

School of Biological Sciences Discipline of Biochemistry

The Design, Synthesis and Quantitative Analysis of a Bistable Mixed Feedback Loop Gene Network

Julian Michael Juers Pietsch

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

February 2015

Abstract

Bistability, the capacity for switch-like memory, is a fundamental building block for robust behaviour in the noisy biochemical environment of a cell. Bistability has been observed experimentally in gene networks that exhibit overall positive feedback in some form; particular properties are endowed by variations on the basic network topology. The Mixed Feedback Loop (MFL) is a two-protein network that can be configured for positive feedback, and is notable since it has been observed to arise in nature more often than expected. The MFL includes an intervening protein-protein interaction to close a transcriptional feedback loop. This network architecture has been predicted to support bistable operation even without molecular cooperativity. To investigate the capabilities and features of the MFL, a synthetic bistable MFL was designed for construction in Escherichia coli (E. coli) using genetic components from bacteriophage 186. The design consists of the phage CI repressor protein inhibiting the production of its corresponding Tum antirepressor. This Tum–CI MFL prototype was first validated using a deterministic model expressly formulated for this instance of the MFL. It was then constructed in E. coli with dual LacZ and fluorescent reporters to permit multiple modes of measurement. Hysteresis assays — assays testing for history dependence or 'memory' of the system — were chosen as the measure of bistability, both since the bistable MFL naturally lends itself to such an assay, and since the assay simultaneously enables optimisation and setting of the switch. Measured by LacZ assay, the bistable MFL showed limited hysteresis. A detailed experimental characterisation of the network components and strains assisted in refining the data and setting bounds on model parameters. However, whilst this served to increase analytical accuracy, the deterministic model remained a poor fit of the data. When instead measuring activities in single cells by flow cytometry using the fluorescent reporter, two semi-stable sub-populations were discovered. Poor separation of the sub-populations necessitated the development of a system-specific mixture model for accurate identification of their characteristics, but the sub-population dynamics found much better agreement with the deterministic model. By building on this model with a hybrid stochastic/deterministic model, the limited hysteresis seen by LacZ assay can be explained by variation in switch robustness: the steady-state repressor concentration weights each cell's 'decision' for either of the two stable states. These results further an understanding of the core requirements for stable maintenance of epigenetic memory. The simplifications made by isolating the MFL according to the 'synthetic biology' approach allowed key features of this network motif to be determined. A deep knowledge of simple circuit structures like the MFL contributes fundamentally towards the way we understand proteins and how they fit into the complex networks that underpin the workings of life.

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Julian Pietsch

Date

Acknowledgements

This thesis would not have been possible without the generous assistance, support and patience of many others.

A number of colleagues were instrumental in guiding the development of the theoretical models and analytical methods employed in this thesis. The stochastic models started their development under the guidance of Kim Sneppen at the Niels Bohr Institute in Copenhagen. Sandeep Krishna, also from the Niels Bohr Institute, provided many thoughtful discussions on modelling techniques, which helped me to refine and simplify the deterministic models. Ray Correll (originally CSIRO) provided useful advice on advanced statistical practice and methods of inference, particularly for the analysis of the bacterial growth curves.

Many, many thanks must go to my supervisors Keith Shearwin and Ian Dodd, who were always excited about my work, but equally inspiring for the way they tempered my inventive imagination with sound wisdom. Thank you for tirelessly reading through many lengthy thesis drafts and for giving me the opportunity to work on such an enjoyable project.

Many past and present members of the Shearwin lab provided valuable experimental tips, reagents when I was short, and a satisfying source of good conversation. Rachel Schubert and Linda Shearwin provided a number of foundational materials and results for the work on the Tum protein. Adam Palmer and Michael Pocock started the MFL project, providing a solid cornerstone upon which much of this thesis has been built. Barry Egan, the previous head of the lab, provided encouragement and an infectious enthusiasm for phage 186. Alexandra Ahlgren-Berg, Erin Cutts, David Priest, Danna Li, Cui Lun and Andrew Hao made sure that I always had someone to chat with and participated in many hours of discussion at the lab-ins I presented. Thank you for being there for me through the highs and lows of the thesis. Many thanks must also go to Iain Murchland, who kept me up to date with the affairs of the outside world, entertained me with plenty of cheerful banter whilst at the bench, and was always willing to hear through my (often fanciful) thoughts and ideas.

