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ORIGINAL ARTICLE

Therapeutically relevant structural and functional mechanisms
triggered by physical and cognitive exercise
C Suo1,2,3,4, MF Singh5,6, N Gates1,2,4, W Wen4,7, P Sachdev4,7, H Brodaty4,8, N Saigal9, GC Wilson9, J Meiklejohn9, N Singh9, BT Baune10,
M Baker5,11, N Foroughi12, Y Wang9,13, Y Mavros5, A Lampit1, I Leung1 and MJ Valenzuela1,14

Physical and cognitive exercise may prevent or delay dementia in later life but the neural mechanisms underlying these therapeutic
benefits are largely unknown. We examined structural and functional magnetic resonance imaging (MRI) brain changes after
6 months of progressive resistance training (PRT), computerized cognitive training (CCT) or combined intervention. A total of 100
older individuals (68 females, average age = 70.1, s.d. ± 6.7, 55–87 years) with dementia prodrome mild cognitive impairment were
recruited in the SMART (Study of Mental Activity and Resistance Training) Trial. Participants were randomly assigned into four
intervention groups: PRT+CCT, PRT+SHAM CCT, CCT+SHAM PRT and double SHAM. Multimodal MRI was conducted at baseline and
at 6 months of follow-up (immediately after training) to measure structural and spontaneous functional changes in the brain, with a
focus on the hippocampus and posterior cingulate regions. Participants’ cognitive changes were also assessed before and after
training. We found that PRT but not CCT significantly improved global cognition (F(90) = 4.1, Po0.05) as well as expanded gray
matter in the posterior cingulate (Pcorrected o0.05), and these changes were related to each other (r= 0.25, P = 0.03). PRT also
reversed progression of white matter hyperintensities, a biomarker of cerebrovascular disease, in several brain areas. In contrast,
CCT but not PRT attenuated decline in overall memory performance (F(90) = 5.7, Po0.02), mediated by enhanced functional
connectivity between the hippocampus and superior frontal cortex. Our findings indicate that physical and cognitive training
depend on discrete neuronal mechanisms for their therapeutic efficacy, information that may help develop targeted lifestyle-based
preventative strategies.

Molecular Psychiatry (2016) 21, 1633–1642; doi:10.1038/mp.2016.19; published online 22 March 2016

INTRODUCTION
Cognitive training1,2 and physical exercise3,4 can help support
cognitive function in late life, stimulating interest in their potential
for the delay or even prevention of dementia.5 Yet, how these
lifestyle interventions work in humans is still not clear,6 despite a
wealth of studies examining environmental enrichment7,8 and
voluntary running paradigms in rodents.9,10 Human neuroimaging
studies suggest the induction of some common activity-
dependent mechanisms11 as well as biological processes that
may be unique to each intervention,12–14 but head-to-head
imaging studies are yet to be reported.
One major unresolved question is whether training antagonizes

the degenerative effects of advancing age, cerebrovascular
disease and Alzheimer’s disease (AD), or stimulates disease-
independent mechanisms that cumulatively support cognition.
Structurally, the natural history of AD begins with volume loss in
entorhinal and hippocampal areas and then progresses to include
the posterior cingulate, cortical temporal lobe and eventually most

of the gray matter.15,16 It is therefore interesting that physical
activity has been linked to preserved hippocampal and frontal
cortical volume in cross-sectional17,18 and prospective studies,19

and more direct evidence of possible disease modification
provided in a randomized controlled trial (RCT) where 1 year of
moderate-intensity walking in healthy elders led to hippocampal
expansion compared with atrophy in controls.20 However, the
therapeutic relevance of this finding is not clear given the same
trial reported equivalent memory change in walkers and
controls.21 In contrast, computerized cognitive training is generally
efficacious for memory in healthy elderly1 but does not lead to
hippocampal structural plasticity. Rather, initial hippocampal
volume can independently predict mnemonic improvements at
the end of cognitive training.22

