.1 The fitted Fourier curve of a single scan. The sum of squared error (SSE) is 2.422×103 and
the R-square is 0.9949.

A linear stockpile stacked using the chevron method has two semi-conical ends and a middle
section. The parasagittal cross sections (sliced by the planes lying in parallel to the sagittal
plane) of the middle section always have similar shapes. Furthermore, due to the noise of the
laser range measurements, the parasagittal cross sections are not aligned according to the
coronal plane. This is because both the x and y coordinates of a single scan are converted
from the range measurement. These errors will shift each scan slightly along the x and y axis
in a random manner. Thus, a universal Fourier model is generated to further filter out such
errors and to reduce the parameters in a wireframe model.

In the universal Fourier model, parasagittal cross sections which are highly similar in shapes
are described by one Fourier series. In other words, a collection of Nu single scans is
represented by one Fourier series. For example, if a stockpile is at the awaiting reclaiming
phase, its profiles along the entire middle section will have similar shapes and be fitted by
one Fourier series using the universal Fourier model. If a stockpile is at the reclaiming phase,
the unreclaimed section still can be described by one Fourier series. Using this model, the
number of parameters needing to be stored and processed can be reduced greatly. To obtain
such a generic Fourier curve, it is necessary to minimize the residual sum of squares E for a
collection of Nu single scans:

E2 ≡
Nu

∑
k=1

M

∑
i=1

w(xk,i)( f (xk,i − yk,i))
2 (4.4)

where f (xk,i) is the Fourier series and defined by Eq. 4.1 and wk,i is the weight function
and its default value is 1. Again, to minimize E is to assign the gradient defined in Eq. 4.3 to
zero. In real practice, the Fourier curve determined by the trust-region-reflective algorithm
sometimes fails to find the global minimum in resolving these nonlinear equations. The
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iteration terminates when a local minimum is found. For this specific problem, an optimized
iterative searching strategy is proposed. Because the fundamental frequency ω for each
single scan is obtained during the Fourier modelling procedure, a searching range [ωmin,
ωmax] can be defined. For a ω within this range, the gradient equations can be rewritten
as:

∂E
∂a0

=

∂
Nu
∑

k=1

M
∑

i=1
( f (xk,i − yk,i))

∂a0
= 0

∂E
∂an

=

∂
Nu
∑

k=1

M
∑

i=1
(cosnω(xk,i − yk,i))

∂an
= 0

∂E
∂bn

=

∂
Nu
∑

k=1

M
∑

i=1
(sinnω(xk,i − yk,i))

∂bn
= 0

(4.5)

A matrix representation of Eq. 4.5 is:

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

NuM ∑∑Cωxk,i · · · ∑∑Clωxk,i ∑∑Sωxk,i · · · ∑∑Slωxk,i

∑∑Cωxk,i ∑∑Cωxk,iCωxk,i · · · ∑∑Cωxk,iClωxk,i ∑∑Cωxk,iSωxk,i · · · ∑∑Cωxk,iSlωxk,i
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∣∣∣∣T

(4.6)

where C represents cos and S represents sin. ∑∑ means
Nu
∑

k=1

M
∑

i=1
. Thus, the remainder of

the Fourier coefficients can be calculated by:

U = (DT D)−1DTV (4.7)

Also, U can be considered as a function of ω:

U = F(ω) (4.8)
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Based on Eq. 4.7 and 4.8, the global minimum can be found using iteration searching when
the trust-region-reflective method fails to identify the global minimum (see Fig. 4.2).

Fig. 4.2 Locating the global minimum using optimized iteration searching. The middle section of the
stockpile contains 68 single scans.

The data regenerated from the wireframe model has the same structure as the original
scanning data. Therefore, it is still called the point cloud but denoted by Pw(Pw_x,Pw_y,Pw_z).
The letter after the underscore in the subscript denotes the axis of abscissas. Again, Pw can
be converted into three 2D matrices: Xw, Yw and Zw.

4.3 Point Cloud Segmentation

For modelling and quality estimation purposes, a point cloud has to be segmented in order
to detect the stockpile surface (region) and the ground (region). A highly precise and
accurate detection algorithm is not necessary for this application because the bottom region
of a stockpile near the ground will not be reclaimed using a BWR due to safety reasons.
Conversely, the segmentation algorithm needs to be fast and fully automatic. The proposed
method is based on mathematical morphology operations, which have been proven to be
successful by the author to detect objects from sonar images [60].

The boundary detection algorithm takes the matrix Yw as an input and converts it into a
grey image through Eq. 4.9. Then, the grey image is thresholded into a binary image
using the Otsu’s algorithm [61]. After thresholding, mathematical morphology erosion and
dilation are applied to separate and label foreground regions from the binary image. With
the understanding that the largest foreground object in the binary image is the stockpile, the
rest of the foreground objects are assigned collectively to be the background object (ground).
Finally, the edge of the stockpile is detected through tracking the boundary of the foreground
object. The detection result is mapped into Xw and Zw matrices directly, since their indices are
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the same. Thus, the point cloud data can be partitioned into two submatrices: the stockpile
surface submatrix (Fs) and the ground submatrix (Bg). The overall procedure of the proposed
segmentation method is shown in Fig. 4.3 and the detection result is plotted in Fig. 4.4.
Although the proposed segmentation method seems simplistic, it is fast and effective. Also,
it is applicable to differently shaped stockpiles through changing the structuring element in
the mathematical morphology operations. More results will be presented in the experiment
and result section of this chapter.

Ygrey =
255Yw

max(Yw)−min(Yw)
−min(Yw) (4.9)

Fig. 4.3 Point segmentation and boundary detection using image processing.

Fig. 4.4 Point segmentation result. The identified boundary is highlighted in red. The minimal
bounding box created based on the stockpile boundaries is highlighted in green. Points inside the
bounding box belong to the stockpile region subset Sr.
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After segmentation, the average distance Davg between the ground and the laser is calculated
from Bg. Thus, the transverse plane of the stockpile is determined and elevation of the
stockpile is obtained through coordinate transformations. Meanwhile, the y coordinates in Bg

are all marked as zero during the transformations. A minimum bounding box for Fs is created
and the points inside the minimum bounding box form a new subset (Sr), called the stockpile
region subset (see Fig. 4.4). Points in this subset will be used for the stockpile modelling.
The relationships between these point sets are: Fs ⊂ P, Bg ⊂ P, Fs ∩Bg = ∅, Fs ∪Bg = P,
Fs ⊂ Sr.

4.4 Surface Modelling

The objective of surface modelling is to utilize geometric information for stockpile quality
estimations and BWR automation. Consequently, the modelling algorithm is expected to
have an ideal trade-off between the modelling accuracy and computational efficiency. More
importantly, for such an industrial applications, the modelling is expected to reduce compu-
tation time and achieve near real-time implementation. Therefore, surface reconstruction
algorithms created for medical imaging or computer aided design (CAD), which focus on the
representation of highly detailed geometric features and incurs a huge runtime cost, such as
matching cubes [62] and ball pivoting [63] are not considered. In this section, two different
mathematical models (polynomial approximation and B-spline interpolation) are presented.
The distinction between the two methods is that the approximation aims to find a function to
conform as closely as possible to the given point cloud, while the interpolation tries to find
a function that passes through the given data points as much as possible. The reasons for
creating two mathematical models will be given at the end of this chapter.

4.4.1 Polynomial Approximation

Polynomial approximation aims to generate a polynomial surface function using the least
square method from laser measurement (the subset Sr). The polynomial function S of an
ordered pair p and q along the x and z axis is:

y = S(x,z) =
p

∑
i=0

q

∑
j=0

aia jxiz j (4.10)
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where aia j is the coefficient of the polynomial function; x, y and z are laser measurement
in the Cartesian coordinator and x = Sr_x,y = Sr_y,z = Sr_z. The order means the highest
order power in a univariate polynomial function. Although p and q are not necessary to
be equal, they are assigned to be identical here because no obvious difference is observed
between a same-ordered pair and a differently-ordered pair during modelling. The degree of
the polynomial surface will be the polynomial order p minus one (d = p−1). In this thesis,
the term order is used to describe a specific polynomial function while the term degree is
used to present a model after fitting. For example, a 6th degree polynomial surface model is
created from the 7th order polynomial function. A least square regression for polynomial
surface fitting is to:

E ≡
n

∑
k=1

w(xk,zk)[
p

∑
i=0

q

∑
j=0

aia jxiz j − y]2 = min (4.11)

where w(xk,zk) is the weight function and its default value is equal to 1. To minimize the
squared residual, the partial derivatives are set equal to be 0. The derivatives can be rewritten
into a form similar to Eq. 4.6 and yield to a Vandermonde matrix:∣∣∣∣∣∣∣∣∣∣

1 x1 z1 x1z1 x2
1z1 x1z2

1 · · · xp−1
1 zq−1

1

1 x2 z2 x2z2 x2
2z2 x2z2

2 · · · xp−1
2 zq−1

2
...

...
...

...
...

... . . . ...
1 xn zn xnzn x2

nzn xnz2
n · · · xp−1

n zq−1
n

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
a0a0

a1a1
...

ap−1aq−1

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
y1

y2
...

yn

∣∣∣∣∣∣∣∣∣∣
⇒ D×U =V (4.12)

Similar to the Fourier model, the coefficient matrix U can be calculated using the matrix
notation listed in Eq. 4.7.

Generally, the use of a higher order polynomial function will improve the fitting accuracy.
However, Runge’s phenomenon [64], which describes the oscillation around the edges
of the data when constructing a polynomial interpolating using high order functions, is
observed frequently when the order of the function is higher than ten. Also, due to the
geometric complexity of a real stockpile during blending, the use of one polynomial function
may not obtain the best modelling result. To avoid Runge’s phenomenon and improve the
modelling accuracy, the matrix Sr is subdivided into a set of rectangular patches (Rp) through
a checkerboard pattern and then each patch is fitted by a polynomial function. In this chapter,
the size of each patch is calculated based on the size of the measurement matrix. Because
the geometric complexity of each surface patch is reduced after subdivision, even a low
order function can produce a good fit. As shown in Fig. 4.5, Runge’s phenomena happen
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around four corners of the stockpile region when a 10th order polynomial function is used.
Conversely, Runge’s phenomenon is not obvious in the (6th, 4×4) polynomial model and the
residuals of this model are much less than the 9th degree polynomial model.Surface models
created using this method are referred to as np ×np patch polynomial models, where np is
the number of the patches after the partition. Thus, the full name of a polynomial model
will be a dth degree, np ×np grid polynomial surface model and the abbreviation is a (dth,
np ×np) polynomial model. Also, if a surface model is created from the measurement data
directly, it can still be considered to be partitioned by a 1×1 grid.

Fig. 4.5 Grid partitioning reduces the residuals and avoids Runge’s phenomenon.

Grid partitioning improves the modelling accuracy but the over-fitting problem then arises.
Since each patch contains only a small amount of data, the measurement matrix D is prone to
be ill-conditioned or close to singular. If D is ill-conditioned or close to singular, the inversion
of the Gramian matrix (DT D)−1 will add quite significant numerical noise to the solution
and result in over-fitting. It has also been detected that when D is constructed from the patch
which is located around the stockpile boundary, it is more liable to be ill-conditioned or close
to singular. The main reason for such a situation is the nature of the measurement data. It is
easy to imagine that a patch around the boundary of the stockpile always contains both the
stockpile surface and the ground. The y coordinates for those ground (points) are all zeros
and the y coordinates for the stockpile surface (points) are very close to zero. Furthermore,
due to the sensor noise, these y coordinates may fluctuate by 10 ∼ 20 mm around the true
measurements. The combination of these three conditions may cause an ill-conditioned or
close to singular matrix and lead to an over-fitting problem.
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To avoid the over-fitting caused by an ill-conditioned or close to singular matrix, point
data on the surface patch are centred and normalized before fitting. However, over-fitting
events still happen occasionally. In some extreme cases, the fitted model is very chaotic and
peak-to-peak difference can reach up to three orders of magnitude (see Fig. 4.6). Therefore, a
surface normal comparison algorithm is proposed to detect the over-fitted patch automatically.
For a given rectangular patch Rp (Rp ⊂ Sr) with a centre point of o, its k-nearest neighbours
can be calculated and a point set NCenNeig is constructed through gathering o and its k nearest
points from Rp, where k is a user-specified parameter and its default value is 8. Then, a least
square plane (the best fitting plane) is fitted from the point set NCenNeig and the normal vector
n̂ at the point o of the plane is called the estimated surface normal of the patch. Similarly,
the estimated surface normal of the polynomial model can be also calculated. Because an
over-fitted model contains too many idiosyncrasies and has a high variance in shape, the
directions of these two estimated vectors will be different. The evaluation criterion is that
if the angle between two vectors is larger than 5◦, over-fitting is believed to have occurred.
Under such circumstance, the order of the fitting function will be reduced by one until no
over-fitting is detected.

Fig. 4.6 Over-fitting is detected automatically through the comparison of the surface normal vectors
before and after modelling. Also, through reducing the order of the polynomial function, over fitting
condition can be avoid.
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4.4.2 B-Spline Interpretation

The tensor product B-spline is one of the most popular surface interpolation methods in
computer graphics and reverse engineering. It aims to produce an interpolated surface
function that is continuous through to the second derivative and pass through all observation
data. However, because the point cloud data obtained from laser scanning contain errors, a
least square fitting process is still required for B-spline modelling. A tensor product B-spline
surface S(u,v) is defined by a 2D control net Qi j (0 ⩽ i ⩽ m and 0 ⩽ j ⩽ n) together with a
vector-valued function of two parameter B-splines, u and v (in this case, u and v represent
the x and z axis, respectively):

S(u,v) =
m

∑
i=0

n

∑
j=0

Ni,di(u)N j,d j(v)Qi, j (4.13)

where the di and d j are the degrees for the surface function and 0⩽ di ⩽m and 0⩽ d j ⩽ n

(of the spline order = m+1 or n+1). Again, m and n are assigned to be identical in this thesis.
Qi, j are the control points and function Ni,di(u) and Ni,di(u) are the B-Spline basis functions.
These basis functions can be defined reclusively through a sequence of non-decreasing real
numbers called knot vector, i.e. knot vector U = [u0, · · · ,um] and V = [v0, · · · ,vn]. Each
ui(v j) is referred to as a knot and ui ⩽ ui+1, i = 0, · · · ,m− 1(vi ⩽ vi+1, j = 0, · · · ,n− 1).
Such a recursive B-Spline function is called Cox-De Boor relations [65]. A basic spline
function defined by the vector u is:

Ni,d0(u) =

{
0 ui ⩽ u ⩽ ui+1

1 otherwise
(4.14)

Ni,di(u) =
u−ui

ui+di

Ni,di−1(u)+
ui+di+1 −u

ui+di+1 −ui+1
Ni+1,di−1(u) (4.15)

where Ni,0(u) is a step function, equal to zero everywhere except on the half open interval
u ∈ [ui,ui+1), and for a d(d > 0), Ni,d(u) is a linear combination of two (di−1)-degree basis
functions [66]. According to such a definition, the knot vector U completely determines
the functions Ni,di(u) once the degree of the function is fixed. The knot vector can be either
periodic or non-periodic (open). Regarding the geometric shape of a real stockpile, the knot
vector used for the surface model is non-periodic and it is determined by the centripetal
method [67]. The idea behind the centripetal method is that the normal acceleration (i.e.,
centripetal force) should not be too large and should be proportional to the change in angle
when a car is driven through a sharp corner. Suppose there are mu knots along the x axis
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of the stockpile region [a,b] that was obtained from previous boundary detection results
and a = min(x), b = max(x), the distance between two adjacent data points is measured by
|Dk −Dk−1|α rather than the true distance |Dk −Dk−1|. Usually, α = 1/2 for square root.
The total length of the data polygon L is:

L =
mu

∑
i=1

|Di −Di−1|
1
2 (4.16)

The ratio of the distance from the data point D0 to Dk, denoted as Lk (k=1,. . . ,m+d-1) over
the total length is:

Lk =

k
∑

i=1
|Di −Di−1|

1
2

L
(4.17)

Therefore, the knots for vector u are:
u0 = a

uk = a−Lk(a−b)

um = b

(4.18)

Similar spline definitions are also applicable to the vector v. Thus, Ni,di(u) and N j,d j(v) are
obtained and the coefficients of the spline surface (control point Qi, j in a matrix format
is:

Q =


Q00 · · · Q0n

... . . . ...
Qm0 · · · Qmn


And the point cloud data that represents the stockpile can be also arranged as a matrix:

P =


Q00 · · · Q0q

... . . . ...
Qp0 · · · Qpq
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The least square error function that measure the square distance between the B-spline surface
and a point cloud is:

E2 ≡
p

∑
k0=0

q

∑
k1=0

∣∣∣∣∣ m

∑
i=0

n

∑
j=0

Ni,di(uk0)N j,d j(vk1)−Pk0k1

∣∣∣∣∣
2

(4.19)

Similar to classic least square fitting, the solution to Eq. 4.19 is the control point matrix Q

that minimizes E. The global minimum occurs when all its first order partial derivatives are
zero:

∂E
∂Qk0k1

=
p

∑
k0=0

q

∑
k1=0

(
m

∑
i=0

n

∑
j=0

Ni,di(uk0)N j,d j(vk1)Qi j −Pk0k1

)
Nk0,di(uk0)Nk1,d j(vk1) = 0

=
p

∑
k0=0

q

∑
k1=0

m

∑
i=0

n

∑
j=0

Ni,di(uk0)N j,d j(vk1)Nk0,di(uk0)Nk1,d j(vk1)Qi j

−
p

∑
k0=0

q

∑
k1=0

Nk0,di(uk0)Nk1,d j(vk1)−Pk0k1 = 0

(4.20)

Let ak0,i = Nk0,di(uk0) and ak1, j = Nk1,d j(uk1), a matrix format for Eq. 4.20 is:

∂E
∂Qk0k1

= AT AQBT B−APB = 0 (4.21)

where A is a (p+1)× (m+1) and B is a (q+1)× (n+1) matrix, respectively. The solution
for the coefficients matrix Q is:

Q = [(AT A)−1]P[B(BT B)BT ]T (4.22)

Because a spline presents a sufficiently high degree of smoothness, a B-spline model offers
great flexibility and precision for handling complex geometric shapes. Consequently, grid
partitioning is not necessary for B-spline modelling. During the modelling, the stockpile
region is fitted by two sets of basic spline functions in the x then the z direction, in order. The
name of a B-spline surface model still follows the previous naming method. An mth degree
B-spline surface model or an mth B-spline model in short means the order of the B-spline
function is m+1. If the model is created after grid partitioning, it is called an (mth, np ×np)
B-spline model. Fig. 4.7 shows a stockpile surface model created using a six-degree spline
function in both directions. The proposed over-fitting detection algorithm is also applicable



4.4 Surface Modelling 67

to the B-spline modelling. However, no over-fitting problem occurs using the experimental
data. The entire set of modelling procedures is summarized in Fig. 4.8.