In the final throes of the thesis, Pierre Dumuid helped me to steer back on course and establish realistic goals. Many thanks for standing with me in the face of a mammoth task.

My siblings Antony and Hannah Pietsch, and Taria and Adam Schulze have always given me something to smile about and look forwards to. Thank you for all the love and support you have shown me over the past few years, and for so many laughs and dinners.

My mum and dad, Helen and Mike Pietsch, have spoiled me with their generous love and care for many, many years. Thank you for being such amazing parents.

I owe so very much to my wife Alia Pietsch. You are my inspiration, my light. And your patience and love always carried me through the PhD's darkest moments. Thank you for believing in me.

Contents

•

Сс	onten	ts	i
Li	st of]	Figures	v
Li	List of Tables vi		viii
1	Intr	oduction	1
	1.1	Cellular networks drive cell behaviour	2
	1.2	Synthetic biology as a tool for studying network motifs	4
		1.2.1 Defining modules for rational circuit design	5
		1.2.2 Predictive models of cellular networks	6
		1.2.3 Bacteriophage 186: a source of new components for synthetic biology	8
	1.3	The bistable MFL is an excellent candidate synthetic network	10
	1.4	Thesis overview	12
2	Dire	ecting design of a bistable genetic circuit by mathematical modelling	15
	2.1	Origin of bistability in the Tum–CI MFL	16
	2.2	Developing a mathematical model of the Tum–CI MFL	17
		2.2.1 Modelling the $CI-pR$ interaction	19
		2.2.2 Modelling the Tum–CI interaction	20
		2.2.3 Deterministic free species model	23
		2.2.4 Deterministic total species model	26
	2.3	Steady-state analysis of the Tum-CI MFL model	29
		2.3.1 Solving the free species model at steady-state	29
		2.3.2 Varying the parameters	34
	2.4	Hysteretic behaviour	38
		2.4.1 Time course simulations of the Tum–CI MFL	40
		2.4.2 Simulating the hysteresis assay	44
3	Des	igning and characterising a bistable Mixed Feedback Loop (MFL)	49
	3.1	Designing and cloning the MFL strains	51
		3.1.1 Development of the preliminary Tum–CI MFL strains	51
		3.1.2 Introducing a fluorescence-based reporter module	56
		3.1.3 Shifting the range of CI expression levels	59
	3.2	Assaying hysteresis in the Tum-CI Mixed Feedback Loop	61
	3.3	Characterising the CI induction module	66
	3.4	Host strain characteristics	77

