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Abstract

High-performing cost-efficient organic electronics will play an important role in
shaping the future of flexible electronic devices. Applications for such technology
range from smart device screens to sensors and photovoltaics. Precise optical con-
trol over polymer structure has recently been reported, with applications in opti-
cal film patterning for cost-efficient organic device fabrication. This process was
demonstrated within the archetypal poly(3-hexylthiophene) (P3HT) and 2,3,5,6-
tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) polymer/dopant system,
wherein optical control over solubility was performed using light at a specific wave-
length. However, the underlying mechanism responsible for the solubility change
is yet to be fully elucidated. The work presented in this dissertation aims to pro-
vide insight into a number of related physical and electronic properties within this
polymer/dopant system by means of computational investigation.

Density functional theory is used to investigate how structural and environmen-
tal properties of the P3HT/F4TCNQ system affect charge transfer. A simplified
oligomer/dopant complex is constructed, and the impacts of oligothiophene chain
length and substitution are investigated. An oligomer close to the P3HT conjuga-
tion length, with methyl side chains, is found to best replicate experimental results.
A dielectric medium is introduced to simulate the effects of the surrounding P3HT
chains that are present in the experimental system. The surrounding environment
is shown to be intrinsic to realistic charge transfer, as quantitative charge transfer
is achieved.

The initial hypothesis for the optical solubility control process suggested a photo-
induced charge back-transfer reaction from dopant to polymer, resulting in the latter
returning to its neutral, and hence soluble, state. Excited-state density functional
theory calculations on the aforementioned optimal model system reveal that the
complex does display excitations with charge transfer character near the optical
de-doping wavelength. However, constrained density functional theory calculations
reveal that the optimised charge-neutral state is unstable, and the charge-separated
state is thermodynamically favoured. These calculations illuminate important elec-
tronic characteristics of the system, and suggest that a photo-induced charge transfer
mechanism is not responsible for the solubility change.

Diffusion processes can dictate physical and electronic properties in doped poly-
mer systems. Density functional theory calculations are used in this work to explain
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experimental measurements of atomic motions in P3HT doped with methyl-ester-
substituted F4TCNQ. Calculations quantitatively confirm the assignment of exper-
imental measurements of a diffusive process in the system to the methyl rotation
on the F4TCNQ analogue. A set of calculations replicating the hopping of the
F4TCNQ analogue along the P3HT backbone, a hypothesis for the second exper-
imentally measured process, demonstrates that neither the energy barrier nor the
diffusion coefficient for this calculated process are on the order of the experimental
results, and hence an alternative process may be responsible for the experimental
observations.

Finally, the thermodynamics of the photo-induced solubility change are investi-
gated using classical and quantum techniques. Steered molecular dynamics simula-
tions demonstrate that charge distribution influences the free energy of separation of
polymer and dopant. However, these simulations do not account for quantum relax-
ation or dynamic charge distributions. Density functional theory calculations, which
do account for these properties, yield the free energy change for separation using
a continuum solvent model. The explicit solvent contribution to the free energy of
species separation is extracted from alchemical free energy perturbation simulations.
Applying this contribution to the quantum calculations in place of the continuum
model contribution yields a free energy change for separation that is in excellent
agreement with experimental measurements.
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