Fig. 4.7 A (6th, 1× 1) B-spline surface model. The point cloud is plotted as white dotted points
against it (unit: mm ).

Fig. 4.8 Stockpile modelling procedure from laser measurement data. The data and operations
illustrated by dotted lines are optional.
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4.5 Experiments and Results

This section first outlines the experimental design and then presents the modelling results.
A group of four datasets are prepared to evaluate the modelling algorithm. The parameters
used to evaluate the surface modelling accuracy includes: the sum of squared errors (SSE)of
prediction , the mean squared error (MSE) and the volume of the surface model.

4.5.1 Data Preparation

First, an isosceles triangular prism is selected as a standard modelling unit, which gives
accurately known geometric shape and volume for comparison purposes. Another reason for
making this decision is because that the triangular prism is a basic geometric object that is
the most close to the shape of a stockpile. Also, it has been used by a number of researchers
for stockpile modelling, i.e. Pavloudakis and Agioutantis [19] and Lu and Maung [29]. The
triangular prism used for the experiment was made by bending a 1.5 mm thick aluminium
sheet. The dimensions after blending are 617.50 mm× 174.10 mm×1000 mm (W×H×L)
and the volume is 53.753 cm3.

Second, a laboratory scale chevron stockpile is built in the indoor environment through
duplicating real blending operations. It is designed to have four layers and each layer is
stacked with different sized particles. Detailed simulation procedures will be presented in
Section 4.5.3. Both the triangular prism and the laboratory scale stockpile are scanned by
the 3 DOF laser scanning system under the same configuration. The datasets obtained after
scanning are called the standard prism data and the bench scale data, respectively. The aims
of generating these two datasets are: to evaluate the proposed modelling algorithm using real
laser scanning data and to compare the modelling accuracy (in volume) against the accurately
known geometric shape.

Third, a dataset of a full scale stockpile provided by MatrixGroup is prepared. A 70 m×155
m stockyard was sampled by surveyors at a 1 m×1 m quadrat over a certain time period. The
dataset consists of a sequence of 16 point clouds and each record represents the geometric
shape of a stockpile after some blending operations. According to the changes in shapes,
the stockpile is more likely to have been stacked using the windrow method rather than the
chevron method. Also, since there are significant changes in shapes between each point
cloud, it is believed that the survey was not conducted continuously. However, detailed
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information was not given to the author due to the firm’s intellectual property protection
strategy. This dataset is named the full scale data in the thesis and every point cloud in this
dataset is considered to be a layer of the stockpile. Therefore, the full size stockpile has 16
layers and the dimensions of the last layer are 50 m×153 m×29 m (W×H×L). Since this
dataset contains various shapes and the point density is much lower than that of the laser
scanning data, the results from this dataset will provide more general insights of the proposed
modelling algorithm.

Lastly, to examine the applicability of the proposed modelling algorithm further, an ideal
stockpile model is generated by assuming that profiles of a stockpile along the z axis are all
hyperbolic curves. The length of this model is 220 m and the height is 30 m. The repose
angle of the stockpile (the angle between the side of a stockpile and the ground) is 35◦.
The LMS200 is assumed to be located 45 m above the ground to scan the stockpile using a
1◦ angular resolution along the coronal plane. The sampling distance between each single
scan is 1 m. The simulation will create a perfect (noise free) point cloud, which is named
the simulated stockpile. Also, through adding white Gaussian noise generated by random
processes to each single scan (which is aimed to simulate the uneven stockpile surface
and laser measurement noise) another point cloud called the simulated laser measurement
is generated. This dataset is called the full scale simulation data. This dataset is used to
examine the stockpile segmentation algorithm and compare the modelling accuracy in this
thesis.

4.5.2 Experiment Design

To test the performance of the modelling algorithms against different sized particles, the
laboratory scaled stockpile was designed to have four layers and each layer is stacked with
different sized particles. According to the experimental results reported by Lee et al [68],
these materials themselves will not affect the laser measurement accuracy. The maximum
height of each layer was also predefined to avoid overlay regions between layers. Because
errors from the laser are largely independent of the colour and texture, gravel used for
landscaping is selected to build the laboratory scale stockpile. The particles used for the
each layer are listed in Table 4.1. Among these particles, the sizes of basalt and quartzite
are closet to the size of the real fines (iron ore) samples. Table 4.1 also shows the expected
stacking height of these materials and measured height after a layer is completed.
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Table 4.1 Particles used to create stockpile layers

Layer No. Diameter (cm) Height (cm) Weight (kg) Falling height (cm)

1 37 9.6 6.6 17.3
2 45 12 6.6 28.5
3 56 14.3 6.6 28.5

A platform, which has dimensions of 1800 mm length, 1000 mm in width and 1230 mm

in height, was allocated beneath the 3 DOF laser scanning system to support the stockpile
against the ground (see Fig. 4.9a). It is considered to be the ground plane in the point
clouds collected from scanning. Reference lines were marked on both the platform and the
ground to guide the stacking and reclaiming operations conducted by the operator. During
the stacking operations, a cylindrical container was used to hold the gravel and moved in a
zigzag motion, based on the central reference line, which represents the coronal plane, drawn
on the supporting platform. Another two reference lines, vertical to the central reference line,
were also highlighted on the platform. These two lines indicate the starting and ending points
for the zigzag motion.

To simulate the reclaiming operation of a BWR, a simplified reclaiming arm, which has
similar moving mechanisms to a BWR, was designed (see Fig. 4.9b). It was made by
mounting a boom with a tube on the tripod. The bucket wheel can be simplified as a tube
on the assumption that it rotates at a constant speed and recovers material evenly from the
stockpile. The tripod itself has two joint movements: luffing and slewing. The travelling
motion of the arm is achieved by moving the tripod base manually.

Fig. 4.9 Experiment setup for the bench scaled stockpile in the laboratory. a) A laboratory bench
stockpile under the laser scanner. b) The reclaiming arm used in the experiment.
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The LMS200 was configured to perform a 100◦ scan with an angular resolution of 0.25◦.
Also, according to the experiment results reported by Ye and Borenstein [58], the scanning
was conducted after a three hour warm-up to reduce drifts in the laser measurements. During
the scanning mission, the travelling velocity along the rack was controlled to be at 12 m/min,
which is close to the average travelling speed of a BWR. The travelling displacement was
sampled by the O1D100 at a 15 Hz rate.

In the experiment, the triangular prism was placed on the supporting platform and scanned by
the laser first. Then, the laboratory scale stockpile was stacked layer by layer. The scanning
was activated after each layer was completed. Last, reclaiming was conducted manually
using the reclaimer arm. Again, the stockpile was scanned after each reclaiming step. The
stacking and reclaiming procedures will be detailed in the next section.

4.5.3 Blending Simulation

The laboratory scale stockpile is created by a human operator through the following stacking
and reclaiming operations to ensure it has a similar shape to a real stockpile. Because the
discharge chute system used at the preliminary stage cannot provide a relatively constant
material flow, it was not involved in the experiment.

Stacking and scanning

1. Lower the cylindrical container (full of gravel) at the starting point marked on the
platform (the clear height between the cylinder container and stockpile surface is
maintained to be around 30 mm).

2. Tilt the container gradually and allow particles to fall at a constant speed due to their
own gravity.

3. Move the container linearly at a constant speed once particles start to fall.

4. Stop the motion when the container is empty and record its position.

5. Refill the container and repeat steps 1, 2 and 3 at the recorded point until the container
reaches the ending point marked on the testing platform.

6. Reverse the moving direction and repeat steps 1, 2, 3, 4 and 5.

7. Stop the stacking operation until the pre-defined height is reached.
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8. Repeat step 1∼7 after scanning each time.

Four point clouds were obtained after stacking. These data are named according to the
stacking sequence. For example, the 1st layer means the layer made by the red scoria.

Reclaiming and scanning

1. Adjust the luffing angle (the angle between the boom and the tripod centre axis) to 80
◦ and select an initial reclaiming point manually.

2. Advance the centre of the tripod 30 mm along the stacking direction.

3. Rotate the arm around its central axis (slewing) and allow the tube to cut into the body
of the pile.

4. Stop the slewing motion when the intrados of the tube is merged into the stockpile and
remove particles picked up by the tube.

5. Rotate the boom in the opposite direction until the tube and stockpile are separated.

6. Repeat steps 3, 4, 5 and 6 until the tube has cut through the body without any obvious
particles that block the tube. Then, advance the centre of the tripod another 30 mm to
complete one reclaiming step.

7. Scan the stockpile and export the measuring data.

8. Make another nine reclaiming step and scanning the stockpile after reclaiming.

9. Return the arm to its initial position and change the luffing angle to 70◦.

10. Make another five reclaiming steps and scan the stockpile accordingly.

Fifteen point clouds were collected during reclaiming. Each reclaiming step is considered as
a cut from the stockpile. These point clouds are named in order according to the reclaiming
steps. For example, the 1st cut is the first reclaiming step with a luffing angle of 80◦, whilst,
the 11th cut represents the first reclaiming step with a luffing angle of 70◦. Fig. 4.10 depicts
the stockpile in different states during the experiment.
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Fig. 4.10 Variation in the layers of the stockpile during the experiment. a) The 1st layer. b) The
stockpile during the stacking. c) The 4th layer. d) The stockpile after the 1st reclaiming. e) The
stockpile during the reclaiming. f) The stockpile after reclaiming.

4.5.4 Modelling Result

This section presents modelling results from all four datasets. The computation time and
accuracy are compared and discussed because they are two crucial factors in evaluating the
real-time performance of modelling algorithms. All these results are obtained from an Intel
Q9400 Quad Core CPU with 4GB Ram in the Windows operation system.

4.5.4.1 Wireframe Modelling

Standard prism data. The average error range of the data collected in the laboratory is
much larger than the one mentioned in the LMS200 specification. The main reason is because
the LMS200 uses the time of flight to calculate the distance. A short range between the sensor
and target object means a short time interval between the transmission and reception. Large
errors could be created because the timing discriminator inside the LMS200 may not identify
the time differences properly. In addition, it is believed that systematic errors are produced
due to the high reflectivity of the aluminium sheeting. When the triangular prism was
allocated at a certain position on the supporting platform, laser beams with oblique incidence
angles to the prism may cause spurious points far from the true surface (see Fig. 4.11).
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Such systematic errors only occurred at some locations and disappear if the position of the
prism is changed. Furthermore, three one-layer stockpiles stacked by red scoria were created
at different locations on the supporting platform for testing purposes. No systematic errors
occurred when these stockpiles were scanned by the LMS200. All these results further
support the author’s suggestion that such systematic errors are mainly caused by the high
reflectivity of the material only. However, the author would not to identify the true reason(s)
behind this scenario because it falls outside the scope of this thesis. The point clouds used
for evaluating the stockpile modelling algorithms are free from systematic errors.

Fig. 4.11 Systematic errors may occur at some positions when laser scans the aluminium prism.
Spurious points are observed on the lateral face from the positive direction of the x axis. The cross
section measured is not in an isosceles triangle shape.

The profiles of the triangular prism are approximated quite well using Fourier series functions.
Fig. 4.12 shows a correct single scan obtained from LMS200 and the fitting result using an
8th Fourier series function. Fig. 4.13 compares the 8th Fourier model with the 8th universal
Fourier model. Because more measurement noise is removed from the universal Fourier
model, its shape is closer to the surface of the real prism than the Fourier model achieves.

Bench scale data. Table 4.2 compares the accuracy against the calculation time of a single
scan in a bench scale dataset using different order Fourier series functions. Generally, the use
of a higher order function increases the accuracy at the expense of processing time. However,
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Fig. 4.12 Fit a single scan in the standard prism data using an 8th order Fourier series.

Fig. 4.13 The triangular prism modelled by the Fourier and the universal Fourier functions (unit:
mm).

as shown in Table 4.2, the use of 6th- and 8th-order Fourier functions greatly improved the
accuracy without causing an obvious upward trend in time consumption. The average time
needed for fitting a single scan is better than 0.06 s. Clearly, the Fourier model is able to be
created in real-time.

Additionally, it has been observed that the time cost for the 4th Fourier fitting was longer
than the 8th Fourier function in some cases. This is mainly because a low order Fourier is
not good at approximating a rough and rugged shape, i.e. a profile of the partially reclaimed
section of a stockpile. Therefore, the fitting algorithm needs more evaluations to satisfy the
stop criterion. Because the Fourier series is applied directly to the raw data as a smooth filter
to the scanning data, large SSEs and MSEs are produced. The roughness of the stockpile
surface and the noise of the LMS200 result in large residuals after fitting. The results show a
clear decrease in MSE when the particle size of the stockpile is decreased (see Table 4.2).
Over-fitting events frequently occur at the beginning and ending sections of the stockpile
if the order of the Fourier series is higher than eight. The reason for such a phenomenon is
the fitting function is excessively complex in comparison with the scanning data because the
profile at the very beginning of the stockpile is more likely to be a straight line instead of an
inverted U-shaped curve.
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Table 4.2 Fitting accuracy versus computation time for a single scan. (unit: time s; MSE mm2).

4th Fourier 6th Fourier 8th Fourier
time MSE time MSE time MSE

1st layer 0.0307 29.286 0.0225 29.420 0.0332 31.134
2nd layer 0.0288 20.861 0.0442 19.675 0.0278 17.725
3rd layer 0.0476 18.975 0.0368 13.703 0.0428 12.398
4th layer 0.0392 14.635 0.0278 13.684 0.0359 12.322
1st cut 0.0893 23.272 0.0795 13.000 0.0883 11.490
3rd cut 0.0415 27.941 0.0556 20.362 0.061 16.205
5th cut 0.0331 26.613 0.0499 14.661 0.0825 11.619
7th cut 0.0507 24.648 0.0725 12.626 0.0481 12.021
9th cut 0.0452 18.339 0.0612 13.327 0.0521 12.641

11th cut 0.0415 20.693 0.0646 15.537 0.0834 15.087
13th cut 0.0419 20.357 0.0538 12.361 0.0615 10.690
Average 0.0421 20.861 0.0498 13.703 0.0558 12.398

The coefficient of determination (R-squared) is the accuracy of the predictor of independent
variables on dependent variables, which is a useful measure in determining the ‘goodness of
fit’ in regression analysis. It ranges from 0 to 1 and R2 = 1 indicates that the fitted function
explains all variability. Fig. 4.14 and Fig. 4.15 plot fitting results using different Fourier series
with respect to stacking and reclaiming phases. The coefficient of determination increases
together with the increment in the order of the Fourier series. For example, R-squared
increases from 0.9975 to 0.99793 when the order of the Fourier series function increases
from 4 to 8. In the meantime, a decrease in residuals is also observed.