		3.4.1 Optical density measurements	77
		3.4.2 Growth rate	79
		3.4.3 Growth rates in alternative media	84
		3.4.4 Cell volume	86
	3.5	Balancing the MFL module	87
		3.5.1 Quantitating intracellular proteins	87
		3.5.2 Degradation rates of Tum and CI	89
		3.5.3 Production rate from pR	95
		3.5.4 Production rate from P_{lac}	101
	3.6	Chapter summary	104
4	The	MFL displays only weak bistability when measured over a whole population1	105
	4.1	Experimental limitations of the hysteretic LacZ assay 1	105
		4.1.1 Variations in optical density bias LacZ assay measurements 1	106
		4.1.2 Normalising P_{lac} induction levels to production rates improves but	
		does not complete the picture of hysteresis	108
	4.2	Extending the hysteresis assay equilibration time	112
		4.2.1 Extending the time for equilibration brings the control strains to steady	110
	4.0	4.2.2 Complete hysteresis is observed with a long equilibration time 1	115
	4.3	1 ne deterministic model does not capture the behaviour of the MFL 1	110
		4.3.1 Searching the parameter space of the deterministic MFL model 1	110
		4.3.2 Fitting the combined data sets	124
			124
	11	Chapter summary 1	128
	4.4	Chapter summary	128
5	4.4 Hys	Chapter summary	128 129
5	4.4 Hys 5.1	Chapter summary	128 129 130
5	4.4 Hys 5.1	Chapter summary	128 129 130 130
5	4.4 Hys 5.1	Chapter summary 1 Steresis is obscured by stochastic switching between semi-stable states 1 Relating single-cell and whole-population measures of promoter activity 1 5.1.1 Assaying gene circuit hysteresis by flow cytometry 1 5.1.2 Choosing an appropriate data transformation 1	128 129 130 130 132
5	4.4 Hys 5.1	Chapter summary 1 Steresis is obscured by stochastic switching between semi-stable states 1 Relating single-cell and whole-population measures of promoter activity 1 5.1.1 Assaying gene circuit hysteresis by flow cytometry 1 5.1.2 Choosing an appropriate data transformation 1 5.1.3 An automated filter for selecting cell populations 1	128 129 130 130 132 132
5	4.4 Hys 5.1	Chapter summary 1 Steresis is obscured by stochastic switching between semi-stable states 1 Relating single-cell and whole-population measures of promoter activity 1 5.1.1 Assaying gene circuit hysteresis by flow cytometry 1 5.1.2 Choosing an appropriate data transformation 1 5.1.3 An automated filter for selecting cell populations 1 5.1.4 Morphology normalisation refines the distribution of fluorescence 1	128 130 130 132 132
5	4.4 Hys 5.1	Chapter summary 1 Steresis is obscured by stochastic switching between semi-stable states 1 Relating single-cell and whole-population measures of promoter activity 1 5.1.1 Assaying gene circuit hysteresis by flow cytometry 1 5.1.2 Choosing an appropriate data transformation 1 5.1.3 An automated filter for selecting cell populations 1 5.1.4 Morphology normalisation refines the distribution of fluorescence 1 5.1.5 The curated data is suggestive of population mixing 1	128 130 130 132 132 133 137
5	 4.4 Hys 5.1 	Chapter summary 1 Steresis is obscured by stochastic switching between semi-stable states 1 Relating single-cell and whole-population measures of promoter activity 1 5.1.1 Assaying gene circuit hysteresis by flow cytometry 1 5.1.2 Choosing an appropriate data transformation 1 5.1.3 An automated filter for selecting cell populations 1 5.1.4 Morphology normalisation refines the distribution of fluorescence 1 5.1.5 The curated data is suggestive of population mixing 1 MFL samples within the bistable region are a mixture of two cell populations 1	128 129 130 132 132 133 137 138
5	 4.4 Hys 5.1 5.2 5.3 	Chapter summary 1 Steresis is obscured by stochastic switching between semi-stable states 1 Relating single-cell and whole-population measures of promoter activity 1 5.1.1 Assaying gene circuit hysteresis by flow cytometry 1 5.1.2 Choosing an appropriate data transformation 1 5.1.3 An automated filter for selecting cell populations 1 5.1.4 Morphology normalisation refines the distribution of fluorescence 1 5.1.5 The curated data is suggestive of population mixing 1 MFL samples within the bistable region are a mixture of two cell populations 1 1 The mixed population model reveals the stable states predicted for the MFL 1	 128 129 130 130 132 132 133 137 138
