Characterisation and Management of Herbicide Resistance in Barley Grass (Hordeum glaucum Steud.)

Lovreet Singh Shergill

B.Sc. Agriculture (Hons.), M.Sc. (Agronomy)

A thesis by **prior publications** submitted to The University of Adelaide, South Australia

In the fulfilment of the degree of DOCTOR OF PHILOSOPHY

Faculty of Sciences
School of Agriculture, Food and Wine

DECLARATION

I certify that this work contains no material which has been accepted for the award of any

other degree or diploma in my name, in any university or other tertiary institution and, to

the best of my knowledge and belief, contains no material previously published or written

by another person, except where due reference has been made in the text. In addition, I

certify that no part of this work will, in the future, be used in a submission in my name, for

any other degree or diploma in any university or other tertiary institution without the prior

approval of the University of Adelaide and where applicable, any partner institution

responsible for the joint-award of this degree. I give consent to this copy of my thesis

when deposited in the University Library, being made available for loan and

photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this

thesis resides with the copyright holder(s) of those works. I also give permission for the

digital version of my thesis to be made available on the web, via the University's digital

research repository, the Library Search and also through web search engines, unless

permission has been granted by the University to restrict access for a period of time.

Lovreet Singh Shergill______ Date___15 May 2016

ii

TABLE OF CONTENTS

ABSTRA	CT		viii	
PUBLICA	TIONS A	ARISING FROM THIS THESIS	x	
ACKNOW	VLEDGE	EMENTS	xi	
СНАРТЕ	R 1 Revi	iew of Literature	1	
1.	Herbic	ide use in weed control	1	
2.	Herbic	Herbicide resistance		
3.	Factors	s contributing to the evolution of herbicide resistance	4	
	3.1	Genetic variation	4	
	3.2	Selection	4	
	3.3	Genetic inheritance	5	
	3.4	Gene flow	6	
	3.5	Fitness	7	
4.	Mecha	nisms of herbicide resistance	8	
	4.1	Target site resistance	8	
	4.2	Non-target site resistance	11	
5.	Barley	grass	12	
	5.1	Biology and ecology	12	
	5.2	Introduction and geographical distribution in Australia	13	
	5.3	Cytology and taxonomy	14	
	5.4	Seed germination, phenology and fecundity	15	
	5.5	Impact of Hordeum spp	16	
	5.6	Evolution of herbicide resistance in barley grass	16	
	5.7	Mechanisms of herbicide resistance	18	
	5.8	Management of barley grass	19	

6.	Summary and knowledge gaps	20
7.	References	22
CHAPTER	2 Target-Site Point Mutations Conferring Resistance to ACCase-In	hibiting
Herbicides	in Smooth Barley (Hordeum glaucum) and Hare Barley (H	Iordeum
leporinum)		35
CHAPTER	3 Incidence of Herbicide Resistance, Seedling Emergence ar	nd seed
Persistence	of Smooth Barley (Hordeum Glaucum) in South Australia	46
CHAPTER	4 Multiple Resistance to ACCase and ALS-Inhibitors in <i>Hordeum</i> g	зlаисит
Steud		60
1.	INTRODUCTION	63
2.	MATERIALS AND METHODS	65
	2.1 Plant material	65
	2.2 Seed germination and plant growth	65
	2.3 Dose-response experiments	66
	2.4 Synergistic effect of malathion	67
	2.5 Sequencing of ACCase and ALS gene	68
	2.6 Statistical analysis	69
3.	RESULTS AND DISCUSSION	70
	3.1 Dose-response to ACCase-inhibitors	70
	3.2 Dose-response to ALS-inhibitors	75
	3.3 Multiple resistance in H. glaucum	77
	3.4 Resistance mechanisms: Target and non-target site	78
4.	CONCLUSIONS	80
AC	KNOWLEDGEMENTS	80
REI	FERENCES	81

