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I believe in intuition and inspiration. Imagination is more important than knowledge.

For knowledge is limited, whereas imagination embraces the entire world, stimulating

progress, giving birth to evolution. It is, strictly speaking, a real factor in scientific

research.

Albert Einstein



Abstract

Determination of an optimal Clinical Target Volume (CTV) margin is generally challeng-

ing since the exact extent of microscopic disease to be encompassed by the CTV cannot

be fully visualized using current imaging techniques and therefore remains uncertain.

The aim of this work was to establish a treatment-modelling framework for evaluation of

current CTV practices in terms of tumour clonogen survival fraction following treatment.

An integrated radiobiological model has been developed for this purpose, using the Monte

Carlo (MC) toolkit Geant4. In order to determine the tumour site with high discrepan-

cy/uncertainty in terms of the CTV margin definition, a comprehensive literature review

was conducted. As a result, Glioblastoma Multiforme (GBM) was identified to be the

subject of this research work.

Model Development

The architecture of the MC model consists of three main components: 1) simulation

of a GBM tumour with diffusions of tumour cells beyond the limit of the CTV, called

Microscopic Extension Probability (MEP) model; 2) irradiation of the GBM model; and

3) cell survival calculation.

GBM treatment modelling using 6 MV conventional

X-ray therapy

A model of GBM and its microscopic extension was developed using MATLAB® (Math-

Work® Natick, MA). The input parameters required for the simulation were obtained

from published clinical literature data. The MC toolkit Geant4 was used for the second

component of the model. The input code enabled simulation of geometry (i.e. the GBM

model), the radiation beam , and detailed transport of each particle tracked throughout

the geometry until coming to rest. As a result absorbed dose was calculated in individ-

ual cells. In the third component of the model, predicting survival probability for each

individual tumour cell within the in silico model, was achieved using a combination of

Matlab codes developed in this work and Geant4 outputs imported into Matlab. The

Linear Quadratic (LQ) model was used to calculate cell survival probabilities.



Homogeneous and normoxic GBM

The first study considered a simplified model of GBM consisting of a population of cells

with homogeneous radiosensitivities represented in terms of α and β parameters of the

LQ model. At this stage of the study, hypoxic cells were not considered. A Geant4

cellular model was developed to calculate the absorbed dose in individual cells represented

by cubic voxels of 20 µm sides. The system was irradiated with opposing 6MV X-ray

beams. The beams encompassed planning target volumes corresponding to 2.0 and 2.5 cm

CTV margins. As a result, Survival Fraction (SFs) following x-ray EBRT were calculated

for various simulation set-ups including different cellular p53 gene status, CTV margin

extensions and ME propagations in regions of interest.

Heterogeneous and hypoxic GBM

The next stage of the project focused on expanding the GBM model to incorporate other

radiobiological parameters affecting cellular radiosensitivities. Oxygenation and hetero-

geneous radiosensitivity profiles were incorporated into the GBM model. The genetic

heterogeneity was modelled using a range of α/β values associated with different GBM

cell lines, obtained from published clinical data. Cellular oxygen pressure taken from

a sample weighted to literature-based profiles was randomly distributed. Three types

of GBM models were analysed: homogeneous-normoxic, heterogeneous-normoxic, and

heterogeneous-hypoxic. The SF in different regions of the tumour model and the effect

of the CTV margin extension from 2.0 – 2.5 cm on SFs were investigated for three MEP

models.

The results of this study for a virtual GBM model suggested that radiobiological damage

caused by x-ray beams may not be sufficient to kill or sterilize GBM cell populations, and

the tumour is most likely to relapse in the treatment volume. Therefore, the ultimate

aim of the x-ray therapy of these tumours may be extension of time to recurrence rather

than cure. This conclusion led the direction of the study to another modality which could

potentially offer more promising treatment outcome for GBM.



GBM treatment modelling using Boron Neutron Cap-

ture Therapy

Recent technological advances have enabled other modalities to be developed, including

charged particle radiation and targeted therapies, to be developed. Boron Neutron Cap-

ture Therapy (BNCT) is a biochemically-targeted type of radiotherapy where thermal

neutrons are captured by 10B, resulting in the emission of high Linear Energy Transfer

(LET) α-particles and re-coiling 7Li nucleus. This is a binary modality in which a suitable
10B agent is taken up preferentially by malignant cells. The clustered damage produced

by high LET radiation could selectively destroy cancer cells dispersed in normal tissue,

with minimal normal tissue toxicity. This makes BNCT an appropriate modality for

infiltrative GBM.

A realistic neutron beam model was developed in Geant4 and verified against published

data. The system was defined as a cubic phantom divided to 20 µm side voxels (the

average size of glioma cells) and irradiated with an epithermal neutron beam. Typical
10B concentrations in GBM and normal brain cells were obtained from literature. Each

cell was then assigned a 10B concentration depending on its MEP status. Nested param-

eterisation method was used, to assign each cell with its corresponding material, which

was built in Geant4 using brain composition with added boron atoms. Results from the

cell-based dosimetry model and the MEP models were combined to evaluate SFs for CTV

margins of 2.0 & 2.5 cm, and different infiltration distributions in regions of interest.

Conclusion

A novel Monte Carlo-based approach has been employed by this project aiming to address

a clinically important question. The integrated GBM radiobiological model is a tool to

quantitatively evaluate the impact of different CTV margins for GBM on cancer cell

survival. It is believed that the information acquired during this research will be useful

for clinicians to optimize treatment prescription for glioblastoma multiforme patients

using x-ray therapy and boron neutron capture therapy.
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