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Abstract

Diabetic kidney disease, or diabetic nephropathy (DN), is a major complication of diabetes and the leading cause of end-
stage renal disease (ESRD) that requires dialysis treatment or kidney transplantation. In addition to the decrease in the
quality of life, DN accounts for a large proportion of the excess mortality associated with type 1 diabetes (T1D). Whereas the
degree of glycemia plays a pivotal role in DN, a subset of individuals with poorly controlled T1D do not develop DN.
Furthermore, strong familial aggregation supports genetic susceptibility to DN. However, the genes and the molecular
mechanisms behind the disease remain poorly understood, and current therapeutic strategies rarely result in reversal of DN.
In the GEnetics of Nephropathy: an International Effort (GENIE) consortium, we have undertaken a meta-analysis of genome-
wide association studies (GWAS) of T1D DN comprising ,2.4 million single nucleotide polymorphisms (SNPs) imputed in
6,691 individuals. After additional genotyping of 41 top ranked SNPs representing 24 independent signals in 5,873
individuals, combined meta-analysis revealed association of two SNPs with ESRD: rs7583877 in the AFF3 gene (P = 1.261028)
and an intergenic SNP on chromosome 15q26 between the genes RGMA and MCTP2, rs12437854 (P = 2.061029). Functional
data suggest that AFF3 influences renal tubule fibrosis via the transforming growth factor-beta (TGF-b1) pathway. The
strongest association with DN as a primary phenotype was seen for an intronic SNP in the ERBB4 gene (rs7588550,
P = 2.161027), a gene with type 2 diabetes DN differential expression and in the same intron as a variant with cis-eQTL
expression of ERBB4. All these detected associations represent new signals in the pathogenesis of DN.
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Introduction

Diabetic kidney disease, or diabetic nephropathy (DN), is the

leading cause of end-stage renal disease (ESRD) worldwide [1]. It

affects approximately 30% of patients with long-standing type 1

and type 2 diabetes [2,3], and confers added risks of cardiovas-

cular disease and mortality. DN is a progressive disorder that is

characterized by proteinuria (abnormal loss of protein from the

blood compartment into the urine) and gradual loss of kidney

function. Early in its course, the kidneys are hypertrophic, and

glomerular filtration is increased. However, with progression over

several years, proteinuria and decline in kidney function set in, and

may result in fibrosis and terminal kidney failure, necessitating

costly renal replacement therapies, such as dialysis and renal

transplantation. While current treatments that decrease protein-

uria will moderately abate DN progression, recent studies show

that even with delivery of optimal care, high risks of cardiovascular

disease, ESRD and mortality persist [4,5]. Therefore, discovery of

genetic factors that influence development and susceptibility to

DN is a critical step towards the identification of novel

pathophysiologic mechanisms that may be targeted for interven-

tions to improve the adverse clinical outcomes in diabetic patients.

GWAS on Diabetic Nephropathy

PLOS Genetics | www.plosgenetics.org 2 September 2012 | Volume 8 | Issue 9 | e1002921



Whereas the degree of glycemia plays a pivotal role in DN, a

subset of individuals with poorly controlled type 1 diabetes (T1D)

do not develop DN. Furthermore, strong familial aggregation

supports genetic susceptibility to DN. The sibling risk of DN has

been estimated to be 2.3-fold [6]. While prior studies of individuals

with T1D have reported on the possible existence of genetic

associations for DN, results have been inconclusive. In GENIE, we

leveraged three existing collections for T1D nephropathy (All

Ireland Warren 3 Genetics of Kidneys in Diabetes UK Collection

[UK-ROI], Finnish Diabetic Nephropathy Study [FinnDiane],

and Genetics of Kidneys in Diabetes US Study [GoKinD US])

comprising 6,691 individuals to perform the most comprehensive

and well powered DN susceptibility genome-wide association

study (GWAS) and meta-analysis to date, with the aim to identify

genetic markers associated with DN by meta-analyzing indepen-

dent GWAS, imputed to HapMap CEU II (Table 1, Figure 1). As

a result, we here present two new loci associated with ESRD and a

locus suggestively associated with DN.

Results/Discussion

The primary phenotype of interest was DN, defined by the

presence of persistent macroalbuminuria or ESRD in individuals

aged over 18 who had T1D for at least 10-year duration. Controls

were defined as individuals with T1D for at least 15 years but

without any clinical evidence of kidney disease (see Methods for

more detailed definitions). Meta-analysis of the DN results from

each cohort resulted in five independent signals with P,1025

(Table S1, Figure S1A). In a parallel analysis of ESRD versus non-

ESRD (n cases = 1,399, n controls = 5,253; referred to as ‘‘ESRD’’

analysis throughout the manuscript, unless otherwise stated), SNP

rs7583877 on chromosome 2q11.2-q12 achieved genome-wide

significance (P = 4.861029), primarily driven by FinnDiane and

the UK-ROI samples, along with six other independent signals

reaching P,1025 (Figure 2A, Table S1, Figure S1C).

We invited investigators responsible for available collections

with similar phenotypes to participate in the secondary genotyping

phase of the top ranked SNPs (n = 41 including proxies,

representing 24 independent signals) from the initial meta-analysis.

Nine independent cohorts contributed 5,873 individuals with

comparable phenotypic inclusion criteria (Table S2). After the

combined meta-analysis of the first and second phase cohorts, the

association of the intronic SNP rs7583877 in AFF3 with ESRD

retained genome-wide significance (odds ratio [OR] = 1.29, 95%

confidence interval [CI]: 1.18–1.40, P = 1.261028; Figure 3A),

with the bulk of the association evidence still provided by the

FinnDiane and UK-ROI cohorts. The population attributable risk

[PAR] for the causal variant underlying the observed association

at rs7583877 was estimated to be 3.5%–10.5%. AFF3 belongs to

the AFF (AF4/FMR2) family and encodes a transcriptional

activator, with DNA-binding activity, initially found to be fused

with MLL in some acute lymphoblastic leukemia patients [7,8].

