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Abstract

The equivariant cohomology of a manifold M acted upon by a compact Lie group G is defined

to be the singular cohomology groups of the topological space

(M ⇥ EG)/G.

It is well known that the equivariant cohomology of M is parametrised by the Cartan model

of equivariant di↵erential forms. However, this model has no obvious geometric interpretation

– partly because the expression above is not a manifold in general. Work in the 70s by Segal,

Bott and Dupont indicated that this space can be constructed as the geometric realisation of

a simplicial manifold that is naturally built out of M and G. This simplicial manifold carries

a complex of so-called simplicial di↵erential forms which gives a much more natural geometric

interpretation of di↵erential forms on the topological space (M ⇥ EG)/G.

This thesis provides a model for the equivariant cohomology of a manifold in terms of this

complex of simplicial di↵erential forms. Explicit chain maps are constructed, inducing iso-

morphisms on cohomology, between this complex of simplicial di↵erential forms and the more

standard models of equivariant cohomology, namely the Cartan and Weil models.
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Chapter 1

Introduction

For this chapter, let G be a compact Lie group and g its Lie algebra. The work of Chern and Weil

in the 1940s to generalise the Gauss-Bonnet Theorem led to what is now know as the Chern-Weil

homomorphism. Given a principal G-bundle P ! B, this is a canonical homomorphism


G

: S(g⇤)G ! H⇤(B)

that is constructed from a connection on P ! B but does not depend on that choice of connec-

tion. This classical result can also be interpreted in the language of classifying spaces. That is,

there is a principal G-bundle, called the universal bundle and denoted

EG ! BG, (1.1)

for which the base space BG classifies topological principal G-bundles. More specifically, the

isomorphism class of principal G-bundles over a manifold M , is uniquely determined by a map

into the classifying space BG

f : M ! BG

up to homotopy. Indeed, from this perspective the Chern-Weil homomorphism tells us that the

cohomology of the classifying space is

H⇤(BG) ⇠= S(g⇤)G. (1.2)

Closely related to this is the subject of equivariant cohomology. The equivariant cohomology

groups of a manifold M with right G-action were first explicitly defined by Borel in [Bor60] to

be the singular cohomology groups

H⇤ ((M ⇥ EG)/G) . (1.3)

It is well understood, through the work of Cartan in [Car50a] and [Car50b], that the cohomology

of this space is parametrised by the complex of ‘equivariant di↵erential forms’

(S(g⇤)⌦ ⌦⇤(M))G
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thought of as symmetric polynomials on the vector space g taking values in the di↵erential forms

of M

p : g ! ⌦⇤(M)

that are invariant under the action of G. Bott provides an excellent and more contemporary

proof of this fact in his paper [Bot73]. These equivariant di↵erential forms have no obvious

geometric interpretation on the space

(M ⇥ EG)/G

however, partly because it is not a manifold.

We see in the work of Segal in [Seg68], Bott in [Bot73], Bott-Shulman-Stashe↵ in [BSS76] and

Dupont in [Dup75] that the classifying space and the associated bundle (M⇥EG)/G can be built

out of a simplicial manifold and studied via simplicial methods. This simplicial manifold, which

is naturally built out of the manifolds M and G, carries a complex of simplicial di↵erential

forms, denoted A⇤(NG) and A⇤(NG• ⇥G

M) for the classifying space and associated bundle

respectively.

More recently, Guillemin and Sternberg have concisely condensed a lot of the work on equiv-

ariant de Rham theory in their text [GS99]. In particular, they isolate conditions for a complex

W such that

(⌦⇤(M)⌦W )
bas

(1.4)

is a model for the equivariant cohomology of M . In this construction, W plays the role of

the di↵erential forms on EG and the expression in (1.4) is e↵ectively the correct algebraic

approximation for ‘di↵erential forms’ on the space (M ⇥ EG)/G.

In the monograph [Dup78], Dupont uses the complex of simplicial di↵erential forms A⇤(NG)

to calculate the cohomology of the classifying space BG. The purpose of this thesis is to extend

the work of Dupont to the case of studying the equivariant cohomology of a manifold using the

simplicial principal bundle

NG• ⇥M ! NG• ⇥G

M. (1.5)

Namely, we will construct explicit chain maps from the Cartan model for equivariant cohomology

and the Weil model for equivariant cohomology to the complex of simplicial di↵erential forms

that induce isomorphisms on cohomology. These results are best summarised by the main two

theorems that are proven in Chapter 4.

