The Efficient and Selective Catalytic Oxidation of Terpenoids and Aromatic Hydrocarbons by the P450 Monooxygenase CYP101B1

Emma Ashleigh Hall

Supervisors: Dr Stephen Bell Associate Professor Hugh Harris

August 2015

Thesis submitted for the degree of Master of Philosophy

SCHOOL OF PHYSICAL SCIENCES

Contents

Abstract v			
1	Intr	roduction to Cytochrome P450 enzymes and CYP101B1	2
	1.1	General Overview of P450s	2
	1.2	The CYPome of <i>Novosphingobium aromaticivorans</i>	7
2	Exp	perimental	10
	2.1^{-1}	General	10
	2.2	Whole-cell turnovers	12
	2.3	Enzyme Purification	13
		2.3.1 Purification of CYP101B1	13
		2.3.2 Purification of ArR	14
		2.3.3 Purification of Arx	14
	2.4	Spin-State Shifts	15
	2.5	Dissociation constants	15
	2.6	<i>In-vitro</i> turnovers and NADH consumption rates	17
3	\mathbf{Ass}	essing the Substrate Range of CYP101B1	19
	3.1	Introduction	19
	3.2	Norisopreniod Results	20
	3.3	Norisoprenoid Discussion	28
	3.4	Aromatic Substrate Results	29
	3.5	Aromatic Substrate Discussion	32
	3.6	Summary	33
4	Ana	alysis of Terpenoids as Substrates for CYP101B1	35
	4.1	Introduction	35
	4.2	Results	36
	4.3	Discussion	47
5	Oxi	dation of Monoterpenoid Acetates by CYP101B1	50

	5.1 Introduction \ldots	. 50
	5.2 Results	. 50
	5.3 Discussion	. 57
6	The Oxidation of Two-ring Aromatics by CYP101B1	60
	6.1 Introduction	. 60
	6.2 Results	. 60
	6.3 Discussion	. 69
7	Conclusion and Future Directions	73
\mathbf{Li}	st of Figures	80
\mathbf{Li}	st of Tables	86
A	Retention Times of Substrates and Products	87
В	Spin State Shifts	90
С	Dissociation Constant Analysis	95
D	In vitro NADH Consumption Rates	98
\mathbf{E}	GC-MS and HPLC Analysis of Turnovers	100
\mathbf{F}	NMR Data of Products	106
	F.1 β -Ionone	. 106
	F.2 α -Ionone	. 111
	F.3 β -Damascone	. 118
	F.4 α -Methyl ionone	. 123
	F.5 α -Ionol	. 127
	F.6 β -Ionol	. 134
	F.7 Phenylcyclohexane $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. 139
	F.8 Camphor	. 141
	F.9 1,8-Cineole	. 144
	F.10 1,4-Cineole	. 155
	F.11 (+)-Fenchone \ldots	. 160
	F.12 $(1R)$ - $(-)$ -Nopol	. 163
	F.13 cis-Jasmone \ldots	. 170
	F.14 2-Adamantanol	. 176
	F.15 2-Adamantanone	. 176

F.25 $(1,1^2$ -biphenyl)-4-methanol210F.26 Diclofenac212	2
F.25 $(1,1)$ -biphenyl)-4-methanol $\ldots \ldots 210$	J
	h
F.24 4-Methyl biphenyl	3
F.23 3-Methyl biphenyl	3
F.22 2,7-Dimethyl naphthalene	2
F.21 (+)-Sclareolide $\ldots \ldots 199$)
F.20 Myrtenyl acetate	3
F.19 5-Norbornen-2-yl acetate)
F.18 Isobornyl acetate	3
F.17 Bornyl acetate	1
F.16 Fenchyl acetate	7
	F.16 Fenchyl acetate 177 F.17 Bornyl acetate 181 F.18 Isobornyl acetate 180 F.19 5-Norbornen-2-yl acetate 190 F.20 Myrtenyl acetate 193 F.21 (+)-Sclareolide 193 F.22 2,7-Dimethyl naphthalene 202 F.23 3-Methyl biphenyl 206 F.24 4-Methyl biphenyl 208

Abstract

CYP101B1, from the bacterium Novosphingobium aromaticivorans, has been shown to bind and oxidise β -ionone to 3-hydroxy- β -ionone and camphor to 5-exo-hydroxycamphor.¹ Whole-cell reactions of CYP101B1 have been observed to turn blue, which suggests indole oxidation to indigo.¹⁻³ Therefore, CYP101B1 has the potential to act as a biocatalyst for the oxidation of a broad range of substrates.