Recent evidence points to a role for AFF3 as an RNA-binding

protein, with overexpression affecting organization of nuclear

speckles and splice machinery integrity [9]. Variants near AFF3

have been associated with acute lymphoblastic leukemia [10],

rheumatoid arthritis [11,12] and recently T1D [13,14]. Another

locus between the RGMA (RGM domain family, member A) and

MCTP2 (multiple C2 domains, transmembrane 2) genes on

chromosome 15q26 also reached genome-wide significance for

association with ESRD (rs12437854, OR 1.80, 95% CI: 1.48–

2.17, P = 2.061029; Table 2, Figure 3B). PAR estimates for this

locus varied from 0.5% to 4.1%. For the primary DN phenotype,

an intronic SNP in the ERBB4 gene demonstrated consistent

protective effects in the replication samples and was the top

associated SNP identified from the combined discovery and

second stage analysis; however, this did not reach genome-wide

statistical significance (rs7588550, OR 0.66, 95% CI: 0.56–0.77,

P = 2.161027, PAR 28.3%–32.5% for removal of the major risk

allele; Table 2, Figure 3C). ERBB4 encodes an epidermal growth

factor receptor subfamily member, and has been implicated in

cardiac, mammary gland and neural development [15,16].

Mutations in ERBB4 have previously been reported in cancer

Figure 1. Flow chart summarizing study design. We applied a two
stage study design, where the top signals from the meta-analysis of
three GENIE studies (UK-ROI, FinnDiane and GoKinD US) were followed
up in phase two analysis, consisting of nine T1D cohorts. After
combined meta-analysis, two signals reached genome-wide signifi-
cance in the analysis of ESRD (P,561028). For DN phenotype no loci
reached this threshold, but the strongest association was observed for
ERBB4. These signals were followed up with eQTL studies and functional
analysis. The number of patients (N) refers to the number of samples
after genotype quality control; either the total number of samples or
divided into cases/controls.
doi:10.1371/journal.pgen.1002921.g001

Author Summary

The global prevalence of diabetes has reached epidemic
proportions, constituting a major health care problem
worldwide. Diabetic kidney disease, or diabetic nephrop-
athy (DN)—the major long term microvascular complica-
tion of diabetes—is associated with excess mortality
among patients with type 1 diabetes. Even though DN
has been shown to cluster in families, the underlying
genetic and molecular pathways remain poorly defined.
We have undertaken the largest genome-wide association
study and meta-analysis to date on DN and on its most
severe form of kidney disease, end-stage renal disease
(ESRD). We identified new loci significantly associated with
diabetic ESRD: AFF3 and an intergenic locus on chromo-
some 15q26 residing between RGMA and MCTP2. Our
functional analyses suggest that AFF3 influences renal
tubule fibrosis, a pathological hallmark of severe DN.
Another locus in ERBB4 was suggestively associated with
DN and resides in the same intronic region as a variant
affecting the expression of ERBB4. Subsequent pathway
analysis of the genes co-expressed with ERBB4 indicated
involvement of fibrosis.

GWAS on Diabetic Nephropathy
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[17]. Several studies using Madin-Darby canine kidney (MDCK)

cells and conditional ERBB4 overexpression/knock-out mice,

suggest a crucial role for ERBB4 in renal development and

tubulogenesis [18,19].

It is possible that our observed signal is in linkage disequilibrium

with an untyped SNP, or exerts functional effects over an extended

genomic region. To explore a putative biological signature we

identified, for the top three SNPs, all genes within a 2 Mb window

(1 Mb upstream and downstream). Gene ontology analysis

revealed no significant enrichment of biological terms or pathways

within this subset of flanking genes (Table S3). We determined

whether any of these genes were differentially expressed in

microarray data derived from tubulointerstitial (n = 49) or

glomerular (n = 70) human early DN renal biopsy material versus

pre-transplant renal biopsies from living kidney donors (n = 32)

[20]. Around rs7583877 (AFF3), we noted upregulation of LIPT1

and TXNDC9, while TSGA10 was downregulated in both

tubulointerstitial and glomerular enriched kidney biopsies

(Figure 2 and Table S4). NPAS2, which flanks rs7583877 (AFF3),

and FAM174B and CHD2, which flank rs12437854 (15q26), were

downregulated in glomerular enriched biopsies of DN patients

versus control, but remained unchanged in tubulointerstitial

biopsies (Figure 2 and Table S4). NPAS2 (neuronal PAS domain

protein 2), has been implicated in circadian rhythms in the distal

nephron segments, acting as a regulator of kidney function [21].

Interestingly, mutations in chromodomain helicase DNA binding

protein 2 (CHD2), encoding a chromatin-remodeling enzyme,

result in impaired glomerular function in mice [22]. Furthermore,

at the rs7588550 (ERBB4) locus expression of ERBB4 was down,

and SPAG16 upregulated in tubulointerstitial enriched kidney

biopsy tissue of DN versus control subjects (Figure 2 and Table

S4).

We also examined whether any of the top three SNPs

modulated expression of neighboring genes in cis in a dataset of

glomerular and tubulointerstitial kidney biopsies of Pima Indians

with type 2 diabetes and DN who had been genotyped on the

Affymetrix 6.0 array [23]. In Pima Indians, no adequate proxies

(haplotype-based D9$0.8) for the Affymetrix 6.0 SNPs that were

strongly correlated with GWAS findings (r2$0.8) could be found

for rs12437854, and expression of AFF3 was below detectable

thresholds in this dataset; however, two SNPs in the same intron of

ERBB4 as rs7588550 (rs17418640 and rs17418814) were associ-

ated with genotype-specific expression of ERBB4 in tubulointer-

stitial but not in glomerular tissue in the Pima cohort (P,0.05;

Figure S2). Follow-up work is required to investigate the DN

associated and eQTL signals in this ERBB4 intron.