Another finding from Fig. 4.14 and Fig. 4.15 is that the large residuals always occur around
the sharp edges in the laser measurement. Most of them exist in the top section of the
stockpile (the crest of the wave) and the intersection between the side of a stockpile and the
ground (the transition curve region). In mathematics, such a sharp edge is called a cusp and
the curve is unable to be differentiated at the corner point. Therefore, large residuals are
detected around these cusps when the curve is approximated by a differentiable function.
Additionally, a stockpile stacked with large particles contains many empty holes and these
holes will create a jagged array of peaks and valleys in laser measurements. Thus, large
residuals also happen at these locations (see Fig. 4.16). Also, as shown in Table 4.2, the
MSE of the 1st layer is almost double that of the rest layers. In other words, large particles
may result in large modelling errors. This problem exists throughout the entire modelling
procedure.
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Fig. 4.14 R-squared and residuals when fitting a single scan obtained at the stacking phase.

Fig. 4.15 R-squared and residuals when fitting a single scan obtained at the reclaiming phase.
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Fig. 4.16 Large residuals always locate around sharp corners.

Fig. 4.17 The laboratory scaled stockpile modelled by the Fourier and the universal Fourier functions
(unit: mm).
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Fourier model versus universal Fourier model. Fig. 4.17 shows the Fourier model and the
universal Fourier model generated by 6th order Fourier series for the 4th layer of bench scale
stockpile. The average distance error is 0.824 mm for the Fourier model and 1.865 mm for
the universal Fourier model respectively. Table 4.3 compares the average volume and error in
percentage terms based on these two algorithms. The SSE and R-squared are not compared
here for two reasons: first and foremost, the volume is more important to evaluate a stockpile
model in this specific application. Secondly, the Fourier model and the universal Fourier
model have the same features. These results prove that the use of a low order Fourier series
decreases the fitting accuracy but does not introduce obvious errors in volume calculation.
Meanwhile, according to these results, it can be concluded that the use of a universal Fourier
model will lead to errors in volume calculation but within an acceptable range.

Table 4.3 Volume calculated from different wireframe models. (unit: volume decalitre, error %)

Raw 4th-Fourier Error 6th-Fourier Error 4th-Universal Error 6th-Universal Error

1st layer 2.03666 2.03630 -0.0188 2.03705 0.0191 2.03730 0.0314 2.03692 0.0128
2nd layer 2.95675 2.95752 0.0260 2.95723 0.0162 2.95678 0.0010 2.95750 0.0254
3rd layer 4.30362 4.30049 -0.0727 4.30366 0.0009 4.30825 0.1075 4.30681 0.0741
4th layer 6.81162 6.79486 -0.2461 6.81197 0.0051 6.83791 0.3859 6.82877 0.2518
1st cut 6.65806 6.65041 -0.1149 6.65438 -0.0553 6.62722 -0.4631 6.62712 -0.4632
2nd cut 6.57272 6.56245 -0.1563 6.57028 -0.0371 6.57397 0.0190 6.57862 0.0897
3rd cut 6.48189 6.48437 0.0383 6.47964 -0.0347 6.41972 -0.9591 6.42362 -0.8990
4th cut 6.40154 6.40321 0.0261 6.40035 -0.0186 6.31811 -1.3033 6.33664 -1.0138

The wireframe models generated by the Fourier series demonstrate a high degree of accuracy
and reasonable computation time for real time applications. Users are able to choose different
orders of the Fourier series according to accuracy and time requirements. In this thesis,
unless stated otherwise, the default order of the Fourier series functions is 8 in creating the
wireframe models from the point clouds collected in the laboratory environment.

Full scale data. Due to the sampling resolution of full scale data, the modelling results are
relatively poorer than that from the bench scale data. Fig. 4.18 shows the fitting result of a
cross section of a layer in the full scale data. Sharp edges and corners cannot be preserved
faithfully using a Fourier series. However, as illustrated in Fig. 4.18, less measurement noise
is observed in the full scale data. This might be because the stockpile is sampled by surveyors
using professional instruments. Since the full scale data has different noise characteristics in
comparison with the laser scanning data, the wireframe modelling which is designed to filter
out laser scanning noise is not applied in modelling. The full scale data are used for surface
modelling directly.
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Fig. 4.18 Fitting a profile from the full scale stockpile using a 8th Fourier series. The SSE of the fit is
2.70 m2.

Full scale simulation data.The simulation data provide another opportunity to evaluate the
fitting accuracy because the true profiles of the simulated stockpile are known accurately.
Fig. 4-19 plots the fitting result of a single scan in the simulated laser measurement data
using the 8th Fourier series. The SSE and R-square are 11 mm2 and 0.9987, respectively. The
computation time is 0.03 s.

Fig. 4.19 Fitting a profile from the full scale, simulated stockpile using a 8th Fourier series. The SSE
of the fit is 11 mm2.

Results obtained from the data collected in the real scanning and simulation prove that
the proposed wireframe modelling algorithm meets the design requirement for real time
processing. The wireframe model created is able to preserve the real geometric shape of the
stockpile with great accuracy.

4.5.4.2 Boundary Detection

Only the bench scale and the full scale simulation data are used for the evaluation of the
boundary detection algorithm because the ground measurements in the full scale data equal to
zero exactly and the geometric shape of the triangular prism is different from a real stockpile,
which require different structuring elements in mathematical morphology operations.
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Bench scale data. The boundaries of the stockpile are detected successfully from all 19
point clouds in the bench scale data. The average run time of the segmentation operation
is 0.04 s. The detection results from each point cloud are slightly different due to the laser
measurement noise. The distance measured from the centre of the LMS200 to the supporting
platform in the experiment is 1285.3 mm, while the average distance calculated from the
detection results is 1281.37 mm. Considering the error range of the LMS200 is 10 ∼ 20 mm

and the size of the bench scale stockpile, this result is promising. Table 4.4 compares the
distance calculated from the segmentation results.

As shown in Fig. 4.20, the detection result is not perfect. Inaccurate detections are normally
located around the conical ends of the stockpile. The maximum segmentation error (the
segmentation error is the y coordinate of the point that belongs to the stockpile but is classified
wrongly as the ground) is up to approximately 13.2 mm. On average, the ground is shown as
4 mm higher than its true level.

Fig. 4.20 A zoomed view of the imperfect boundary detection results for the 4th layer at the stacking
phase. Detected boundary points are shown in red (unit: mm).

Full scale simulation data. The true boundary of the simulated (noise free) stockpile can be
located in a straightforward way because the y coordinates of those points on the ground are all
zero exactly. Therefore, the boundary detection is applied to the simulated laser measurement
data (Gaussian noise). Fig. 4.21 compares the detected boundary of the simulated laser

Table 4.4 Ground detected from the boundary detection algorithm. (unit: mm)

Stacking phase Reclaiming phase
Dataset 1st layer 2nd layer 3rd layer 4th layer 1st cut 3rd cut 5th cut 7th cut 9th cut

Ave. 1281.18 1280.76 1280.91 1281.37 1283.31 1280.75 1283.07 1281.48 1282.72
Std. 1.96 1.90 1.88 2.66 3.72 1.91 3.73 2.03 2.63
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measurement data against the true boundary. The maximum segmentation error for the ideal
model is 0.94 m and the average segmentation error is 0.49 m with a standard deviation of
0.16 m. Also, the maximum segmentation error for the simulated laser measurement data
is up to 1.55 m and the average segmentation error is 0.43 m with a standard deviation of
0.31 m. An important reason for such large errors is the pseudo-Gaussian noise generator.
For each single laser scan, the random number generator is called once. Thus, there is no
correlation between each scan after the simulation. When the x and y coordinates in the point
cloud are separated from the laser range measurement, errors exist in both axes and the true
boundary is difficult to detect from the height measurement only.

Clearly, the boundary detection algorithm is not highly precise and accurate. However, it is
efficient and effective. Additionally, because the adjacent region between the stockpile and
the ground is considered to be a dead region and never recovered by a BWR, the proposed
boundary detection algorithm is sufficient for this application.

Fig. 4.21 Detecting boundary from the simulated stockpile data (unit: mm).

4.5.4.3 Polynomial Surface Modelling

Standard prism data. The triangular prism serves as a standard geometric object to evaluate
the accuracy of the proposed modelling algorithm because its shape and volume are known
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accurately before scanning. Fig. 4.22 compares the laser measurement data against the
perfect prism surface. Due to the measurement noise, almost half of the total points are
located outside of the ideal prism surface. Thus, the base of the prism seems to be expanded
when it is represented by the point cloud. Fig. 4.22 shows the surface model created through
partitioning the Fourier wireframe model of the prism into 8×8 patches. The order of the
polynomial function used to fit these patches is 3. Runge’s phenomenon will happen if the
order of the fitting function is higher than 3. Obvious oscillations can be observed around
the edges of most surface patches. The volume of the polynomial surface model is 53.626
cm3 with a percentage error of -0.236%. When the 8th universal Fourier model is used, the
volume of the polynomial surface model is 53.605 cm3, resulting in a percentage error of
0.276%.

Fig. 4.22 Laser measurement against the ideal prism surface. The point measurements are plotted in
grey (unit: mm).

Fig. 4.23 3rd polynomial model of the triangular prism created from 8×8 patches (unit: mm).

Bench scale data. Previous results indicate that a high-order Fourier series can improve the
fitting accuracy but will not cause obvious increments in computation time. By contrast,
opposite outcomes are detected in the surface model. As shown in Table 4.5, the time
consumption of a low-order polynomial is much less than that of a high-order polynomial
function. For example, the calculation time jumps from 6.51 s to 54.24 s when the order of
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the polynomial function increases from 6 to 9. However, the average modelling time is still
promising for this application because the use of a high-order function will generate a highly
accurate model. However, such an improvement is not obvious if the order increases from 8
to 10, as can be seen in Table 4.5. The SSE and MSE calculated here show the discrepancy
between the wireframe model and the fitting results. If the order of the polynomial functions
is large than 10, Runge’s phenomenon will happen and may introduce more errors into the
modelling.

Table 4.5 Polynomial surface modelling results. (unit: time s, SSE mm2 ×106, MSE mm2)

Dataset
6th poly 8th poly 10th poly

time SSE MSE time SSE MSE time SSE MSE

1st layer 6.51 1.466 396.32 21.52 0.2895 78.26 54.24 0.2438 65.91
2nd layer 6.42 1.175 289.41 29.65 0.2457 60.52 53.84 0.2235 55.05
3rd layer 7.27 1.154 251.53 32.66 0.1745 38.03 60.65 0.0994 21.67
4th layer 8.11 1.145 190.71 33.76 0.2514 41.87 68.23 0.1961 32.66
1st cut 8.74 1.280 213.19 21.52 0.3081 51.32 74.31 0.2473 41.19
3rd cut 9.74 0.835 139.07 29.65 0.3123 52.02 81.18 0.1783 29.70
5th cut 9.51 0.851 141.74 32.66 0.3341 55.65 79.54 0.2092 34.84
7th cut 9.83 0.891 148.40 33.76 0.3707 61.74 81.12 0.2246 37.41
11th cut 9.66 0.839 139.74 21.52 0.3960 65.96 80.45 0.2984 49.70
15th cut 9.98 0.967 161.06 29.65 0.8346 139.01 83.34 0.2151 35.83
Average 8.71 1.0438 175.89 29.23 0.31126 58.08 81.03 0.21769 36.62

Table 4.6 lists the time consumption and modelling results for the 15th cut, after applying
the grid partitioning method. The orders of the polynomial functions are 6th, 8th and 10th,
respectively. Based on these results, it can be verified that the grid partitioning method
increases the modelling accuracy greatly without significant computational cost.

Table 4.6 Surface modelling accuracy versus calculation time when apply grid partitioning to the 15th

reclaiming data. (unit: time s, SSE mm2 ×106, MSE mm2)

Polynomial
6×6 7×7 8×8

time SSE MSE time SSE MSE time SSE MSE

6th 11.48 1.48 2.47 11.66 0.93 1.56 12.15 0.89 1.49
8th 37.92 1.39 2.33 38.50 1.25 2.10 39.95 1.38 2.31

10th 94.23 0.92 1.55 95.67 0.60 1.01 99.40 0.59 0.99
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Fig. 4.24 plots three models for comparison purposes. Out of the three models shown in
Fig. 4.24, one over-fitting event is detected when the stockpile is partitioned into 8×8 patches
and modelled through the 8th polynomial function. This raises the SSE to 1.384×104 mm2.
However, the over-fitted surface patch is identified automatically and, through reducing the
order of the polynomial function to 7, a correct model is created. The SSE of this model is
reduced to 1.16×104mm2.

Fig. 4.24 Polynomial surface models obtained using the grid partitioning method (For display purposes,
the over-fitted surface patch remains unfixed, unit: mm).

In the laboratory scale dataset, if the ground section is more than 90% in a patch, over-fitting
is liable to happen. Therefore, the authors would suggest that the minimum size of each
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patch should be larger than 82 mm in width and 142 mm in length (9×9 patches) to avoid
over-fitting problem. The surface normal comparison algorithm detected all over-fitted
patches successfully in the bench scale data. 95% of these over-fitted surface patches are
fixed through reducing the order of the polynomial function by 1. The rests are avoided when
the order of the fitting function is reduced by 2. Therefore, in some cases, a polynomial mode
of a stockpile may be represented by different ordered polynomial functions.

Table 4.7 compares the average volumes calculated through different polynomial surface
models. The error in percentage is compared against volumes obtained from original laser
measurements, which are listed in Table 4.3. These results clearly prove that the grid
partitioning method improves the modelling accuracy. A low-order function can approximate
the geometric shape of a stockpile as well as a high-order function through applying the
grid partitioning method. Volumes calculated through surface models are reasonably good
unless over-fitting event happens. For example, when the stockpile is segmented into 9×9
patches and fitted by the 9th polynomial function, the volume of the 4th layer is 68296.03
cm3 and the percentage error is 0.264%. This is caused by two over-fitted patches: the (5, 6)
and the (5, 7) patch. No over-fitting occurred when these two surface patches were fitted by
the 8th polynomial function. The volume of the final model is 68121.60 cm3 which yields a
percentage error of 0.007%.

Table 4.7 Volume calculated from the surface model. (unit: volume decalitre, error %)

Dataset (5th, 1×1) Error (5th, 6×6) Error (7th, 6×6) Error (7th, 9×9) Error (9th, 9×9) Error

1st layer 2.05970 1.130 2.03988 0.158 2.03729 0.031 2.03894 0.112 2.03872 0.070
2nd layer 2.96619 0.319 2.96166 0.166 2.96132 0.155 2.95656 -0.006 2.95697 0.008
3rd layer 4.30596 0.054 4.30213 -0.034 4.30223 -0.032 4.30318 -0.010 4.30333 -0.007
4th layer 6.78327 -0.416 6.80376 -0.115 6.80568 -0.087 6.80934 -0.034 6.82960 0.264
1st cut 6.62244 -0.535 6.6464 -0.174 6.64957 -0.127 6.65080 -0.109 6.65366 -0.066
2nd cut 6.54419 -0.434 6.56060 -0.184 6.56160 -0.169 6.56475 -0.121 6.56701 -0.087
3rd cut 6.46606 -0.244 6.46985 -0.186 6.47072 -0.172 6.47203 -0.152 6.47228 -0.148
4th cut 6.41672 0.237 6.39386 -0.120 6.39451 -0.110 6.39594 -0.087 6.39672 -0.075

Full scale data. Fig. 4.25 illustrates the geometric shape of layers in the full scale dataset.
From this image, it is possible to determine that from the 1st layer to the 7th layer, the
stockpile was at the stacking phase, while from the 8th layer to the 10th layer, the stockpile
was at the reclaiming phase. Then, stacking operations are conducted from the far end of
the partially reclaimed stockpile. This operation creates two separated stockpile regions
and these two regions are rejoined gradually during the stacking procedure to form one
stockpile.
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Because both modelling algorithms are designed for high-resolution scanning data, the
modelling accuracy degrades at the full scale data (with a point-to-point resolution of 1 m),
even when high order polynomial functions are used (see Fig. 4.26 and Fig. 4.27). However,
the grid partition algorithm is still applicable to this dataset. For example, when a 10th

polynomial function is applied to fit the 13th layer of the stockpile directly, the two separated
regions are connected after modelling. Meanwhile, there exist very large residuals along the
sickle-shaped cutting surface created by a BWR and Runge’s phenomenon is also present
around the boundary region of the stockpile. Conversely, when the layer is subdivided into
15×15 patches and each patch is fitted by a 6th degree polynomial function, the model is
improved significantly in terms of both geometric shapes and residuals.

Fig. 4.26 A polynomial surface model of the 4th layer from the full scale data (unit: m).

Fig. 4.27 A polynomial surface model of the 13th layer from the full scale data (unit: m).

