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We compute the s − s̄ asymmetry in the proton in chiral effective theory, using phenomenological 
constraints based upon existing data. Unlike previous meson cloud model calculations, which accounted 
for kaon loop contributions with on-shell intermediate states alone, this work includes off-shell terms 
and contact interactions, which impact the shape of the s − s̄ difference. We identify a valence-like 
component of s(x) which is balanced by a δ-function contribution to s̄(x) at x = 0, so that the integrals 
of s and s̄ over the experimentally accessible region x > 0 are not equal. Using a regularization procedure 
that preserves chiral symmetry and Lorentz invariance, we find that existing data limit the integrated 
value of the second moment of the asymmetry to the range −0.07 × 10−3 ≤ 〈x(s − s̄)〉 ≤ 1.12 × 10−3 at 
a scale of Q 2 = 1 GeV2. This is too small to account for the NuTeV anomaly and of the wrong sign to 
enhance it.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The nature of the quark–antiquark (qq̄) sea, which complements 
the three-valence quark structure of the proton, continues to puz-
zle and surprise us, as new generations of experiments provide 
deeper insights into its dynamical origins. From the early sim-
ple expectations of a featureless, virtual sea consisting of qq̄ pairs 
generated by gluon radiation in perturbative quantum chromo-
dynamics (QCD), a major paradigm shift occurred with the ob-
servation [1–4] of a predicted [5] large asymmetry between d̄
and ū quarks in the proton. This challenged our traditional view 
of the nucleon’s peripheral structure, calling into question long 
held assumptions about the role of nonperturbative physics in un-
derstanding the phenomenology of parton distribution functions 
(PDFs).

With the realization that nonperturbative aspects of QCD were 
vital for understanding the 5-quark Fock state components of the 
nucleon light-front wave function [5–9], an obvious question to 
ask was whether such effects could lead to other nontrivial fea-
tures in the qq̄ sea. An asymmetry between s and s̄ quarks in the 
nucleon, as anticipated by Signal and Thomas [10], was a natu-
ral consequence of SU(3) chiral symmetry breaking in QCD, and 
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speculation later also arose about quark–antiquark asymmetries for 
charm and heavier quarks [11–14]. Similar considerations led to 
questioning the traditional expectations of flavor symmetric polar-
ized sea quarks [15] and even the assumption of charge symmetry 
in the nucleon PDFs [16–18].

Apart from its intrinsic interest, the possible strange quark 
asymmetry, s − s̄, is of great importance in connection with its 
contribution to the Paschos–Wolfenstein ratio and the NuTeV 
anomaly [19], which suggested a surprisingly large value for the 
weak mixing angle, sin2 θW . A positive value of the integrated dif-
ference, or second moment, of the s − s̄ asymmetry

S− ≡ 〈x(s − s̄)〉 =
1∫

0

dx x (s(x) − s̄(x)), (1)

of the order S− ∼ 2 × 10−3, along with other corrections such as 
charge symmetry violation, was found to significantly reduce the 
excess and bring the NuTeV sin2 θW measurement closer to the 
Standard Model value [20].

Unfortunately, a reliable estimate of the strange asymmetry has 
been very difficult to obtain. An analysis of early ν and ν̄ deep-
inelastic scattering (DIS) data from BEBC, CDHS and CDHSW [21]
found a harder s distribution compared with s̄, albeit with a rather 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Loop contributions to the s̄ PDF from (a) kaon rainbow and (b) kaon bub-
ble diagrams, and to the s-quark PDF from (c) hyperon rainbow, (d) tadpole, and 
(e) Kroll–Ruderman diagrams. Nucleons N and hyperons Y = �, � are denoted by 
external and internal solid lines, respectively, and kaons K by dashed lines, with 
crosses ⊗ representing insertions of the vector current. The Kroll–Ruderman dia-
gram with a current insertion on the right-hand vertex is not shown.

large uncertainty, S− ≈ (2 ± 3) × 10−3. More recent experimen-
tal information has come from dimuon production in neutrino–
nucleus reactions at Fermilab by the CCFR [22] and NuTeV [23] col-
laborations, with an NLO analysis finding S− = (1.96 ±1.43) ×10−3

at Q 2 = 16 GeV2 [24].
On the theoretical side, calculations based upon fluctuations 

into meson–baryon Fock components [25–32] have led to a fairly 
wide range of predictions, S− ∼ (−1 to +9) ×10−3, resulting from 
the ad hoc assumptions of those models. Clearly, if one is to make 
reliable predictions for S− , a more systematic approach is needed, 
one which has a more direct connection to the underlying QCD 
theory.