To explore the potential functional role of these ERBB4 SNPs,

we looked for other genes whose expression is correlated with that

of ERBB4. A total of 388 ERBB4-correlated genes were found in

the Pima population (Benjamini-Hochberg Q-value,0.1). Path-

way analysis of these genes indicates coexpression of ERBB4 with

collagen-related genes, which have been implicated in renal

fibrosis [24,25] (Genomatix Pathway System; Table S5).

Because the low expression level of AFF3 limited exploration of

this gene using expression data, we pursued additional functional

experiments in an in vitro model of renal fibrosis, namely human

tubular epithelia exposed to transforming growth factor-b1 (TGF-

b1). Low-level basal expression of the AFF3 mouse homologue

(LAF4) has been reported in kidney tubules during embryonic

development [26] suggesting proximal renal tubule epithelial cells

may be suitable for detection and functional interrogation of AFF3.

TGF-b1 is implicated in the development of diabetic glomerulo-

sclerosis, and there is recent appreciation of its role as a key driver

of tubulointerstitial fibrosis. TGF-b1 induces epithelial cell de-

differentiation into a more mesenchymal-like phenotype, charac-

terized by a switch in predominant cadherins from E-cadherin

(epithelial) to N-cadherin (mesenchymal), and increased vimentin,

a-smooth muscle actin, connective tissue growth factor (CTGF)

and Jagged 1 [27,28]. TGF-b1-mediated loss of E-cadherin in

renal epithelia, is believed to be mediated through loss of miR-192

expression [29]. We and others have previously shown that Jagged

1, a ligand for multiple Notch receptors, is up-regulated in human

diabetic kidney disease [30,31], with the Notch signaling pathway

implicated in driving renal fibrosis [32,33]. CTGF is a member of

the CCN protein family, with biological roles in differentiation and

tissue repair. CTGF is induced by TGF-b1 and enhances

expression of multiple extracellular matrix proteins observed in

DN, including collagens and fibronectin, and CTGF expression is

elevated in the glomeruli of STZ (streptozotocin) - treated rats, an

in vivo model of T1D [34]. Basal AFF3 expression was detectable in

HK-2 cells, and expression levels were upregulated upon

stimulation with TGF-b1 (5 ng/ml; 48 h), as measured at protein

and RNA level (Figure 4A–4B). Inhibition of AFF3 by siRNA

attenuated the expression of TGF-b1-driven markers of fibrosis -

CTGF and N-cadherin (Figure 4C–4E). Taken together, these

data suggest that AFF3 may play a role in TGF-b1-induced fibrotic

responses of renal epithelial cells.

Traditionally, DN has been viewed as a continuous trait with

onset at microalbuminuria, progression to macroalbuminuria, loss

of GFR, and culmination in ESRD. Recent studies have called this

paradigm into question, suggesting that the syndrome may

perhaps be composed of varying phenotypes [35,36]. Association

Table 1. Characteristics of samples successfully analyzed in each discovery collection and the meta-analyses.

UK-ROI FinnDiane GoKinD US

Cases
(n = 823)

Controls
(n = 903)

Cases
(n = 1,319)

Micro
(n = 460)

Controls
(n = 1,591)

Cases
(n = 774)

Controls
(n = 821)

Gender (M/F) 478/345 395/508 785/534 259/201 656/935 402/372 342/479

Duration of T1D (years) 32.969.6 27.068.6 32.869.1 28.2611.2 27.869.5 31.467.8 25.467.7

Age at diagnosis of T1D (years) 14.567.7 14.5267.8 12.867.6 13.268.2 15.168.3 1166.6 1367.3

HbA1C (%) 9.061.9 8.761.6 8.861.6 8.661.4 8.161.2 7.561.9 7.561.2

BMI (km/m2) 26.364.7 26.264.2 25.564.2 25.963.7 25.263.5 25.765.2 26.164.3

ESRD (%) 29.9 0 48.9 0 0 65.6 0

n = total number of patients; Micro = patients with microalbuminuria; M/F = number of males/females; HbA1C blood glycosylated hemoglobin; BMI = body mass index.
Case = macroalbuminuria or ESRD, Control = normoalbuminuric, see text for full details.
doi:10.1371/journal.pgen.1002921.t001
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of rs7583877 (AFF3) and rs12437854 (RGMA – MCTP2) with the

different stages of DN was tested on a time-to-event analysis of

relevant endpoints using longitudinal data for participants in the

FinnDiane discovery collection. Consistent with our case-control

GWAS analyses, the strongest association for rs7583877 was

observed for the time from T1D diagnosis to development of

ESRD (hazard ratio [HR] 1.33, 95% CI: 1.18–1.49,

P = 1.961026), but also the time from T1D diagnosis to

development of macroalbuminuria (HR 1.15, 95% CI: 1.04–

1.27, P = 0.006) and the time from macroalbuminuria to ESRD

(HR 1.16, 95% CI: 1.01–1.36, P = 0.04) reached nominal

significance. Similarly, rs12437854 was associated with time from

T1D diagnosis to development of macroalbuminuria (HR 1.31,

95% CI: 1.03–1.67, P = 0.03) and ESRD (HR 1.35, 95% CI:

1.02–1.77, P = 0.03) (Text S1, Table S6, Figure S3). When we

studied these SNPs and their association with various DN-related

phenotypes in the case-control setting of the discovery cohorts,

similar observations were made supporting the role of these SNPs

in the development of ESRD: Whereas we found evidence of

association between rs7583877 (AFF3) and all the examined

phenotypes with ESRD as the case definition, only moderate

association was observed for the DN phenotype (OR = 1.14,

P = 0.002) and no association when patients with macroalbumin-

uria were compared to controls with normoalbuminuria

(OR = 1.00, P = 0.95). rs12437854 (RGMA – MCTP2) had the

strongest association with the original ESRD phenotype (controls

defined as all non-ESRD subjects) and with the ESRD vs.

normoalbuminuria phenotype, and moderate association with the

DN phenotype and comparison of ESRD vs. macroalbuminuric

patients (Table S7).