Table 4.8 lists the computation time and the modelling results from the 3rd layer to the 16th

layer. The 1st layer is in a cuboid shape with exact dimensions of 2 m× 153 m× 0.34 m
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(W ×L×H), which means it only contains two measurements in x axis. The dimensions of
the X matrix constructed from the 1st layer are not suitable for grid partitioning due to the
lack for the differentiation. Therefore, it was ignored for modelling purposes, as was the 2nd

layer.

Table 4.8 Surface modelling accuracy versus calculation time when apply grid partitioning to a full
scale stockpile. (unit: time s, SSE m2, MSE cm2)

Layer (6th, 8×8) (6th, 10×10) (6th, 15×15) (8th, 15×15)
Time SSE MSE Time SSE MSE Time SSE MSE Time SSE MSE

3 2.82 8.17 27.75 3.49 8.35 28.37 6.16 0.80 2.72 18.98 0.37 1.26
4 3.89 149.57 346.22 4.11 14.96 34.63 6.8 0.89 2.06 21.12 3.8 8.8
5 3.63 117.66 245.13 4.32 21.82 45.45 6.88 7.15 14.89 21.82 3.18 6.62
6 3.58 86.44 180.08 4.31 19.75 41.14 6.95 3.83 7.97 21.93 3.15 6.57
7 3.57 65.21 135.84 4.33 20.00 41.67 7.08 2.09 4.36 21.89 1.94 4.04
8 3.57 197.33 411.11 4.31 91.16 189.92 7.03 27.65 57.6 21.93 29.48 61.43
9 3.57 164.19 342.07 4.32 125.46 261.37 6.96 38.99 81.22 21.94 172.14 358.63

10 3.61 217.18 452.47 5.74 122.88 255.99 7.13 71.18 148.29 26.53 38.48 80.17
11 5.09 586.53 751.97 5.86 389.28 499.07 8.56 135.68 173.95 26.97 176.49 226.26
12 5.2 669.46 825.27 6.21 390.81 481.77 8.55 191.13 235.61 27.85 203.68 251.09
13 5.69 652.92 789.70 5.93 385.22 465.92 8.9 180.67 218.51 27.85 153.22 185.32
14 5.22 565.25 683.66 6.67 340.05 411.29 8.54 149.71 181.07 28.70 102.82 124.36
15 5.3 301.37 364.51 6.45 117.73 142.40 8.87 62.35 75.41 27.53 22.32 26.99
16 5.29 291.94 353.10 6.65 76.67 92.73 8.58 39.04 47.22 27.25 14.76 17.86

average 3.76 207.255 358.803 5.035 104.445 166.16 7.105 39.015 66.505 24.235 25.90 44.21

There are obvious degradation trends in the modelling accuracy that start from the 8th layer
because the stockpile contains two separated regions. One region is partially reclaimed
and the other is being stacked using the windrow method. Thus, large residuals will be
observed around the sickle-shaped cutting region caused by the BWR and the gaps between
the two regions. With more materials stacked onto the stockpile, these regions are filled
and the modelling accuracy is improved. These results demonstrate strong evidences that
the grid partitioning algorithm is able to improve the modelling accuracy even when the
point resolution is low. During modelling, over-fitting events happen quite frequently. Other
than the boundary region, these over-fitting events are also happened around the sickle
shaped cut created by the BWR. Most over-fitted patches were detected automatically and
all detected over fitting events are fixed through lowering the order of the fitting function
by one. However, a total of 6 missing detections were reported when generating Table 4.8.
Because of the low point-to-point resolution, the point set NCenNeig contains a large region.
The distances between two adjacent points in both directions are all 1 m. If the point set
determined from k-nearest neighbour algorithm contains 5 points, which means a central
point with four neighbours, the bounding rectangular of the point set will be 4 m2. Given
such a large surface patch, the normal vectors of the planes fitted from two NCenNeig point
sets may be in a nearly parallel condition and cause a miss detection.
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Table 4.9 shows the volumes of all the (7th, 15×15) polynomial models generated from the
full scale dataset.

Table 4.9 Volume of polynomial models of the full scale data. (unit: volume m3, error %)

Layer Volume of the layer Volume of the model Error

3 13523.64 13456.23 0.50
4 22263.67 22218.41 0.20
5 31425.70 31378.39 0.15
6 40838.28 40798.71 0.10
7 51806.42 51764.77 0.08
8 44576.43 44534.78 0.09
9 41850.85 41809.20 0.10

10 33865.67 33824.02 0.12
11 44363.11 44291.84 0.16
12 58170.99 58000.70 0.29
13 68351.16 68198.32 0.22
14 80577.99 80420.41 0.20
15 92812.83 92643.52 0.18
16 104017.15 103845.30 0.17

Full scale simulation data. Fig. 4.28 and Fig. 4.29 illustrates the (7th, 15×15) polynomial
surface models created from the ideal stockpile and noise measurement data, respectively.
Similar to other datasets, large residuals are located around the boundary area of the stockpile.
The SSEs and MSEs for these two models are 17.52 m2 and 8.27 cm2, and 182.81 m2 and
86.21 cm2, respectively. The average modelling time is less than 50 s. The results obtained
from this simulation dataset further demonstrate the efficiency and effectiveness of the
polynomial modelling algorithm.

No over-fitting problem happened to the ideal stockpile data but it happened twice to the
noise measurement data. Both of these two over-fitted conditions were detected automatically
and eliminated after the order of the polynomial function was reduced by 1. The volume
calculated from the ideal stockpile data is 230396.43 m3. The volumes of the two surface
models (see Fig. 4.28 and Fig. 4.29) are 230398.54 m3 and 230455.28 m3, respectively. The
percentage errors are 0.0009% and 0.0255%.

All of these results prove that the polynomial function can approximate stockpile surfaces
with a great degree of accuracy in terms of both geometric shapes and volumes through the
grid partitioning method.
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Fig. 4.28 The (7th, 15×15) surface model of the ideal stockpile. The original point cloud data are
plotted as grey dot points.

Fig. 4.29 The (7th, 15× 15) surface model created for the noise measurement data. Points in the
wireframe model are plotted as grey dot points. The residuals are calculated against the ideal stockpile
(unit: mm).



92 Stockpile Modelling from Point Cloud Data

4.5.4.4 B-spline Surface Modelling

Standard prism data. Benefited from its elasticity, a spline offers great flexibility and
precision in fitting the constraints. However, it is not robust in dealing with measurement
noise. As pointed out by Lee and Ehsani [68], the distance data obtained from the LMS200
fluctuate with a peak-to-peak value of about 20 mm when it is used to measure an intended
distance of 4.0 m. Such drifting is relatively large in terms of the dimensions of the triangular
prism. Thus, the B-spline model, created from the 8th Fourier model of the prism seems to be
slightly ridged. Conversely, the surface model created from the 8th universal Fourier model is
better than the former model in representing the true geometric shape of the triangular prism
(see Fig. 4.30).

Fig. 4.30 A comparison of two same degree B-spline models from different wireframe model (unit:
mm).

The volumes of these surface models are 53.186 cm3 and 53.194 cm3, yielding a percentage
error of 1.056% and 1.041%, respectively. The percentage errors are not as good as for the
polynomial model (nearly quintupled). However, these results are obtained in less than 1 s

and grid partitioning is not applied.

Bench scale data. A great advantage of B-spline interpretation is the capability that approx-
imates the true surface using lower order basic functions. Even without applying the grid
partitioning algorithm, tensor product B-spline function can model the stockpile quite well
(see Fig. 4.31). No over-fitting was recorded throughout the entire modelling process.

According to the results shown in Table 4.10, B-spline interpretation is more accurate than
polynomial approximation. On average, the SSE of the B-spline modelling is reduced by
2 orders of magnitude in comparison with the polynomial modelling. In most cases, a
high order function provides a better fit but such improvement is not obvious in B-spline
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Fig. 4.31 B-spline surfaces model of a partially reclaimed stockpile (unit: mm).

Table 4.10 B-spline surface modelling results. (unit: time s, SSE mm2 ×104, MSE mm2)

Dataset
3rd degree model 4th degree model 5th degree model

time SSE MSE time SSE MSE time SSE MSE

1st layer 0.020 8.24764 6.61 0.018 8.08009 6.48 0.019 8.27607 6.64
2nd layer 0.020 3.21134 2.35 0.020 3.21634 2.36 0.021 3.19362 2.34
3rd layer 0.016 3.81988 2.53 0.019 3.78650 2.50 0.018 3.78543 2.50
4th layer 0.019 6.22702 3.83 0.018 6.19193 3.81 0.017 6.12973 3.77
1st cut 0.019 9.75717 5.12 0.016 9.47729 4.98 0.019 9.34739 4.91
3rd cut 0.016 1.03298 5.49 0.017 10.00849 5.24 0.018 9.89061 5.20
5th cut 0.016 8.24758 4.33 0.016 8.06272 4.24 0.017 8.04801 4.22
7th cut 0.016 8.18758 4.30 0.017 8.10974 4.26 0.017 8.09962 4.25
11th cut 0.016 81112.67 4.26 0.016 8.08878 4.25 0.016 8.03360 4.22
15th cut 0.016 8.51591 4.47 0.017 8.40249 4.42 0.016 8.32858 4.38
Average 0.017 8.21758 4.32 0.017 8.08443 4.26 0.017 8.07382 4.23
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interpretation. Taking the 2nd layer as an example, the SSE of the 3rd degree model is
3.21134×104, while the SSE of the 5th degree model is 3.19362×104, which means only
0.55% less than the 3rd model. Also, in some cases, a high order basic function even results
in a large SSE. For example, the SSE of the 1st layer fitted by the 6th order basic functions
is 8.2476×104mm, while the SSE of the 4th order basic functions is 8.247×104mm. This
is mainly because of the physical texture of the 1st layer. The layer stacked by red scoria
is quite loose and coarse. However, a higher degree B-spline surface is smoother than a
low degree one. Thus, residuals of the 6th spline model are large than that of the 4th spline
model. Lastly, the computation time improves significantly. The average modelling times
for different order B-spline functions are quite close. When they are rounded up to the 4th

decimal place, they are almost of the same value.

There is no doubt the accuracy of a B-spline model can be further improved by grading
portioning. Fig. 4.32 compares the (5th, 10× 10) B-spline surface model against the (5th,
10×10) polynomial and the (5th, 1×1) spline surface model of the 15th cut. The SSEs for
those models are: 10597.28 mm2, 34308.53 mm2 and 83285.84 mm2, respectively. Table 4.11
shows the volumes calculated using different B-spline models. An error is detected in (5th,
1×1) models. The volume of the 4th cut is large than that of the 3rd cut due to large residuals.
This should not happen in reality. However, the calculation results of the (5th, 6×6) and (5th,
9×9) are in accordance with the real scenario. These results also indicate that the grading
partitioning method is more effective and powerful in improving the modelling accuracy than
the use of high order B-spline function.

Table 4.11 The volume calculated from the B-spline surface model. (unit: volume 104 × cm3, error
%)

Dataset (5th, 1×1) Error (5th, 6×6) Error (5th, 9×9) Error

1st layer 2.04861 -0.556 2.03683 -0.0225 2.03731 -0.0078
2nd layer 2.97298 -0.555 2.95621 -0.0116 2.95633 -0.0075
3rd layer 4.32688 -0.575 4.30177 -0.0083 4.30181 -0.0720
4th layer 6.85902 -0.729 6.80876 -0.0085 6.80891 -0.0063
1st cut 6.60787 -0.754 6.65753 -0.0078 6.65796 -0.0014
2nd cut 6.52264 -0.762 6.57206 -0.0101 6.57246 -0.0040
3rd cut 6.32370 -0.764 6.48121 -0.0104 6.48151 -0.0057
4th cut 6.35275 -0.762 6.40064 -0.0137 6.40116 -0.0056

Full scale data. Low point resolution is also a challenge for B-spline modelling if the point
cloud is not segmented. According to previous results obtained from the bench scale dataset,
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Fig. 4.32 B-spline and polynomial model comparisons of the partially reclaimed stockpile after 15
cuts (unit: mm).
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instead of increasing the degree of the B-spline surface model, the grid partitioning method
is applied to all the point clouds in this dataset. The modelling results shown in Table 4.12
and Table 4.13 list the volume calculated from all (3rd, 10× 10) B-spline models. The
percentage errors are calculated against the ‘Volume of the layer’ column listed in Table 4.9.
For comparison purposes, the SSEs of these models are also listed here. From the results, it
can be observed that the percentage errors of the (3rd, 10×10) B-spline models and the (7th,
15×15) polynomial models are very close. However, except for the 1st layer, the B-spline
models are more accurate than the polynomial models.

Table 4.12 Surface modelling accuracy versus calculation time when apply grid partitioning to a full
scale stockpile. (unit: time s, SSE m2, MSE m2)

Layer (4th, 3×3) (3rd, 4×4) (3rd, 5×5)
Time SSE MSE Time SSE MSE Time SSE MSE

3 0.033 170.84 0.058 0.054 56.56 0.019 0.083 8.82 0.003
4 0.032 840.34 0.195 0.055 591.77 0.137 0.086 186.27 0.043
5 0.032 761.21 0.159 0.053 498.40 0.104 0.084 344.08 0.072
6 0.032 697.14 0.145 0.053 408.49 0.085 0.081 357.67 0.075
7 0.032 294.31 0.061 0.055 269.59 0.056 0.081 106.74 0.022
8 0.032 669.63 0.140 0.055 473.11 0.099 0.084 231.85 0.048
9 0.035 786.90 0.164 0.055 444.95 0.093 0.086 236.54 0.049

10 0.034 642.93 0.134 0.056 366.87 0.076 0.088 205.81 0.043
11 0.033 2839.18 0.364 0.056 1373.81 0.176 0.087 705.59 0.091
12 0.035 3182.89 0.392 0.057 1370.45 0.169 0.089 850.69 0.105
13 0.033 3340.31 0.404 0.057 1133.79 0.137 0.089 828.57 0.100
14 0.034 2248.58 0.272 0.056 1264.79 0.153 0.088 695.23 0.084
15 0.034 767.45 0.093 0.056 511.65 0.062 0.084 349.56 0.042
16 0.041 873.24 0.106 0.061 341.31 0.041 0.087 258.08 0.031

average 0.033 777.175 0.152 0.0555 485.755 0.096 0.086 301.08 0.0485

Fig. 4.33 compares two B-surface model of the 13th layer of the full size stockpile. The
volumes of the stockpile calculated from these two models are: 68.1247 m3 and 68.1260 m3,
respectively. The percentage errors are -0.030% and 0.028%, each. Although the SSE for
the (4th, 3× 3) model is larger than that of the (4th, 5× 5) model, the volumes calculated
from these models are very close to each other. The reason is that large residuals distributed
around the sickle shaped cut of the (4th, 3×3) model will cause an increase in the calculation.
Also, the removal of some geometric features (dents located around z = 30 m, z = 95 m

and z = 120 m) from the model will reduce the volume in calculations. The combination of
these two effects seems to be balanced in the volume calculation and reduce the percentage
error. These results also support the fact that grid partitioning can improve the modelling
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Table 4.13 The volume of the full scale B-spline models. (unit: volume m3, error %, SSE m2)

Layer Volume of the model Error
SSE

B-spline Poly

3 13456.18 -0.50 1.032 0.370
4 22217.95 -0.21 1.626 3.802
5 31378.10 -0.15 2.582 3.179
6 40798.54 -0.10 2.437 3.151
7 51764.66 -0.08 2.444 1.938
8 44534.60 -0.09 29.876 29.485
9 41809.02 -0.10 37.342 172.144

10 33823.84 -0.12 35.301 38.481
11 44290.16 -0.16 127.60 176.485
12 57996.97 -0.3 157.562 203.681
13 68189.43 -0.24 154.399 153.221
14 80411.81 -0.21 149.778 102.821
15 92635.05 -0.19 46.927 22.316
16 103836.75 -0.17 22.238 14.764

accuracy. The average modelling times for these two models are still much faster than that of
the polynomial modelling method.

Full scale simulation data. Fig. 4.34 illustrates the (4th, 10× 10) B-spline model of the
noise measurement data and its residual surface. The SSEs and MSEs for these two models
measured against the ideal stockpile surface are 18.48 m2 and 8.79 cm2, and 186.47 m2 and
88.71 cm2, respectively. The average modelling time is 0.45 s. The volumes of these models
are 230394.35 m3 and 230443.47 m3 and the errors in percentage are -0.0009% and 0.0242%,
respectively. The results obtained from this simulation dataset further demonstrate the
efficiency and effectiveness of the polynomial modelling. Generally, the B-spline modelling
algorithm performs much faster than the polynomial modelling algorithm. It demonstrates
better accuracy in modelling the stockpile using low order functions.

4.6 Summary

This chapter describes the automatic stockpile modelling algorithms designed for surface
representation from laser scanning data. Four groups of datasets are employed to evaluate the
algorithm. Out of these groups, two datasets are from laser scanning. A series of experiments
were conducted carefully in a laboratory environment for the purposes of data collection.
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Fig. 4.33 The B-spline surface model of the 15th cut.

