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Abstract. This study presents a constitutive model developed for lightly cemented geomaterials. 

The cemented geomaterials, when subjected to loading, exhibit hybrid mechanical responses: 

elastic-brittle due to bond breaking and elastic-plastic due to grains friction. This constitutive model 

is developed to capture the two mechanical responses by using three physical elements, i.e., the 

spring, the bond and the slider. These elements are combined to mimic the mechanical responses of 

lightly cemented soils under triaxial loading conditions. The model formulation is presented and 

validation with experimental data performed to demonstrate its capability in capturing the material 

behavior under both low and high confining pressures. 

Introduction 

Lightly cemented geomaterials are formed by the cementation bonding soil grains. In terms of 

strength, they fall into a material category between rock (or concrete) and soils. The cementation of 

soils leads to an increase in uniaxial compressive strength, 100 kPa to 700 kPa, which lies in the 

gap between rocks and soils. Furthermore, cemented geomaterials undergo a unique mode of failure 

due to the existence of cementation at particle contacts: the cemented bonds break apart around the 

contacts when stressed, and then the shear resistance eventually coming into effect through the 

friction resistance generated at the contacts. A solution to this strength uniqueness was to create an 

enlarged yield surface for the geomaterials [1, 2]. These test results, however, showed that 

cemented geomaterials yield completely different from that of soils used to make them, and the 

volumetric behaviour is always in contraction regardless of the confining pressures acted on the 

materials. Many other constitutive frameworks were developed by assuming the effects of 

cementation to be independent of bond state [3-5]. However, this assumption less likely stands due 

to the fact that the ratio of strength of bonding elements in shear and compression can be different 

from that of uncemented geomaterials [6]. Albeit improved, recent models established based on the 

critical state framework still demonstrate some deficiencies in capturing volumetric behaviour of 

the cemented materials [7-10].  

The above unique mechanical characteristic of the cemented geomaterials requires an alternative 

constitutive framework. The key idea in this paper is to treat the structure of the cemented 

geomaterials as a combination of two strength components: bonding and friction, which are 

mimicked by an elastic-brittle body and an elastic-plastic body, respectively. The two mechanical 

bodies are combined in a form where the progressive failure mode of the cemented geomaterials is 

captured. The bonding resistance is simulated by Hooke’s law, while the friction resistance is 

simulated by Modified Cam Clay. The latter is further improved by introducing the non-associated 

flow rule. The progressive failure of the geomaterials is reproduced by defining bond breakage 

which assesses how the cemented contacts are debonded into frictional masses. The developed 

constitutive model can capture the increase in stiffness and strength as well as inelastic volumetric 

behaviour of cemented geomaterials. The model is described in brief in this study. 

Characteristics of Cemented Geomaterials 

The cemented geomaterials comprise combinations of particle fabrics and contacts bonds. This 

composition suggests that the material strength stems mainly from the soil skeleton and the cement 

bonds. The cement bonds are progressively damaged when stressed if the stress exceeds material 



yielding level [11]. The granulated volume fraction grows leading to friction dominated behaviour 

with respect to load sharing. This conceptualisation for loading is translated into physical bodies, 

with the bonds mimicked by the elastic-brittle body and the particles friction being the elastic-

plastic body. The friction resistance comes into effect only after a certain amount of material 

deformation has taken place [12]. The loss of bonding resistance eventually leads to the gain of 

friction resistance. Based on this understanding, the mechanical response of the lightly cemented 

geomaterials is further simulated by a combination of ideal mechanical elements, i.e., the spring 

(elastic deformation), the slider (plastic yielding), and the bonded bar (brittle cracking), as shown in 
Fig. 1(a). The mechanical elements are characterised in terms of defined modulus or stiffness, i.e., 

the Young’s modulus E, the yield strength f, and the break strength q, respectively. The physical 

elements are combined into a form shown in Fig. 1(b) which is named a parallel bond unit. The unit 

consists of an elastic-brittle body which is calibrated by a serial combination of the spring and the 

bonded bar, and an elastic-plastic body which is a serial combination of the spring and the slider. A 

breakage ratio, b=volume fraction of the elastic-plastic body, is used to characterise the debonding 

process.  

 
     (a)        (b) 

Fig. 1: Model demonstration: (a) physical elements; (b) parallel unit. 

Model Formulation 

Further to Fig. 1(b), the stress-strain relationship of the proposed parallel unit is formulated as: 

     , (1) 

     , (2) 

where, p and q are the total effective mean stress and the total shear stress, respectively; p1 and q1 

are the stress components acting on the elastic-brittle body; p2 and q2 are the stress components 

acting on the elastic-plastic body; the corresponding total volumetric strain and total shear strain 

equal to the strain occurred to the elastic-brittle body and the strain to the elastic-plastic body. 