In this Letter we present the first systematic chiral treatment 
of the s − s̄ asymmetry guided by the need to preserve the model 
independent leading nonanalytic (LNA) behavior of the moments 
of the strange PDFs. This work builds upon the unambiguous con-
nection between the kaon cloud of the nucleon and QCD which 
followed the realization [33] that in chiral expansions of moments 
of strange quark PDFs, the coefficients of the LNA terms in the 
kaon mass mK are model independent and can only arise from 
pseudoscalar meson loops. Starting from the most general effec-
tive Lagrangian consistent with the chiral symmetry of QCD, at a 
given order in the chiral expansion a unique set of diagrams can 
be identified and computed systematically [34,35]. The long dis-
tance (mK → 0) effects in such expansions are thus dictated solely 
by chiral symmetry and gauge invariance, while the short distance 
contributions are treated with a particular regularization proce-
dure. The connection with the chiral theory allows us to identify, 
for the first time, a δ-function contribution to the s̄ PDF at x = 0, 
as well as a valence-like component of the s-quark PDF. This result 
complements earlier discussions of δ-function contributions in the 
context of the unpolarized Schwinger term and proton spin sum 
rules [36,37].

Expanding the chiral SU(3) Lagrangian to lowest order, the com-
plete set of diagrams that contribute to s − s̄ is illustrated in Fig. 1. 
The direct couplings to the kaon loops in Fig. 1(a) and (b) con-
tribute to the s̄ PDF, while the s-quark PDF contributions arise 
from the diagrams involving couplings to hyperons illustrated in 
Fig. 1(c)–(e). A general feature of the chiral effective theory con-
strained analyses is the presence of contact terms in Figs. 1(b) 
and (d) that give rise to contributions at zero kaon light-cone 
momentum fractions y = k+/p+ , where k is the four-momentum 
carried by the kaon and p the four-momentum of the proton. 
These are typically not accounted for in model calculations, which 
include only the rainbow diagrams in Figs. 1(a) and (c). The Kroll–
Ruderman (KR) terms represented in Fig. 1(e) are needed to pre-
serve gauge invariance.

The loop contributions to s̄ from the kaon rainbow and kaon 
bubble diagrams can be written as a standard convolution of nu-
cleon → kaon + hyperon splitting functions, f (rbw)

K Y and f (bub)
K , 

with the s̄ PDF in the kaon,

s̄(x) =
(∑

K Y

f (rbw)
K Y +

∑
K

f (bub)
K

)
⊗ s̄K , (2)

where the rainbow terms are summed over K Y = K +�, K +�0

and K 0�+ , and the kaon bubble terms over K = K +, K 0, and ⊗
denotes the convolution [38,39], f ⊗q = ∫ 1

0 dy 
∫ 1

0 dz f j(y) q(z) δ(x −
yz). The s-quark PDF is also a convolution,

s(x) =
∑
Y K

(
f̄ (rbw)

Y K ⊗ sY + f̄ (KR)
Y K ⊗ s(KR)

Y

)

+
∑

K

f̄ (tad)
K ⊗ s(tad)

K , (3)

where f̄ (y) ≡ f (1 − y). The hyperon rainbow contributions f (rbw)
Y K

are again summed over all Y K combinations, and f (KR)
Y K are the 

splitting functions associated with the KR diagrams. The splitting 
functions for the tadpole diagram, Fig. 1(d), are equal to the f (bub)

K
bubble functions from Fig. 1(b). The strange quark hyperon PDFs 
sY , s(KR)

Y and s(tad)
K for the rainbow, KR and tadpole diagrams, re-

spectively, can be related to the u and d PDFs in the proton using 
SU(3) symmetry.