Theorem 4.78: Let G be a compact Lie group and M be a manifold with right G-action and

let ↵⌦ ! 2 (S(g⇤)⌦ ⌦⇤(M))G. There is a chain map

� : (S(g⇤)⌦ ⌦⇤(M))G ! A⇤(NG• ⇥M)
bas

2



given explicitly by

�(↵⌦ !) = w(✓•)(↵) ^Hor(!•)

that induces an isomorphism on cohomology.

Theorem 4.82: Let G be a compact Lie group and M be a manifold with right G-action and

let ↵⌦ ! 2 (W (g)⌦ ⌦⇤(M))
bas

. There is a chain map

 : (W (g)⌦ ⌦⇤(M))
bas

! A⇤(NG• ⇥M)
bas

given explicitly by

 (↵⌦ !) = w(✓•)(↵) ^ !•

that induces an isomorphism on cohomology.

In these two theorems, w(✓•) is the Weil homomorphism associated to a connection ✓• on

the simplicial principal bundle in Equation 1.5 and !• is the natural ‘simplicial version’ of the

di↵erential form ! 2 ⌦⇤(M). When M is a point, these maps are precisely the chain maps

Dupont describes that induce the isomorphism on cohomology groups

� =  : S(g⇤)G
⇠��! H⇤(BG) (1.6)

which is the classical isomorphism in Equation 1.2.

Chapter 2 is a piece of exposition on the classical theory of equivariant cohomology. Firstly,

the reader is reminded about the topological definition of equivariant cohomology as first for-

mulated by Borel in [Bor60]. Namely, if X is a topological space on which a group G acts, the

equivariant cohomology of X is defined to be

H⇤ ((X ⇥ E)/G) (1.7)

where E is a contractible space on which G acts freely. The legitimacy of this definition is then

further explored so that it is clear that the definition of equivariant cohomology doesn’t depend

on the choice of E. In fact, this leads to the construction of the universal bundle

EG ! BG

which is a principal G-bundle. The di↵erential geometry of smooth principal bundles will also

play a role in later chapters. One of our goals will be to build the bundle EG ! BG out

of a simplicial manifold and another will be to describe the Chern-Weil homomorphism using

this construction. As such, a discussion on the geometry of principal bundles naturally follows

the discussion on the universal bundle. The last part of this chapter is used to describe the

Weil algebra and develop some of the classical results from equivariant cohomology including a

description of the Weil model, Cartan model and the Mathai-Quillen isomorphism from [MQ86].

These two models are both fundamental in this thesis and must be reasonably well understood

3



so that we can construct the explicit chain maps described in the main theorems above, Theorem

4.78 and Theorem 4.82.

The main purpose of Chapter 3 is to construct the universal bundle EG ! BG using

manifolds so that we may approximate a de Rham complex for the topological space

(M ⇥ EG)/G.

The obstruction is that EG is not a manifold in general so we instead define the complex of

simplicial di↵erential forms on the simplicial manifold

NG• ⇥G

M

and show that by taking geometric realisation of this simplicial manifold one has

|NG• ⇥G

M | = (EG⇥M)/G. (1.8)

The first half of this chapter is dedicated to building the correct language for this construction

and introducing some other important simplicial and cosimplicial objects along the way. Most

importantly, the simplicial principal bundle

NG• ! NG•

is defined and the last half of the chapter is reserved for checking that the respective map under

geometric realisation

|NG•| ! |NG•|
corresponds to the projection map of the universal bundle. As Segal remarks upon in [Seg68],

the construction of the simplicial principal G-bundle in this way is closely related to the classical

Milnor construction of the universal bundle (see [Mil56a] and [Mil56b]). The results naturally

extend to showing that Equation 1.8 holds using results of May (see [May72]).

The final chapter of this thesis deals with constructing an approximation of di↵erential forms

on the topological space

(EG⇥M)/G

by using the complex of basic simplicial di↵erential forms A⇤(NG⇥M)
bas

. The complex of sim-

plicial di↵erential forms A⇤(M•) was first introduced by Whitney (see [Whi57, Chapter IX]) and

used extensively by Dupont to study the Chern-Weil homomorphism in [Dup75] and [Dup78].

Using the fact that NG• ! NG• is a simplicial principal bundle, Dupont defines simplicial con-

nection and curvature forms such that there is a natural Chern-Weil homomorphism. Moreover,

we construct a chain map

� : (S(g⇤)⌦ ⌦⇤(M))
bas

! A⇤(NG• ⇥G

M)

which arises naturally from the associated principal bundle

NG• ⇥M ! NG• ⇥G

M.
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The complex of simplicial di↵erential forms on a simplicial manifold A⇤(M•) is a computational

powerhouse for the calculations performed in this chapter and we state some well known results

to establish the sequence of isomorphisms on cohomology

H⇤(|M•|) ⇠= H⇤(kM•k) ⇠= H⇤
Tot

(C⇤,⇤(M•)) ⇠= H⇤
Tot

(⌦⇤,⇤(M•)) ⇠= H⇤(A⇤(M•))

using the technology of Segal, Dupont and Palais. It is then shown that the complex A⇤(NG•⇥
M)

bas

is a natural model for the equivariant cohomology of a manifold M with right G-action.