Resistance or strength training remains largely unstudied in
animal models from a neuroscience perspective. In humans,
resistance exercise produces complex systemic and metabolic
changes23 and is effective for chronic age-related health issues
such as sarcopenia,24,25 osteoporosis26 and insulin resistance.27,28
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Research on the cognitive effects of resistance exercise in older
adults is preliminary in comparison with aerobic exercise.29 One
RCT found evidence of improved memory function following
6-month training,30 whereas two RCTs have found executive
function improvements, but no memory effects, immediately
following training.31,32 To date, evidence for cerebral effects of
resistance exercise in elders is mixed: one RCT initially reported
that resistance exercise led to a small but significant reduction in
whole-brain volume,32 but a subsequent subgroup reanalysis
found attenuated white matter atrophy.33

Another relevant34–36 but poorly modeled mechanism in
animals is chronic cerebrovascular disease, typically coexpressed
alongside AD pathology in those with dementia37,38 or dementia-
precursor mild cognitive impairment (MCI).39 Ischemic and
inflammatory brain tissue can be visualized on T2-weighted
magnetic resonance imaging (MRI) as white matter hyperinten-
sities (WMHs)40 and their severity is strongly linked to vascular
risk factors.41,42 Moreover, WMHs increase risk of cognitive
impairment43 and independently predict transition from MCI to
dementia.44,45 It is therefore interesting that physical exercise
embedded within a comprehensive vascular care program can
slow progression of WMHs in older individuals with established
dementia.46 Whether physical or cognitive exercise can produce
similar effects on WMH burden in nondemented individuals has
not been tested.
Frontal lobe functional connectivity is a candidate for a shared

mechanism because it is responsive to both cognitive training12

and aerobic physical exercise.47,48 Frontal lobe connectivity
declines with age49–51 and has been further implicated in early
AD,52,53 but whether physical or cognitive exercise is more
effective for network rescue is unknown. Another important
connectivity pattern is the default mode network (DMN), a
spatially distributed but temporally synchronized assembly of
brain regions preferentially engaged when a person is internally
focused and not attending to external stimuli.54 A common
approach to defining the DMN relies on spontaneous activity in
the posterior cingulate (PC);55 indeed, this brain region lies at the
structural and functional core of the DMN.56 Whether physical or
cognitive training produces functionally relevant changes to the
DMN in older adults is not known.
There are hence several possible mechanisms by which

cognitive training or physical exercise may achieve therapeutic
efficacy but these have not been directly compared in a rigorous
RCT setting. At least some of these mechanisms may be specific to
physical exercise, and hence supported a prediction of additive
therapeutic effects following combined intervention. The Study of
Mental Activity and Resistance Training (SMART) Trial was there-
fore designed to determine whether resistance exercise, cognitive
exercise or combined cognitive and resistance training can
prevent or slow cognitive and functional decline in individuals
with MCI.57,58 Here, our aim was to identify therapeutically
relevant brain mechanisms using multimodal MR imaging in the
context of a fully factorial, active-controlled, double-blind RCT.

MATERIALS AND METHODS
Subjects and design
SMART trial volunteers (N= 100; 68 females, average age= 70.1 s.d. ± 6.7
years) were nondemented, nondepressed individuals aged ⩾ 55 years who
met Petersen’s original MCI criteria,59 having subjective memory com-
plaints and a Mini-Mental State Examination score of 24–28 (29 was
acceptable only if error noted in memory registration), a Clinical Dementia
Rating scale 0 or 0.5 and independence in daily function. Individuals were
randomized by computer-based sequence to one of four training groups
(Figure 1a) in which they completed two types of supervised center-based
training per session (physical and cognitive), twice per week, for a total of
26 weeks. Each session lasted 90 min and comprised either: (1) progressive
resistance training (PRT)+computerized cognitive training (CCT), (2) PRT
+SHAM computerized cognitive (that is, active cognitive control) training,