An alternative explanation for our ESRD findings may be that

the associated variants in AFF3 gene and on chromosome 15q26

might be markers of survival. Mortality rates are extremely high

in patients with kidney disease and macroalbuminuria, with at

least 25% of macroalbuminuric patients dying before they reach

ESRD [37]. Thus, the selection of patients with ESRD may be

biased towards selection of severe kidney disease survival. To

address this question, we used the time until death as the final end

point in the longitudinal analysis. Neither of the loci associated

with ESRD was also associated with mortality (Text S1, Table

S6, Figure S3), suggesting that these loci are associated with

ESRD per se.

To explore whether these SNPs contribute to DN via related

intermediate phenotypes, such as adiposity, fasting lipid levels, or

blood pressure we performed in silico searching of publicly

available GWAS datasets for our top SNPs [38–41]. We found

nominal, directionally consistent associations of rs12437854 with

fasting glucose (P = 0.03) [42] and of rs7583877 with waist-hip

ratio (P = 0.04) [43] (Table S8). We also considered if previously

published T1D and CKD SNP associations were associated with

DN or ESRD in our GWAS meta analyses. Eight of 80 SNPs at

T1D-associated loci showed nominal significance with DN or

ESRD (including three at AFF3 that are in weak LD [r2 0.030–

0.046 in CEU] with the SNPs described here), while no CKD

SNPs were nominally significant (Table S9) [44–47]. The lack of

association with DN for CKD-associated SNPs suggests that the

genetic risk factors for DN may differ from the genetic risk factors

for CKD in a nondiabetic population.

Finally, to generate further biological hypotheses based on our

GWAS results, we employed MAGENTA [48] gene set enrich-

ment analysis software integrating Gene Ontology (GO) terms,

KEGG and Ingenuity pathways and PANTHER database entries

(Table S10). In the analysis of DN as a case phenotype, enriched

gene sets included ‘‘sugar binding’’ (P = 0.0006), ‘‘double stranded

DNA binding’’ (P = 0.001) and ‘‘nucleic acid binding’’ (P = 0.004).

In the analysis of ESRD significantly enriched gene sets (P,0.01)

included an enrichment of terms associated with DNA binding,

including ‘‘sequence-specific DNA binding’’ (P = 0.003), ‘‘positive

Figure 2. Regional association plots for top ranked SNPs with associated gene expression data. Panels represent independent signals for
the primary DN and ESRD analysis. The color of the SNP symbol indicates the linkage disequilibrium (r2) with the index SNP which is colored purple.
Blue and red gene colors in the lower part of each figure panel indicate up and down regulation in tubulointerstitial or glomerular DN kidney
biopsies, respectively. Genes with no change in expression are indicated with black; no data on gene expression with gray color. (A) Association of
rs7583877 with ESRD. (B) Association of rs12437854 with ESRD. (C) Association of rs7588550 with DN.
doi:10.1371/journal.pgen.1002921.g002

Figure 3. Forest plots for significant hits incorporating discovery and replication plots. Plots show the study-specific association
estimates (OR) and 95% confidence intervals for the discovery and second phase studies. (A) Association of rs7583877 with ESRD; heterogeneity
P = 0.037. (B) Association of rs12437854 with ESRD; heterogeneity P = 0.046. (C) Association of rs7588550 with DN; heterogeneity P = 0.467. The
association estimate and confidence interval for the meta-analysis combining the discovery and second-stage results are denoted by the diamond.
doi:10.1371/journal.pgen.1002921.g003
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regulation of transcription’’ (P = 0.003), and ‘‘homeobox tran-

scription factor’’ (P = 0.004). Taken together, the principal

biological signal found within GWAS data suggests an enrichment

of transcriptional regulators.

In this largest meta-analysis to date of DN from individuals with

T1D, we found two genome-wide significant associations with

ESRD. Variants in AFF3 have been shown to be associated with

juvenile idiopathic rheumatoid arthritis, Graves’ disease, celiac

disease and T1D, indicating this may be a pan-autoimmune

disease gene. It is possible that the AFF3 signal represents an

association with T1D and/or is a false positive finding, as it was

not seen in the follow-up cohorts. However, we note the following:

1) both FinnDiane and UK-ROI yielded very similar association

results, 2) the number of ESRD cases in the replication cohorts is

small (n = 363), indicating that statistical power to replicate the

original association is limiting, 3) the association result in the

second stage, while non-significant, trends in a consistent direction

(OR 1.11), 4) after evaluating .12,000 individuals the AFF3 signal

remained genome-wide significant (P = 1.261028), and 5) we have

provided supportive functional evidence that suggests AFF3 may

be a relevant contributor to renal disease. Although survival bias is

a possibility in the analyses of ESRD, longitudinal analysis

revealed the association of the AFF3 and chromosome 15q26 loci

with renal end-points and not with death. Experimental models

provide independent evidence of AFF3 involvement in renal

fibrosis and support an association of this locus with a renal

Table 2. Results from discovery, second stage, and combined meta-analysis for supported markers.