Similar work has also been done by Bott, Shulman and Stashe↵ in [BSS76] but focused on the

de Rham double complex associated to a simplicial manifold ⌦⇤,⇤(M•). The work of Guillemin

and Sternberg in [GS99] establishes the classical results of Cartan (from [Car50a] and [Car50b])

for a more general G⇤ algebra. It is shown that the complex A⇤(NG• ⇥M) is a G⇤ algebra and

the complex

(S(g⇤)⌦A⇤(NG• ⇥M))G

computes the equivariant cohomology of a manifold M acted upon by a compact Lie group G.

This all culminates in the construction of a chain map

� : (S(g⇤)⌦ ⌦⇤(M))G ! A⇤(NG• ⇥G

M)

from Theorem 4.78 which is proven to be an isomorphism on cohomology. Moreover, we see

that there is an even more natural chain map

 : (W (g)⌦ ⌦⇤(M))
bas

! A⇤(NG• ⇥G

M)

that induces an isomorphism on cohomology given by the much more obvious identification

↵⌦ ! 7! w(✓•)(↵) ^ !•

as described above in Theorem 4.82. These chain maps establish alternate proofs of Cartan’s

theorems as well as describing a simple way to calculate these simplicial di↵erential forms from

the classical equivariant di↵erential forms.

5
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Chapter 2

Classical Equivariant Cohomology

2.1 Topological Equivariant Cohomology

2.1.1 Group Actions

Let G be a topological group and X be a topological space. We say that G acts on the right of

X, or X has a right G-action, if there is a map

� : X ⇥G ! X

such that �(x, 1) = x and �(�(x, g), h) = �(x, gh) for every x 2 X, g, h 2 G. These conditions

can be described by requiring that the following two diagrams commute

X ⇥G⇥G

X ⇥G

X ⇥G

X

�⇥ id
G

id
X

⇥m

�

�

X X ⇥G

X

i
1

�
id

X

where m is the group multiplication and i
1

: X ! X ⇥G is the map x 7! (x, 1). The notation

�
g

:= �(�, g) and x · g = �(x, g) is more natural in some circumstances and will be used

interchangeably. For example, the conditions for G to act on X may be restated as �
1

= id
x

and �
h

� �
g

= �
gh

or x · 1 = x and (x · g) · h = x · (gh).
Similarly, one may define a left G-action by instead imposing that �

h

� �
g

= �
hg

for every

g, h 2 G. For a left G-action we will adopt the notation g · x = �(x, g) for which we may restate

this condition as h · (g · x) = (hg) · x.
Once stated diagrammatically, the definition of a group action can be easily understood for

other mathematical objects, X. For example, if X is a smooth manifold, then the diagrams

above make sense if G is a Lie group and the action � : X ⇥G ! X is a smooth map.
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By letting Aut(S) denote the group of automorphisms of a set S – in this case, the bijections

from S to itself – we note that a group action is equivalent to a homomorphism from G to

Aut(S).

Proposition 2.1: Let G be a group and S be a set. Then a G-action on S is equivalent to a

group homomorphism

 : G ! Aut(S).

Proof. Let S have a left G-action with corresponding automorphisms �
g

for each g 2 G. Then

define  : G ! Aut(S) by

 (g) = �
g

.

Note that  (g�1) = �
g

�1 = ��1

g

since �
g

��
g

�1 is the identity map and  (gh) = �
gh

= �
g

��
h

=

 (g) (h) as required.

If G acts on the right, the induced homomorphism is slightly di↵erent. Let S have a right

G-action with corresponding automorphisms '
g

for each g 2 G. Then define  : G ! Aut(S)

by

 (g) = '
g

�1 .

In this case,  (g�1) = '
g

= ('
g

�1)�1 and  (gh) = '
(gh)

�1 = '
h

�1
g

�1 = '
g

�1 �'
h

�1 =  (g) (h).

So if S has a left or right G-action, it determines a homomorphism  : G ! Aut(S).

Let  : G ! Aut(S) be a group homomorphism. It is clear that  (1) = id
S

and that for

any group elements g, h,  (gh) =  (g) (h). So the homomorphism  naturally defines a left G

action on S.