Fig. 4.34 The B-spline surface model of the noise measurement data (unit: m).
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The other two datasets are from real measurement and computer simulation, respectively.
There are 32 point clouds in total. These point clouds contain different geometric shapes and
represent a variety of layers of a stockpile. The results obtained after evaluation prove the
effectiveness and efficiency of the proposed modelling algorithms.

Laser scanning data can be processed and stored in real-time for future modelling purposes.
The boundaries of the stockpile are detected successfully from the point clouds. Two
different mathematical modelling approaches have also proven to be adequate, efficient and
accurate for further applications in stockpile management. In Section 4.5, the polynomial
and B-spline modelling algorithms are compared intensively against each other. In general,
the B-spline approach is much faster and more accurate than the polynomial. However,
polynomial approximation has a better performance in dealing with sensor noise than B-
spline interpretation. To improve the modelling accuracy, the surface is partitioned into
small patches. Meanwhile, such grid portioning also introduce over-fitting problems in
polynomial modelling. The proposed surface normal comparison algorithm is able to detect
most over-fitting events except for those which occurred in the full size dataset due to the
low point resolutions.

Both polynomial and B-spline models can represent the geometric shapes of stockpiles
faithfully and maintain a high degree of accuracy in volume calculations. With respect to
the triangular prism, the percentage error in volume of the polynomial model is better than
that of the B-spline model. However, for the bench and full scaled stockpile datasets, the
percentage errors in volume are all less than 0.5%. Because these models are designed for
industrial applications, which means there might be different requirements for the accuracy
and execution time. Experimental results prove that increasing the order of the functions
and the number of the surface patches in the partition will improve the accuracy. However,
the cost is the program execution time. Therefore, these two parameters are suggested as
needing and to be determined by the end user.

Clearly the number of the patches and the order of the function is in an inverse relation.
When a surface is partitioned into more regions, both the geometric complexity of each
patch and the number of points on the patch (used for surface fitting) are reduced. Thus, a
low-order function is expected. Based on the bench scale dataset, the author would suggest
the minimum size of a patch should no less than 82 mm along x axis and 142 mm along z axis.
Also, according to the modelling results from the full-scaled datasets, the author suggests
that the total patches should be less than 32 for a full size stockpile. Otherwise, over-fitting
may occur frequently. In the meantime, the order of the polynomial and B-spline function
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should be less than 8 and 4, respectively. However, at this stage, it is very difficult to provide
a universal guideline for the selection of surface patches and order of the surface function to
avoid over-fitting due to the versatile geometry patterns of stockpile surface regions.

The volume calculated in this chapter is based on the Delaunay triangulation method. The
point data are divided into triangles through connecting the data points as the vertices. By
projecting these triangles onto the ground surface, a set of prisms is obtained. The volume
under the surface is the sum of the volumes of these prisms. A major shortcoming of this
method is that the accuracy is largely determined by the point resolution. A high-resolution
point cloud will create more triangles and is able to approximate the true volume quite well.
However, this method is still less accurate than the integral calculator. Given the polynomial
function of a surface, the volume under the surface can be calculated directly using an integral
calculator. The result obtained using double or triple integrals for a 3D object is believed to
have the highest degree of accuracy. Due to the piecewise definition of the basic B-spline
function, it is very hard to program an automatic integral calculator using digital computers.
This is the most important reason that the author still reserves polynomial models even
though B-spline modelling is much faster than the polynomial modelling approach.



Chapter 5

Quality Estimation and BWR
Automation

Estimating the product quality beforehand or simultaneously with blending operations is
crucial in improving fundamental stockpile management procedures. It allows the grade
control and optimisation to be scheduled in advance. Together with the automated control
of the BWR in reclaiming operations, the grades and tonnages of recovered material are
predictable with a high degree of accuracy. Consequently, a proactive reclaiming pattern
for BWR(s) that meets the set requirements in terms of both quality and quantity can be
designed. Such a design will improve the effectiveness and efficiency in current bulk handling,
and therefore increasing export potential and reducing costs. This chapter first describes a
3D stockpile management model and its application in BWR automation. Secondly, two
voxelization algorithms and the procedures to estimate the quality in blending from the voxel
models are introduced. Finally, the experiments and results are presented to demonstrate the
quality estimation results from the proposed 3D stockpile management model.

5.1 3D Stockpile Management Model

In Chapter 3, a kinematic model suggested by Lu [50] is used to describe the movement of a
BWR. This robotic model is further developed in this chapter, before being integrated into a
3D stockpile management model. Assuming that the bucket wheel is rotating at a constant
speed and the material is being scooped evenly by the buckets during the reclaiming phase,
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the wheel with buckets can be considered as a circular ring. Also, if it is assumed that the
boom of the BWR rotates perfectly according to its central axis, the slewing motion revolves
the circular ring in 3D space and creates a non-degenerate torus surface out of the circular
ring. In other words, given the slewing trajectory of the central point of the bucket wheel,
the bucket wheel cutting trace (the toroidal surface) can be represented by a sequence of
circles in 3D space because the centres of these circles are in accordance with the centres
of the bucket wheel (see Fig 5.1). The major radius of the torus can be calculated using
BWR kinematic equations, while the minor radius is the radius of the BW. Should the BW
be tilted with a specific angle β , the projection of the circular ring to its rotating plane results
in an ellipse and the revolving of the BW will generate an elliptic torus. The horizontal and
vertical semi-axis of the elliptical cross-section is determined by the tilt angle and the radius
of the BW.

Because both the stockpile and the BWR model have their own reference frames, a new
global coordinate system (right-handed) is defined for 3D stockpile management modelling.
The centre of the new coordinate is identical to the origin of the BWR kinematic model.
The positive z axis normal to the crawler level forms the slewing axis. The positive y axis is
in the direction of the BWR’s advancement. The positive x axis is normal to the Y Z plane.
Consequently, once the distance between the stockpile boundary and the BWR centre is
known, a 3D stockpile management model is generated after the coordinate transformation.
For display purposes, the stockpile model is rendered as a smooth surface and the BWR model
is plotted as solid lines. A graph for such a model will be given in the next section.

5.1.1 BWR Automation

A BWR is a combined machine that stacks and reclaims bulk materials. Automatic stacking
is achievable based on the measurements from on-board encoders. Outputs from the wheel
encoder(s) are used to control the travelling velocity and moving distance. Feedback from
the luffing encoder determines the height of the boom-head which is also used to control
the elevation of the discharge pulley to maintain a constant space between the stockpile and
discharge point.

BWR Reclaiming is controlled semi-automatically or manually due to the reason identified
in the literature section: the lack of real-time geometric knowledge of a stockpile and the
lack of cooperation and interaction between the stockpile model and the BWR controller.



5.1 3D Stockpile Management Model 103

Fig. 5.1 Ideal torus generated through superimposing the rotation motion of the BW and the slewing
motion of the boom. The magenta line with green squares indicates the boom of the BWR (unit: mm).
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When a stockpile is recovered using the bench reclaiming (or terrace cutting) method, an
operator selects a landing point on the stockpile surface manually, based on his experience,
and then approaches the BW to that point with great care. When the contact is about to
happen, the operator activates the circular motion of the buckets to enable buckets to pick up
materials from the stockpile simultaneously with the landing. Normally, the rest operations
are controlled automatically until the height of the BW is changed. The slewing range is
determined by the feedback from the loading sensor. The lateral motion begins to stop until
the resistance force is no longer detected by the sensor. If the BWR is controlled manually,
the slewing range is based on human vision. Thus, when the bucket wheel is seen to be out of
the stockpile completely, the operator stops the slewing motion. In either control logic, there
is always extra fuel to be burnt because the lateral motion cannot be stopped immediately.
After the first cut, the BWR is advanced with a fixed cutting depth (i.e. 0.9 × bucket width)
to conduct a new cut. When the BW is lowered to start a new reclaim, the operator needs
to choose the correct landing point again. Therefore, BWR automation contains two tasks:
to land the BW onto the stockpile without causing collision for all the cuts in one reclaim
and to calculate the slewing range of each cut for the BWR controller. More importantly,
landing is crucial for future quality control because the cutting depth of the BW is fixed in
most cases.

The problem of BWR automation in this project is stated as the need to create a set of
candidate points Pc from the stockpile model and validate a subset Pv that must not cause
collision between the wheel body and the pile of all the cuts in one reclaim. Additionally, it
covers the need to predicate the joint angles of the BWR (d1,θ2,θ3) to initialize the first cut
for all the points in Pv. Meanwhile, it is necessary to calculate the slewing start and stop the
angle of each cut for all the points in Pv. A cut means a revolving motion of the boom and a
reclaim is a collection of cuts with equal cutting height.

5.1.2 Landing Point Estimation

An infinite number of points can be created from a mathematical stockpile model and every
point could be a candidate point. It is neither feasible nor necessary to assess all these points.
The candidate point set Pc is selected according to three criteria: the effective cutting depth,
the facing direction and the square grid spacing. The effective cutting depth (De) is defined
based on the maximum cutting height of a BWR, as shown in Fig. 5.2. Assuming that material
inside the bucket starts to fall due to gravity at a certain angle φ , the maximum cutting height



5.1 3D Stockpile Management Model 105

H approximately equals (Rv+Rk sinφ)cosβ and De =max(PL_z)−H. Additionally, because
the BWR is normally mounted on rails or tracks, only one side of the stockpile is available
for the landing mission. The first two criteria can be summarised as being only those points
within the effective cutting region and facing the BWR mounting direction. However, there
are still infinite points after thresholding. To obtain a finite set, the stockpile region on the
XY plane is partitioned into a group of contiguous square cells (the grid partitioning method
described in Section 4.4.1). Then, the centres of these grids are superimposed on the stockpile
surface. Thus, a finite set Pc is created after such a grid reference method. Obviously, a small
grid spacing (high resolution) will generate more points in the set.

Fig. 5.2 The maximum cutting depth (H) of the BW in regard to the bank surface. φ is the angle
at which material starts to fall from the bucket. The shadowed area indicates the material that is
recovered by the buckets.

To calculate the joint positions of the BWR for a given query point pq in Pc using inverse
kinematic equations, the central point of the BW in 3D space needs to be identified. Further-
more, to calculate the centre of the BWR, the exact contact point between the BW and the
stockpile must first be located. Due to the rotation of the BW, which creates another degree
of freedom, the exact contact point between the BW and the stockpile surface cannot be
solved using the kinematics of the BWR directly. However, the purpose of the auto-landing
is not to locate the exact point on the BW that is tangent to the stockpile surface at pq. Also,
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such a point does not always exist in reality due to the fact that the degrees of freedom of the
BW are limited. Instead of creating more complex constraint functions to find such a tangent
point, a simple way to approximate the position of the centre Cbw of the BW is to assume that
the vector between two points (Cbw and pq) is in accordance with the surface normal at point
pq (see Fig. 5.3). Therefore, Cbw = pq +RvNs. The normal vector Ns at pq can be calculated
using the stockpile model. Once the Cbw is known, the d1, θ2, θ3 can be solved using inverse
kinematic equations. Thus, the initial cutting position of the BWR is known. The definition
for d1, θ2, θ3 and L2∼L4 can be found in Lu’s paper [50] and are shown in Fig. 5.4.

Fig. 5.3 Landing the bucket wheel on the stockpile. An ideal case when determining the BW’s centre
from the surface normal. The normal vector Ns of the least square surface at the point pq is tangent
vector U . U is in the opposite direction from the slewing direction of the bucket wheel at pq. Vector
V is directed towards the slewing axis of the BWR. The angle between Ns and U is α and α = 90◦.
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Fig. 5.4 Evaluating the landing point set using a stockpile management model. The stockpile is
partitioned into a 19 ×10 patches. Each patch in the square grid is 80 mm. The query points are
highlighted in green. The effective cutting region, determined by the maximum cutting height, is
enclosed by a magenta curve (unit: mm).
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To detect the collision between the wheel and the stockpile in one cut is to detect whether the
points on the stockpile surface are also inside the torus generated by the revolving motion of
the BW. If the cross-section of the toroidal surface is a circle, a point ps ∈ Pc(ps_x, ps_y, ps_z)

lies inside the toroidal surface if:(
Rm −

√
(ps_x − x0)2 +(ps_y − y0)2

)2

+(ps_z − z0)
2 < R2

k (5.1)

where Rm is the major radius of the torus and Rm = L5 sinθ3 +L4 and Rk is the radius of
the wheel, which is equal to the minor radius of the torus. x0, y0 and z0 are the centre of the
BW in 3D, as determined previously. If the cross-section is an ellipse, a point is inside the
elliptic torus if: (

Rm −
√

(ps_x − x0)2 +(ps_y − y0)2
)2

(Rk cosβ )2 +
(ps_z − z0)

2

R2
k

< 1 (5.2)

where β is the zenith angle of the BW to the z axis in the stockpile management
model.

5.1.3 Slewing Range Estimation and Model Updating

The slewing angle of the BWR will be calculated if no collision is detected in a single cut.
Also, the recovered region needs to be replaced by the helical-shaped cutting surface (a part of
the torus) for the next assessment. For these two purposes, the stockpile is presented as a set
of points in 3D space calculated from its spline model. The elimination of recovered points
from the stockpile is quite easy because Eq. 5.1 and 5.2 remain validated. The only change
is to replace Rk by Rv. The cutting surface is the region that is enclosed by the intersecting
curve between the torus (T (s, t)) and the B-spline stockpile model (S(u,v)), supposing that
the torus is defined topologically as the product of two circles, s and t. The intersecting curve
is an algebraic equation T (s, t)−S(u,v) = 0. Once the equation is solved, the cutting surface
can be obtained to update the stockpile model. However, the relatively high degree of the
algebraic representation of the stockpile surface may lead to an even higher degree algebraic
curve. Because the algebraic degree and genus are too high to be solved mathematically, a
numerical approach is proposed to determine the intersecting curve. After the intersecting
curve is detected, the slewing range of the BWR can be also obtained.
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This numerical approach separates the continuous slewing motion into a group of discrete
angular steps. The range of the slewing motion created here is from 0 ◦ to 90 ◦ with a step
size of 0.5 ◦, which is much larger than the actual slewing range in reclaiming operations.
At each angular step, the origin of the BW (Cbw) is calculated using the BWR kinematic
equations. Meanwhile, because a circle in the stockpile management model that represents
the BW can be described using its parametric equation, a set of points Pbw, centred at Cbw

with a radius of Rv, is created. Theoretically, the intersecting point(s) q (q ∈ Pbw) between
the circle and stockpile surface satisfies S(q_x,q_y)−q_z = 0. In other words, the Euclidean
distance D between point(s) q and the stockpile surface S(u,v) is/are zero. Because the circle
is represented by a set of points, an approximation would be finding out the points from Pbw

that have a minimum Euclidean distance to the stockpile surface and the minimum distance
min(D)≈ 0. If the min(D), obtained after calculation, is much large than zero, the circle is
not intersected with the surface of the stockpile.

Because the BW will only intersect with the stockpile at two points at most, this numerical
approach is sufficient to determine all the intersection points. Once the intersecting points
are detected, Pbw can be separated into two subsets: inside and outside the stockpile. Points
inside the stockpile and the two intersecting points will be inserted into the stockpile model.
Points outside the stockpile are eliminated. Also, from 0 ◦ to 90 ◦, the intersecting conditions
will change twice: from non-intersecting to intersecting and from intersecting back to non-
intersecting again. Therefore, the iteration will stop if the 2nd non-intersecting condition is
detected. Thus, the actual slewing range within which the BW cuts into and moves out of the
stockpile is obtained. Fig. 5.5 plots the shape of the stockpile after the first two cuts. The
elimination and model updating procedure proceeds iteratively until a reclaim is completed
or a collision has been detected. Thus, the slewing ranges of all the cuts in the reclaim are
acquired and such information can be used as an input to the BWR controller and guide the
motion of the BWR in real operational procedures.

5.2 Quality Estimation in Blending

The quality of an element acquired after the chemical analysis is expressed as a percentage
by weight of the entire compound with the mean and standard deviation. Given the general
knowledge that the stacked ore (after mechanical crushing and screening) is normally in the
same size level, the density of the iron ore can be considered as a constant [69]. Therefore,
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Fig. 5.5 Updating the shape of the stockpile after the BW cut out the stockpile using the trajectory
generated from the BWR kinematic model. The closed magenta curve highlights the region that will
be removed from the stockpile model.

the quality of a certain chemical component in a 3D space is linked with the volume of that
3D space. In this section, a model that simulates the grade variations is outlined first. Then,
the two voxel models that link the geometric shape of the stockpile and the quality model
used for quality estimations in blending are detailed.