(3) CCT+SHAM stretching and toning (active physical control) training and
(4) SHAM physical+SHAM cognitive training. A battery of neuropsycholo-
gical tests, physical and metabolic tests and multimodal MRI assessments
were carried before and after the 6-month training period. Participants
were blind to training group hypotheses and assessors were blinded to
group allocation. There were no significant differences in dropout (8%),
total training time (22.7 weeks), trained sessions per week (2.3 sessions) or
absolute compliance (44.6 sessions) between the four interventions
groups. Subjective appraisals were measured using the Memory Aware-
ness Rating Scale60,61 and Memory Complaint Score.62 All nonvoxel/vertex-
based analyses (that is, cognitive and region-of-interest-based MR
outcomes) were conducted using linear mixed models, and all analyses
controlled for age, sex and education. Sample size calculations were based
on the trial’s (clinical) primary outcome as reported previously.57,58 All
participants gave informed consent and the trial was approved by the
human research ethics committee of the University of Sydney.
The SMART Trial was prospectively registered with the Australian and

New Zealand Clinical Trials Registry (Protocol No: X08-0064).

Interventions
Details about the structure, content and timing of the interventions can be
found elsewhere.57 In brief, they are described as follows.

Cognitive training. CCT comprised the COGPACK program (http://www.
cogpack.com/USA/frames.htm), a multidomain computer-based software
package developed for neurorehabilitation. Sham CCT was also computer
based: participants watched video clips of general interest documentary
topics, followed by a set of simple questions regarding the presented
material. CCT and sham cognitive training were matched for duration,
setting and sensorimotor stimulation. All cognitive training was conducted
in a dedicated study center under supervision. Supplementary Information
contains the Manual of Procedures for implementing CCT as well as
COGPACK definition files for identical replication on this software.

Physical exercise training. PRT was supervised by experienced research
assistants (exercise physiologists and physiotherapists) in a physician-
supervised clinic at the University of Sydney Exercise campus in a ratio of
1 trainer to 4–5 subjects. Pneumatic resistance machines (Keiser Sports
Health Equipment, Fresno, CA, USA) were used for training at high
intensity, 3 sets of 8 repetitions of each of 5–6 exercises/session for most
major muscle groups (chest press, leg press, seated row, standing hip
abduction, knee extension). Sham physical exercise included stretching
and seated calisthenics, designed not to notably increase heart rate or
aerobic capacity or improve balance or strength.

MRI scanning protocol
MRI data were acquired on a 3.0-Tesla Philips Achieva System (Amsterdam,
The Netherlands). For each time point, brain structure was assessed using a
T1-weighted whole-brain scan (sequence: T1TFE; TR/TE: 6.39/2.9 ms; slice
thickness 1.0 mm without gap; field of view: 256× 256; resolution
1× 1 mm) and a T2-weighted FLAIR (FLuid-Attenuated Inversion Recovery)
scan (resolution: 0.488× 0.488× 3.5 mm; TR/TE= 10 000/110 ms). A resting-
state functional MRI (fMRI) was conducted using T2* echo-planar BOLD
sequence (TR/TE = 2000/30 ms, 200 volumes, 6.5 min) with the subject’s
eyes closed.

MRI preprocessing
T1 structure image preprocessing. Three MRI preprocessing methods were
applied to examine the change of gray matter. (1) Expert hippocampal
manual tracing was performed using our previous published protocol;63,64

(2) Functional MRI of the brain (FMRIB)’s Integrated Registration and
Segmentation Tool (FIRST v5.0.0 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST) in
FMRIB’s Software Library (FSL, v5.0, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) was
used to measure hippocampal volume and morphometry; (3) the
longitudinal pipeline in FreeSurfer (v5.1.0, http://freesurfer.net) was applied
to measure the longitudinal training effect on cortical thickness on a vertex
basis.65 Please refer to Supplementary Information for more details.

T2 fluid attenuated inversion recovery structure image. WMH volume is the
main outcome of this MR modality. Regional WMH volumes were extracted
using an in-house automatic pipeline that has been published elsewhere.66
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The outputs included total WMH volume across whole brain, and regional
WMH volume of 18 white matter regions.