For a right G-action, the orbit of a point x 2 X is the subspace of points

x ·G := {�
g

(x) : g 2 G}

and similarly, the orbit of a point under a left G-action is denoted G ·x. Similarly, the stabiliser

group G
x

for a point x 2 X is the subgroup of G that fixes x,

G
x

= {g 2 G : �
g

(x) = x}.

We call the action of G on a space X free if the stabiliser group is trivial at every point x 2 X.

The product of two spaces that admit a G-action also carries a natural G-action. If X,Y

are topological spaces with a right G-action then we define the diagonal action of g 2 G on a

point (x, y) 2 X ⇥ Y to be

(x, y) · g = (x · g, y · g).
Unless otherwise stated, it will be assumed that the product of two spaces with G-action is

endowed with the diagonal action of G.

Proposition 2.2: Let G be a topological group and X,Y be topological spaces with a G-action.

If X has a free G-action, then the diagonal action of G on X ⇥ Y is also free.

8



Proof. Let (x, y) 2 X ⇥ Y and g 2 G. Then the diagonal action (x, y) · g = (x · g, y · g) = (x, y)

if and only if x · g = x and y · g = y. Since X has a free G-action, this is only true when g is the

identity and hence the diagonal action is also free.

One can consider the set of equivalence classes of orbits X/G := {x · G : x 2 X}. The set

of orbits is endowed with the coarsest topology such that the natural projection X
q��! X/G is

continuous and the resultant topological space is called the quotient space.

Definition 2.3: Let X,Y be topological spaces with a right G-action. A map f : X ! Y is said

to be equivariant if

f(x · g) = f(x) · g
for every x 2 X and g 2 G.

Remark 2.4: Note that an equivariant map defines a unique map g : X/G ! Y/G such that

the diagram below commutes.

X

X/G

Y

Y/G

f

g

Remark 2.5: Let X be a topological space with right G-action. If Y is any topological space,

it can be endowed with a trivial G-action. An equivariant map f : X ! Y is thus a map where

f(x · g) = f(x) · g = f(x)

for every x 2 X. To avoid explicitly stating that Y has been endowed with a trivial G-action,

we will instead refer to maps f : X ! Y such that f(x · g) = f(x) as a G-invariant maps.

2.1.2 The Borel Construction

When considering a topological group G and a space X with G-action, one might be tempted

to study the cohomology of the quotient space X/G. Each point in the space X/G corresponds

to an orbit x ·G which, so long as the action is free, is homeomorphic to G.

If the action is not free, then the orbit of a point x 2 X is homeomorphic to a di↵erent

space, namely the quotient space G/G
x

. In this case, two points in X/G do not always give us

the same topological information about the action of G. For this reason, we look for a di↵erent

topological space to study – one that captures the group action on X but also admits a free G-

action. Proposition 2.2 shows that by first finding a topological space Y on which G acts freely,

the space X ⇥ Y will admit a free action. In this case, a point in (X ⇥ Y )/G will correspond

9



to an orbit that is homeomorphic to G. So that X ⇥ Y is the same homotopy type as X, it is

desirable that the space Y is also contractible.

Showing that there exists a contractible space on which a group G acts freely is a classical

result but nonetheless, non-trivial. We will take it on faith that such a space exists in order to

exploit its topological properties and return to proving this fact later in Section 3.2.

To motivate Section 2.1.3 we will state a precise definition, known as the Borel construction,

and sketch a result which uses some terminology that has not been defined; namely the terms

principal bundle, numerable principal bundle and fibre bundle (see Definitions 2.8, 2.22, 2.10

respectively).

Definition 2.6: Let G be a topological group and X be a topological space with right G-action.

Then we define the equivariant cohomology of X as

H⇤
G

(X) := H⇤((X ⇥ E)/G)

where E is contractible and the total space of a numerable principal bundle.

From Borel [Bor60], we also have the following theorem showing that the equivariant coho-

mology of a topological space on which G acts freely is the singular cohomology of the orbit

space X/G.

Theorem 2.7: Let G be a group and X be a space with free right G-action. Then

H⇤
G

(X) = H⇤(X/G).

Sketch proof. The equivariant projection X ⇥ E ! X induces a projection

(X ⇥ E)/G ! X/G

which is a fibre bundle with fibre E. In this situation, standard results from algebraic topology

show the existence of a long exact sequence of homotopy groups

· · · ! ⇡
i

(E) ! ⇡
i

((X ⇥ E)/G) ! ⇡
i

(X/G) ! ⇡
i�1

(E) ! · · ·

for i > 0. Since E is a contractible space, ⇡
i

(E) = {0} for every i > 0 and thus ⇡
i

((X ⇥ E)/G) ⇠=
⇡
i

(X/G) for every i � 0. (The case for i = 0 follows from the fact that X ⇥ E and X have the

same number of connected components since E is contractible.) Since there is a weak homotopy

equivalence between (X ⇥ E)/G and X/G it follows that

H⇤
G

(X) = H⇤ ((X ⇥ E)/G) = H⇤(X/G).