 β -Ionone and other similar norisoprenoids were initially tested to determine which structural features were important for binding to CYP101B1. Small adjustments to the β -ionone structure indicated the butenone side chain was important for tight substrate binding to CYP101B1. The cyclohexene component of β -ionone is also a better fit for the active site than linear or aromatic analogues. Further testing of aromatic substrates, such as indole, phenylcyclohexane and *p*-cymene, indicated that CYP101B1 binds substituted aromatics such as phenylcyclohexane and could produce products in a reasonable yield. Smaller aromatics, such as *p*-cymene, could still bind and react with CYP101B1, but the activities and product levels generated were lower than the larger two-ring aromatics.

CYP101B1 oxidation of camphor and other terpenoid based substrates was studied. However, these substrates had large dissociation constants and low product formation rates due to a larger proportion of the NADH being used to reduce oxygen to hydrogen peroxide or water instead of products. Multiple oxidation products were formed with these substrates, which was most likely due to their poor fit in the CYP101B1 active site. This was not an ideal outcome, so the substrates or enzyme require modification to improve the reactivity and selectivity of the biocatalyst.

Terpenoid substrates were modified to include an acetate side chain, resulting in a structure more similar to the norisoprenoids. This greatly improved the binding and activity with CYP101B1, and resulted in production of a single oxidation product in the *in vitro* turnovers. The ketone moiety of the acetate group leads to better binding to CYP101B1 and results in more desirable catalytic properties.

The affinity of CYP101B1 for aromatic structures was determined using a range of biphenyl and naphthalene derivatives. These structures exhibited reasonably tight binding; however, moderate NADH consumption rates, product formation rates and coupling between the substrate and CYP101B1 were observed. Therefore, the CYP101B1 active site favours more polar substrates. Activity for hydrophobic substrates could be increased by modifying CYP101B1 to remove specific contact between a hydrophilic amino acid side chain and the ketone group, which is important in the binding of norisoprenoids and monoterpenoid acetate substrates. The turnovers had high product selectivity and, in most cases, only a single product was generated. The drug, diclofenac, was reacted with CYP101B producing the metabolite, 4`-hydroxydiclofenac, in reasonable yield.

CYP101B1 is a useful biocatalyst for selective C-H bond oxidation of norisoprenoids and terpenoid acetates. It also shows potential for other substrates if CYP101B1 is modified or with the addition of an ester protecting group onto the target molecule.

Statement

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this cop of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed:

Date:

Acknowledgments

I would like to thank Stephen Bell for being a extremely helpful supervisor over the two years of my project. Thanks goes to Hugh Harris who also provided help whenever I asked.

The Bell group and Pyke group also deserve thanks for all their support and friendship during my masters which meant I always enjoyed my time in the lab.

I would also like to thank my family and friends for always encouraging me to be the person I can be and to preform to the best of my abilities.

Special thanks to Michael, who put up with proof reading my thesis and all the other ups and downs associated with doing a research degree and writing a thesis.