5	 4.4 Hys 5.1 5.2 5.3 5.4 	Chapter summary 1 Steresis is obscured by stochastic switching between semi-stable states 1 Relating single-cell and whole-population measures of promoter activity 1 5.1.1 Assaying gene circuit hysteresis by flow cytometry 1 5.1.2 Choosing an appropriate data transformation 1 5.1.3 An automated filter for selecting cell populations 1 5.1.4 Morphology normalisation refines the distribution of fluorescence 1 5.1.5 The curated data is suggestive of population mixing 1 MFL samples within the bistable region are a mixture of two cell populations 1 1 The mixed population model reveals the stable states predicted for the MFL strains 1	128 129 130 132 132 133 137 138
5	 4.4 Hys 5.1 5.2 5.3 5.4 	Chapter summary 1 Steresis is obscured by stochastic switching between semi-stable states 1 Relating single-cell and whole-population measures of promoter activity 1 5.1.1 Assaying gene circuit hysteresis by flow cytometry 1 5.1.2 Choosing an appropriate data transformation 1 5.1.3 An automated filter for selecting cell populations 1 5.1.4 Morphology normalisation refines the distribution of fluorescence 1 5.1.5 The curated data is suggestive of population mixing 1 MFL samples within the bistable region are a mixture of two cell populations 1 The mixed population model reveals the stable states predicted for the MFL strains 1 Noisy switching between sub-populations occurs throughout the hysteresis 1	128 129 130 132 132 133 137 138 147
5	 4.4 Hys 5.1 5.2 5.3 5.4 5.5 	Chapter summary 1 Steresis is obscured by stochastic switching between semi-stable states 1 Relating single-cell and whole-population measures of promoter activity 1 5.1.1 Assaying gene circuit hysteresis by flow cytometry 1 5.1.2 Choosing an appropriate data transformation 1 5.1.3 An automated filter for selecting cell populations 1 5.1.4 Morphology normalisation refines the distribution of fluorescence 1 5.1.5 The curated data is suggestive of population mixing 1 MFL samples within the bistable region are a mixture of two cell populations 1 1 The mixed population model reveals the stable states predicted for the MFL strains 1 Noisy switching between sub-populations occurs throughout the hysteresis assay 1	128 129 130 130 132 132 133 137 138 147
5	 4.4 Hys 5.1 5.2 5.3 5.4 5.5 	Chapter summary 1 Steresis is obscured by stochastic switching between semi-stable states 1 Relating single-cell and whole-population measures of promoter activity 1 5.1.1 Assaying gene circuit hysteresis by flow cytometry 1 5.1.2 Choosing an appropriate data transformation 1 5.1.3 An automated filter for selecting cell populations 1 5.1.4 Morphology normalisation refines the distribution of fluorescence 1 5.1.5 The curated data is suggestive of population mixing 1 MFL samples within the bistable region are a mixture of two cell populations 1 1 The mixed population model reveals the stable states predicted for the MFL strains 1 Noisy switching between sub-populations occurs throughout the hysteresis assay 1 Chapter Summary 1	128 129 130 130 132 132 133 137 138 147 154 158
5	 4.4 Hys 5.1 5.2 5.3 5.4 5.5 Investigation 	Chapter summary 1 Steresis is obscured by stochastic switching between semi-stable states 1 Relating single-cell and whole-population measures of promoter activity 1 5.1.1 Assaying gene circuit hysteresis by flow cytometry 1 5.1.2 Choosing an appropriate data transformation 1 5.1.3 An automated filter for selecting cell populations 1 5.1.4 Morphology normalisation refines the distribution of fluorescence 1 5.1.5 The curated data is suggestive of population mixing 1 MFL samples within the bistable region are a mixture of two cell populations 1 1 Moisy switching between sub-populations occurs throughout the hysteresis assay 1 Noisy switching between sub-populations occurs throughout the hysteresis assay 1 Chapter Summary 1 Relating noisy switching in the Tum–CI MFL by stochastic modelling 1	 128 129 130 132 132 133 137 138 147 154 158 159
5	 4.4 Hys 5.1 5.2 5.3 5.4 5.5 Invertion 6.1 	Chapter summary 1 steresis is obscured by stochastic switching between semi-stable states 1 Relating single-cell and whole-population measures of promoter activity 1 5.1.1 Assaying gene circuit hysteresis by flow cytometry 1 5.1.2 Choosing an appropriate data transformation 1 5.1.3 An automated filter for selecting cell populations 1 5.1.4 Morphology normalisation refines the distribution of fluorescence 1 5.1.5 The curated data is suggestive of population mixing 1 MFL samples within the bistable region are a mixture of two cell populations 1 1 Moisy switching between sub-populations occurs throughout the hysteresis assay 1 Chapter Summary 1 Stochastic modelling of gene networks 1	128 130 130 132 132 133 137 138 147 154 158 158 158