10



2.1.3 Principal Bundles and the Classifying Space

The following section will develop the theory of principal bundles as well as justify some of the

statements from Section 2.1.2.

Definition 2.8: Let G be a Lie group, M be a manifold and P be a manifold with right G

action. Then a (smooth) principal G-bundle is a triple (P,⇡,M), or P
⇡��! M , where the map

⇡ : P ! M is smooth, surjective and meets the following conditions.

1. For every x 2 M , ⇡�1(x) is an orbit.

2. Every point x 2 M has an open neighbourhood U and a smooth equivariant di↵eomorphism

' : ⇡�1(U) ! U ⇥G such that the diagram

⇡�1(U)

U

U ⇥G

⇡

'

p
U

commutes, where p
U

is projection onto U . The pair (U,') is called a local trivialisation.

Remark 2.9: The most simple example of a principal G-bundle is the trivial bundle M⇥G
⇡��!

M where ⇡ is projection onto M .

A topological principal G-bundle is the topological analogue, by letting G be a topological

group, P,M topological spaces and

⇡ : P ! M

a surjective map such that the local trivialisations are homeomorphisms. Smooth principal G-

bundles will primarily be the examples of study and so the term ‘principal G-bundle’ will mostly

denote a smooth principal G-bundle. In either case, we say that M is the base space, P is the

total space, ⇡ is the projection and G is the structure group of the principal G-bundle. More

generally, there is the notion of a fibre bundle.

Definition 2.10: Let F, P,X be topological spaces. Then a fibre bundle is a quadruple (F, P,⇡, X)

where the map ⇡ : P ! X is surjective and meets the following conditions.

1. For every x 2 X, ⇡�1(x) is homeomorphic to F .

2. Every point x 2 X has an open neighbourhood U and a homeomorphism ' : ⇡�1(U) ! U ⇥ F

such that the diagram

11



⇡�1(U)

U

U ⇥ F

⇡

'

p
U

commutes, where p
U

is projection onto U . The pair (U,') is called a local trivialisation.

Similarly, when the spaces F, P,X are smooth manifolds, the projection map ⇡ is smooth,

and all local trivialisations are smooth di↵eomorphisms, we call this construction a smooth fibre

bundle. Fibre bundles will not be extensively studied in this thesis and will mainly be talked

about in the context of what is normally called the associated fibre bundle.

Proposition 2.11: Let P
⇡��! M be a principal G-bundles and N a topological space with right

G-action. Then the map ⌧ : (P ⇥N)/G ! M defined by

[p, n] 7! ⇡(p)

is a fibre bundle with fibre N . We call this the associated fibre bundle.

Proof. First, consider the following commutative diagram

P ⇥N P

(P ⇥N)/G M

p
1

⇢ ⇡

⌧

where p
1

is the projection onto P and ⇢ is the quotient by the action of G. A local trivialisation

of the principal bundle P ! M , say (U,'), yields a homeomorphism

(⇡ � p
1

)�1(U)
⇠��! U ⇥G⇥N.

Thus,

⌧�1(U) = ⇢ � (⇡ � p
1

)�1(U) ⇠= U ⇥N

defines local trivialisations (U, ) of ⌧ : (P ⇥N)/G ! M .

Let P
⇡��! M , Q

⌧��! N be topological principal G-bundles. The natural definition of a

morphism between principal G-bundles would be a pair of maps (f, f̃) such that the diagram

12



P

M

Q

N

⇡ ⌧

f

f̃

commutes. Since the quotient P/G is isomorphic to the base space M , an equivariant map

f : P ! Q induces a unique map f̃ : M ! N by Remark 2.4. Since f̃ is uniquely determined

by f , a map of principal G-bundles (or bundle map) can thus be defined as an equivariant map

between total spaces f : P ! Q. We say that f is an isomorphism if there exists a bundle map

g : Q ! P such that g � f and f � g are the respective identity maps on P and Q. A principal

bundle is trivial if it is isomorphic to the trivial bundle.

Proposition 2.12: Let P
⇡��! M , Q

⌧��! M be smooth principal G-bundles. Let f : P ! Q be

a bundle map such that the induced map on base spaces

f̃ : M ! M

is the identity. Then f is an isomorphism.

