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Discovery rates for all metals, including gold, are declining, the cost per significant discovery is increasing
sharply, and the economic situation of the industry is one of low base rate. The current hierarchical
structure of the exploration and mining industry makes this situation difficult to redress. Economic
geologists can do little to influence the required changes to the overall structure and philosophy of an
industry driven by business rather than geological principles. However, it should be possible to follow
the lead of the oil industry and improve the success rate of greenfield exploration, necessary for the next
group of lower-exploration-spend significant mineral deposit discoveries.

Here we promote the concept that mineral explorers need to carefully consider the scale at which their
exploration targets are viewed. It is necessary to carefully assess the potential of drill targets in terms of
terrane to province to district scale, rather than deposit scale, where most current economic geology
research and conceptual thinking is concentrated. If orogenic, IRGD, Carlin-style and IOCG gold-rich
systems are viewed at the deposit scale, they appear quite different in terms of conventionally adop-
ted research parameters. However, recent models for these deposit styles show increasingly similar
source-region parameters when viewed at the lithosphere scale, suggesting common tectonic settings. It
is only by assessing individual targets in their tectonic context that they can be more reliably ranked in
terms of potential to provide a significant drill discovery. Targets adjacent to craton margins, other
lithosphere boundaries, and suture zones are clearly favoured for all of these gold deposit styles, and
such exploration could lead to incidental discovery of major deposits of other metals sited along the
same tectonic boundaries.

� 2015, China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

The most up-to-date available statistics on discovery and
resource inventories for metals indicate that discovery rates are
declining, the cost per discovery is rising steeply, and it takes an
increasing amount of time to bring mines into production
(Schodde, 2014; Zhang et al., 2015). This is particularly true for the
gold exploration industry (Fig. 1; Schodde, 2013). The current
exploration and mining industry structure, with largely
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acquisition-driven majors and poorly-resourced juniors and a his-
torically low proportion of mid-tier companies, makes this situa-
tion difficult to redress (e.g., Groves and Trench, 2014). Several
studies have shown that the industry as an entity is a low base-rate
situation, with close to zero return. There is little economic geol-
ogists can do to influence the overall structure and philosophy of an
industry driven by business principles. There is also little that can
be done to influence an education system that, from anecdotal
evidence, produces graduates less well equipped to deal with the
more pragmatic aspects of mineral exploration (Groves and Trench,
2014). What can be done is influence the nature of greenfield
exploration, necessary for the next group of significant discoveries
required to replenish declining resources. As the oil industry has
done over the past several decades, there is a need for the minerals
industry to increase the percentage of discovery successes by
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Figure 1. Rate of gold deposit discovery relative to exploration expenditure: number of reported discoveries and estimated unreported discoveries (after Schodde, 2013).
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significantly decreasing the number of low-potential targets that
are drilled, after careful consideration of their economic potential in
terms of a regional geological framework. This paper examines the
geological principles behind this type of regional assessment. It
follows on from, although takes a more pragmatic approach than,
previous studies by Hronsky and Groves (2008) and Hronsky et al.
(2012).
2. Importance of scale

Most difficulties experienced inmodern society are caused by an
inability to view critical issues at an appropriately large scale: to
“see the wood for the trees”. Arguably, economic geology also faces
the same problem. As a profession, there is a tendency to view and
classify mineral deposit types at the deposit scale, at least in part
due to the more ready research funding from mining operations,
than from regional exploration groups. Despite an increasing
emphasis on a mineral systems approach at a variety of scales (e.g.,
McCuaig, 2013; McCuaig and Hronsky, 2014), a study of the major
international economic geology journals of the past two years
Figure 2. Key stages and decision points in a mineral exploration program. Province selecti
scale mean that mineral exploration will never reach the feasibility stage.
shows that about 90% of published papers concern district to de-
posit to intra-deposit scale research, with less than 5% having
obvious global application. As highly anomalous metal concentra-
tions, mineral deposits are not simply formed in specific locations
at specific times due to deposit-scale processes, but due to tectonic
processes in an evolving Earth (e.g. Groves et al., 2005). This is
recognised when the exploration process is viewed theoretically as
a logical temporally-staged process at increasingly smaller scales
(Fig. 2). Each target, commonly acquired for reasons outside
this rigorous framework, should thus be viewed in terms of
its larger scale tectonic and temporal setting to access its true po-
tential before an intensive exploration and drilling campaign is
mounted.
3. Scale-dependant concepts for gold deposit styles