5	 4.4 Hys 5.1 5.2 5.3 5.4 5.5 Inve 6.1 6.2 	Chapter summary 1 steresis is obscured by stochastic switching between semi-stable states 1 Relating single-cell and whole-population measures of promoter activity 1 5.1.1 Assaying gene circuit hysteresis by flow cytometry 1 5.1.2 Choosing an appropriate data transformation 1 5.1.3 An automated filter for selecting cell populations 1 5.1.4 Morphology normalisation refines the distribution of fluorescence 1 5.1.5 The curated data is suggestive of population mixing 1 MFL samples within the bistable region are a mixture of two cell populations 1 1 Moisy switching between sub-populations occurs throughout the hysteresis assay 1 Noisy switching between sub-populations occurs throughout the hysteresis assay 1 Relating noisy switching in the Tum-CI MFL by stochastic modelling 1 Stochastic modelling of gene networks 1 A hybrid stochastic/deterministic model of the Tum-CI MFL 1	128 130 130 132 132 133 137 138 147 154 158 158 159 160 167
5	 4.4 Hys 5.1 5.2 5.3 5.4 5.5 Inve 6.1 6.2 6.3 	Chapter summary 1 steresis is obscured by stochastic switching between semi-stable states 1 Relating single-cell and whole-population measures of promoter activity 1 5.1.1 Assaying gene circuit hysteresis by flow cytometry 1 5.1.2 Choosing an appropriate data transformation 1 5.1.3 An automated filter for selecting cell populations 1 5.1.4 Morphology normalisation refines the distribution of fluorescence 1 5.1.5 The curated data is suggestive of population mixing 1 MFL samples within the bistable region are a mixture of two cell populations 1 1 Noisy switching between sub-populations occurs throughout the hysteresis assay 1 Noisy switching between sub-populations occurs throughout the hysteresis assay 1 Chapter Summary 1 Stochastic modelling of gene networks 1 A hybrid stochastic/deterministic model of the Tum–CI MFL 1 Establishing a parameter regime for the hybrid stochastic/deterministic model 1	128 130 130 132 132 133 137 138 147 154 158 158 159 160 167 173
5	 4.4 Hys 5.1 5.2 5.3 5.4 5.5 Investigation of the second second	Chapter summary 1 Steresis is obscured by stochastic switching between semi-stable states 1 Relating single-cell and whole-population measures of promoter activity 1 5.1.1 Assaying gene circuit hysteresis by flow cytometry 1 5.1.2 Choosing an appropriate data transformation 1 5.1.3 An automated filter for selecting cell populations 1 5.1.4 Morphology normalisation refines the distribution of fluorescence 1 5.1.5 The curated data is suggestive of population mixing 1 MFL samples within the bistable region are a mixture of two cell populations 1 1 MFL samples within the bistable region are a mixture of two cell populations 1 1 Noisy switching between sub-populations occurs throughout the hysteresis assay 1 Chapter Summary 1 Stochastic modelling of gene networks 1 A hybrid stochastic/deterministic model of the Tum–CI MFL 1 Establishing a parameter regime for the hybrid stochastic/deterministic model 16 6.3.1	128 130 132 132 132 133 137 138 147 154 158 147 158 160 167 173 173
6	 4.4 Hys 5.1 5.2 5.3 5.4 5.5 Inve 6.1 6.2 6.3 	Chapter summary 1 steresis is obscured by stochastic switching between semi-stable states 1 Relating single-cell and whole-population measures of promoter activity 1 5.1.1 Assaying gene circuit hysteresis by flow cytometry 1 5.1.2 Choosing an appropriate data transformation 1 5.1.3 An automated filter for selecting cell populations 1 5.1.4 Morphology normalisation refines the distribution of fluorescence 1 5.1.5 The curated data is suggestive of population mixing 1 MFL samples within the bistable region are a mixture of two cell populations 1 1 Noisy switching between sub-populations occurs throughout the hysteresis assay 1 Noisy switching between sub-populations occurs throughout the hysteresis assay 1 Chapter Summary 1 Relating noisy switching in the Tum–CI MFL by stochastic modelling 1 Stochastic modelling of gene networks 1 A hybrid stochastic/deterministic model of the Tum–CI MFL 1 6.3.1 Fitting the dynamic deterministic model to a stochastic data set 1 6.3.2 Optimising the magnitude of noise to reproduce observed rates of 1	128 130 130 132 132 133 137 138 147 154 158 158 160 167 173 173