Discovery Stage 2 Combined

SNP Phenotype A1 A2
Freq
(A1) Region OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value

rs12437854 ESRD G T 0.038 15q26 (RGMA-MCTP2) 1.72 (1.36–2.18) 7.661026 1.95 (1.41–2.7) 5.461025 1.80 (1.48–2.17) 2.061029

rs7583877 ESRD C T 0.289 2q11.2-q12 (AFF3) 1.34 (1.22–1.48) 4.861029 1.11 (0.93–1.34) 0.25 1.29 (1.18–1.40) 1.261028

rs7588550 T1DN G A 0.052 2q33.3-q34 (ERBB4) 0.65 (0.55–0.79) 5.361026 0.67 (0.49–0.92) 0.01 0.66 (0.56–0.77) 2.161027

A1 = minor allele = effect allele; A2 = major allele; Freq(A1) = minor allele frequency; OR = odds ratio; 95% CI = 95% confidence interval. Discovery: Meta analysis results
for GENIE discovery cohorts. Stage 2: Meta analysis results for replication cohorts. Combined: Meta analysis results for discovery and the stage 2 cohorts. NA = no result,
due to genotype failure or quality control filtering.
doi:10.1371/journal.pgen.1002921.t002

Figure 4. AFF3 is upregulated in renal epithelial cells (HK-2) stimulated with pro-fibrotic TGF-b1. (A) Western blot of AFF3 protein
expression in HK-2 cells stimulated with TGF-b1 (5 ng/ml; 24–48 h). (B) TaqMan quantitative PCR analysis of AFF3 mRNA expression in HK-2 cells
stimulated with TGF-b1 (5 ng/ml; 48 h) and (C) AFF3 mRNA expression in HK-2 cells transfected with AFF3 siRNA in the presence (black bar)/absence
(grey bar) of TGF-b1 (5 ng/ml; 48 h). (D) TaqMan quantitative PCR analysis of N-cadherin, CTGF, Jagged1 and E-cadherin expression in HK-2 cells
transfected with AFF3 siRNA in the presence (black bar)/absence (grey bar) of TGF-b1 (5 ng/ml; 48 h). (E) Representative Western blot of N-cadherin,
CTGF, Jagged1 and E-cadherin protein responses in HK-2 cells transfected with AFF3 siRNA in the presence/absence of TGF-b1 (5 ng/ml; 48 h). HK-2
cells transfected with control siRNA were selected as a control. For TaqMan PCR, expression was normalized to GAPDH. Data are plotted as mean 6
SE (n = 3; *P,0.05, **P,0.01).
doi:10.1371/journal.pgen.1002921.g004
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phenotype. Importantly, despite our large sample size, we did not

achieve genome-wide statistical significance for DN using a

combined proteinuria/ESRD phenotype, suggesting that this

phenotype may have been too heterogeneous to detect significant

associations with a sample of this size. For example, lifelong

glycemic control, a known risk factor for DN, is not well captured

in most existing cohorts. Nevertheless, this study is the largest, well

powered GWAS on DN to date. We demonstrated a suggestive

signal of association at ERBB4 that is supported by experimental

data showing haplotype specific mRNA expression in DN biopsies.

Our findings reinforce the need for additional studies of patients

with T1D and a homogeneous renal phenotype, in whom

additional GWAS, fine-mapping and sequencing to uncover rare

variants could be performed. Integration of our findings with

ongoing GWAS in both type 1 and type 2 diabetes DN may also

lead to discovery of additional genetic determinants of DN. The

traditional phenotypic definition of DN for individuals with type 2

diabetes may be even more challenging for genetic studies given

the heterogeneity of vascular complications and differential renal

diagnoses. Several larger-scale GWAS have now been conducted

for renal phenotypes [49–56], however in most cases the true

disease-causing variant and functional impact for specific pheno-

types remains to be established. Encouraging reports include the

association of uromodulin with CKD [57], MYH9/APOL1 with

non-diabetic ESRD [58,59], and PLA2R1 with membranous

nephropathy, where anti-PLA2R antibodies appear to predict

activity of the disease as well as response to therapy [60].

Our findings point to two transcriptional networks centered

around AFF3 and ERBB4 that may be operational in the

pathogenesis of kidney disease in diabetes.

Methods

Ethics statement
All human research was approved by the relevant institutional

review boards, and conducted according to the Declaration of

Helsinki.

Study populations
We implemented a two stage analysis, in which a GWAS was

performed using a set of three discovery cohorts in the GENIE

consortium, and top signals for the DN and ESRD analyses were

analyzed further in the second phase in a set of nine independent

cohorts (described below) with 5,873 patients in total. The patient

numbers in the individual studies are given in Table S11.

Additional details are provided in the online material Text S1.

All Ireland, Warren 3, Genetics of Kidneys in Diabetes UK
(UK-ROI) Collection [61]

Inclusion criteria included white individuals with T1D, diag-

nosed before 31 years of age, whose parents and grandparents

were born in the UK and Ireland. The case group comprised 903

individuals with persistent proteinuria (.500 mg/24 h) develop-

ing more than 10 years after the diagnosis of diabetes,

hypertension (.135/85 mmHg and/or treatment with antihyper-

tensive medication), and retinopathy; ESRD (27.2%) was defined

as individuals requiring renal replacement therapy or having

received a kidney transplant. Absence of DN was defined as

persistent normal urine albumin excretion rate (AER; 2 out of 3

urine albumin to creatinine ratio [ACR] measurements ,20 mg of

albumin/mg of creatinine) despite duration of T1D for at least 15

years, while not taking an antihypertensive medication, and having

no history of treatment with ACE inhibitors; 1,001 individuals

formed the control group. After exclusion of patients with low

quality DNA samples, 914 DN/ESRD cases and 956 controls

remained for the GWAS.