Orogenic gold, Intrusion-related gold (IRGD), Carlin-type gold,
and Iron-oxide copper-gold (IOCG) deposits are classified as sepa-
rate deposit types (e.g., Lang et al., 2000; Cline et al., 2005;
Hedenquist et al., 2005; Williams et al., 2005; Goldfarb et al.,
on is a low cost but high geological risk phase. Poor decisions at the global to province



Table 1
Deposit-scale mineral system models for orogenic, IRGD, Carlin-style, Bingham Canyon and IOCG gold (þ/� Cu) deposits showing contrasts in many parameters at this scale.

Figure 3. Magmatic-hydrothermal model for IRGD systems involving melting of metasomatised lithosphere on a craton margin (after Mair et al., 2011).
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2007) on the basis of their deposit-scale geological and genetic
characteristics: including, for example, structural style, host rocks,
wall-rock alteration, metal associations, fluid characteristics, and P-
T conditions of formation. At this scale, some deposits have shared
characteristics but contrasts are more common than similarities
(Table 1), and different deposit-scale genetic processes are invoked
for their formation. When the deposit styles are viewed in terms of
the supercontinent cycle, they again formed at different times, but,
importantly, each formed at very specific times within that cycle
(e.g., Goldfarb et al., 2001; Groves et al., 2010; Goldfarb et al., 2014),
suggesting that each has a specific tectonic control.

When the driving forces for these deposits are viewed in terms
of such a crustal to lithosphere to mantle scale, surprisingly they
have many parameters in common. This was specifically high-
lighted at a recent FUTORES conference (Future Understanding of
Tectonics, Ores, Resources, Environment and Sustainabilityea
conference run by Economic Geology Research Unit (EGRU) of
James Cook University from 2 to 5 June 2013; see Chang et al., 2013)
where these deposit styles were reviewed. The IRGDs (Mair et al.,
2011; Fig. 3), Carlin deposits (Muntean et al., 2011; Fig. 4) and the
broadly coeval zoned Bingham Canyon Cu-Au system (Cunningham
Figure 4. Genetic model for Carlin gold deposits based on spatially and tempora
et al., 2004; Fig. 5), and IOCG deposits (Groves et al., 2010, Fig. 6;
Haywood, 2013) all are shown as forming above metasomatized
lithosphere from fluid connected to mixed basic to felsic alkaline or
sub-alkaline intrusions that formed in sub-MOHO magma cham-
bers. Such systems provide strong chemical potential gradients
between greatly contrasting magma geochemistry, allowing both
metal and fluid migration from the hotter basic-ultrabasic melts to
the less-dense overlying felsic melts which provide the source of
ore fluid and metals to form the IRGD and IOCG deposits and the
Bingham Canyon porphyry Cu-Au deposit. The source of ore fluid
and metals is less clear for the Carlin deposits, with the hybrid
intrusions providing at least the required heat (Cline et al., 2005;
Muntean et al., 2011). Although in different settings, Loucks
(2013) showed that arc-related economic porphyry Cu-Au de-
posits are connected to intrusions derived from magmas similarly
ponded below the MOHO during arc compression.

Although the source of orogenic gold deposits is still hotly
debated, magmas intruding hosting supracrustal sequences are
considered highly unlikely as a direct source of major deposits (see
summary in Goldfarb et al., 2007). However, Goldfarb and Santosh
(2014) showed that, for at least the Jiaodong deposits of China, the
rily coincident magmatism and mineralisation (after Muntean et al., 2011).



Figure 5. Magmatic-hydrothermal model for Bingham Canyon porphyry Cu-Au-Mo deposit (after Cunningham et al., 2004).
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source of ore fluids must be derived from below supracrustal rocks
of the continental crust, the most commonly suggested fluid source
for orogenic gold deposits (e.g., Phillips and Powell, 2010), from
either the subducted slab, with overlying oceanic sediments, or the
lithosphere below (Fig. 7). A deep source is also implied by the
Figure 6. Magmatic-hydrothermal model for IOCG deposits associated with alkaline magm
2010).
common spatial association of orogenic gold deposits with lamp-
rophyre dykes (e.g., Rock and Groves, 1988; Wyman and Kerrich,
1988). Hence, the source region for orogenic gold deposits may
be spatially adjacent to that of the other gold deposit types, but
active at a different time in the orogenic cycle.
atism derived from metasomatised lithosphere on craton margins (after Groves et al.,