The splitting function f (rbw)
K Y in Eq. (2) for the kaon rainbow 

diagram can be written as a sum of two terms,

f (rbw)
K Y (y) = C2

K Y M
2

(4π f P )2

[
f (on)

Y (y) + f (δ)
K (y)

]
, (4)

where f (on)
Y and f (δ)

K are the on-shell and δ-function contribu-
tions, respectively, M (MY ) are the nucleon (hyperon) masses, 
M = M + MY , and f P is the pseudoscalar meson decay constant. 
The couplings C K Y are given in terms of the SU(3) coefficients D
and F . The on-shell hyperon piece,

f (on)
Y (y) = y

∫
dk2⊥

k2⊥ + [MY − (1 − y)M]2

(1 − y)2 D2
K Y

F (on) , (5)

contributes at y > 0, where D K Y ≡ −[k2⊥ + yM2
Y + (1 − y)m2

K −
y(1 − y)M2]/(1 − y) is the kaon virtuality for an on-shell hy-
peron intermediate state, and F (on) is an ultraviolet regulator func-
tion. The function f (δ)

K , on the other hand, arises from kaons with 
y = 0,

f (δ)
K (y) = 1

M
2

∫
dk2⊥ log�K δ(y) F (δ), (6)

where �K = k2⊥ + m2
K , and F (δ) is the corresponding regulator. 

The K bubble diagram in Fig. 1(b) originates with the Weinberg–
Tomozawa part of the chiral Lagrangian, and has a distribution, 
f (bub)

K , similar to the δ-function part of the rainbow contribution, 
but with a normalization that is independent of the SU(3) cou-
plings,

f (bub)

K + = 2 f (bub)

K 0 = − M
2

(4π f P )2
f (δ)

K . (7)

For the splitting function associated with the hyperon rainbow 
contribution in Eq. (3) one finds
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f (rbw)
Y K (y) = C2

K Y M
2

(4π f P )2

[
f (on)

Y (y) + f (off)
Y (y) − f (δ)

K (y)
]
, (8)

where the first (on-shell) and third (δ-function) terms are as in the 
kaon rainbow contributions, and the hyperon off-shell term is

f (off)
Y (y) = 2

M

∫
dk2⊥

[MY − (1 − y)M]

(1 − y)D K Y
F (off) , (9)

with F (off) the corresponding off-shell regulating function. For the 
KR contributions in Fig. 1(e), necessary for the preservation of 
gauge symmetry [40], one has

f (KR)
Y K (y) = C2

K Y M
2

(4π f P )2

[
− f (off)

Y (y) + 2 f (δ)
K (y)

]
, (10)

so that the rainbow and KR contributions satisfy f (rbw)
Y K + f (KR)

Y K =
f (rbw)

K Y . Finally, the tadpole contribution in Fig. 1(d) is related to the 
bubble term in Eq. (7), f (tad)

K = f (bub)
K . These two conditions guar-

antee that the net strangeness in the nucleon is zero, 〈s − s̄〉 = 0.
To regulate the ultraviolet divergences in the splitting functions 

one introduces a regularization procedure, such as a cutoff [39]
or a phenomenological form factor [41]. Physically, this takes into 
account the finite size of the baryon to which the chiral field cou-
ples [42,43]. Here we adopt the Pauli–Villars (PV) method, which 
preserves the required symmetries and offers many of the advan-
tages of finite range regularization. In this approach one subtracts 
from the point-like amplitudes expressions in which the propaga-
tor mass is replaced by a cutoff mass μ1, so that at large mo-
menta the difference between the amplitudes vanishes [44]. For 
the δ-function term, because both the k− and k2⊥ integrations are 
divergent, a second subtraction, with regulator mass μ2, is neces-
sary to render the integrals finite.

For the valence PDFs of the mesons we use the recent fit by 
Aicher et al. [45], assuming

s̄K + = s̄K 0 = d̄π+ . (11)

The strange quark PDFs in the hyperons are related using SU(3) 
symmetry to the u and d PDFs in the proton,

s� = 1

3
(2u − d), (12)

s�+ = s�0 = d, (13)

for which we use parametrization of Martin et al. [46]. For the KR 
diagrams, the strange PDFs at the K NY vertex are spin dependent. 
They arise because the KR term, which is required by gauge in-
variance in the pseudovector chiral theory, involves pion emission 
or absorption at the vertex which introduces a γ +γ5 coupling. At 
leading order, SU(3) symmetry requires that these spin dependent 
PDFs in the proton are related to the spin-dependent PDFs in the 
proton,

s(KR)
� = 1

3F + D
(2
u − 
d), (14)

s(KR)