5.2.1 Grade Variability Modelling

Because a homogeneous stockpile or a layer in the stockpile does not exist in reality, it is
necessary to reflect the quality fluctuations in the chemical composition during the calculation.
At this stage, due to trade secrets, the authors have no access to the real chemical assay
results and long-term quality information. Therefore, the quality distribution model is based
on the data and information provided by MatrixGroup. It is assumed that the fluctuations in
quality along the stacking direction are satisfied with a normal distribution. The assumption
is generally true because the previous handling processes will improve the homogeneity of
the stacked material and the variation in grade will fluctuate slowly compared with the length
of the stockpile. To embed the quality information into the geometric model, the stockpile is
considered to be cut through by a group of equidistant parasagittal planes along the y axis of
the 3D stockpile management model. The distance between the adjacent parasagittal planes
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is assumed to be a user-specified parameter here, although, in the next two sections, it is
determined according to the size of the voxel.

For a slice in the stockpile, a bounding box, called a cuboid, is created from the outmost
layer of the stockpile. The bounding box intersects with all the layers in the stockpile and the
quality of an intersection between the bounding box and layer is assumed to be homogeneous.
Under this assumption, the mean and standard deviation of every single element (i.e. Fe,
Al or Si) are entered into a subroutine to generate pseudo-random numbers that follow the
specified normal distribution. The output data from the subroutine are used to represent
chemical variations when predicting the quality of the material. The quality values are then
assigned to the cuboids along the stacking direction for quality predictions (see Fig. 5.6).

Fig. 5.6 A quality distribution model of a one-layer stockpile (unit m). The stockpile is manually
partitioned into 30 sections by a group of equidistant parasagittal planes along its stacking direction.
For each slice, the quality properties are simulated by a sequence of normally distributed numbers.
For example, the percentages of Fe are listed.

5.2.2 Stockpile Voxelization for Quality Prediction

Two voxel models are designed in the study. The first is the cubic voxelization and the
second is the sickle-shape voxelization. Between these two models, the sickle-shape voxel is
designed especially for reclaiming operations.

5.2.2.1 Cubic Voxelization and Quality Estimation

In this model, a stockpile is represented as a group of 3D grid of voxels (volumetric pixels)
other than a surface and edges. Each voxel is in a cubic shape and has an individual sequence
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number and is linked with a specific quality cuboid in the quality distribution model according
to its geometric position. The benefit of this model is that it can be created directly from the
wireframe model. These voxels are the basic quality units for the quality estimation during
the blending. Through tracking the positions of these voxels, the quality of the reclaimed
material can be predicted. The combination of the cubic voxel stockpile model and BWR
model is called a cubic stockpile management model in this thesis.

Cubic voxelization is a procedure that represents an object by a set of discrete volumetric
elements (cubes). It is achievable through geometric modelling techniques, such as Octree
encoding [70]. In a regular octree structure, each node represents a cubic region. The node
at the top of the structure is called the root and the root octant surrounds the entire domain
of the object. The root octant is then divided into eight octants recursively until a sufficient
resolution attained. As a result, each node has exactly eight children, except for the leaf
nodes.The nodes at the bottom level of the tree structure are called leaf nodes or voxels.
However, for this particular application, the hierarchical relations between nodes are not
necessary. Therefore, the voxelization of the point cloud data is performed by calculating the
geometric positions between octants. Given the wireframe model of the outermost layer of
a stockpile Fs and the level of the Octree structure tl , the side length LC of the root octant
is:

Lc = max[(x,y,z)max − (x,y,z)min] (5.3)

The side length of the voxel ol is Lc/2tl . The coordinates of the voxels’ centres are:

(x,y,z)c = (xmin +(il +
1
2
)ol,ymin +( jl +

1
2
)ol,zmin +(kl +

1
2
)ol) (5.4)

The bounding coordinates of these voxels are:{
(xc,yc,zc)min = (xmin + ilol,ymin + jlol,zmin + klol)

(xc,yc,zc)max = (xmin +(il +1)ol,ymin +( jl +1)ol,zmin +(kl +1)ol)
(5.5)

where il , jl ,kl is the index of the voxel and:

(il, jl,kl)c = ((
x− xmin

ol
),(

y− ymin

ol
),(

z− zmin

ol
)) (5.6)

Thus, a voxel model is created out of the wireframe model of a stockpile directly after both
the side lengths and the centres of the voxels are known. In this voxel model, ol is also called
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the voxel resolution of the model. Also, if needed, the side length of the octants in all the
levels between root and leaf can be also calculated. A primary property to describe the state
of a voxel is empty or occupied, which means the voxel is free or occupied by point/points,
respectively. Based on the geometric positions of the points and the voxels, the state of a
voxel can be determined in a straightforward manner. If there is no point, there is no voxel.
However, because the point data is a spare representation of a stockpile, the original scanning
data may be insufficient for high resolution voxel modelling. The problem, is essentially
twofold: firstly, if the point resolution in either x, y or z axis is smaller than the voxel
resolution, voxels after modelling may be isolated from their neighbours. Secondly, because
points are obtained from stockpile surface only,no voxel will exist inside the stockpile after
the modelling. To generate a solid and watertight voxel model, the following two steps that
insert points into the scanning data are introduced:

• Point interpolating
This operation aims to increase the point resolution.The interpolation can be done
using the previously developed wireframe or surface modelling algorithm if the point
resolution is lower than the voxel resolution. It is also worth to mention that a wirefram
model improves the point resolution along x and z axis only, while a surface model
increases the resolution in 3D space.

• Bench filling
This operation aims to generate more points inside the 3D space enclosed by the
stockpile surface and the ground. It inserts a sequence of virtual planes, parallel to the
ground, called benches to the point cloud. The distance between each plane is slightly
less than the voxel resolution. Then, the boundary of the intersecting region between
a bench and the stockpile is approximated using the boundary detection algorithm,
described in the pre-processing stage. After a set of edge points are obtained, a convex
hull is created from these edge points. Finally, the virtual bench is represented by a set
of points and the points inside the convex hull are inserted into the point cloud.

Thus, a solid voxel model can be obtained after point interpolating and bench filling. Fig. 5.7
illustrates the voxel model generated from the 8th wireframe model.

A cubic voxel model has a similar effect to the grid partition method. Instead of separating
the stockpile region based on the size of a measurement matrix, the stockpile region is
divided by its dimensions. Also, a stockpile is represented as a group of identical cubes after
voxelization. These voxels are easily linked with the quality model because a group of voxels
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Fig. 5.7 A cubic voxel model created for the bench scale stockpile (unit: mm).

whose centres lies on the same plane form one cuboid (the quality unit). Thus, a cubic voxel
model is a perfect fit for polynomial surface modelling and quality calculations using integral
calculators.

Due to the fact that a stockpile is always stacked with multiple layers, these layers may cut
through a voxel and separate the voxel into a sequence of subspaces. Furthermore, materials
in different layers may have different chemical composition, which means the quality grades
in these subspaces are also different. Therefore, the quality of a voxel should be calculated
based on the volumes of these subspaces. Consequently, the volume of each portion of
the layer needs to be calculated separately. An intersection between a voxel and a layer is
called a quality-volumetric object (QVO) in this thesis. Thus, a voxel could contain multiple
QVOs.

Fig. 5.8 a) shows the intersection between the three-layer stockpile and the voxel results in
three surface patches, which are highlighted in brown, blue and purple colours, respectively.
These surface patches partition the voxel into three QVOs. Thus, the volumes that required
to be calculated include: the volume between the bottom facet of the voxel and the first layer,
the volume between the first and second layer and the volume between the second and third
layer. In this thesis, the sum of the volume of these quality-volumetric objects is called the
quality volume of a voxel or quality volume in short.

A convenient method to calculate the volume of such quality-volumetric objects is to use the
double integral from the polynomial model. The spline model is not suitable here because it
is a piecewise-defined function which requires much more complex code than the polynomial
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Fig. 5.8 QVOs inside a voxel. a) QVO created by layers. b) The quality volume between the 1st layer
and the bottom of the voxel. c) The 2D region R1AB4 used in volume calculations. The intersection
curve CAB between the 1st layer and the bottom of the voxel is highlight in yellow.

model. The quality volume for a voxel is:
Vsn =

∫∫
R

[Sn(x,z)−olbh]dA Sn = 1

Vsn =
∫∫
R

[Sn(x,z)−olbh]dA−Vsn−1 Sn = 2, · · · ,N
(5.7)

where Sn is the index of the layer, Sn(x,z) is the polynomial function of the layer, ol is
the side length of the voxel, bh is the index of the bench height and R is the bounded region
determined by the surface patch and the voxel. The only unknown is the 2D region R.

To calculate the double integral automatically, the region R bounded by the stockpile layer
and the voxel can be classified into two formats: a cubic or a general region. If there is
no intersection between the stockpile layer and the bottom facet of the voxel, R is a cubic
region bounded by the edges of the voxel. The calculation of the double integral can be
done simply. Conversely, if any layer intersects with the bottom facet of the voxel, R is a
general region and one side is the intersection curve of the two surfaces, as shown in Fig. 5.8
b). With the general region, the intersection curve function is needed for the double integral
calculation.

A numerical approach is used to find the intersection curve. It firstly converts the laser scan-
ning data from a 3D point format into a triangular mesh surface. Secondly, the intersection
line between a triangular surface and a horizontal plane is calculated separately. Again, the
detection results are represented as a set of points and the intersection curve is the union
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of these point sets. Fig. 5.8 c) is the top view of the voxel. The detected intersection curve
CAB is highlighted in yellow. Thirdly, a thresholding is applied to determine the appropriate
fitting function for the point set. If the standard deviation in the x coordinates of these points
is less than 10 mm, these points are believed to be on a straight line and will be fitted as a
straight line (a 1st order polynomial function). Otherwise, they are considered as a curve and
will be fitted by a 3rd order polynomial function. The following symbols are defined for the
automatic calculation of the double integral. Vertices and edges on the facet of the voxel that
intersects with the stockpile layers are named vi and ei in a counter-clockwise direction as
shown in Fig. 5.9.

Fig. 5.9 Table of the 2D region R used for automatic double integral calculation. The PSV is assumed
to be located right on top of the v3.

The index i starts from the bottom left vortex (xmin, zmin) and grows counter-clockwise. The
end-points of the intersection curve are called vA and vB. Thus, the region R has four vertices:
v1, v2, vA and vB and is called R12AB. The summit point, which has the maximum elevation
in the y coordinate of the layer within the voxel, is named PS. The nearest neighbour vertex
of the PS is vinn and a virtual point has the same x and z coordinates as the vinn but on the
stockpile layer is called PSV . It is a virtual point because it may not exist in the laser scanning
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data but can be calculated from the surface model. With every single PSV , there are six
outcomes (C2

4) that indicate the geometric position between the curve CAB and the edge ei

(see Fig. 5.9). Based on the geometric position, the calculation can be classified into four
cases and the calculator can be programmed based on these cases. For example, if the PSV is
collinear with the v3, the quality volume of the first layer is:

1. If the vA and vB are on the e1 and e2, the region R is partitioned into two sub-regions.
The first is x = xv1, x = xA, z = zv1, z = zv3 and the second is x = xA, x = xB, z = h(x),
z = zv3. The volume calculated using the double integral is:

Vs =
∫ xA

xv1

dx
∫ zv3

zv1
[ fn(x,z)−dlbh]dz+

∫ xB

xA

dx
∫ zv3

h(x)
[ fn(x,z)−dlbh]dz

2. If the vA and vB are on e1 and e3, or on e3 and e4. Similar to the first case, the region R

is partitioned into two subregions and the volume is:

Vs =
∫ xB

xA

dx
∫ h(x)

zv1

[ fn(x,z)−dlbh]dz+
∫ xv2

xB

dx
∫ zv3

zv1

[ fn(x,z)−dlbh]dz

3. If the vA and vB are on e1 and e4, the volume is:

Vs =
∫ xB

xA

dx
∫ zv3

h(x)
[ fn(x,z)−dlbh]dz+

∫ xv2

xB

dx
∫ zv3

zv1

[ fn(x,z)−dlbh]dz

4. If the vA and vB are on e2 and e3, the volume is:

Vs =
∫ xB

xA

dx
∫ zv3

h(x)
[ fn(x,z)−dlbh]dz

Instead of traversing all the voxels, the author first apply a geometric constraint: the quality
volume of the voxel that is not intersected with any layers (including the boundary of these
layers) is equal to o3

l . That means if a voxel is totally inside one layer, the quality volume is
equal to the volume of the voxel. These voxels will not be calculated during the traversal.
The traversal strategy created for quality calculation is called ‘column searching’. All voxels
whose centres have the same x and y coordinates are considered as one column of voxels.
The calculation starts from the top layers and then moves towards the bottom layer. For
instance, to calculate the quality volume of these four voxels, as shown in the Fig. 6, the
volume that under the 3rd layer (Vlayer3) is calculated first. The quality volume of the 1st
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voxel (QV1) equals Vlayer3 −o3
l [

ycentrevoxel1−
ol
2

ol
]. With the 2nd voxel, the volume between the

3rd and 2nd layer (Vlayer32) is calculated using the triple integral, the quality volume of the 2nd

voxel (QV2) equals Vlayer32 −QV1. The calculation of the 3rd voxel is similar to that of the
1st voxel. Furthermore, because the 1st voxel only contains the 1st layer, the quality volume
equals the volume under the 1st layer.

Through traversing all the voxels, the quality volume of the entire stockpile can be obtained
and the quality of the stockpile at the stacking phase is calculated once the compositions of
each layer are identified through the chemical analysis. To predict the quality of recovered
material using the cubic stockpile management model, it is assumed that a voxel is excavated
entirely if its centre is inside the toroidal shell created by the slewing motion of the BWR
model. Otherwise, it is believed to remain on the stockpile model. If an ideal BWR model is
used, the detection can be conducted using Eq. 5.1 and 5.2. If the real trajectory is used, the
previously introduced numerical approach can be applied to create a 3D convoy hull for the
evaluation of the geometric position between the voxel and the cut. For example, supposing
the centre trajectory of the BWR in a cut is estimated using UKF data fusion, for each central
point, a circle in 3D space that represents the BW can be created out of it. Thus, each cut
results in a set of points and the convex hull, which is the smallest convex region of the point
set, can be calculated through the quickhull algorithm [71]. By tracking the position of the
BWR and the voxel, the quality of reclaimed material is predictable. Fig. 5.10 illustrates the
voxels that are recovered by a single slewing motion of the BWR.

Fig. 5.10 Identification of reclaimed voxel based on the trajectory of the bucket wheel. The trajectory
of the bucket wheel is plotted in blue. The centres of the scooped voxels are highlighted in black.
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5.2.2.2 Sickle-shape Voxelization and Quality Estimation

A sickle-shape voxel is the intersection of the stockpile (the outermost layer) and a cut. There-
fore, a sickle-shape voxelization has identical procedures as the slewing range estimation
and model updating operation. Moreover, the boundary curve of each cut needs to be stored
to illustrate the shape of each voxel when it is superimposed onto a stockpile model. Again,
the voxelization can be based on two different data sources, the ideal trajectory calculated
from the BWR kinematic model, or the real trajectory from the measurement data.

Similar to a cubic voxel, a sickle shape voxel may contain material from different layers, in
other words, multiple QVOs. Due to the variability in shape of these objects, it is difficult to
programme a universal algorithm to determine the integral region and perform the calculation
automatically. Additionally, even if such a programme were developed, the complexity
of the code would also prolong the calculation time. For these reasons, a Monte Carlo
based integration method is selected for this study. Monte Carlo integration uses randomly
generated points to approximate volume integrals of a 3D object. These points are randomly
distributed inside a box enclosing an object of interest. The volume of the object is estimated
as:

Vob j =Vbox(Nin/N) (5.8)

where Vbox is the volume of the 3D bounding box of the object, Nin is the number of
points that are contained within the object and N is the number of points generated in a
random process.

A major source of error for such a method is the random nature of the sampling, because the
pseudo-random points generated from the computer may not be distributed uniformly inside
the bounding box. Quasi-Monte Carlo (QMC) techniques replace these pseudo-random
numbers by deterministic sequences, which are constructed explicitly to minimize clumping
through reducing the discrepancy of the point set. The use of such low-discrepancy numbers
rather than pseudo-random numbers in the integral calculation increases the convergence
rate and reduces the expected relative error. As pointed out by Davies and Martin, the
error of the approximation by QMC methods is O(N−1 log3 N) [72]. The implementation
of the QMC method is quite simple. After generating a low-discrepancy set using Sobol’s
method [73], these points are shifted into the bounding box and then Nin is determined through
point-membership classification based on the stockpile’s surface and torus functions.
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Fig. 5.11 shows the critical procedures in volume calculations using the QMC method. Given
a voxel, whose upper surface is a part of the stockpile and lower surface is a part of the
torus, a bounding box is created first, based on its geometric shape. Then, a low-discrepancy
set with N points, generated by Sobol’s method, is shifted into the bounding box using
geometric transformations. Subsequently, based on algebraic functions of the stockpile and
torus, the points are separated and the Nin is obtained. Finally, the volume of the voxel Vvoxel

is calculated using Eq. 5.8.

