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Abstract

The equivariant cohomology of a manifold M acted upon by a compact Lie group G is defined
to be the singular cohomology groups of the topological space

(M x BEG)/G.

It is well known that the equivariant cohomology of M is parametrised by the Cartan model
of equivariant differential forms. However, this model has no obvious geometric interpretation
— partly because the expression above is not a manifold in general. Work in the 70s by Segal,
Bott and Dupont indicated that this space can be constructed as the geometric realisation of
a simplicial manifold that is naturally built out of M and G. This simplicial manifold carries
a complex of so-called simplicial differential forms which gives a much more natural geometric
interpretation of differential forms on the topological space (M x EG)/G.

This thesis provides a model for the equivariant cohomology of a manifold in terms of this
complex of simplicial differential forms. Explicit chain maps are constructed, inducing iso-
morphisms on cohomology, between this complex of simplicial differential forms and the more
standard models of equivariant cohomology, namely the Cartan and Weil models.
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