List of Figures

1.1	Structure of a heme cofactor	2
1.2	The different classes of electron transfer proteins used by P450s $$	3
1.3	The catalytic cycle of P450 enzymes	4
1.4	The radical recombination mechanism of P450 enzymes	4
1.5	Epoxidation and group migration reactions	5
1.6	Aromatic oxidation by the NIH shift	5
1.7	Two main uncoupling reactions of P450s	6
2.1	The spin state shifts of $P450_{cam}$	16
2.2	An example of a NADH turnover assay	17
3.1	Aromatics, Norisoprenoids and related substrates	19
3.2	The products from the α -ionone and β -ionone in vivo turnovers	21
3.3	GC-MS analysis of CYP101B1 turnovers of α -ionone	21
3.4	Spin state shifts and dissociation constants for α -ionone and	
	β -damascone	23
3.5	The products produced from the $\beta\text{-damascone turnovers}$	24
3.6	GC-MS analysis of CYP101B1 $in~vivo$ turnover of $\beta\text{-damascone}$	24
3.7	GC-MS analysis of CYP101B1 $in\ vitro$ turnover of pseudoionone	25
3.8	Spin state shifts for selected norisoprenoid compounds	26
3.9	Products of α -methyl ionone, α -ionol and β -ionol $\ldots \ldots \ldots$	27
3.10	Dissociation constants for selected norisoprenoid compounds .	28
3.11	A whole-cell turnover after the addition of indole \ldots .	29
3.12	Conversion of indole to indigo mediated by P450	30
3.13	The reactions of Phenyl cyclohexane and p -cymene with CYP101B	31 31
3.14	Spin state shifts and dissociation constants for phenylcyclo-	
	hexane and p -cymene	31
3.15	GC-MS analysis of in vitro CYP101B1 turnover of p -Cymene .	32
4.1	The terpenoid substrates tested with CYP101B1	35
4.2	Products from the turnovers of the camphor isomers	36

4.3	GC-MS analysis of CYP101B1 turnovers of $(1R)$ - $(+)$ -camphor	
	and $(1S)$ - $(-)$ -camphor	37
4.4	GC-MS analysis of CYP101B1 in vivo turnover of (+)-fenchone	38
4.5	The <i>in vitro</i> turnover of (+)-Fenchone with CYP101B1	39
4.6	The products from the 1,8-cineole whole-cell turnover	40
4.7	GC-MS analysis of CYP101B1 turnovers of 1,8-cineole	40
4.8	The identified product from the 1,4-cineole turnovers	41
4.9	GC-MS analysis of CYP101B1 in vitro turnover of 1,4-cineole	42
4.10	The products from the 1-adamantanol, 2-adamantanol and 2-	
	adamantanone whole-cell turnovers	43
4.11	The structures of carvone, α - and β -pinene	43
4.12	The products isolated from the $(1R)$ - $(-)$ -nopol in vivo turnover	44
4.13	GC-MS analysis of CYP101B1 turnovers of $(1R)\mbox{-}(-)\mbox{-}nopol$	45
4.14	The products isolated from <i>cis</i> -jasmone oxidation	45
4.15	GC-MS analysis of CYP101B1 in vitro turnover of cis-jasmone	46
4.16	The single product isolated from $(+)$ -sclareolide oxidation with	
	the β -ionone-like backbone in red	46
51	The monotorponoid acetate substrates tested with CVP101B1	51
5.2	GC-MS analysis of CVP101B1 <i>in vivo</i> turnover of nervl acetate	52
5.3	GC-MS analysis of CVP101B1 <i>in vivo</i> turnover of fenchyl acetate	52
5.4	The single product produced from the whole-cell turnover of	02
0.1	fenchyl acetate	53
5.5	Isobornyl acetate and bornyl acetate products from the <i>in vitro</i>	00
0.0	turnovers with CYP101B1	53
5.6	Spin state shifts for selected terpenoid acetate and parent ter-	
	penoid substrates	55
5.7	Myrtenyl acetate products from the <i>in vivo</i> turnover	56
5.8	GC-MS analysis of CYP101B1 turnovers of myrtenyl acetate .	57
5.9	Showing the site of oxidation for the monoterpenoid acetates	
	and β -ionone which is 6 or 7 carbons away from the ketone	
	group	58
61	The NADH consumption of CVP101B1 turnover of naphthalene	61
0.1 6.2	Aromatic Substratos tostad with CVP101B1	62
6.3	1-methyl nanhthalene and 2-methyl nanhthalene products from	02
0.0	the <i>in vitro</i> turnovers	63
6.4	Spin state shifts for selected aromatic compounds	64
6.5	2.7-Dimethyl naphthalene products from the <i>in vitro</i> and <i>in</i>	
0.0	vivo turnovers	65