Resting-state fMRI preprocessing. The fMRI data were preprocessed using
the SPM8-based (Statistical Parametric Mapping) Data Processing Assistant
for Resting-State fMRI (DPARSF) tool-box (www.restfmri.net/) based on
published protocols.67 In brief, this involved: discarding the first 10 volumes
of each participant, slice timing, normalization to standard MNI space,
resampling into 2×2×2 mm3 isotropic voxels, smoothing using a 8-mm
kernel, removal of global signal trends, bypass filtering of 0.01–0.08 Hz and
finally regressing out nuisance signals related to white matter, whole-brain
and cerebrospinal fluid signal as well as 6 coregistration factors.
Seed-wise functional connectivity maps were then generated individually

using Resting-State fMRI Data Analysis Toolkit (REST, www.restfmri.net/).68

Bilateral hippocampal masks were selected as seeds from the Anatomical
Automatic Labeling (AAL) template.69 The PC seed was obtained by
thresholding a typical Default Mode Network generated using Indepen-
dent Component Analysis (ICA) toolbox (Group ICA Toolbox GIFT, http://
mialab.mrn.org/software/gift/) across whole baseline resting-state fMRI
data. Individual functional connectivity (FC) maps for the hippocampal
seed and PC seed were then generated based on correlations between the
mean signal time course within each seed region and the rest of the brain.

MRI postprocessing
Voxel-based statistical analyses. The following analysis was carried out on
seed-wise FC maps. For longitudinal general linear model (GLM) design,
a flexible factorial design (Figure 1b) was used with four main factors:

cognitive training factor (COG, yes/no two levels), progressive resistant
training factor (RES, yes/no two levels), subjects and time. Three interactions
factors were included in the model: COG× time, RES × time and
COG×RES× time. Three covariates were also included in all models:
age, sex and education years. Glm_flex, a postprocessing package
based on SPM (http://nmr.mgh.harvard.edu/harvardagingbrain/People/
AaronSchultz/Aarons_Scripts.html), was used to perform this model.
Whole-brain cluster-level false discovery rate (FDR) correction issued with
an initial threshold at Puncorrectedo0.001 and cluster size k4100.

Hippocampal surface-based MR statistical analyses. We used this
postprocessing method to test longitudinal effects on morphometry of
hippocampal surfaces generated by FIRST. The GLM design is identical with
the voxel-based statistical design above, but implemented on FSL. The
correction method we used here is the permutation test (n= 1000).

Vertex-based MR statistical analysis. Vertex-based analyses were used for
cortical thickness (FreeSurfer) outputs. First, the change (rate) of cortical
thickness that is defined by (thicknesstime2− thicknesstime1)/years between
two scans. Second, GLMs were designed as per the voxel-based statistical
design above, but without the factor of time (as thickness change was the
dependent variable) and subject (this is redundant). The covariates were
also age, sex and education years. Finally, the multiple comparison error
was corrected using whole-brain vertex-based FDR correction or small-
volume-based FDR correction. Two prespecified areas were chosen a priori
for small-volume correction: posterior cingulate cortex and medial
temporal lobe.

Figure 1. (a) Design and participant flow of the SMART trial. (b) Summary of factor-based interactions. (c) Participants in any PRT group
significantly improved on ADAS-Cog (lower scores are better) compared with non-PRT groups (RES × TIME, F(90)= 4.1, *Po0.05, Y axis
reversed). (d) Participants in any CCT group attenuated the decline in Memory domain compared with non-CCT groups (COG×TIME,
F(90)= 5.7, *Po0.02). Error bars represent 95% confidence interval. Intention-to-treat analyses controlled for age, sex and education. ADAS-
Cog, Alzheimer’s Disease Assessment Scale-Cognitive scale; CCT, computerized cognitive training; COG, cognitive training factor; MRI,
magnetic resonance imaging; PRT, progressive resistance training; RES, progressive resistant training factor; SMART, Study of Mental Activity
and Resistance Training.
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Statistical analyses
Clinical outcomes and all region-of-interest-based MR outcomes were
analyzed using a linear mixed model in SPSS (IBM, Armonk, NY, USA.
Release 2012). This model was designed with three main effects (time, COG
and RES), three interactions (COG× time, RES × time and COG×RES× time)
and three covariates (age, sex and education years). Mixed models are
realistic and flexible with respect to possible variance differences between
groups and over time and incorporate a model for missing values; all such
analyses are therefore intention to treat. A compound symmetry model
was used for repeat covariance. Pearson’s correlation was used to test the
linkage between MR outcomes and cognitive outcomes across entire
cohort. For mediation effect, Sobel tests were performed using the
algorithm of Preacher and Hayes.70

