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Abstract

CYP101B1, from the bacterium Novosphingobium aromaticivorans, has been
shown to bind and oxidise $-ionone to 3-hydroxy-g-ionone and camphor to
5-exo-hydroxycamphor.’ Whole-cell reactions of CYP101B1 have been ob-
served to turn blue, which suggests indole oxidation to indigo.'* Therefore,
CYP101B1 has the potential to act as a biocatalyst for the oxidation of a
broad range of substrates.

[B-Tonone and other similar norisoprenoids were initially tested to determine
which structural features were important for binding to CYP101B1. Small
adjustments to the S-ionone structure indicated the butenone side chain was
important for tight substrate binding to CYP101B1. The cyclohexene com-
ponent of [-ionone is also a better fit for the active site than linear or aro-
matic analogues. Further testing of aromatic substrates, such as indole,
phenylcyclohexane and p-cymene, indicated that CYP101B1 binds substi-
tuted aromatics such as phenylcyclohexane and could produce products in a
reasonable yield. Smaller aromatics, such as p-cymene, could still bind and
react with CYP101B1, but the activities and product levels generated were
lower than the larger two-ring aromatics.

CYP101B1 oxidation of camphor and other terpenoid based substrates was
studied. However, these substrates had large dissociation constants and low
product formation rates due to a larger proportion of the NADH being used
to reduce oxygen to hydrogen peroxide or water instead of products. Multiple
oxidation products were formed with these substrates, which was most likely
due to their poor fit in the CYP101B1 active site. This was not an ideal
outcome, so the substrates or enzyme require modification to improve the
reactivity and selectivity of the biocatalyst.

Terpenoid substrates were modified to include an acetate side chain, resulting
in a structure more similar to the norisoprenoids. This greatly improved the
binding and activity with CYP101B1, and resulted in production of a single
oxidation product in the in vitro turnovers. The ketone moiety of the acetate
group leads to better binding to CYP101B1 and results in more desirable
catalytic properties.

The affinity of CYP101B1 for aromatic structures was determined using
a range of biphenyl and naphthalene derivatives. These structures exhib-
ited reasonably tight binding; however, moderate NADH consumption rates,
product formation rates and coupling between the substrate and CYP101B1
were observed. Therefore, the CYP101B1 active site favours more polar sub-



strates. Activity for hydrophobic substrates could be increased by modifying
CYP101B1 to remove specific contact between a hydrophilic amino acid side
chain and the ketone group, which is important in the binding of noriso-
prenoids and monoterpenoid acetate substrates. The turnovers had high
product selectivity and, in most cases, only a single product was generated.
The drug, diclofenac, was reacted with CYP101B producing the metabolite,
4 -hydroxydiclofenac, in reasonable yield.

CYP101B1 is a useful biocatalyst for selective C—H bond oxidation of noriso-
prenoids and terpenoid acetates. It also shows potential for other substrates
if CYP101B1 is modified or with the addition of an ester protecting group
onto the target molecule.
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