	6.4	A simple stochastic model is sufficient to reproduce salient features of the	101
	6 5	Ium-CIMFL	181
	6.3		107
7	The	MFL now and going forwards	189
8	Mat	erials and Methods	193
	8.1	Reagents	193
	8.2	General cloning methods	196
		8.2.1 Growth of bacteria	196
		8.2.2 Storage of bacterial strains	197
		8.2.3 Preparation and purification of DNA	197
		824 Polymerase Chain Reactions	198
		825 Analysis of DNA	198
		826 DNA recombination work	100
		827 Competent cells	100
		8.2.8 Sequencing	200
		8.2.0 Changing registance gapes for the nP turn plasmid	200
	07	Strains and DNA	201
	0.3	Strains and DNA	204
		0.3.1 Dacterial strains 0.2.2 Drime reg	204
		8.3.2 Primers	205
	0.4	8.3.3 Plasmids	206
	8.4	Assays	209
		8.4.1 Preparation of cell extracts	209
		8.4.2 Polyacrylamide gel electrophoresis of proteins and Western blotting	211
		8.4.3 Quantitating concentrations of cells in culture	212
		8.4.4 Growth of bacteria for 96-well plate assays	212
		8.4.5 LacZ assay	213
		8.4.6 Flow cytometry	214
9	Stru	icture-function studies for Tum	217
Δ	Fitti	ing growth curves	251
11	Λ 1	Log_linear fits	251
	A.1	Comportz fits	252
	Λ.2	Comparing the models	255
	A.3	Crowth rate measurements	255
	A.4		237
В	Scri	pts for analysis of flow cytometry data	259
	B.1	General utility functions	260
	B.2	Automated selection of the main cell population	262
	B.3	Logicle transformation	263
	B.4	Morphology normalisation	264
	B.5	Constrained skew- <i>t</i> regression	270
C	E:++:	ing deterministic time-course models to the Tum CI MEL date	270
C	C_1	Deterministic simulation of the MEL in P	219 270
	C_{1}	Eitting the model to the Lee Z accession	∠/ 7 201
	C.2	C 2.1 Loading and curating the data set	271 201
		C.2.1 Loading and curating the data set	291