Proof. Let U ⇢ M be a local trivialisation of x 2 M . From the definition of a principal bundle,

there are diagrams

⇡�1(U)

U

U ⇥G

⇡

'
P

p
U

and

⌧�1(U)

U

U ⇥G

⌧

'
Q

p
U

that commute. The problem reduces to showing that when f is restricted to ⇡�1(U), '
Q

� f � '�1

P

is an isomorphism for all local trivialisations U . For ease of notation, this map will be denoted

f
'

= '
Q

� f � '�1

P

and the rest of the proof will amount to showing that f
'

is an isomorphism. Since f induces

the identity on base spaces, f
'

is an equivariant map such that

f
'

(u, g) = (u, g �(u))

for every u 2 U and some smooth map � : U ! G. It is easy enough to construct an inverse of

f
'

by letting

f�1

'

(u, g) = (u, g �(u)�1)

completing the proof.

13



Corollary 2.13: Let P
⇡��! X be a principal G-bundle. Then P ⇠= X ⇥ G if and only if

P
⇡��! X admits a global section.

Proof. Suppose P
⇡��! X admits a global section, s : X ! P . Consider the map F : X⇥G ! P

F (x, g) = s(p) · g.

F is a bundle map that induces the identity on base spaces, hence an isomorphism. Conversely,

a global section s : X ! X ⇥G can easily be constructed via s(x) = (x, 1).

Corollary 2.14: Let P
⇡��! X be a principal G-bundle with local trivialisations {(U

i

,'
i

)}
i2I .

Then there are local sections of the principal bundle

s
i

: U
i

! ⇡�1(U
i

).

Proof. Each local trivialisation defines a trivial principal bundle

⇡�1(U
i

)
⇡��! U

i

and the result clearly follows.

Let P
⇡��! B be a principal G-bundle and X be a topological space. For every map

f : X ! B

there is a space f⇤(P ) := {(x, p) : f(x) = ⇡(p)} ⇢ X ⇥ P with natural projections onto each

factor that cause the diagram

f⇤(P ) P

X B

p
X

⇡

f

to commute. This carries a right G-action

�((x, p), g) = (x, p · g)

whence we note that for every x 2 X, p�1

X

(x) is clearly an orbit of f⇤(P ). Furthermore, the

map f : X ! B induces a principal G-bundle structure on f⇤(P ) ! X since a local section of

P ! B, say s : U ! ⇡�1(U), defines a local section of f⇤(P ) ! X, s̃ : f�1(U) ! (f � p
X

)�1(U)

by

s̃(x) = (x, f � s(x))
which in turn defines local trivialisations by Corollary 2.14. Thus we have proved the following

proposition.
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Proposition 2.15: Let P
⇡��! B be a principal G-bundle, X be a topological space and f : B !

X a map. Then the canonical map

f⇤(P ) ! X

is the projection map in a principal G-bundle for the action of G given above. The bundle

f⇤(P ) ! X is called the pullback bundle of P
⇡��! B along f .

Remark 2.16: If f is a smooth map then the pullback bundle is a smooth principal G-bundle.

Proposition 2.17: Let P
⇡��! M be a principal G-bundle and F a topological space with right

G-action. To every equivariant map f : P ! F we may associate a section s of the natural

projection

(P ⇥ F )/G ! M.

Moreover, this correspondence between equivariant maps f : P ! F and sections s : M ! (P ⇥ F )/G

is a bijection.

Proof. Let f : P ! F be an equivariant map. Clearly this can be extended to an equivariant

map f 0 : P ! P ⇥ F by

f 0(p) = (p, f(p))

where G acts diagonally on P ⇥ F . Then this defines a map on quotient spaces f̃ : P/G !
(P ⇥ F )/G given by

f̃ [p] = [p, f(p)].

But P/G ⇠= M so the map f̃ : M ! (P ⇥ F )/G given by

f̃(m) = [p, f(p)]

for some p 2 ⇡�1(m) is well defined. Suppose f 0 : P ! F is equivariant and f̃ 0 = f̃ . That is,

for every p 2 P

(p, f(p)) = (p · g, f 0(p) · g)
for some g 2 G. Since G acts freely on P , g is necessarily the identity and thus f 0 = f .

Alternatively, suppose there is a section s : M ! (P ⇥ F )/G. The section induces a pullback

bundle

M

s⇤(P ⇥ F ) P ⇥ F

(P ⇥ F )/G
s

s̃

15



where the map s̃ : s⇤(P ⇥ F ) ! P ⇥ F is the induced projection of the pullback bundle

which is naturally equivariant. Further, s⇤(P ⇥ F ) ⇢ M ⇥ P ⇥ F and there is a bundle map

f : s⇤(P ⇥ F ) ! P given by

f(m, p, x) = p

which induces the identity over M and hence is an isomorphism by Proposition 2.12. Letting

p
2

: P ⇥ F ! F denote the equivariant projection onto F , a section s : M ! (P ⇥ F )/G thus

induces an equivariant map f
s

= p
2

� s̃ � f�1 : P ! F .