6.6	HPLC analysis of CYP101B1 turnovers with 2,7-dimethyl naph- thalene	65
6.7	1-ethyl naphthalene and 2-ethyl naphthalene products from the <i>in vitro</i> turnovers	66
6.8	Products from the turnovers of 2-methyl biphenyl and 3-methyl biphenyl	67
6.9	Reaction scheme for the oxidation of 4-methyl biphenyl via a NIH shift roarrangement	68
6.10	HPLC analysis of <i>in vitro</i> CYP101B1 turnovers for 4-methyl biphonyl (black) and (1.1' biphonyl) 4 methanol (rod)	68
6.11	4-Methyl biphenyl and (1,1'-biphenyl)-4-methanol products from the <i>in vitro</i> turnovors	60
6.12	Product from the turnover over of diclofenac	69
6.13	Reaction scheme for the oxidation of naphthalene via a NIH shift rearrangement.	70
B.1	Spin state shifts for selected substrates	91
C.1	Dissociation constants for selected substrates	95
D.1	NADH consumption rates for selected substrates	98
E.1	GC-MS analysis of <i>in vitro</i> CYP101B1 turnovers of 1-adamantance 2-adamantanol and 2-adamantanone co-eluted	ol, 100
E.1 E.2	GC-MS analysis of <i>in vitro</i> CYP101B1 turnovers of 1-adamantano 2-adamantanol and 2-adamantanone co-eluted \ldots \ldots \ldots \ldots GC-MS analysis of <i>in vivo</i> CYP101B1 turnover of α -ionol \ldots \ldots	ol, 100 101
E.1 E.2 E.3	GC-MS analysis of <i>in vitro</i> CYP101B1 turnovers of 1-adamantano 2-adamantanol and 2-adamantanone co-eluted \ldots \ldots \ldots GC-MS analysis of <i>in vivo</i> CYP101B1 turnover of α -ionol \ldots \vdots GC-MS analysis of <i>in vivo</i> CYP101B1 turnover of β -ionol \ldots \vdots	ol, 100 101 101
E.1 E.2 E.3 E.4	GC-MS analysis of <i>in vitro</i> CYP101B1 turnovers of 1-adamantano 2-adamantanol and 2-adamantanone co-eluted \ldots \ldots \ldots GC-MS analysis of <i>in vivo</i> CYP101B1 turnover of α -ionol \ldots \ldots GC-MS analysis of <i>in vivo</i> CYP101B1 turnover of β -ionol \ldots \ldots GC-MS analysis of <i>in vivo</i> CYP101B1 turnover of α -methyl ionone \ldots \ldots \ldots	ol, 100 101 101 102
E.1 E.2 E.3 E.4 E.5	GC-MS analysis of <i>in vitro</i> CYP101B1 turnovers of 1-adamantano 2-adamantanol and 2-adamantanone co-eluted \ldots \ldots \vdots GC-MS analysis of <i>in vivo</i> CYP101B1 turnover of α -ionol \ldots \vdots GC-MS analysis of <i>in vivo</i> CYP101B1 turnover of β -ionol \ldots \vdots GC-MS analysis of <i>in vivo</i> CYP101B1 turnover of α -methyl ionone \ldots \ldots \ldots \ldots \ldots \ldots \vdots HPLC analysis of <i>in vitro</i> CYP101B1 turnover of 1-methyl naphthalene co-eluted with 1-naphthyl methanol \ldots \ldots	ol, 100 101 101 102 102
E.1 E.2 E.3 E.4 E.5 E.6	GC-MS analysis of <i>in vitro</i> CYP101B1 turnovers of 1-adamantano 2-adamantanol and 2-adamantanone co-eluted	bl, 100 101 101 102 102
 E.1 E.2 E.3 E.4 E.5 E.6 E.7 	GC-MS analysis of <i>in vitro</i> CYP101B1 turnovers of 1-adamantano 2-adamantanol and 2-adamantanone co-eluted	bl, 100 101 101 102 102 103
 E.1 E.2 E.3 E.4 E.5 E.6 E.7 E.8 	GC-MS analysis of <i>in vitro</i> CYP101B1 turnovers of 1-adamantano 2-adamantanol and 2-adamantanone co-eluted \dots \dots \square GC-MS analysis of <i>in vivo</i> CYP101B1 turnover of α -ionol \dots \square GC-MS analysis of <i>in vivo</i> CYP101B1 turnover of β -ionol \dots \square GC-MS analysis of <i>in vivo</i> CYP101B1 turnover of α -methyl ionone \dots \dots \dots \dots \square HPLC analysis of <i>in vitro</i> CYP101B1 turnover of 1-methyl naphthalene co-eluted with 1-naphthyl methanol \dots \square HPLC analysis of <i>in vitro</i> CYP101B1 turnover of 2-methyl naphthalene co-eluted with 2-naphthyl methanol \dots \square HPLC analysis of <i>in vitro</i> CYP101B1 turnover of 1-ethyl naph- thalene co-eluted with 1-naphthyl methanol \square \square	bl, 100 101 101 102 102 103
 E.1 E.2 E.3 E.4 E.5 E.6 E.7 E.8 E.9 	GC-MS analysis of <i>in vitro</i> CYP101B1 turnovers of 1-adamantano 2-adamantanol and 2-adamantanone co-eluted $\dots \dots \dots \dots$ GC-MS analysis of <i>in vivo</i> CYP101B1 turnover of α -ionol \dots GC-MS analysis of <i>in vivo</i> CYP101B1 turnover of β -ionol \dots GC-MS analysis of <i>in vivo</i> CYP101B1 turnover of α -methyl ionone $\dots \dots \dots$	bl, 100 101 101 102 102 103 103 104
 E.1 E.2 E.3 E.4 E.5 E.6 E.7 E.8 E.9 E.10 	GC-MS analysis of <i>in vitro</i> CYP101B1 turnovers of 1-adamantano 2-adamantanol and 2-adamantanone co-eluted $\dots \dots \dots \dots$ GC-MS analysis of <i>in vivo</i> CYP101B1 turnover of α -ionol \dots GC-MS analysis of <i>in vivo</i> CYP101B1 turnover of β -ionol \dots GC-MS analysis of <i>in vivo</i> CYP101B1 turnover of α -methyl ionone $\dots \dots \dots$	bl, 100 101 101 102 102 103 103 104
 E.1 E.2 E.3 E.4 E.5 E.6 E.7 E.8 E.9 E.10 	GC-MS analysis of <i>in vitro</i> CYP101B1 turnovers of 1-adamantano 2-adamantanol and 2-adamantanone co-eluted	bl, 100 101 102 102 103 103 104 104