�+ = s(KR)

�0 = 1

F − D

d. (15)

The fit from Leader et al. [47] is used for both the polarized PDFs 
and the D and F values to ensure each of the PDFs is normalized 
to unity. Given the potentially significant violations of SU(3) sym-
metry found in Ref. [48], we note that there may be corrections to 
the SU(3) PDF relations (13)–(15) at the 10%–20% level. Finally, for 
the strange PDF at the ppK K vertex of the tadpole diagram, one 
has
Fig. 2. Differential cross section for the best fit to the pp → �X data [49] in the re-
gion y < 0.35 (solid curve, μ1 = 545 MeV), as a function of 1 − y for k⊥ = 75 MeV, 
and for a fit 2σ below the central values (dashed curve, μ1 = 526 MeV).

s(tad)

K + = 1

2
u, (16)

s(tad)

K 0 = d. (17)

With these relations, the only free parameters in the calculation 
are the cutoffs μ1 and μ2, which can be constrained phenomeno-
logically.

The ideal process for constraining μ1 is inclusive � hadropro-
duction, pp → �X . At small values of y and k⊥ the K exchange 
contribution in Fig. 1(a) is expected to dominate, while at higher 
momenta heavier meson and baryon intermediate states, as well 
as multi meson-exchange processes, will become more impor-
tant [41].

In Fig. 2 we compare the available bubble chamber data from 
the CERN proton synchrotron [49] for the lowest available trans-
verse momentum bins. For the differential cross section here the 
current operator corresponds to the total pK + cross section, for 
which we take the constant value σ pK +

tot = (19.9 ± 0.1) mb [50]. 
We find the best fit value for the cutoff μ1 = 545 MeV, which is 
taken to yield an upper limit on the kaon contribution. Contribu-
tions from non-kaonic backgrounds may reduce this upper limit, 
although at these kinematics the effect should not be large. As a 
conservative estimate of the impact of this uncertainty, we also 
consider the fit that is two standard deviations lower, which corre-
sponds to μ1 = 526 MeV. These limits yield a range of momentum 
fractions carried by s̄ quarks in the nucleon from 〈s̄〉 = 3.4 × 10−3

to 5.7 × 10−3.
Because the convolution in Eq. (2) transforms the y = 0 con-

tribution in f (δ)
K to x = 0, in practice the s̄ distribution will not 

provide information on the cutoff μ2. For the s-quark PDF, since 
the convolution in Eq. (3) is expressed in terms of the splitting 
functions evaluated at 1 − y, the f (δ)

K contributions here will be 
transformed to nonzero values of x and appear valence-like. Com-
parison with the x dependence of the s PDF can then constrain the 
value of μ2.

Our strategy is to fix μ1 to the maximum value allowed by 
the comparison with the � production data and obtain the cor-
responding maximum value for μ2 such that the calculated s + s̄
does not exceed the errors on the total phenomenological PDFs, 
(s + s̄)loops ≤ (s + s̄)tot. This is illustrated in Fig. 3, where the indi-
vidual xs and xs̄ PDFs from K loops are compared with the recent 
average x(s + s̄)/2 parametrization from Refs. [51,52]. We see that 
the calculated curves lie below the maximum phenomenological 
values estimated by both the MMHT and NNPDF collaborations.



X.G. Wang et al. / Physics Letters B 762 (2016) 52–56 55
Fig. 3. Comparison between the strange xs (solid red curve) and antistrange xs̄
(dashed blue curve) PDFs from kaon loops, for the cutoff parameters (μ1 = 545 MeV
and μ2 = 600 MeV) that give the maximum total s + s̄, with the upper and lower 
limits of the error bands for x(s + s̄)/2 at Q 2 = 1 GeV2 from the MMHT14 [51]
(black dotted) and NNPDF3.0 [52] (green dot-dashed) global fits.