The correspondence in Proposition 2.17 is also a correspondence on particular homotopy

classes. Accordingly, the notion of homotopy classes for sections of bundles and equivariant

homotopy are defined below.

Definition 2.18: Let G be a topological group, P ! M be a topological principal G-bundle and

F a topological space with right G-action. Let f
0

, f
1

: P ! F be equivariant maps. We say f
0

is

equivariantly homotopic to f
1

if there is a homotopy h : P ⇥ I ! F such that h(p, 0) = f
0

(p),

h(p, 1) = f
1

(p) and

h(p · g, t) = h(p, t) · g
for every p 2 P, g 2 G and t 2 I.

Definition 2.19: Let P
⇡��! M and Q

⌧��! M be continuous maps. Let s
0

, s
1

: Q ! P be

fibrewise maps (or maps over M). That is, ⇡s
0

= ⇡s
1

. We say s
0

is fibrewise homotopic (or

homotopic over M) to s
1

if there is a homotopy h : M ⇥ I ! P such that

⇡h(m, t) = m

for every m 2 M and t 2 I. That is, the diagram

Q

Q

Q⇥ I P

i
0

i
1

h

s
0

s
1

commutes where all maps are over M .

Proposition 2.20: The correspondence above is a bijection on homotopy classes. That is,

f
0

, f
1

: P ! F are equivariantly homotopic if and only if the corresponding sections f̃
0

, f̃
1

are

fibrewise homotopic.
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Proof. Let f̃
0

, f̃
1

be sections and f
0

, f
1

the corresponding equivariant maps by Proposition 2.17.

Suppose f̃
0

, f̃
1

are fibrewise homotopic with homotopy h̃ : M ⇥ I ! (P ⇥ F )/G. This can be

extended to a section of the projection

((P ⇥ I)⇥ F ) /G ! M ⇥ I (2.21)

since G acts trivially on I in this case. This can best be seen by considering the pullback diagram

(M ⇥ I)⇥
M

(P ⇥ F ) /G (P ⇥ F )/G

M ⇥ I M
p
M

⌧

where p
M

is the obvious projection and ⌧ is the projection

⌧ [p, x] = ⇡(p)

for p 2 P, x 2 F . The space (M⇥I)⇥
M

(P ⇥ F ) /G is naturally homeomorphic to ((P ⇥ I)⇥ F ) /G

by considering

(m, t, [p, x]) 7! [(p, t), x].

Since i(m, t) = ⌧ [(p, t)] precisely when p 2 ⇡�1(m), this map has a continuous inverse

[(p, t), x] 7! (⇡(p), t, [p, x]).

Thus, the maps h̃, id induce a map s̃

((P ⇥ I)⇥ F ) /G (P ⇥ F )/G

M ⇥ I M

M ⇥ I

p
M

⌧

h̃

id

s̃

which is clearly the section alluded to in (2.21). This section corresponds to an equivariant map

s : P ⇥ I ! F.

Since h̃(�, 0) = f̃
0

and h̃(�, 1) = f̃
1

, it follows that s(�, 0) = f
0

and s(�, 1) = f
1

. Thus s is

precisely an equivariant homotopy between the maps f
0

, f
1

.
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Alternatively, an equivariant homotopy s : P ⇥ I ! F between the maps f
0

, f
1

defines a

section

s̃ : M ⇥ I ! ((P ⇥ I)⇥ F ) /G.

Composing with the projection ((P ⇥ I)⇥ F ) /G ! (P ⇥ F )/G, we see that this is precisely a

fibrewise homotopy between the sections f̃
0

, f̃
1

.

In [Dol63], Dold defines a class of bundles called numerable bundles and shows that a certain

class of numerable fibre bundles possess global sections. In particular we have the following

definition and theorem.

Definition 2.22: An open covering {U
i

}
i2J of a topological space B is numerable provided there

exists a locally finite partition of unity {u
i

}
i2J such that the closure

u�1

i

((0, 1]) ⇢ U
i

for each i 2 J . A fibre bundle P
⇡��! B is a numerable bundle if there is a numerable covering

{U
i

}
i2J of B such that each U

i

admits a local trivialisation.

Theorem 2.23: Let P ! M be a principal G-bundle with numerable base M , and E a con-

tractible space with free G-action. Then there is a section of the associated fibre bundle

(P ⇥ E)/G
⌧��! M.

Moreover, any two sections of (P ⇥ E)/G
⌧��! M are fibrewise homotopic.