F.2	$^1\mathrm{H}$ NMR of 3-hydroxy- $\beta\text{-ionone}$
F.3	$^{13}\mathrm{C}$ NMR of 3-hydroxy- $\beta\text{-ionone}$
F.4	$^1\mathrm{H}$ NMR of 4-hydroxy- β -ionone $\hfill \ldots$ $\hfill \ldots$ $\hfill \ldots$ $\hfill \ldots$ 109
F.5	$^{13}\mathrm{C}$ NMR of 4-hydroxy- $\beta\text{-ionone}$
F.6	$\alpha \text{-Ionone products}$
F.7	¹ H NMR of <i>trans</i> -3-hydroxy- α -ionone
F.8	$^{13}\mathrm{C}$ NMR of trans-3-hydroxy- $\alpha\text{-ionone}$
F.9	¹ H NMR of 3-oxo- α -ionone
F.10	$^{13}\mathrm{C}$ NMR of 3-oxo- α -ionone $\hfill \ldots$ \hfill \ldots $\hfill \ldots$ $\hfill \ldots$ $\hfill \ldots$ $\hfill \ldots$
F.11	¹ H NMR of <i>cis</i> -3-hydroxy- α -ionone
F.12	$^{13}\mathrm{C}$ NMR of cis -3-hydroxy- α -ionone
F.13	$\beta\text{-Damascone products}$
F.14	$^1\mathrm{H}$ NMR of 3-hydroxy- β -damascone
F.15	$^{13}\mathrm{C}$ NMR of 3-hydroxy- β -damascone $~$
F.16	$^1\mathrm{H}$ NMR of 4-hydroxy- β -damascone
F.17	$^{13}\mathrm{C}$ NMR of 4-hydroxy- β -damascone $\hfill \ldots \hfill \ldots \hf$
F.18	α -methyl ionone products
F.19	¹ H NMR of 3-oxo- α -methyl ionone
F.20	$^{13}\mathrm{C}$ NMR of 3-oxo- α -methyl ionone
F.21	¹ H NMR of <i>trans</i> -3-hydroxy- α -methyl ionone
F.22	α -Ionol products
F.23	¹ H NMR of <i>trans</i> -3-hydroxy- α -ionol
F.24	13 C NMR of <i>trans</i> -3-hydroxy- α -ionol
F.25	¹ H NMR of 3-oxo- α -ionol
F.26	$^{13}\mathrm{C}$ NMR of 3-oxo- $\alpha\text{-ionol}$
F.27	¹ H NMR of <i>cis</i> -3-hydroxy- α -ionol
F.28	¹³ C NMR of <i>cis</i> -3-hydroxy- α -ionol
F.29	β -Ionol products
F.30	¹ H NMR of 3-hydroxy- β -ionol
F.31	$^{13}\mathrm{C}$ NMR of 3-hydroxy- β -ionol
F.32	¹ H NMR of 4-hydroxy- β -ionol
F.33	13 C NMR of 4-hydroxy- β -ionol
F.34	Phenylcyclohexane product
F.35	¹ H NMR of <i>trans</i> -4-phenylcyclohexanol
F.36	Camphor products
F.37	¹ H NMR of 9-hydroxy-(1R)-(+)-camphor $\ldots \ldots \ldots \ldots \ldots \ldots 142$
F.38	13 C NMR of 9-hydroxy-(1R)-(+)-camphor
F.39	1,8-Cineole products
F.40	¹ H NMR of 3-oxo-1,8-cineole \ldots 146
F.41	¹³ C NMR of 3-oxo-1,8-cineole
F.42	¹ H NMR of 3- <i>endo</i> -hydroxy-1,8-cineole