For a fixed μ1, the allowed range for μ2 with the PV reg-
ularization is mK ≤ μ2 ≤ μmax

2 . At the preferred value found in 
Fig. 2, μ1 = 545 MeV, the upper limit on μ2 is μmax

2 = 600 MeV. 
The corresponding range for the strange asymmetry is −0.07 ×
10−3 ≤ S− ≤ 0.42 × 10−3 at Q 2 = 1 GeV2. Using the lower value, 
μ1 = 526 MeV, reduces the allowed momentum that the s quark 
can carry, and consequently permits a higher upper limit on μ2
that still satisfies the constraint in Fig. 3. The limit in this case 
becomes μmax

2 = 894 MeV, and the range for the strange asymme-
try is −0.01 × 10−3 ≤ S− ≤ 1.12 × 10−3. Combining these limits, 
the strange asymmetry for the maximum allowed variations on 
μ1 and μ2 consistent with the available data lies in the range 
−0.07 × 10−3 ≤ S− ≤ 1.12 × 10−3.

For these extremal S− values, the corresponding shape of 
x(s − s̄) is displayed in Fig. 4. For μ1 = 526 MeV, the asymmetry 
remains positive for all x, peaking at x ≈ 0.15. Interestingly, for this 
case there is no zero crossing at x > 0; conservation of strangeness 
is ensured by the presence of the nonzero contributions from the 
δ-function term f (δ)

K at x = 0. This feature is not present in pre-
vious loop calculations based on kaon loops, which include only 
rainbow diagrams, nor in phenomenological PDF fits. For the pa-
rameters that give the minimal S− value, the x(s − s̄) distribution 
also peaks at x ≈ 0.1, but has a significantly smaller magnitude. 
Furthermore, the distribution becomes negative for x � 0.2, which 
leads to the strong cancellation with the positive distribution at 
smaller x.

To assess the impact of these asymmetries on the NuTeV 
anomaly and the extraction of the weak mixing angle, we fold 
the calculated distributions with the acceptance functional for the 
NuTeV data [23]. Varying the μ1 and μ2 parameters over their 
maximally allowed range, we find a correction, 
(sin2 θW ), to 
the weak angle from the strange asymmetry of −7.7 × 10−4 ≤

(sin2 θW ) ≤ −6.7 ×10−7 at Q 2 = 10 GeV2. Remarkably, for all ac-
ceptable values of the cutoff parameters, the correction 
(sin2 θW )

remains negative. While this has the same sign as that needed to 
reduce the NuTeV discrepancy, the small numerical values that we 
find reduce the NuTeV anomaly by less than 0.5 σ . Had the S−
contribution been large and negative, it would have enhanced the 
NuTeV anomaly and further underscored the possibility of physics 
beyond the Standard Model.

We have also considered contributions to the asymmetry from 
kaon loops accompanied by decuplet hyperons, such as the �∗ . 
Fig. 4. Strange quark asymmetry x(s − s̄) at Q 2 = 1 GeV2 (solid blue curves) and 
evolved to Q 2 = 10 GeV2 (dashed red curves). The upper (lower) curves correspond 
to the maximum (minimum) value for S− = 1.12 × 10−3 (−0.07 × 10−3), for cutoff 
parameters μ1 = 526 MeV, μ2 = 894 MeV (μ1 = 545 MeV, μ2 = mK ).

Any contribution to S− from these is tempered by the need to re-
duce the cut-off for the octet component so that the constraint on 
s + s̄ is still respected. As a result, for the range of PV cutoffs con-
sidered here we find the net effect of the decuplet to be rather 
small. Inclusion of higher mass mesons, such as the strange vec-
tor K ∗ mesons [27,28], goes beyond the chiral theory framework 
and these are more naturally treated as short-distance contribu-
tions, which should not be added incoherently to other DIS pro-
cesses.

The virtue of the current study is that we have for the first time 
computed the full set of diagrams to lowest order within the effec-
tive chiral theory. Our analysis has revealed a new contribution to 
the s̄ PDF proportional to a δ-function at x = 0, along with a small 
but nonzero valence-like component of the strange PDF. No phe-
nomenological global PDF fits currently incorporate this physics, 
and these may need to be generalized to incorporate more flexible 
parametrizations that allow for such behavior. With the conser-
vative uncertainties chosen for the parameters, we believe this is 
the most reliable estimate to date of the chiral correction to the 
NuTeV extraction of sin2 θW from the strange quark asymmetry. 
Ultimately, s − s̄ should be determined empirically and, in the ab-
sence of high precision ν and ν̄ data on protons, the best hope for 
better constraints may lie with the associated production of charm 
with weak bosons at the LHC [53].
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