CHAPTER	R 5 Ir	hheritance of Quizalofop Resistance in Smooth Ba	rley (Hordeum
glaucum) I	Biotype	from South Australia	89
Abs	stract		91
Inti	roductio	n	92
Ma	terials a	nd Methods	94
	Sou	rce of Plant Material and Growth Conditions	94
	Dos	e response to ACCase-inhibiting herbicides	95
	Ider	ntifying Target-Site Mutations	96
Res	sults and	l Discussion	101
	Cha	racterization of Herbicide Resistance	101
	$F_1 I$	Hybrid Confirmation and Nuclear Gene Inheritance	102
	Seg	regation of Resistance Traits in F_2 Generation	103
Acl	knowled	gements	107
Lite	erature (Cited	108
СНАРТЕГ	R 6 Fit	ness Costs Associated with 1781 and 2041 ACCase-	Mutant Alleles
Conferring	g Resista	nce to Herbicides in Hordeum glaucum Steud	114
Ab	stract		116
1.	Introd	uction	117
2.	Materi	als and Methods	119
	2.1	Plant material	119
	2.2	Selection and characterization of biotypes	119
	2.3	Sequencing of ACCase gene	121
	2.4	Pot experiment	121
	2.5	Field experiment	123
	2.5.	2 Plant growth assessments.	124

3. Results	126
3.1 Characterization of selected biotypes	126
3.2 Sequencing of ACCase gene	126
3.3 Pot experiment	127
3.4 Field experiment	131
4. Discussion	137
5. Conclusions	139
Acknowledgements	139
References	140
CHAPTER 7 Management of ACCase-Inhibiting Herbicide-Resistant Smooth Ba	rley
(Hordeum glaucum) in Field Pea (Pisum sativum) with Alternative Herbicides	143
Abstract	146
Introduction	147
Materials and Methods	149
Experimental Site Location and Design	149
Data Collection	150
Statistical Analyses.	151
Results and Discussion	153
Weed Control	153
Crop Response	155
Acknowledgements	160
Literature Cited	160
CHAPTER 8 General Discussion, Conclusions and Recommendations	164
1 General Discussion	164

2.	Conclusions	171
3.	Recommendations for Future Research	172
4.	References	173

ABSTRACT

Hordeum glaucum has emerged as a problematic weed in cereal and broadleaf crops of South Australia (SA). Recent reports from growers and agricultural advisors in SA have indicated an increase in the incidence of H. glaucum in field crops. The increase in the incidence was suspected due to the evolution of herbicide resistance and an increase in seed dormancy in H. glaucum populations. Initially, dose response studies confirmed high levels of resistance to (aryloxyphenoxypropanoate) APP acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicides in the populations where growers had reported control failures with ACCase-inhibiting herbicides. As a result of previous reports of an increase in seed dormancy and confirmation of herbicide resistance in H. glaucum, it was considered important to investigate herbicide resistance status and seedbank behaviour of field populations of this weed species. Therefore, studies were conducted to characterise herbicide resistance, study seedbank behaviour, inheritance of resistance, fitness penalties associated with herbicide resistance and alternative herbicides for the management of ACCase-inhibiting herbicide-resistant H. glaucum in field peas. A field survey was undertaken in the Upper North and Eyre Peninsula regions of SA in October 2012. Of the 90 H. glaucum populations screened for resistance to quizalofop, 14% exhibited some level of resistance and 86% were susceptible. Resistance to ALS-inhibiting herbicides (imazamox+imazapyr and sulfosulfuron) was low (3% to 12% populations). The majority of H. glaucum populations emerged rapidly (median $T_{50} = 8d$), but some populations displayed an extremely slow emergence pattern with $T_{50} > 20$ d. There was no direct linkage between seed dormancy and herbicide resistance. The majority of H. glaucum populations showed a low level or no seedbank persistence but a few populations persisted for one year (up to 20% seedbank persistence). Dose–response studies confirmed that H. glaucum populations had variable levels of resistance to both ACCase and ALS-inhibiting herbicides, with greater resistance to ACCase-inhibiting herbicides. Gene sequencing confirmed the presence of previously known mutations Ile-1781-Leu, Ile-2041-Asn and Gly2096Ala in the ACCase gene of some H. glaucum populations. No amino acid substitution was found in the ALS gene of resistant populations, but the reversal of SU resistance by malathion (a cytochrome P450 inhibitor) and susceptibility to sulfometuron suggest that non-target site mechanisms confer resistance to ALS-inhibitors in this species. The mode of inheritance of resistance to ACCase-inhibiting herbicides was identified as a single gene with a partially-dominant allele. Fitness studies conducted under intraspecific competition and/or interspecific competition in pots and the field with wheat and lentil revealed that the amino acid substitution at 1781 position of the ACCase gene did not impose any fitness costs, but there was some evidence for fitness cost associated with Ile-2041-Asn mutation in *H. glaucum* populations. To identify alternative herbicides to control ACCase-inhibiting herbicide-resistant H. glaucum, a range of preand post-emergent herbicides were examined in field peas. The results of this investigation suggest that propyzamide or pyroxasulfone applied PP and POST imazamox could be used effectively in the field for the management of ACCase-inhibiting herbicide-resistant H. glaucum in South Australia.