Finnish Diabetic Nephropathy Study (FinnDiane) [62]
The FinnDiane study is a Finnish cohort of more than 4,800

adult ethnic Finns with T1D, recruited from across Finland,

diagnosed prior to age 35 and insulin treatment begun within 1

year. This study comprises 1,721 patients with normal AER, 516

with microalbuminuria, 733 with macroalbuminuria and 682 with

ESRD. The disease status was defined by urine AER or urine

ACR in at least two out of three consecutive urine collections at

local centers: Microalbuminuria was defined as AER$20,200 -

mg min21 or $30,300 mg/24 h or an ACR of 2.5–

25 mg mmol21 for men and 3.5–35 mg mmol21 for women in

overnight, 24-hour or spot urine collections, respectively. Similar-

ly, the limit for macroalbuminuria was AER$200 mg min21 or

$300 mg/24 h or ACR$25 mg mmol21 for men and

$35 mg mmol21 for women. ESRD was defined as ongoing

dialysis treatment or transplanted kidney. Control patients with

normal AER were required to have T1D duration of at least 15

years. 558 of these patients were included from an independent

Finnish cohort collected by the National Institute of Health and

Welfare. These patients met the FinnDiane diagnosis and selection

criteria, and were analyzed together with the FinnDiane cohort.

Genetics of Kidneys in Diabetes US Study (GoKinD US)
[63]

The GoKinD US study consists of a DN case-control cohort of

individuals diagnosed with T1D prior to 31 years of age who

began insulin treatment within 1 year of T1D diagnosis. Controls

were 18–59 years of age, with T1D for at least 15 years but

without DN, n = 889. DN definition includes individuals with

ESRD, dialysis or kidney transplant and persistent macroalbu-

minuria (at least 2 out of 3 tests positive for albuminuria by

dipstick $1+, or ACR.300 mg albumin/mg of urine creatinine).

Cases were defined as people 18–54 years of age, with T1D for at

least 10 years and DN, n = 903. Individuals recruited to the

control group employed the same inclusion criteria as UK-ROI.

Individuals were recruited at two study centers, George Washing-

ton University (GWU) and the Joslin Diabetes Centre (JDC) using

differing methods of ascertainment and recruitment [64]. Analysis

of the GoKinD US cohort was limited to individuals whose

primary ethnicity was Caucasian.

Collections genotyped in Phase 2
DNA was sought from worldwide case-control collections of

individuals with T1D and known renal status. A total of 5,873

individuals from nine independent collections were genotyped or

imputed for the top-ranked SNPs (n = 41 including 17 proxies),

with the exception of the DCCT/EDIC cohort where GWAS data

was imputed. All the patients included in the phase two analysis

were adults of European descent and had T1D diagnosed before

35 years of age. Controls with normal AER had duration of T1D

at least 15 years, and cases with DN had minimum T1D duration

of 10 years. If a collection included patients with microalbumin-

uria, they were excluded from the primary analysis of DN, but

included as controls in the analysis of ESRD versus non-ESRD.

The main clinical characteristics of all the replication cohorts are

shown in the Table S2 and the cohorts are described in Text S1.

Phenotype definitions
The primary phenotype of interest was DN, defined as

individuals aged over 18, with T1D for at least 10 years and
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diabetic kidney disease. DN includes ESRD or persistent

macroalbuminuria as defined in the cohort descriptions above.

Controls were defined as individuals with T1D for at least 15 years

but without any clinical evidence of kidney disease. Individuals

with microalbuminuria were excluded from the primary DN

analysis in all cohorts. Disease status definitions were consistent

across all the study cohorts. Details of clinical characteristics for

each cohort are defined in Table 1 and Table S2. We evaluated a

second phenotype to gain further insights into the genetic basis of

the most severe form of DN (leading to ESRD), and compared

ESRD cases to all those without ESRD. This phenotype is referred

to as the ‘‘ESRD’’ or ‘‘ESRD vs. non-ESRD’’ phenotype

throughout the manuscript. We also considered individuals with

ESRD compared to T1D controls with no clinical evidence of DN.

Results for this comparison are given in the online supporting

material (Tables S1, S6, S7, S9, S10), where this contrast is called

‘‘ESRD vs. normoalbuminuria’’ or ‘‘ESRD vs. normo’’.

Genotyping
DNA from individuals in the UK-ROI collection were

genotyped using the Omni1-Quad array (Illumina, San Diego,

CA, USA) while FinnDiane samples employed Illumina’s

BeadArray 610-Quad array. Samples in UK-ROI and FinnDiane

were excluded if they had insufficient DNA quality, quantity or

poor genotype concordance with previous genotypes during the

fingerprint evaluation stage. Existing genotype data for the

GoKinD US genotype data was downloaded from dbGAP

(phs000018.v2.p1, retrieved June 2010), containing updated

genotype data from Affymetrix 500 K set (Affymetrix, Santa

Clara, CA, USA).

Genotype quality control
Samples for UK-ROI and FinnDiane were excluded for

insufficient DNA quality, quantity or poor genotype concordance

with previous genotypes during a fingerprint evaluation stage. In the

UK-ROI sample, 1,830 unique case (n = 872) and control (n = 958)

individuals were submitted for genotyping on the Omni1-Quad. For

FinnDiane, 3,651 individuals (cases, n = 1,934; controls n = 1,721)

were submitted for genotyping on the 610-Quad. For all three

discovery datasets (UK-ROI, FinnDiane, GoKinD US), uniform and

extensive genotype quality control procedures were applied: SNPs

were filtered for those with call rates greater than 90%, minor allele

frequency (MAF) exceeding 1%, and concordance with Hardy

Weinberg Equilibrium (HWE, P,1027). Sample filters included

individual call rates greater than 95%, no extreme heterozygosity and

cryptic relatedness as determined using identity by descent (first

degree relatives, estimated identity by descent .0.4), and admixture

assessment using principal components (plotted with HapMap

reference panel, Figure S4). Additional quality control measures

included test of missing by haplotype (P,1028), missing by

phenotype (P.1028) and plate effects (P,1027). These quality

control steps were performed using PLINK [65] with custom Perl

and R analysis scripts. Known copy number variation and

mitochondrial SNPs were excluded from analyses. Detailed results

of each QC step are reported in Table S12 for each study population.