F.43	13 C NMR of 3- <i>endo</i> -hydroxy-1,8-cineole	149
F.44	COSY of 3- <i>endo</i> -hydroxy-1,8-cineole	150
F.45	¹ H NMR of 3- <i>endo</i> -hydroxy-5-oxo-1,8-cineole	151
F.46	¹³ C NMR of 3- <i>endo</i> -hydroxy-5-oxo-1,8-cineole	152
F.47	¹ H NMR of 3,5- <i>endo</i> -dihydroxy-1,8-cineole	153
F.48	¹³ C NMR of 3,5- <i>endo</i> -dihydroxy-1,8-cineole	154
F.49	1,4-Cineole product	155
F.50	¹ H NMR of 6- <i>endo</i> -hydroxy-1,4-cineole	156
F.51	13 C NMR of 6- <i>endo</i> -hydroxy-1,4-cineole	157
F.52	COSY NMR of 6-endo-hydroxy-1,4-cineole	158
F.53	DPFGSE NOESY for 6- <i>endo</i> -hydroxy-1,4-cineole for the exo	
	H6 signal	159
F.54	(+)-fenchone product	160
F.55	¹ H NMR of 5- <i>exo</i> -hydroxy-(+)-fenchone $\dots \dots \dots \dots$	161
F.56	13 C NMR of 5- <i>exo</i> -hydroxy-(+)-fenchone	162
F.57	(1R)- $(-)$ -Nopol products	163
F.58	¹ H NMR of 1-hydroxy- $(1R)$ - $(-)$ -nopol	164
F.59	¹³ C NMR of 1-hydroxy- $(1R)$ - $(-)$ -nopol	165
F.60	COSY NMR of 1-hydroxy- $(1R)$ - $(-)$ -nopol	166
F.61	¹ H NMR of 4-oxo- $(1R)$ - $(-)$ -nopol	167
F.62	¹³ C NMR of 4-oxo- $(1R)$ - $(-)$ -nopol	168
F.63	COSY NMR of 4-oxo- $(1R)$ - $(-)$ -nopol	169
F.64	cis-jasmone products	170
F.65	¹ H NMR of 4-hydroxy- cis -jasmone	171
F.66	¹³ C NMR of 4-hydroxy- <i>cis</i> -jasmone	172
F.67	COSY NMR of 4-hydroxy- <i>cis</i> -jasmone	173
F.68	¹ H NMR of 11-hydroxy- <i>cis</i> -jasmone	174
F.69	13 C NMR of 11-hydroxy- <i>cis</i> -jasmone	175
F.70	2-adamantanol products	176
F.71	2-adamantanone products	176
F.72	Fenchyl acetate product	177
F.73	¹ H NMR of 5- <i>exo</i> -hydroxy-fenchyl acetate	178
F.74	13 C NMR of 5- <i>exo</i> -hydroxy-fenchyl acetate	179
F.75	COSY NMR of 5- <i>exo</i> -hydroxy-fenchyl acetate	180
F.76	Bornyl acetate product	181
F.77	¹ H NMR of 9-hydroxybornyl acetate $\dots \dots \dots \dots \dots \dots$	182
F.78	13 C NMR of 9-hydroxybornyl acetate $\ldots \ldots \ldots \ldots \ldots$	183
F.79	DPFGSE NOESY of 9-hydroxybornyl acetate for the exo H2	
	signal	184
F.80	DPFGSE NOESY of 9-hydroxybornyl acetate for the exo H5	
	$\operatorname{signal} \ldots \ldots$	185