Fig. 5.11 Calculating the volume of a QVO object using the QMC method.

A matrix W is constructed for quality calculation. If a voxel only contains one QVO, and
both the density of the QVO (ρ) and the weight in percentage of a certain element (w) are
known, the quality of such an element in the voxel Qvoxel is equal to ρVvoxelw. Because the
quality of iron ore is evaluated by a number of elements, W is constructed as a row vector
with we elements. For example, in this paper, the quality of iron ore is evaluated by three
elements: Fe, Si and Al. Thus, W is a 1×3 vector [wFe,wSi,wAl]. At this stage, it is assumed
that the QVO (or the layer) is homogeneous in quality (non-homogeneous cases will be
discussed later). If a voxel contains vq QVOs, such calculations will be performed vq times to
obtain the quality of a voxel. In turn, a vq ×we weight matrix is constructed and the quality
of such a voxel is:

Qc =
vq

∑
j=1

ρVbox(
Nin( j)

N
)W( j,:) (5.9)

where ρ j is the density of the jth QVO object. Vbox is the volume of the bounding box
and W( j,:) means the jth row of the weight matrix.

To link the geometric information with the quality simulation model, a sickle shaped voxel is
further partitioned into os octants using the Octree decomposition method [70]. Again, octants
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which have the same y coordinates are grouped into a cuboid and the quality composition of
the cuboid is assumed to be homogeneous. Meanwhile, the decomposition also subdivides a
voxel into os sections and each section is encompassed by an octant (see Fig. 10b). Using
the similar grouping strategy presented in 4.5.3, sections in the voxel are grouped into og

cuboids. Because the voxel is further partitioned, another dimension is added to the weight
matrix W . A 3D matrix W [os × vq ×we] means the weight matrix has os sections, vq QVO
objects and we chemical components. The quality of the ith section that contains vq QVO
objects, calculated using the QMC method, is:

Qc =
vq

∑
j=1

ρiVbox(
Nin(i, j)

N
)W(i, j,k=1:we) (5.10)

where Voct is the volume of the octant obtained after octree decomposition. Nin(i, j) means
the number of the points within the (ith, jth) QVO and k is the index of the chemical element
in the weight matrix. k = 1 : 3 means the calculation includes all three chemical components.
The quality of a voxel that contains os sections is:

Qc =
os

∑
i=1

[
vq

∑
j=1

ρiVbox(
Nin(i, j)

N
)W(i, j,k=1:we)

]
(5.11)

According to the previous assumptions in stockpile quality distribution, octants that have
the same y coordinates form a segment and a layer inside this segment should have the
same quality composition. Thus, when the programme chooses the quality value from the
quality model, it only based on the number of the segments, not the number of octants. Two
examples are given in the following section to explain the calculation procedure.

Example 1: estimating the quality of the first cut as shown in Fig. 5.5. This voxel only
contains one QVO object and the density of the material, ρ , is assumed to be known. After
octree decomposition, 18 octants are obtained and these octants are classified into 5 cuboids
along the y axis (see Fig. 5.12). Thus, the voxel is partitioned into 18 sections and the weight
matrix W is a (3×18×3) matrix. Taking the first two octants at the bottom left, whose centre
is (-328, 586, 168) and (-348, 586, 168) for example, the quality for each section inside
the octant is Q1 = ρVoct(N(1,1)/N)W1,1,1:3 and Q2 = ρVoct(N(1,2)/N)W1,2,1:3 respectively.
Because the 1st and 2nd sections belongs to the same segment, W1,1,1:3 is equal to W1,2,1:3.
With the 3rd section, the quality Q3 = ρVoct(N(2,1)/N)W2,1,1:3. Because there is only one
QVO, j always equals 1. The quality of the voxel is the sum of all sections ∑

18
i=1 Q j.
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Fig. 5.12 Partitioning a voxel into octants and linking them with the quality distribution model (unit:
mm).

Example 2: computing the quality of the second cut, as shown in Fig. 5.5. The shape of the
voxel is shown in Fig. 5.13 and the boundaries of the cut are highlighted in magenta.

This voxel contains materials from two layers. Thus, it has two QVO objects (see Fig. 5.13).
The voxel is divided into 16 sections by octants. Regarding its geometric position, a sec-
tion may have one or two QVO objects. If the section only has one QVO object, similar
calculation procedures mentioned in the Example 1 can be used. For example, the qual-
ity of the bottom left section is Q1 = ρ1Voct(N(1,1)/N)W1,1,1:3. If a section contains two
QVO objects (the one with an octant highlighted in yellow, as shown in Fig. 5.13 b), the
point-membership classification needs to be executed twice. The quality of the section is:
Q1 = ρ1Voct(N(6,1)/N)W6,1,1:3 +ρ2Voct(N(6,2)/N)W6,2,1:3.

Fig. 5.13 Quality calculation using the QMC method for the 2nd cut. The 1st QVO is in dark red and
the 2nd QVO is in light cyan. The octant intersecting with two QVOs is highlighted in yellow (unit:
mm).
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5.3 Experiment and Result

This section presents the experiments carried out to evaluate the 3D stockpile management
model and the results obtained from the investigation. The data used in this section are the
bench scale, standard prism and full scale datasets. Wireframe models were created from
the bench scale dataset and point segmentation was applied to identify the boundary of each
layer. With the full scale dataset, only the last four layers were selected for the validation.
Thus, in this section, both the bench and full scale stockpile model contain four layers. The
point resolution of the full scale dataset was increased to 0.25 m using the (4th, 10× 10)
B-spline model before voxelization.

The cubic voxelization algorithm and integral calculator are first examined. Then, the sickle-
shape voxelization algorithm is evaluated. The landing point validation and slewing range
estimation are presented together with the sickle-shape voxelization because they can be
integrated together.

5.3.1 Cubic Stockpile Voxelization

Fig. 5.14 and Fig. 5.15 illustrate two voxel models generated from the two datasets, respec-
tively. Table 5.1 shows the modelling results of these two groups of datasets. It is clear that
the increase in resolution will decrease the modelling speed. However, a model with a class
of 3,408,497 voxels still can be obtained in less than 80 s. Therefore, the cubic voxel model
is capable of modelling the stockpile for quality calculation quickly and effectively. The time
cost to build a voxel model is promising when compared with the entire iron ore handling
operation. The resolution of the model is flexible and adjustable, depending on the desirable
quality management in reclaiming operations: small cubic voxels can approximate a cut
better than large cubic voxels do.

A problem found in the experiment is to visualise all voxels using Matlab. If the model
contains more than 20,000 octants, the model cannot be displayed properly. However, Kruger
and Westermann introduced a GPU (graphical processing unit) acceleration approach to rend
large-scale data sets using an ATI 9700 graphics card [74]. Because this graphics card is
around two generations behind the current commodity model, the author believes that the
rendering of the high-resolution voxel model is feasible using such techniques.
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Fig. 5.14 A 40 mm-resolution voxel model superimposed onto the bench scale stockpile (unit: m).

Fig. 5.15 A 1 m-resolution voxel model superimposed onto the full scale stockpile.

Table 5.1 Voxel modelling using different resolutions.

Dataset Model No. Resolution Number of voxels Modelling time

Bench scale data 1 60 mm 575 0.27 s
2 40 mm 1,465 0.29 s
3 20 mm 9,536 0.31 s

Full scale data 4 1 m 35,109 21.13 s
5 0.5 m 264,978 42.62 s
6 0.25 m 3,408,497 77.10 s
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5.3.2 Quality Volume Calculation in Cubic Model

To evaluate the automatic volume calculation algorithm, the following steps were used. First,
all the six models created in the previous section are employed to evaluate the intersection
curve detection and automatic double integral calculation algorithms. The ‘column searching’
was executed more than 150,000 times. With all these trials, the proposed numerical approach
located all the intersection curves (those that exist) and separated the straight lines and curves
successfully. The double integration regions were identified properly and the calculations
were performed accordingly.

Second, the performance of the volume calculation algorithm is evaluated using the 8th

wireframe model created from the standard prism data. Two different resolution (324 mm

and 16.20 mm) voxel models were created from the wireframe model. The low-resolution
model contains 8 voxels and the high-resolution model contains 14,875 voxels. The (2nd,
8×8) polynomial model was used in the double integral. The total running times, including
the voxel modelling and volume calculation, of the low and high resolution models are
3.24 s and 258.30 s, respectively. Table 5.2 compares the real volume with the calculation
results. These results indicate that the proposed quality calculation algorithm is fast and
effective. Also, the high resolution model is able to improve the calculation accuracy. Such
an improvement is not obvious at the stacking phase, but it will increase the calculation
accuracy at the reclaiming phase, because small voxels can provide a better approximation of
the cut caused by the BWR than large voxels.

Lastly, the quality volume of each voxel in two cubic models is calculated. Instead of
generating an individual surface function for each column of voxels during the traversing,
a standard cubic model is created. The octants for the standard model are the determined
by the 2nd level of the octree. The octree structure is obtained based on the voxel resolution,
which contains 7 levels and the 2nd level node happens to partition the stockpile region into
2×4 patches. An (8th, 2×4) polynomial model is generated for the integral calculator. This
model, of course, contains all the layers of a stockpile (see Fig. 5.16). Therefore, eight
polynomial functions are obtained for each layer and are used as standard functions in quality
volume calculations. In other words, the surface functions of all the leaf voxels are the same
if these voxels belong to a one node in the 2nd level of the octree. The volume of each layer,
calculated from the voxel model, is listed in Table 5.3. The quality calculation results are
listed in the quality prediction section because it is hard to present such a large number of
voxels at the same time.
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Table 5.2 Volume calculation results for the standard prism. (unit: mm3)

Real Low resolution High resolution

Volume 53,753,375 53,259,921 54,031,070
Percent error n/a 0.9180% -0.5166%

Fig. 5.16 Standard voxel models for quality calculation. Stockpiles are partitioned into eight cubic
regions and each region is described by a polynomial function. a) The bench scale stockpile and its
cubic model. Cubes created after voxelization are in transparent yellow with grey edges. b) The full
scale stockpile and its cubic model. For display purposes, not all the layers in the stockpile are plotted.

Table 5.3 Volume of each layer calculated from the cubic voxel model.

Layer
Bench scale stockpile cm3 Full scale stockpile m3

Polynomial model Cubic model Polynomial model Cubic model

1 20387.2 20393.1 68198.3 68202.7
2 29569.7 29572.4 80420.4 80425.6
3 43033.3 43037.1 92643.5 92649.4
4 68296.0 68303.3 103845.3 103850.1
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5.3.3 Quality Predication from Cubic Voxel Models

Two specific cases were simulated to predict the quality of reclaimed material. The first one
involves in the bench scale stockpile while the second involves in the full scale stockpile. The
quality data used for the case studies are also provided by the MatrixGroup and are listed in
Table 5.4. In the first case, the density of each layer is based on the material properties listed
in Table 4.1. The parameters of the BWR models are listed in Table 5.5. The stockpile is
assumed to be located on the left hand side of the BWR. All these parameters are, of course,
subject to change to reflect the real operational environment.

Table 5.4 Quality data used in the case study.

Case Layer Density
Fe (%) Si (%) Al (%)

Mean Var. Mean Var. Mean Var.

B
en

ch
sc

al
e 1 1.65 g/cm3 52.13 5.06 3.86 1.32 1.17 0.53

2 2.61 g/cm3 58.68 7.06 4.38 1.45 1.54 0.84
3 2.82 g/cm3 57.77 6.82 3.96 1.26 2.31 0.96
4 2.75 g/cm3 58.19 7.13 4.54 1.32 1.66 0.75

Fu
ll

sc
al

e 1 5.35 kg/m3 56.23 6.56 4.98 1.53 0.24 0.081
2 5.35 kg/m3 60.77 4.32 5.33 1.23 0.35 0.063
3 5.35 kg/m3 51.43 5.18 7.66 1.08 0.41 0.023
4 5.35 kg/m3 62.05 7.46 5.08 1.34 0.21 0.015

Table 5.5 BWR Parameters used in case study.

Case L2 L3 L4 L5 Rk Rv φ β

Bench scale (cm) 6 5 5 50 4 5 20◦ 0◦

Full scale (m) 6 5 5 50 7 10 15◦ 5◦

The voxel resolution used for the first case is 20 mm and the total number of cutting steps
is 15. Fig. 5.17 shows the voxel reclaimed in the first cutting step and Fig. 5.18 plots the
quantity of each cut. As shown in Fig. 5.17, the BWR only recovers material from the 3rd and
4th layer during the reclaim because both the 1st and 2nd layers are below the bench height.
The quality of reclaimed material is listed in Table 5.6.

The voxel resolution for the second case is 0.25 m and 10 reclaiming steps are simulated.
Similar to the bench scale data, the BWR only cuts into two layers. Fig. 5.19 highlights



128 Quality Estimation and BWR Automation

Fig. 5.17 Material removed in the first cut.

Fig. 5.18 Quantity of the material recovered in the 1st case. Each bar represents the total mass
reclaimed and the materials recovered from different layers are stacked in each bar.
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Table 5.6 Quality of reclaimed material for the 1st case using cubic voxels. (unit: g)

Step Fe Si Al Step Fe Si Al

1 62.6 5.3 2.37 9 91.82 16.12 7.67
2 92.74 7.64 3.53 10 228.87 19.22 9.12
3 132.02 10.92 5.06 11 286.13 23.8 11.17
4 156.81 12.91 6.13 12 256.57 21.45 10.06
5 193.97 16.03 7.4 13 286.04 23.78 11.17
6 209.1 17.36 8.21 14 250.35 20.81 9.69
7 196.83 16.32 7.65 15 314.61 26.51 11.98
8 208.18 17.38 7.98 N/A

the voxels that recovered by the BWR at each single step during the reclaiming. Fig. 5.20
illustrates the quality of the material in each cut, based on the data from Table 5.7.

Fig. 5.19 Voxels recovered in each cut. The original stockpile is plotted as a surface mesh.

In a cubic voxel model, a sickle-shaped cut is approximated by a group of cubes. Therefore,
the prediction accuracy can be improved through decreasing the size of the voxel. However,
two problems will rise if the voxel size is too small: the computation time and the point
resolution. The first problem is easy to understand as a high resolution model results in a
large amount of voxels and this will prolong the calculation time. The second one is because
small voxels require high resolution point data. However, the resolution of the scanning
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Fig. 5.20 Quantity of the material recovered in the 2nd case. The chemicals recovered in each step are
stacked in each bar.

Table 5.7 Quality of reclaimed material and their percentages in the 2nd case using cubic voxels. (unit:
kg)

Step Fe % Si % Al %

1 12.90 57.53 1.27 5.64 0.77 3.42
2 22.04 57.69 11.93 5.64 7.11 3.36
3 246.37 57.69 23.91 5.60 14.39 3.37
4 335.23 57.55 32.39 5.56 19.92 3.42
5 401.37 57.39 39.10 5.59 24.06 3.44
6 45.21 57.42 3.81 5.65 6.83 3.46
7 466.4 57.47 45.93 5.66 28.00 3.45
8 472.17 57.49 46.65 5.68 28.09 3.42
9 469.47 57.53 46.19 5.66 27.42 3.36
10 466.47 57.50 45.92 5.66 27.01 3.33



5.3 Experiment and Result 131

device is limited. Although it can be improved by using surface models to interpolate more
points into the point data, due to the nature of the interpolation method itself, the proposed
automatic integral calculator may be not able to detect the intersection curve between the
stockpile surface and voxel plane accurately. Consequently, the quality volume calculated
based on the intersection curve may be not accurate. This problem happened in the full scale
stockpile when the voxel size was less than 0.2 m.

5.3.4 Sickle-shape Stockpile Voxelization

Two 3D stockpile management models are built for sickle-shape voxelization. In the first
management model, the bench scale stockpile is coupled with the bench scale BWR model
listed in Table 5.5. The stockpile is assumed to be located on the left side of the BWR, with
a distance of 0 mm measured from the BWR slewing axis to the boundary of the stockpile
region. The stockpile is assumed to be recovered by the BWR in two reclaims. The first
reclaim contains 10 cuts and the second contains 5 cuts. The predetermined bench heights of
two reclaims are 152.97 mm and 89.29 mm, respectively. The advancement between cuts is 9
mm (0.9(Rv −Rk)). After the first reclaim is accomplished, the BWR reverses and the BW is
lowered to make the second one.

To locate the potential landing points for the initial cut, a reference grid with 20 mm spacing
is superimposed onto the B-spline surface model. 83 candidature points are obtained and 38
points are validated to be effective landing points. The point with the largest cutting depth
among these validated points is selected as the initial point for the first reclaim. Based on the
inverse kinematic equations, the joint angle of the BWR can be acquired. Materials in the
second layer are also scoped by the buckets after the 6th cut. The slewing range is detected
and the model is updated after each cut. With the second reclaim, the latest surface model
is evaluated to determine a new landing point. 55 candidature points are obtained and 27
points are validated to be effective landing points. Again, the one with the maximum cutting
depth is selected. Only the material in the 4th layer is recovered for the 2nd reclaim. The
states of the stockpile during the reclaiming are illustrated by a number of key frames in
Fig. 5.21.