A HapMap control sample was included on all genotyping

plates for UK-ROI; average call rate was 99.9% with HapMap

concordance equaling 99.7%. The average sample call rate was

99.5% in UK-ROI with sample heterozygosity 22.1%. Concor-

dance with internal control for FinnDiane was 99.996% with an

average sample call rate of 99.8%.

Principal Component Analysis (PCA) was performed separately

for each of the three studies with the EIGENSTRAT program

[66] in order to detect genetic outliers and to adjust the analyses

for population structure. Genetic outliers were defined as more

than six standard deviations away from the center of distribution

along any of the ten first principal components and the procedure

was repeated until no outliers were detected. After filtering, PCA

were calculated for each study cohort combined with unrelated

individuals from three original HapMap populations (www.

hapmap.org), and plotted to identify additional admixed individ-

uals. The first ten principal components were employed to adjust

the association analysis for any residual population structure from

the cleaned datasets.

In total, directly genotyped results for 823 cases and 903

controls in 791,687 SNPs passed QC procedure in UK-ROI.

Similarly, 549,530 SNPs with average genotyping rate of 99.9%

passed the QC filters in 1,319 cases, 1,591 controls and 460

individuals with microalbuminuria for FinnDiane. 360,899 SNPs

in 774 cases and 821 controls for GoKinD US passed quality

control and were included in the analysis.

Imputation
Imputation was performed after the quality control employing

MACH 1.0 software (http://www.sph.umich.edu/csg/abecasis/

MACH) with HapMap phase II CEU population as a reference,

resulting in ,2.4 million SNPs for each cohort. The cross-over

and error rates were estimated with 50 iteration rounds in roughly

300 randomly selected samples. The imputation was run with the

greedy algorithm and the maximum likelihood method in order to

obtain expected allele dosages rather than integer allele counts.

SNPs with low imputation quality (r2,0.6) are not reported.

Statistical analysis
PLINK v1.07 [67] was employed to conduct association tests for

the allele dosage data with logistic regression adjusted for sex, age,

the duration of diabetes and the ten first components of the study

specific principal component analysis. UK-ROI and GoKinD US

were adjusted for study center, but in the primary DN phenotype

the two GoKinD US centers; GWU and JDC, were analyzed

separately. Results from individual studies were adjusted for study

specific genomic inflation factor and then combined by fixed effect

meta-analysis model using METAL [68], to estimate the combined

effect sizes and significances from beta values and standard error.

Regional association plots were generated using hg18 in Locus-

Zoom [69]. Quantile-Quantile plots were generated to evaluate the

number and magnitude of observed associations compared with

those expected under the null hypothesis (Figure S1).

Second-phase SNP selection and genotyping
All SNPs observed with P,1025 were selected for further

analysis. These SNPs were reviewed and a top SNP (with a proxy)

was selected for each independent signal (SNPs more than 500 kb

distant or LD r2,0.3 in HapMap II CEU) using the LD-based

clumping procedure implemented in PLINK. De novo genotyping

was performed for all phase two cohorts except for DCCT/EDIC

using identical designs of Sequenom IPLEX assays (Sequenom

Inc, San Diego, US). The DCCT/EDIC samples were imputed

from their GWAS results that had undergone their respective

quality control procedure. The statistical analysis was similar to

the discovery cohorts with the difference that the models were not

adjusted for principal components. All results were then combined

by meta-analysis using METAL software as previously described.

Longitudinal analysis
Time to event analyses were performed on longitudinal data

from the FinnDiane discovery cohort using Kaplan-Meier and
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Cox proportional hazards regression with the aim to evaluate the

genetic association of rs7583877 and rs12437854 with time from

the diagnosis of T1D to the onset of the following end points:

microalbuminuria, macroalbuminuria or ESRD. Additionally, we

analyzed time from onset of macroalbuminuria to development of

ESRD. The most recent kidney status data were utilized for each

patient. We also examined if the two main association loci,

rs7583877 and rs12437854, were associated with mortality using

data from the Finnish Death Registry (as per 30.9.2010). As DN

(defined as macroalbuminuria or ESRD) is strongly associated

with mortality, the time to death was separately analyzed for

patients without DN (time from T1D onset to death; patients who

developed DN were censored at the time of the onset of DN) and

for those with DN (time from onset of DN to death and time from

onset of ESRD to death). Analyses were performed using the

‘survival’ package in R software (version 2.36-10, http://cran.r-

project.org/web/packages/survival). (See Text S1.)

Additional analyses
SNPs were annotated with associated genes and function using

dbSNP build 132, human build 37.1. Cytogenetic locations for

genes were sourced from Entrez gene; locations for SNPs that were

not associated with genes were recorded from NCBI MapView. In

silico analyses included gene set enrichment using MAGENTA

[48]. To explore functional implications of AFF3, human kidney

epithelial cells (HK-2) were cultured and evaluated (Figure 4).

Renal biopsy populations
Gene expression was measured in renal tissue compartments

micro-dissected from renal biopsies from Pima Indians with type 2

diabetes and early stage DN (n = 77), as well as from Caucasian

living kidney transplant donors (n = 20). Pima Indian subjects are

25–68 in age, with measured ACR in the range 5.23–7162, and

GFR in the range 40.45–274.80.