iii

		C.2.2 Setting up the model output	295
		C.2.3 Defining the cost function and optimising parameters	298
	C.3	Fitting the model to the flow cytometry assays	299
D	The	hybrid stochastic/deterministic model of the Tum—CI MFL	309
	D.1	Tracking simulator state	310
	D.2	The generic simulation framework	316
	D.3	Classes for simulation of the MFL	324
		D.3.1 mflLibrary.h	324
		D.3.2 equilibration.h	334
		D.3.3 models.h	345
	D.4	Running the simulator	352
	D.5	Adding experimental noise to stochastic simulations	359
Bil	bliog	raphy	363

List of Figures

1.1	Common cellular network motifs.	2
1.2	A diagrammatic representation of the bacteriophage 186 genome	9
1.3	Gene regulatory networks that can exhibit bistability.	11
2.1	Circuit diagram for the bistable mixed feedback loop	15
2.2	Stable states of the Tum–CI MFL	16
2.3	Tum-CI MFL model parameters.	18
2.4	Fitting parameters for the Tum-CI interaction.	21
2.5	Bistability in the Tum–CI MFL arises as a result of the sigmoidal response of	
	Tum production as a function of total Tum concentration	28
2.6	Stable points of the MFL	32
2.7	Equilibrium solutions for the Tum–CI MFL as a function of total CI steady-state	
	concentration.	33
2.8	Variation in bistable region location as a function of equilibrium parameters	35
2.9	Observing variation in bistable region location as a function of production and	
	degradation rate parameters	37
2.10	Qualitative description of hysteresis in the Tum–CI MFL	39
2.11	Determinstic time course simulations of the Tum–CI MFL	43
2.12	Determinstic hysteresis loop simulations of the Tum–CI MFL	45
2.13	Equilibration times near the points of bifurcation	47
3.1	Tum–CI MFL strain design.	50
3.2	Sequence maps for the <i>pR</i> - <i>lacZ</i> and <i>pR</i> - <i>tum</i> MFL modules	54
3.3	Sequence maps of the plasmids used for introducing a fluorescent reporter to	
	the MFL	58
3.4	Sequence maps of the CI expression plasmids.	59
3.5	Comparing repression of the <i>pR</i> promoter by CI expression plasmids that utilise	
	alternative cI RBSs.	60
3.6	The Tum–CI MFL shows hysteresis.	63
3.7	Sequence maps illustrating plasmid precursors to the IPTG induction reporter	60
2 0		68
3.8	Induction of the P_{lac} promoter has an ultrasensitive dependence on the concen-	70
20	tration of IPTG inducer in MIFL-like strains.	70
3.9	neterosceuasticity is reduced by using a Box-Cox transformation prior to fitting	70
	the r_{lac} induction reporter assay data with fill curves.	12

3.10	Comparing P_{lac} promoter induction under different assay conditions in MFL-	
0.11		73
3.11	Scaling the P_{lac} induction curves measured by LacZ assay to the equivalent steady-state CL concentrations	76
3.12	Calibrating absorbance measurements at 620 nm, for cultures grown in M9 min-	10
0.12	imal media in 96-well plates, to standard optical densities at 600 nm.	78
3.13	Comparing log-linear and Gompertz fits of growth curves.	81
3.14	Growth curves for a MFL strain grown in alternative growth media.	85
3.15	Fitting the sigmoidal response of band intensity to TumHis ₆ mass	88
3.16	Using Box-Cox transformation of Western blot band intensities to derive a quan-	
	tity with linear dependence on Tum mass	88
3.17	Following Tum degradation by Western blot.	90
3.18	Measuring degradation of Tum and CI.	91
3.19	Comparing soluble and insoluble fractions of Tum at initial and final time points	
	of the degradation assays.	92
3.20	The degradation-resistant fraction of Tum appears to be a subset of the insolu-	~~
0.01	ble fraction.	93
3.21	Western blots for quantitating stoady state production of Tum from pR	94
3.22	Calibrating Tum-specific hand intensities on Western blots with Tum mass	97 07
3.23	Calibrating full-specific ball intensities of Western blots with full mass. \therefore Estimates of the mass of Tum from extracts of MEL strains with pMTS-pR-tum ⁺	91
5.24	$(pMTS-pR-tum^+)$ but without the cL gene	98
3 25	Quantitating steady-state CL production from $P_{1,.}$ by Western blot for induction	70
0.20	at 300 μ M IPTG	.02
3.26	Estimating the mass of CI in the wRBS and eRBS extracts	.03
3.27	Comparing steady-state estimates of CI concentration for the MFL strains with	
	those previously obtained for the same induction system	.04
11	Everyoning the normal equilibration time bustomeric survey in terms of CI are	
4.1	duction rate reveals a wider putative region of histability	11
42	Extending the time for equilibration allows the control curves to reach equilibration	
1.4	rium.	13
4.3	Complete hysteresis is observed when using the long equilibration time assay	
	at the cost of loop collapse	16
4.4	The steady-state model of bistability does not compare well with the long equi-	
	libration time assays	20
4.5	The deterministic Tum-CI MFL model cannot match all features of the experi-	
	mental WR-MC MFL hysteresis assays	.23
4.6	The whole-population WR-MC and ER-MC data sets can be matched up, but	
	the additional data does not improve the model fit.	.25
5.1	The bacterial cell population is easily identified using the forward and side	
	scatter intensities.	.33
5.2	The resolution between low and high fluorescence populations is poor 1	.34
5.3	The mean fluorescence of the cell populations overlaps well with the mean pR	
	activity measured by LacZ assay.	.36
5.4	Viewed as cell populations, hysteresis in the Tum-CI MFL is manifest as a	
	history-dependent broadening of fluorescence	.37