Differentiate both sides of Eq. 1 and Eq. 2, and then we have stress increments written as: 

     , (3) 

     . (4) 

It is shown that the stress increments are composed of three components: the stress increments of 

elastic-brittle body, the stress increments of elastic-plastic body, and the stress increments due to the 

cementation breakage. The three stress increment components are described as follows. 

Elastic-Brittle Body. The stress increments for the elastic-brittle body are described in terms of 

Hooke’s law: 

     , (5) 

     , (6) 

where K1 is the bulk modulus and equals the initial tangent slope of mean stressvolumetric strain 

curve obtained from an isotropic test; G1 is the shear modulus and equals the initial tangent slope of 
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shear stressshear strain curve obtained in a triaxial compression test; is the corresponding 

volumetric strain increment; 
 
is the corresponding shear stain increment. 

Elastic-Plastic Body. The stressstrain behaviour of the elastic-plastic body is simulated by 

introducing the Modified Cam Clay [13]. The yield surface adopted for the elastic-plastic body is 

assumed to be elliptical and to pass through the origin of the stress coordinate. For triaxial 

conditions, the yield surface is written as: 

     , (7) 

where M is a constant and equals the aspect ratio of the elliptical yield locus; p0 is the tip stress. To 

account for the influence of the cemented structure, a non-associated flow rule is introduced [14], 

with the plastic potential expressed as: 

     , (8) 

where  is an experimental parameter defining the shape of the plastic potential; pp is a parameter 

defining the magnitude of the plastic potential. The yield surface and plastic potential are illustrated 

in Fig. 2(a). Fig. 2(b) shows plastic strain incremental vectors. The non-associated flow rule 

exhibits a degree of flexibility to meet the requirement on volumetric changes. This is achieved by 

changing the value for  in terms of triaxial test results. 

 
        (a)                                  (b) 

Fig. 2: Yield surface and non-associative flow rule: (a) yield surface and plastic potential; (b) plastic 

strain incremental vectors. 

The stresses for the elastic-plastic body are integrated by adopting the backward Euler return 

algorithm, which is known as the semi-implicit scheme [15]. The semi-implicit algorithm is 

illustrated in Fig. 3. In the case of yielding, a stress state X travels to trial state Y, where the stress 

increments for the trial are respectively calculated as: 

     , (9) 

     , (10) 

where  is a parameter obtained from unloading tests;  is material Poison’s ratio. At the trial state 

Y, Eq. 10 is represented through using Taylor expansion as: 

     . (11) 

The stress incremental forms between states Y and Z are respectively expressed as: 

     , (12) 

     , 
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where  is scalar multiplier and obtained by enforcing the yield condition at state Z and 

substituting the proposed flow rule. The stress increments for the elastic-plastic body are then 

updated as the sum of the trail stress increments from state X to Y and the stress increment from 

states Y to Z: 

     , (14) 

     . (15) 

 
Fig. 3: Stress return algorithm. 

Cementation Breakage. The cementation breakage ratio b represents the volume fraction for the 

elastic-plastic body. The value for b varies between 0 and 1. To reflect this, the breakage 

progressing is modelled as a Weibull distribution:  

     , (16) 

where ;  is parameter describing variation of the breakage ratio. At the early stage 

of loading, the geomaterials withstand loads mainly through the elastic-brittle body. The elastic-

plastic body comes into effect when the cementation breakage takes place.  

Performance of the Simplified Parallel Unit 

The proposed parallel unit is validated by comparing model simulation results with test results. 

The test results were obtained from an investigation conducted on cemented expanded polystyrene 

(EPS) backfill. Fig.  shows the test results, including deviatoric stress–axial strain and volumetric 

strain–axial strain curves of the cemented EPS backfill. Four series of backfill samples were tested 

which vary in ingredients dosage and magnitude of confinement pressures. All samples were 

subjected to consolidated drained triaxial compression tests. Close agreement between the 

numerical results and the test results in terms of initial stiffness, yield and failure can be seen. In 

comparison with the Modified Cam Clay model, the proposed model provides better predictions in 

both low and high confining pressures.  
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Fig. 4: Test and model results of stress-strain curves from CD compression for samples (a) cement 

= 50 kg/m
3
, EPS = 4.21 kg/m

3
, confinement = 100 kPa; (b) cement = 50 kg/m

3
, EPS =2.11 kg/m

3
, 

confinement =200 kPa; (c) cement = 100 kg/m
3
, EPS =2.11 kg/m

3
, confinement =100 kPa; (d) 

cement = 100 kg/m
3
, EPS =2.11 kg/m

3
, confinement =200 kPa. 

Conclusions 

A constitutive model for lightly cemented geomaterials is presented. The proposed framework 

takes into account the concurrent interaction between bond breakage and frictional sliding of grains 

during the material deformation. The two resistance components are mimicked by introducing 

elastic-brittle body and elastic-plastic body, respectively. Good agreement between numerical and 

experimental results demonstrates the capability of the proposed approach in capturing the 

responses of cemented soils under various cement content and confining pressures.  
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