F.81 Isobornyl acetate product $\ldots\ldots\ldots\ldots\ldots\ldots\ldots$ 186
F.82 ¹ H NMR of 5- <i>exo</i> -hydroxyisobornyl acetate
F.83 ¹³ C NMR of 5- <i>exo</i> -hydroxyisobornyl acetate
F.84 COSY NMR of 5-exo-hydroxyisobornyl acetate
F.85 5-Norbornen-2-yl acetate product
F.86 ¹ H NMR of 5-epoxynorborane-2-yl acetate $\ldots \ldots \ldots \ldots 191$
F.87 $^{13}\mathrm{C}$ NMR of 5-epoxynorborane-2-yl acetate
F.88 Myrtenyl acetate products $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 193$
F.89 $^1\mathrm{H}$ NMR of 4-oxomyrtenyl acetate
F.90 $^{13}\mathrm{C}$ NMR of 4-oxomyrtenyl acetate $~\ldots~\ldots~\ldots~\ldots~$ 195
F.91 ¹ H NMR of 4- <i>cis</i> -hydroxymyrtenyl acetate $\ldots \ldots \ldots \ldots 196$
F.92 $^{13}\mathrm{C}$ NMR of 4-cis-hydroxymyrtenyl acetate
F.93 COSY NMR of 4-cis-hydroxymyrtenyl acetate
F.94 (+)-Sclareolide $\dots \dots \dots$
F.95 ¹ H NMR of (S)-3-(+)-hydroxysclareolide
F.96 ¹³ C NMR of (S) -3- $(+)$ -hydroxysclareolide
F.97 2,7-Dimethyl naphthalene products \ldots
F.98 ¹ H NMR of 2-(7-mehtylnaphthyl) methanol \ldots \ldots \ldots \ldots 203
F.99 ¹ H NMR of 2-carboxy-7-methylnaphthalene \ldots
F.100 ¹³ C NMR of 2-carboxy-7-methylnaphthalene
F.1013-methyl biphenyl product \ldots \ldots \ldots \ldots \ldots \ldots \ldots 206
$\rm F.102^{1}H$ NMR of 3-methanol biphenyl
F.1034-methyl biphenyl product \ldots \ldots \ldots \ldots \ldots \ldots \ldots 208
$\rm F.104^{1}H$ NMR of 4'-hydroxy-4-methyl biphenyl $\hfill \ldots \hfill \ldots \hfill 209$
F.105(1,1'-biphenyl)-4-methanol product $\dots \dots \dots$
$\rm F.106^{1}H$ NMR of (4'-hydroxy-1,1'-biphenyl)-4-methanol 211
F.107 diclofenac product $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 212$

List of Tables

3.1	Substrate binding, steady state kinetic data and coupling data for norisoprenoids and selected aromatics with CYP101B1	20
4.1	Terpenoid substrate binding, steady state kinetic data and coupling with CYP101B1.	37
5.1	Monoterpenoid acetate substrate binding, steady state kinetic data and coupling with CYP101B1.	54
6.1 6.2	Naphthalene and biphenyl derivatives steady state kinetic data with CYP101B1	61 63
A.1	The GC-MS m/z and retention times and/or HPLC retention times of substrates and isolated products	87
B.1	Spin state shifts for other substrates with CYP101B1 \ldots .	90