RESULTS
Cognitive outcomes
We first focus on therapeutic benefits on cognition immediately at
the end of training (6 months). A thorough report of cognitive
SMART outcomes at the end of 18-month longitudinal follow-up is
available elsewhere.58 Participants in any resistance exercise group
(RES factor, see Figure 1b) improved on our primary outcome, the
Alzheimer’s Disease Assessment Scale-Cognitive scale (ADAS-Cog),
compared with non-RES groups (RES × TIME intention-to-treat
mixed linear model, F(90) = 4.1, Po0.05 Figure 1c), but not on the

composite Memory Domain score. Conversely, those in any CCT
group (COG factor, see Figure 1b) experienced no decline in
Memory Domain scores observed in non-CCT groups (COG× TIME
intention-to-treat mixed linear model, F(90) = 5.7, Po0.02,
Figure 1d), but not on the ADAS-Cog. Contrary to our expecta-
tions, there was no triple interaction effect (RES ×COG× TIME) on
the primary outcome ADAS-Cog or Memory Domain score. There
were no COG× Time or RES × Time effects for either the Executive
Domain or Attention-Speed Domain.58 Furthermore, there were
no significant COG× Time, RES × Time or COG×RES × Time effects
on measures of subjective memory expectations (P-values 40.16)
or memory concerns (P-values 40.47).
Given the unique condition of significant and discriminable

cognitive effects based on RES and COG training factors unlikely to
be confounded by differential mnemonic expectation or self-
appraisal, we proceeded to test similar interactions for each brain
imaging modality. For results that survived multiple-comparison
correction, we then determined therapeutic relevance by testing for
a relationship to change in ADAS-Cog or Memory Domain outcomes.

Structural mechanisms
Training-induced cortical thickness change was evaluated with
Freesurfer without any findings surviving whole-brain correction.
However, two prespecified regions were examined in more detail

Figure 2. (a) Significant RES × TIME interaction was found in the posterior cingulate (PC). Green shows definition of our prespecified region of
interest (ROI), and red shows suprathreshold voxels following small-volume correction (Po0.05, T= 3.24, kv= 153 [− 5 − 21 42]). (b) After
extraction of individuals’ PC cortical thickness change (mm per year), participants in any PRT group displayed cortical expansion and less
atrophy than those in non-PRT groups (RES × TIME, F(73)= 11.1, *P= 0.0017). (c) Enhancement of PC cortical thickness is correlated with
improvement in global cognition (r= 0.25, P = 0.030, N= 75, Y axis reversed). Error bars represent 95% confidence interval. All group-based
analyses controlled for age, sex and education. ADAS-Cog, Alzheimer’s Disease Assessment Scale-Cognitive scale; CCT, computerized cognitive
training; PRT, progressive resistance training; RES, progressive resistant training factor.
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using region-of-interest analyses:57 hippocampus and posterior
cingulate cortex. A significant RES × TIME interaction was found in
the PC (Figure 2a, Psvc-correctedo0.05, T= 3.24, kv = 153, [− 5 − 21
42]). On the basis of extracted PC measures, it is clear that PRT
protected individuals from atrophy: PC cortical thickness increased
by an average of 0.01 mm per year (± s.d. = 0.088) in PRT groups
but decreased by an average of 0.05 mm per year ( ±0.085) in non-
PRT groups (F(73) = 11.1, P = 0.0017, Figure 2b). When examined in
more detail, combined PRT+CCT led to an expansion of cortical
thickness and averted any atrophy in the PRT+SHAM group
(Figure 2b). Therapeutic relevance was also supported given
change in PC gray matter correlated with improvement in the
trial’s primary outcome measure of global cognition, ADAS-Cog
(Figure 2c, r=− 0.25, P= 0.030, N= 75). A formal Sobel test with
bootstrap estimation70 showed that change in PC thickness
tended to mediate improvement in global cognition (indirect
mediation mean estimated value − 0.325, 95% confidence interval
− 0.914 to 0.013).
Given the importance of hippocampal atrophy in AD, we used