Figure 7. Ore fluid derived from subducted oceanic crust and overlying sedimentary wedge or metasomatised lithosphere for the orogenic gold deposits of the Jiaodong province,
China (after Goldfarb and Santosh, 2014 and Yang and Santosh, 2015).
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These lithospheric-scale genetic commonalities suggest that the
deposits may have similarities in tectonic settings despite their
deposit-scale contrasts.

4. Tectonic settings of gold deposit types

As expected from their similar lithospheric-scale genetic
models, IRGDs, Carlin-type (and Bingham Canyon), and IOCG de-
posits all show spatial associations with near-vertical, partly fault-
disrupted craton margins, defined by a combination of geological,
Figure 8. Schematic tectonic map showing the situation of the Tintina IRGD province on th
Craig Hart of MDRU.
isotopic and geophysical parameters. At these long-lived margins,
previous subduction events have enriched the lithosphere with
incompatible elements and metals during metasomatism. The
universally accepted IRGDs of the Tintina Province of Alaska and the
Yukon are related to hybrid granite intrusions into shelf sedimen-
tary sequences adjacent to, and overlying, the western margin of
the North America Craton (Fig. 8). A combination of geological,
geophysical and radiogenic isotopic data firmly places the Carlin
deposits on the same, partly fragmented margin of the North
America Craton (Fig. 9). As shown by Groves et al. (2010), one of the
e margin of the North America Craton: derived from several compilations provided by



Figure 9. Tectonic setting of Carlin trends, Nevada, situated on the faulted North American Craton margin (after Emsbo et al., 2006, based on data from Crafford and Grauch, 2003
and Grauch et al., 2003).
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key parameters that distinguish true IOCG deposits from those
deposits misclassified as such, many of them skarns or oxidized
porphyry Cu-Au deposits (Williams et al., 2005), is their tectonic
position on craton margins. Fig. 10 shows an example from the
Gawler Craton of South Australia, where several deposits, including
the supergiant Olympic Dam deposit, lie within 100 km of its
eastern margin. The giant Carajas IOCG province of Brasil is another
classic example (Grainger et al., 2008).

More sophisticated analysis of combined geological, geophysical
and isotopic data at the lithospheric scale (e.g., Begg et al., 2010)
shows the importance of these margins, and other discontinuities
not so readily discerned by traditional analysis, as lithosphere
boundaries that control many ore deposits, including these gold
deposit types. For example, the giant Bingham Canyon porphyry
Figure 10. Tectonic setting of IOCG deposits, including the supergiant Olympic Dam deposit
Cu-Au-Mo deposit clearly lies at a lithospheric triple-point junction
in their analysis.

The Jiaodong orogenic gold deposits show clear spatial re-
lationships to such lithosphere boundaries around the margins of
the North China Craton (Goldfarb and Santosh, 2014). The regional
distribution of gold deposits of various scales in this craton (Fig. 11)
shows that these are located along the three major Paleoproter-
ozoic suture zones that amalgamated the crustal blocks, within
reactivated lithospheric-scale fault zone such as the Tanlu Fault, or
along craton margins. Recent studies in the North China Craton
establish a close link between metallogeny and craton destruction
(e.g., Li and Santosh, 2014; Yang et al., 2014). The boundaries of the
micro-blocks and the margins of the craton, as well as the reac-
tivated paleo-sutures, served as weak zones and were the principal
, on the eastern margin of the Gawler Craton, South Australia (from Hand et al., 2007).