Renal expression
Renal biopsies were micro-dissected into glomeruli and either

tubulointerstitial or cortical compartments, and gene expression

measured using the Affymetrix HGU-133A and HGU-133 Plus 2

platforms [70]. Background adjustment, quantile normalization

and probe-set summarization were performed with in a Gene-

Pattern (www.genepattern.org) pipeline using Robust Multichip

Analysis [71] with batch correction using Combat [72]. The

differential expression data sets were processed with the Entrez

Gene Custom CDF v.10, and the eQTL data sets were processed

with the RefSeq Custom CDF v.12 [73] for probe-sets common to

both expression platforms.

eQTL association
The Affymetrix 6.0 genotyping platform was used to genotype

Pima Indians with glomerular expression (n = 65), a subset of which

(n = 54) also had tubulointerstitial/cortical expression. The cis region

of each gene was defined as 150 kb upstream of the transcript start

site and 50 kb downstream of the transcription end site.

Supporting Information

Figure S1 Manhattan and QQ-plots for DN and ESRD

phenotypes. Manhattan plots (panels A and C) highlighting P

values from the discovery meta-analysis where dotted horizontal

lines represent the threshold for follow up, P,161025, and the

solid horizontal lines indicate the threshold for genome-wide

significance, P,561028. The nearest genes are indicated above

regions of interest. SNPs that reached threshold P,161025 and

were selected for follow up are denoted as black diamonds, SNPs

in linkage disequilibrium (R.0.6) with top SNP are denoted with

blue dots, and final meta analysis P values (discovery+phase 2

results) as red triangles. Q-Q plots (panels B and D) evaluated

inflation of the GWAS results and show the expected versus

observed P values; the diagonal line is the line of identity. The

inflation factor l for the genomic control is indicated in the Q-Q

plots.

(TIF)

Figure S2 Box and whisker plots of normalized ERBB4

expression intensities in glomerulus (A,B) and tubulointerstitium

(C,D) by genotype showing eQTL associations in tubulointersti-

tium. Both SNPs show significant eQTL associations in tubulo-

interstitial kidney biopsies of Pima Indians with type 2 diabetes

and DN (P = 0.018 for rs1718640, P = 0.024 for rs17418814;

linear regression using additive model). Association remained

significant for rs17418640 when the subject with homozygous

minor allele was excluded (P = 0.043). Associations with glomer-

ular expression are not significant. Gene expression in kidneys was

evaluated with Affy HGU-133A custom CDF probesets annotated

to RefSeq transcripts NM_005235 and NM_001042599, and

SNPs were genotyped with Affy 6.0 genotyping platform.

Conditional analysis indicates rs17418814 is dependent on

rs1718640 (P = 0.95 conditioned on rs1718640, versus rs1718640

P = 0.48 conditioned on rs17418814). Both SNPs lie within the

same intron of the ERBB4 gene as rs7588550 that was suggestively

associated with DN.

(TIF)

Figure S3 Longitudinal analyses in FinnDiane for rs7583877

(AFF3) and rs12437854 (chromosome 15q26). Analyses assume an

additive model of the SNP effects. The plotted survival curves have

been truncated at the point at which fewer than five participants

remained with the corresponding genotype. The genotype legend

in each figure indicates the number of samples with the

corresponding genotype, shown in parentheses. The P-value is

indicated for the nominally significant associations (P,0.05).

ns = not significant. The bottom part of each figure indicates the

number of samples at risk at ten-year intervals.

(TIF)

Figure S4 Rooted Principal Component Analysis of the

discovery cohorts. Two first principal components (PC1 and

PC2) are shown for (A) UK-ROI, (B) FinnDiane and (C) GoKinD

US. Principal Component Analysis was calculated with EIGEN-

STRAT software including CEU, YRI and CBT from HapMap II

as reference samples.

(TIF)

Table S1 Top ranked SNPs selected for DN, ESRD vs. non

ESRD, and ESRD vs. normoalbuminuria phenotypes.

(DOC)

Table S2 Clinical characteristics and information on genotyping

of the phase two cohorts.

(XLS)

Table S3 Gene ontology analysis of all genes within 61 Mbp of

top GWAS signals: rs7583877/AFF3; rs12437854/15q26;

rs7588550/ERBB4.

(DOC)

Table S4 Gene expression in early DN versus living donor

kidney biopsies. All genes within a 2 Mb window (1 Mb upstream

and downstream) of the three main signals (rs7583877/AFF3,

rs12437854/15q26, rs7588550/ERBB4) were studied.

(DOC)
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Table S5 Significantly enriched pathways (Genomatix Pathway

System) for the ERBB4-correlated genes in early diabetic

nephropathy.

(DOC)

Table S6 Cross-sectional and longitudinal analyses in Finn-

Diane for rs7583877 (AFF3) and rs12437854 (chromosome

15q26).

(DOC)

Table S7 Additional kidney phenotype analysis results for the

three main loci.

(DOC)

Table S8 P-value for association with DN related traits for the

main signals after combined meta-analysis of DN and ESRD

phenotypes. A1 is associated with increasing risk of ESRD/DN.

(DOC)

Table S9 GENIE GWAS associations for SNPs that have been

previously associated with T1D or chronic kidney disease.

(DOC)

Table S10 Gene set enrichment analysis with MAGENTA.

Gene sets with nominal P-value,0.01 for the three analyzed

phenotypes.

(DOC)

Table S11 Number of patients included in the study.

(DOC)

Table S12 Quality control and filtering for the discovery GWAS

data.

(DOC)
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(DOC)
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