two complementary methods to assess for possible structural
plasticity: manual delineation (blinded to time point and group)63

(Figure 3a) and automated morphological shape analysis using the
FSL-FIRST procedure as implemented in a prior report of aerobic

exercise.20 No significant interactions were observed on hippo-
campal volume or shape using either of these methods
(Figures 3b–d).
Next, WMH volumes were analyzed at the whole-brain level as

well as by major vascular territory as previously published by our
group66 (Figure 4a). A near-significant trend was found for the
RES × TIME interaction at the whole-brain level (log transformed,
F(75) = 2.8, P= 0.09, Figure 4b), significant when analyzed at the
regional level in the right periventricular zone (F(75) = 4.3,
P= 0.042, Figure 4c) and right parietal zone (F(75) = 4.1,
P= 0.046). In the right periventricular zone, WMHs regressed by
3.4% (±15.5%) over time in PRT groups but progressed by 3.0%
(±15.9%) in non-PRT groups. Change in WMHs was not however
linked to change in either ADAS-Cog or Memory Domain.

Functional mechanisms
Resting-state fMRI analysis focused on FC networks generated
from two prespecified seeds: bilateral hippocampi and the PC (all
results whole-brain corrected by false discovery rate). Complex
training-induced changes were observed for each FC network (see
Figure 5, as well as Supplementary Information).

uncorrected p <0.05

Hippocampal mask

L

L

Anterior

Middle

Posterior

Figure 3. (a) Example of hippocampal manual tracing. (b) No significant FACTOR× TIME interactions were observed on hippocampal volume,
although a trend was observed that PRT group exhibited less atrophy (F(75)= 2.143, P = 0.147). (c, d) Blue shows FIRST-generated hippocampal
mesh. Brown shows areas of significant (Po0.05) RES ×COG×TIME effects before multiple comparison correction, indicative of areas of
relative spared atrophy in combined training in comparison with stand-alone training. No areas survived multiple-comparison correction.
Error bars represent s.d. All analyses controlled for age, sex and education. CCT, computerized cognitive training; COG, cognitive training
factor; FIRST, functional MRI of the brain (FMRIB)’s Integrated Registration and Segmentation Tool; PRT, progressive resistance training; RES,
progressive resistant training factor.
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For PCFC, RES × TIME effects were found indicative of decreased
connectivity with the left inferior temporal lobe (F(67) = 14.8,
Po0.001, Supplementary Information) as well as the anterior
cingulate cortex (F(67) = 23.3, Po0.001, Figures 5a–c). COG× TIME
analysis also indicated decreased connectivity with the left
superior frontal lobe (F(67) = 31.7, Po0.001; Supplementary
Information) and anterior cingulate cortex (F(67) = 13.9,
Po0.001; Supplementary Information). Furthermore, a unique
RES ×COG× TIME interaction was found for the combined
intervention in comparison with either stand-alone training,
characterized by strongly decreased connectivity between the PC
and anterior cingulate cortex (F(65) = 5.3, P = 0.017, see further
results in Supplementary Information).
Analysis of the HIPFC network found RES × TIME effects