The side length of the cube used for the QMC calculation is configured to be 30 mm. Due to
the fact that the size of each cut is not identical, this side length changes slightly with the
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cut. The low-discrepancy sequence filled into each voxel contains 32,768 points. The quality
stockpile model is simulated based on the data listed in Table 5.4.

Fig. 5.22 shows the points identified to be inside the 2nd cut of the 1st reclaim when its
volume is calculated using the QMC method. The final quality calculation results are shown
in Table 5.8.

Fig. 5.21 Automatic landing and reclaiming simulation. Reclaim 1, Stage 1: determine the landing
points. Reclaim 1, Stage 2: stockpile and BWR after 10 cuts. The boundary of the 10th cut for the 3rd

and 2nd layer is highlighted in cyan and black respectively. The blue dot points are the overlapped
region of the third and second layer. Reclaim 2, Stage 1: the landing point of the second reclaim.
Reclaim 2, Stage 2: stockpile after the reclaim. The effective landing points are plotted in green ’+’.
The stockpile surface are rendered from its B-spline model (unit: mm).

The second management model is a combination of the full scale stockpile and BWR. The
distance between the stockpile and BWR is 5 m. The maximum cutting height of the BWR
model is 5.88 m and the maximum height of the stockpile is 28.94 m. The gridding resolution
used to generate the landing point set Pc is 0.5 m. 600 points on the stockpile surface are
generated and 100 points pass the collision assessment (see Fig. 5.23). The point with a
cutting depth of 17.35 m is selected to activate the reclaiming operations. After the initial
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Fig. 5.22 The volume of the 2nd cut calculated using QMC method. 12 cubes are generated from the
cut and are projected onto the XZ plane for display purposes. These cubes belong to 4 quality cuboids
(unit: mm).

Table 5.8 Quality of reclaimed material for the 1st case using sickle-shape voxels. (unit: g)

voxel
Layer 2 Layer 3

Mass of the cut Fe Si Al Mass of the cut Fe Si Al

1 0 0 0 0 43.86 24.99 1.23 1.06
2 0 0 0 0 44.06 25.50 1.56 0.61
3 0 0 0 0 58.28 33.10 3.08 0.77
4 0 0 0 0 70.74 40.46 2.66 1.06
5 0 0 0 0 82.25 49.11 3.98 1.38
6 0 0 0 0 93.52 54.56 4.56 1.17
7 4.10 2.29 0.12 0.10 100.73 63.08 4.83 1.34
8 18.72 11.91 0.71 0.34 95.70 58.35 4.97 2.27
9 40.64 23.66 1.78 0.90 83.21 46.55 2.77 1.21
10 61.90 39.56 2.89 1.81 72.31 37.97 2.89 1.03
11 0 0 0 0 52.31 23.14 1.45 0.68
12 0 0 0 0 65.19 26.13 1.57 1.02
13 0 0 0 0 79.02 34.34 2.67 1.23
14 0 0 0 0 93.34 41.13 3.78 1.65
15 0 0 0 0 102.56 50.12 4.89 1.43
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position of the BWR and the slewing range of the BW are obtained, the top bench of the
stockpile is voxelized in terms of the BWR reclaiming trajectory as illustrated in Fig. 5.24).
Thus, the quality and quantity of each voxel can be computed using the QMC method
accordingly. Fig. 5.25 draws the shape of the stockpile after 10 continuous cuts. The quality
of recovered material in the first 10 cut is shown in Table 5.9.

Fig. 5.23 Validate the potential landing point from the B-spline model. Effective landing points are
plotted in green. The point selected for the initial cut has the maximum cutting depth. The position of
the BWR determined form the point is shown on the right (unit: m).

Fig. 5.24 Voxelization of the top bench based on the real cutting trajectory (unit: m).

Since the full scale stockpile is not stacked using the chevron method, the layers are over-
lapped at diverse points. Such overlaps are mainly existed in the first and second layers.
These regions introduce errors to the final calculation results because the proposed algorithm
assumes that such complex intersections between adjacent layers do not exist. However, in
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Fig. 5.25 Stockpile after the reclaiming. Only the 3rd and 4th layer are recovered by the BWR within
the two reclaims. The geometric shapes of these two layers after the cut are plotted separately for
display purposes (unit: m).
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Table 5.9 Quality of reclaimed material for the nth2 case. (unit: kg)

voxel
Layer 3 Layer 4

Mass of the cut Fe Si Al Mass of the cut Fe Si Al

1 0 0 0 0 852.59 531.43 39.85 2.37
2 0 0 0 0 1319.41 813.74 64.68 6.85
3 0 0 0 0 1713.36 1039.04 86.52 10.08
4 67.55 40.79 3.48 0.32 1811.63 1082.50 97.54 9.74
5 189.04 115.86 9.97 0.52 1773.62 1055.13 99.52 4.42
6 220.10 130.65 11.86 0.62 1768.30 1071.85 78.02 5.90
7 244.75 148.44 12.36 0.88 1755.98 1052.79 76.89 7.28
8 244.78 152.67 13.33 1.03 1737.98 1055.11 86.52 2.87
9 252.23 158.40 12.40 0.73 1692.67 999.57 100.35 9.29
10 245.21 148.74 13.93 0.88 1631.36 979.30 90.33 5.06

reality, these overlaps do not exist if the stockpile is scanned continuously. Additionally, if
the stockpile is not stacked using the chevron method, a single cut may contain two separated
3D regions due to the shape of the stockpile surface. Under such circumstances, each region
needs to be calculated separately.

5.4 Summary

This chapter details the building of a 3D stockpile management model and the procedures to
apply this model for BWR automation and quality estimation in blending. The 3D stockpile
management model is a combination of three individual models: a multilayer geometric
stockpile model (polynomial or B-spline) generated from point clouds, a quality stockpile
model simulated from quality data and a kinematic model outlined form a BWR. Using
this model, the BWR can be controlled automatically without collision between the bucket
wheel and the stockpile. Additionally, the quality of a stockpile in blending operations can
be calculated from the geometric and quality information.

Two voxelization methods are introduced. The cubic voxelization is achieved through
traditional octree decomposition algorithm. The intersections between the solid octants and
layers are detected and the volumes of these intersections are calculated automatically using
the integral calculator from polynomial surface model automatically. The quality of the
material in blending can be estimated through linking the volume calculation results with
the quality distribution model. The advantages of octree voxelization are fast and accurate.
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The model can be created from a wireframe model directly and obtained in less than 2 m.
Because the volume is calculated through integration techniques, results are more accurate
than other methods. For example, the volume of the triangular However, to approximate a 3D
sickle-shape cut resulted by a BWR using cubes with a great degree of accuracy, the cubes
are required to be small enough, which results in a large amount of data to be processed by
the proposed integral calculator. In the experiment, the integral calculator programmed in
the Matlab requires around 2 s to accomplish one computation. Thus, increasing the number
of voxels improves the accuracy, but elongate the overall execution time, which reduces the
system efficiency.

The sickle-shape voxelization is to partition a stockpile based on the reclaiming trajectory
of the BWR. A sickle-shape cut is an intersection between the outmost layer of a stockpile
and a geometric shape created from superimposing the rotating motion of the buckets and
the slewing motion of the wheel. Similar to cubic voxel, it may also intersect with internal
layers of the stockpile. Through identifying these intersections and calculating their volume
separately, the quality of a sickle-shape cut can be predicted accurately. In this chapter, a
discrete numerical approach which converts the surface-to-surface intersection problem to
curve-to-surface problem is applied to identify the sickle-shape voxels and those intersections.
Experimental results indicate that this approach is able to find the intersections precisely.
Meanwhile, the collision free reclaiming trajectory and slewing ranges of the BWR are also
acquired during the voxelization procedure. The computational time for the sickle-shape
voxelization is longer than cubic voxelization. The volume of the intersection is approximated
by the QMC method. The advantage of this method is computational time and programming
simplicity. It runs much faster than the integral calculator. The results obtained using the
QMC are less accurate but closed to the results computed by integrals.

To summarise, the cubic voxelization and polynomial surface modelling is a perfect match to
estimate the quality of a stockpile at stacking phases. Conversely, to predict the quality of
recovered material at reclaiming phases, the sickle-shape voxel are suggested to be paired
with either polynomial or B-spline surface model.





Chapter 6

Conclusion and Future Work

The work described in this thesis is concerned with the development of a 3D stockpile
management model for BWR automation and quality calculation in blending. The following
section first summarizes and draws conclusions according to the work presented in this thesis
and then points out possible future work.

6.1 Conclusions

Stockpile blending is an effective method to adjust the quality and reduce the variability of
the iron ore in a supply chain. However, it has been remained as a challenging problem to
represent the geometric shapes of a stockpile and calculate the quality with the stockpile
accurately and precisely in blending operations. The reasons for such situations identified in
the literature section can be outlined as:

1. Inadequate understanding in the quality of a stockpile after stacking because no real-
time measurement method is introduced to record the geometric shapes of a stockpile
in blending operation, and the chemical compositions are not available with the highest
degree of accuracy during stacking.

2. Insufficient knowledge during reclaiming operations because the BWR is controlled
semi-automatically or manually and no dynamic link between the stockpile model and
BWR model for quality calculation.
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The main goal of this dissertation is to create a real-time 3D stockpile management model
to address such inconsistencies and improve the efficiency and effectiveness in stockpile
blending. The contributions can be surmise as follow:

1. A cost-efficient mobile laser scanning device based on a BWR was proposed to scan
the stockpile when it is stacked/reclaimed. Such upgrading not only allows the dynamic
shapes of the stockpile to be measured accurately in real-time but also provides precise
positioning knowledge for other applications, i.e. collision avoidance.

2. Nearly real-time and automatic mathematical modelling from measurement data. This
is the first time that layers inside a stockpile are recorded and represented faithfully in
stockpile modelling. Experimental tests have proven the computational efficiency and
accuracy of the proposed modelling algorithms.

3. Novel 3D stockpile management model for BWR automation and quality calculation.
The combination of the geometric stockpile model and BWR model assist the BWR
automation tasks, which have not been well researched in most studies. Through
integrating the prior chemical analysis results into the 3D stockpile model layer-by-
layer, the quality of a stockpile can be calculated accurately. The quality embedded 3D
stockpile model associated with the cutting trajectory of the BWR allows the properties
of the reclaimed material to be predicted with a great degree of accuracy continuously,
which will upgrade the current ‘selective stacking’ to ‘proactive reclaiming’ in stockpile
management.

Additionally, problems encountered in building the 3D stockpile management model were
addressed and solved accordingly by the author. These problems include: finding the globe
minimum for universal Fourier modelling through optimizing the searching strategy, improv-
ing the polynomial and B-spline modelling accuracy through grid partitioning, detecting
the over-fitting automatically through comparing the surface normal and constructing the
quality stockpile model and linking the model with BWR operation through geometric
information.

The innovative and comprehensive 3D stockpile management model created in the study will
reduce the handling costs and improve the efficiency of existing infrastructure in industries
involved in bulk material handling (inclusive of minerals, grain, sugar and woodchips) fun-
damentally. Thus, it will increase the international competitiveness for Australia producers,
particularly in the mining sector, in global trading business.
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6.2 Future Work

A number of possible future studies from this thesis include:

1. Testing the UKF localization algorithm and stockpile modelling algorithms using
real world data. Due to the time and physical constraints, the author was unable to
upgrade a real BWR and use it for stockpile scanning. The data collected from the
real operational environment will further provide a strong evidence for the proposed
modelling algorithms and may also identify the potential challenges in building of
such a 3D stockpile model. Additionally, experimental data can be used to evaluate
whether a new algorithm is needed to reduce the position estimation errors caused by
the vibrations of the boom. It is therefore expected to accomplish this mission when
the external conditions are satisfied.

2. Researching automatic cloud data registration and alignment algorithms. When the
bucket wheel is lowered to the stockpile at the reclaiming phase, beams from a single
laser scanner may not able to cover the helical-shaped cutting surface or an entire
stockpile. Multiple scanners may require for a full coverage of the stockpile. Therefore,
it is necessary to align various views (3D point clouds) together to generate a complete
point model.

3. Simulating the quality of a stockpile based on real chemical analysis results. In quality
stockpile modelling, due to the lack of real chemical analysis results, the variations of
a chemical content are assumed to be followed a normal distribution and are simulated
separately. This simulation method may not be adequate because there are strong cross-
correlations among the mineral contents in nature. Therefore, the quality stockpile
model can be developed further to simulate the quality variations effectively using real
mine production data, i.e. using the long-term historical chemical analysis results to
create a best short-term simulation model. Another option is to apply chemical light
spectrometric detectors to the flow of bulk material on the conveyor belt. Thus, the
on-line chemical analysis results can be embedded into the geometric stockpile model.

4. Optimizing the reclaiming pattern to achieve the ‘proactive reclaiming’. Improving the
product quality and maximizing the export throughout with minimal handling cost are
crucial for the producers in bulk material handling. The research accomplished in this
thesis creates an innovative management model to predict the quality of a stockpile or
recovered materials accurately and continuously. Also, this model calculates the slew-
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ing ranges and generates collision-free reclaiming trajectories for BWR automation.
Therefore, it is possible to combine all these new features and generate an optimized
reclaiming pattern for all BWR(s) operated in the stockyard to achieve the final quantity
and quality objectives with minimal energy consumptions, which will make this work
more valuable for industry applications. This is the main focus of the future research.
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Appendix A

3DOF Laser Scanning System

The specification of the LMS200 laser measurement device and the kinematics of the scanning
system are detailed here.

LMS200 Laser Measurement System

The LMS200 laser measurement system, manufactured by SICK Optic Electronic, is a
non-contact measurement device using infrared laser beams. It is capable to produce a radial
scan of 180◦ with an angular resolution of 0.25◦ to scan the surroundings two-dimensionally.
Table A.1 shows the field of vision and the angular resolution of the LMS200. The mea-
surement resolution, which is defined as the smallest possible distance different from zero
between two consecutive individual measurement values, is 10 mm. A typical accuracy of
the LMS200 is ± 15 cm at a scanning range of 1 to 8 m plus a systematic error of 5 mm.
The measurement data are output in a binary format via the RS-232/RS-422 serial interface.

Table A.1 LMS200 scanning configurations

Configuration 1 2 3

Angular resolution 0.25◦ 0.5◦ 1◦

Scanning range 100 180 180
No. of scans 401 361 181
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Kinematics of the Scanning System

The 3DOF laser scanning system used for this study is designed to survey the ship loading
process [56]. The Quickset QPT-50 pan and tilt platform provides pitch and yaw movement
for the LMS200. The chain and sprocket system convert the rotary motion of the motor into
a linear motion that allows the LMS200 move along the linear track. Fig. A.1 illustrates
the coordination definitions of the entire system based on the modified Denavit-Hartenberg
parameters. The fixed Frame 0 is located to the base as the world coordinate and the Frame 6
is located at the centre of the LMS200.

Fig. A.1 Coordinator defined for kinematic analysis.
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The general transformation matrix of this system is:

i−1
i T =

∣∣∣∣∣∣∣∣∣∣
cosθi −sinθi 0 ai−1

sinθi cosαi−1 cosθi cosαi−1 −sinαi−1 −sinαi−1di

sinθi sinαi−1 cosθi sinαi−1 cosαi−1 cosαi−1di

0 0 0 1

∣∣∣∣∣∣∣∣∣∣
(A.1)

where αi is the angle between Zi and Zi+1 measured about Xi. ai is the distance from Zi

and Zi+1 measured along Xi. di is the distance from Xi−1 to Xi measured along Zi. θi is the
angle between Xi−1 and Xi measured about Zi.

Table A.2 shows the link analysis of the scanning system.

Table A.2 Link analysis of the 3DOF laser scanning system.

αi−1 ai−1 θi di

1 0 L1 0 L2
2 0 0 0 L3
3 -90◦ 0 θ3 L4
4 90◦ 0 90◦+θ4 0
5 0 L5 0 −L6

Substituting these link parameters into Eq. A.1, the transforming matrix from the Frame 0 to
the Frame 6 is:

6
0T=

∣∣∣∣∣∣∣∣∣∣∣∣∣

−cosθ3 sinθ4 −cosθ3 cosθ4 sinθ3 L1 +L6 sinθ3 −L5 cosθ3 sinθ4

cosθ4 −sinθ4 0 L4 +L5 cosθ4

sinθ2 sinθ4 sinθ2 cosθ4 cosθ3 L2 +L3 +L6cosθ3 +L5 sinθ3 sinθ4

0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
(A.2)
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