PUBLICATIONS ARISING FROM THIS THESIS

- Shergill LS, Malone J, Boutsalis P, Preston C, Gill GS (2015) Target-site point
 mutations conferring resistance to ACCase-inhibiting herbicides in smooth barley
 (Hordeum glaucum) and hare barley (Hordeum leporinum). Weed Science 63(2):408415
- Shergill LS, Fleet B, Preston C, Gill G (2015) Incidence of herbicide resistance, seedling emergence and seed persistence of smooth barley (*Hordeum glaucum*) in South Australia. Weed Technology 29(4):782-792
- Shergill LS, Malone J, Boutsalis P, Preston C, Gill G (2015) Multiple resistance to ACCase and ALS-inhibitors in *Hordeum glaucum* Steud. Pest Management Science: Submitted
- Shergill LS, Malone J, Boutsalis P, Preston C, Gill G (2015) Inheritance and mechanism of quizalofop resistance in smooth barley (*Hordeum glaucum*) biotype from South Australia. Weed Science: Submitted
- Shergill LS, Boutsalis P, Preston C, Gill G (2015) Fitness costs associated with 1781 and 2041 ACCase–mutant alleles conferring resistance to herbicides in *Hordeum* glaucum Steud. Crop Protection: Submitted
- Shergill LS, Fleet B, Preston C, Gill G (2015) Management of ACCase-inhibiting herbicide-resistant smooth barley (*Hordeum glaucum*) in field pea (*Pisum Sativum*) with alternative herbicides. Weed Technology: In-press
- Shergill LS, Preston C, Boutsalis P, Malone J, Gill G (2014) Amino acid substitutions in *ACCase* gene of barley grass (*Hordeum glaucum* Steud.) associated with resistance to ACCase-inhibiting herbicides. Pages 7-10 In Proceedings of 19th Australasian Weeds Conference Hobart, Tasmania, Australia: Tasmanian Weed Society

ACKNOWLEDGEMENTS

First and foremost, I would like to thank God. In the process of putting this book together I realized how true this gift of writing is for me. You have given me the power to believe in my passion and pursue my dreams. I could never have done this without the faith I have in you, the Almighty.

Further, I would like to express my appreciation to all who have been a part of this journey. It has been a great privilege to spend several years of my life in the School of Agriculture, Food and Wine at The University of Adelaide, and its members will always remain dear to me. I would like to express my special appreciation and thanks to my supervisors Assoc. Prof. Gurjeet Gill and Christopher Preston, they have been a tremendous mentor for me. I would like to thank them for their constant support, competent guidance, insightful suggestions, and constructive criticism which helped to complete my research and degree successfully. I would also like to thank Dr Peter Boutsalis for his support and introducing me to herbicide resistance testing, and Dr Jenna Malone, who introduced me to molecular techniques.

I would like to express my gratitude to Benjamin Fleet for his friendship, support, encouragement and patience while working together. I couldn't imagine completing my field experiments without his support and help. I am also grateful to the assistance I received from the Weedies group at The University of Adelaide and growers within Australia.

My acknowledgement will never be complete without the special mention of my dearest friend of last ~10 years, Rupinder Saini. Her support, encouragement, friendship and belief in me were a treasure. I am forever indebted to her, thank you for everything.

Sincere thanks to all my friends in Adelaide and overseas for their selfless help, friendly advice, fruitful company, immense caring and understanding during my candidature.

I would also like to thank the Australian Centre for International Agricultural Research (ACIAR) for awarding me John Allwright Fellowship, which was indeed a life changing experience. I would like to acknowledge the financial, academic and technical support of The University of Adelaide and its staff. I am also obliged to the Grains Research Development Corporation (GRDC) for funding part of my research.

Most importantly and sincerely, a special thanks to my family, none of this would have been possible without the love and patience of my family. Words cannot express how grateful I am to my parents for all the sacrifices that they've made on my behalf, you're my inspiration. Your moral values, love, support and prayers were what sustained me thus far.