suggestive of increased connectivity with the right middle frontal
lobe (F(67) = 13.0, P= 0.001, Supplementary Information), but
decreased connectivity with the right inferior temporal lobe
(F(67) = 18, Po0.001, Supplementary Information). COG× TIME
analysis found evidence for increased connectivity between the
hippocampus and left superior frontal lobe (P= 0.012, Figures
5e–g). In terms of therapeutic relevance, of all FC changes noted, it
was only this strengthening of hippocampal functional connectiv-
ity that correlated with improved memory domain performance
(r= 0.33, P = 0.005, N= 72 and compare Figure 5h with Figure 5d).
Furthermore, Sobel test found that strengthening of hippocampal-
superior frontal connectivity mediated improvement in overall

memory ability (indirect mediation mean estimated value 0.093,
95% confidence interval 0.006–0.215).
Finally, a unique RES ×COG× TIME interaction was found for

increased hippocampal–anterior cingulate cortex connectivity
(F(66) = 4.6, P= 0.005, Supplementary Information) as well as
increased hippocampal–right superior frontal lobe connectivity
(F(65) = 7.0, Po0.001, Supplementary Information) in the com-
bined training condition compared with stand-alone training.

DISCUSSION
Here we report for the first time that resistance training can
conserve and even increase cortical thickness in the posterior
cingulate. This mechanism may be salient to long-term protection
from further cognitive decline and impairment because loss of PC
gray matter is a biomarker of AD,71,72 most likely because of
neuronal loss in specific cortical laminae.73,74 Furthermore, we
found that individual variability in PC plasticity was correlated to
improvement on the trial’s primary outcome, the ADAS-Cog.
Previously, we have shown that resistance training improves the
chances of categorical improvement on ADAS-Cog from impaired
to nonimpaired,58 and hence this newly described mechanism is
therapeutically relevant and unique to PRT as it is not induced by
CCT. Accordingly, our data suggest that PRT can help improve
global cognition in older individuals at risk for dementia by
attenuating and perhaps reversing a salient AD process.
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Figure 4. (a) Example of white matter hyperintensity (WMH) regional parcellation. (b) Near significant trend for RES × TIME interaction for
whole-brain WMH volume (F(75)= 2.8, P = 0.09) and (c) significant RES × TIME interaction for right periventricular volume (F(75)= 4.3,
*P= 0.042). (d) Example of an individual’s change in WMH burden following PRT+SHAM intervention (ID= 10). Arrows highlight areas of
diminished WMH intensity following training. Error bars represent s.d. All analyses controlled for age, sex and education. PRT, progressive
resistance training; RES, progressive resistant training factor.
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No evidence was found for structural plasticity in the
hippocampus subsequent to either type of training. This is
consistent with null MRI findings following memory training
alone75 but is inconsistent with a previous report following long-
term aerobic exercise.20 Because we replicated that study’s image-
processing pipeline, technical differences do not readily explain

this discrepancy. Rather, it is possible that aerobic and resistance
training produces distinct patterns of structural plasticity in older
individuals. Evidence for structural plasticity in the rodent
hippocampus76 almost invariably derives from aerobic voluntary
wheel running—to date, there are no comparable animal data
about the structural brain effects of resistance exercise. Exercise

Figure 5. (a) PC seed and PCFC map for cohort at baseline. (b) Spatial map of significant PCFC RES × TIME interaction anterior cingulate cluster
(PFDRo0.05; see Supplementary Information for full set of results). (c) Graph of individual values shows that PRT training led to decreased
PC–ACC functional connectivity compared with non-PRT training (F(67)= 23.3, *Po0.001). (d) Scatterplot of individual change in PC–ACC
functional connectivity was not related to change in memory domain performance (r= 0.09, P= 0.456, N= 72) or ADAS-Cog (r= 0.11, P= 0.349;
not shown). (e) HIP seed and HIPFC map for cohort at baseline. (f) Spatial map of significant HIPFC COG× TIME interaction in left superior frontal
lobe cluster (sFTL; PFDRo0.05; see Supplementary Information for full set of results). (g) Plot of individual values shows that any CCT training
led to increased HIP–sFTL functional connectivity compared with non-CCT training (F(65)= 6.1, *P= 0.012). (h) Scatterplot shows that
increased HIP–sFTL functional connectivity is positively correlated with improved overall memory performance (r= 0.33, P = 0.005, N= 72). All
group-based analyses controlled for age, sex and education. ACC, anterior cingulate cortex; ADAS-Cog, Alzheimer’s Disease Assessment Scale-
Cognitive scale; CCT, computerized cognitive training; COG, cognitive training factor; FC, functional connectivity; FDR, false discovery rate; HIP,
hippocampus; PC, posterior cingulate; PRT, progressive resistance training; RES, progressive resistant training factor.
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dose is another possible explanation. Hippocampal enlargement
was found after 1 year of moderate-intensity walking (~150
sessions, total dose ~ 80 h),20 whereas in the SMART Trial exercise
groups received an average of 42 sessions of high-intensity PRT
(total dose ~ 38 h).
A novel potential disease-modifying mechanism was suggested