Figure 11. Tectonic framework of the North China Craton (after Zhao et al., 2005; Santosh, 2010; Yang and Santosh, 2014) showing the distribution of gold deposits (after Li and
Santosh, 2014). The three major Paleoproterozoic sutures (Inner Mongolia Suture Zone, Trans-North China Orogen and Jiao-Liao-Ji Belt) along which the crustal blocks amalgamated
at the final stage of cratonization during late Paleoproterozoic are also shown.
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locales along which inhomogeneous lithospheric thinning and
destruction of the craton occurred during later tectonothermal
events. The voluminous Jurassic granitoids and Cretaceous in-
trusions carrying gold, molybdenum, copper, lead and zinc deposits
are mostly localized along the reactivated paleo-sutures, weak
zones, and block margins (Li and Santosh, 2014). Suture zones or
mobile belts, representing fossil subduction zones associated with
the amalgamation of continents, and eventual assembly of
Figure 12. Schematic diagram showing current exploration targets at the province scale vs
drilling of fewer targets that are highlighted as possessing a superior regional perspective.
supercontinents, although distal from the present plate boundaries,
are known to play a key role in intra-continental deformation
(Gorczyk and Vogt, 2015). These regions mark zones of metasom-
atized mantle lithosphere and their reworking during intra-
continental orogeny can lead to concentration of mineral deposits.

There is emerging evidence that other world-class orogenic gold
provinces extend along or adjacent to such boundaries (e.g.,
Champion and Cassidy, 2007 for the Yilgarn craton). This is,
. required situation to lower risk at low cost in defining economic gold deposits from



Figure 13. Epsilon neodymium isotopic map of the Yilgarn craton at 2.7e2.6 Ga, showing overlap in distribution or world-class ca. 2.7 Ga komatiite-associated Ni-Cu deposits and
world-class ca. 2.65e2.64 Ga orogenic gold deposits. The strong NNW-trending gradient in the centre of the figure is interpreted to be the margin of the proto-craton at 2.7 Ga (after
McCuaig and Hronsky, 2014).
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however, not universal withmany orogenic gold provinces spatially
controlled by suture zones that are not lithospheric boundaries,
particularly in the Phanerozoic.

5. Improved assessment of target potential

It follows from the discussion above that, in terms of Fig. 2,
each district to deposit-scale target, instead of being viewed in
isolation, should be tracked back up scale to determine its relative
value in terms of its timing within the context of the supercon-
tinent cycle for its specific deposit type and its tectonic setting as
a generic factor. Specifically, craton margins, other lithosphere
boundaries, and suture zones where potential crust-mantle
interaction and reactivation have been identified from inte-
grated geological, geochemical and geophysical studies, such as in
the case of the North China Craton (e.g, Guo et al., 2013), should
be buffered to determine the probability that any specific target
has the potential to lie within a world-class gold province. Using
this screening process, the number of preliminary targets selected
for more extensive and expensive exploration drilling on the basis
of local anomalism should significantly decline. This would
hopefully produce the scenario shown in Fig. 12, where, if suc-
cessful, the industry could emerge from its low base-rate
situation.

A benefit of the approach is that exploration is then focussed
along lithosphere boundaries where other deposit types (e.g.,
intrusion-hosted and komatiite-associated Ni-Cu deposits (Begg
et al., 2010; Maier and Groves, 2011) also occur, potentially lead-
ing to incidental discovery of deposit types other than those
initially sought. The spatial coincidence of world-class orogenic
gold districts and komatiite-associated Ni-Cu deposits along lith-
ospheric boundaries defined by radiogenic isotope ratios in the
Archean Yilgarn Block (Fig. 13) is a specific example. On the
southern margin of the Yilgarn Block, the recent world-class Nova
Ni-Cu discovery (Bennett, 2013), in a similar tectonic position to the
world-class Tropicana gold deposit (Blenkinsop and Doyle, 2014), is
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an excellent example of coincident deposit types along a specific
lithosphere boundary.

6. Concluding statement

Mineral exploration is currently a low base-rate industry with an
unhealthy conjunction of declining greenfield discoveries and
increasing costs of discoveries. There are several reasons for this.
Geologically, onemajor reason is that exploration targets commonly
are not viewed in terms of the geochronological suitability of host
rocks and potential ore type in terms of the supercontinent cycle
and regional geodynamics. Thus, specific mineral deposit types
develop at specific periods in Earth history. Another problem is that
exploration prospects are commonly not adequately assessed in
terms of the suitability of their terrane or province scale tectonic
setting. At this scale, the locations of most gold deposit styles are
strongly controlled by first-order structures such as craton margins,
other lithospheric boundaries, or suture zones. It is only by more
selective district-scale exploration based onproximity to these first-
order structures that the currently declining exploration success
rate can be reversed. This is vital to themineral exploration industry
as only new greenfield discoveries can replenish declining metal
resource inventories in the medium to long term.
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