5.5	The skew- <i>t</i> distribution provides a good fit of population fluorescence for the MEL control strains	141
5.6	The interquartile range of intensity for the MFL control distributions varies as	140
5.7	The fitted skew- <i>t</i> parameters of the MFL controls vary as functions of the me-	142
5.8	MFL distributions in the bistable region are a bimodal mixture of control-like	144
5.9 5.10	sub-populations	145 151
5.10	state deterministic model.	152
5.11	ER-MC Tum-CI MFL.	156
6.1 6.2	Illustrating the Gillespie algorithm	162
6.3	strain	172
6.4	simplified parameter set	177
6.5	ently to that for Tum production.	180
6.6	modality observed experimentally.	182
6.7	of the Tum–CI MFL	184
0.7	deterministic interpretation.	186
8.1	1.5% agarose gel of diagnostic digest of pMTS- <i>pR</i> - <i>tum</i> ⁺ plasmid with AatII, XhoI and NdeI.	202
8.2 8.3	1.5% agarose gel of diagnostic digest of pR -tum plasmids with NdeI/XhoI 2.0% agarose gel of diagnostic digests to check for the correct origin in the	203
	pR-tum plasmids.	204
A.1 A.2 A.3	Well-to-well variations in 96-well plates are correlated over time	251 253 254
A.5	for the MFL strains	256
Λ.6	selection of time points.	256
A.0 A.7	Induction reporter strain doubling times show little dependence on IPTG or assay conditions.	257
C.1	Deterministic fits of the ER-MCTum-CI MFL flow cytometry hysteresis assay.	305

List of Tables

3.1	Parameters determined for Hill fits of induction.	74
3.2	Doubling times measured for notable strains within the present thesis	82
3.3	Growth rates measured for an MFL strain in alternative growth media	85
3.4	Tabulating the strengths of the <i>pR</i> and P_{lac} promoters in the MFL strains	99
4.1	Comparing parameters measured experimentally or obtained from the litera-	
	ture with those determined by fitting the deterministic model	127
6.1	Stochastic reactions in the Tum-CI MFL model.	170
6.2	A comparison of experimental parameter estimates and the deterministic pa-	
	rameters fitted to the time-course flow cytometry data.	176
8.1	Standard chemicals used in this thesis	193
8.2	Standard buffers and growth media used in this thesis. Buffers were prepared	
	in Milli-Q water (H_2O) unless otherwise specified.	195
8.3	Concentrations of antibiotics used in this thesis.	197
8.4	Bacterial strains used in this thesis	204
8.5	Primers used in the course of this thesis	205
8.6	Plasmids referred to and cloned in the course of this thesis	206
C.1	A comparison of the deterministic parameters fitted to various subsets of the	
	time-course flow cytometry data	307

List of Boxes

4.1	Correcting for the dependence of LacZ units on optical density (OD ₆₀₀) re-	
	duces variability and increases separation between the hysteresis curves	107
5.1	The skew- <i>t</i> distribution.	140