by modest regression of WMHs in those who underwent PRT
compared with progression in non-PRT groups. WMHs are very
common in the elderly40 and strongly implicated in the
pathogenesis of cognitive impairment of both AD and vascular
origin.43 Our data suggest that resistance exercise may have a
positive role in combating this marker of cerebral small vessel
disease, but caution is required because positive results in the
periventricular and parietal zones did not survive whole-brain
correction. Interestingly, current general health guidelines recom-
mend a combination of resistance and aerobic exercise for older
adults77 but the relative importance of resistance versus aerobic
exercise to long-term brain health is not well understood. Given
the emerging importance of metabolic derangements to the
development of AD,78,79 further research is required to understand
the molecular and cellular mechanisms linking resistance training
to cerebrovascular health and disease.
Breakdown of the DMN is also an early event in AD,80–83

possibly related to build-up of neuropathology in the posterior
cingulate.84 It is hence notable that combined resistance and
cognitive training produced a strong and distinctive alteration to
the DMN, weakening of posterior-to-anterior cingulate synchroni-
zation (among other changes). It is however unlikely that this
network change was deleterious for three reasons. First, positive
structural plasticity in the posterior cingulate was observed that is
in the opposite direction to that seen in early AD. Second, there
was no connection between weakening of the DMN in our
patients and cognitive outcomes. Third, weakening of the DMN
following 8-month aerobic exercise has been reported in a
different setting (overweight children85), suggesting these
changes are not necessarily related to AD pathology but a general
consequence of physical exercise. That said, the functional
significance of DMN modification by cognitive and physical
exercise in our trial remains unclear.
In contrast, hippocampal functional networks were unequi-

vocally strengthened by CCT. This form of network change was
not only correlated to improvement in overall memory perfor-
mance, but was a formal mediator of mnemonic benefits.
Prior reports of hippocampal–superior frontal lobe connectivity
indicate that it is degraded in MCI,53,81,86 and therefore
strengthening of this resting-state network may represent a
unique CCT-inducible mechanism that counteracts age- or
AD-related network dysfunction.
Finally, against our expectations we found no additional

therapeutic benefit from combining resistance and cognitive
training compared with single intervention. Given that we have
described distinct inducible mechanisms stimulated by each kind
of training, saturation of a common biological process is therefore
not persuasive by way of explanation. On the other hand,
overdosing of our subjects in the combined intervention and
consequent mental exhaustion is possible. For example, it is now
clear that CCT more than three times a week neutralizes the
efficacy of this intervention.1 In our combined training group,
participants were asked to undertake 90 min of intense training
during each session; in comparison, those in the stand-alone
groups carried out 45 min of intense training followed by 45 min
of a more relaxing sham exercise (either a stretching and toning
class or watching short documentaries on computer). Future
studies may prefer to carry out cognitive and physical exercise
training on separate days rather than during the same session,
similar to recommendations for rest days between intensive
physical exercise sessions.87

Overall, the SMART trial shows that resistance and cognitive
training can be used to target different cognitive domains based
on distinct brain mechanisms relevant to aging, cerebrovascular
disease and AD. Given the alarming disease burden predicted for
dementia and neurocognitive disorders over the coming decades,
this information should help design more effective dementia
prevention trials as well as contribute to their clinical and
community implementation.
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