This is a corollary of Dold’s result that a numerable bundle with contractible fibre admits

a global section (see [Dol63, Cor 2.8 ↵]). As Husemoller remarks in [Hus66, p. 48-49], every

principal G-bundle over a paracompact space is numerable. For example, we have the following

inclusions.

⇢
Topological principal

G-bundles

� ⇢
Numerable principal

G-bundles

� 8
<

:

Topological principal

G-bundles with

paracompact base

9
=

;

8
<

:

Topological principal

G-bundles with base a

CW-complex

9
=

;

⇢
Smooth principal

G-bundles

�
� � � �

Proofs of the following two lemmas can be found in [Hus66, p. 48-51] and will help us prove

the classification theorem that follows.

Lemma 2.24: Let P ! M be a numerable bundle and f : N ! M a map of topological spaces.

Then the pullback bundle

f⇤(P ) ! N

is a numerable bundle.

Lemma 2.25: Let P
⇡��! B be a numerable principal G-bundle and f, g : X ! B be two

homotopic maps. Then there is an isomorphism of pullback bundles

f⇤(P ) ⇠= g⇤(P ).
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Theorem 2.26: Let P
⇡���! M be a numerable principal G-bundle. Let E ! B be a numerable

principal G-bundle with contractible total space. Then there exists a map f : M ! B such that

there is an isomorphism of principal bundles

P ! f⇤(E).

Moreover, the isomorphism class of bundles containing P determines a unique f up to homotopy.

Proof. It is clear that a map f
0

: M ! B defines a numerable principal G-bundle f⇤
0

(E) ! M

by Proposition 2.15 and Lemma 2.24. Moreover, if f
1

: M ! B is homotopic to f
0

then there is

an isomorphism

f⇤
0

(E) ⇠= f⇤
1

(E)

by Lemma 2.25. On the other hand, let P
⇡���! M be a numerable principal G-bundle. By

Theorem 2.23 there is a section s of the associated fibre bundle

(P ⇥ E)/G ! M.

By Proposition 2.17 there is a corresponding equivariant map g
s

: P ! E which induces a map

g : M ! B on base spaces. There is a corresponding bundle map P ! f⇤(E) given by

p 7! (⇡(p), g
s

(p))

which induces the identity over M and is hence an isomorphism. By Proposition 2.20 this

homotopy class of g is uniquely determined by s up to fibrewise homotopy. By Theorem 2.23

any two sections of the bundle are fibrewise homotopic and thus determine a unique g up to

homotopy.

Remark 2.27: Let E ! B be a numerable principal bundle with E contractible. Theorem

2.26 classifies numerable principal G-bundles and henceforth we will refer to a map f : X ! B

as a classifying map.

Corollary 2.28: Let E
1

! B
1

and E
2

! B
2

be numerable principal bundles with contractible

total space. Then there is a G-homotopy equivalence E
1

' E
2

and a homotopy equivalence

B
1

' B
2

. Moreover, the definition of equivariant cohomology in Definition 2.6 does not depend

on a choice of E ! B.

Proof. Let E
1

! B
1

, E
2

! B
2

be two numerable principal G-bundles with contractible total

space. From Theorem 2.26 there is an isomorphism F : E
1

! E
2

and classifying maps f : B
1

!
B

2

such that

E
1

⇠= f⇤(E
2

).

Moreover, the converse is true. That is, there is an isomorphism H : E
2

! E
1

and classifying

maps h : B
2

! B
1

such that

E
2

⇠= h⇤(E
1

).
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So we can write E
2

= (f � h)⇤(E
2

) with isomorphism F �H : (f � g)⇤(E
2

) ! E
2

and classifying

map f �h : B
2

! B
2

. By Theorem 2.26, it must be the case that there is a homotopy f �h ' id
B2

and a G-equivariant homotopy F � H ' id
E2 . Similarly one shows that there is a homotopy

h � f ' id
B1 and a G-equivariant homotopy H � F ' id

E1 . Hence, given any topological space

X with right G action, there is a G-homotopy equivalence

X ⇥ E
1

' X ⇥ E
2

which descends to a homotopy equivalence

(X ⇥ E
1

)/G ' (X ⇥ E
2

)/G.

Clearly it follows that the definition of equivariant cohomology does not depend on the choice

of E.

Definition 2.29: The universal bundle is any fixed numerable principal bundle with contractible

total space. We will use EG to denote the total space of the universal bundle and BG to denote

the base space of the universal bundle.

2.2 The Geometry of Principal Bundles

2.2.1 The Action of a Lie Algebra

Let G be a Lie group with Lie algebra g and M , a manifold with right G-action � : M ⇥G ! M .

The de Rham complex ⌦⇤(M) inherits a natural right G-action from the action on M via �.

Explicitly, the induced action �
⌦

: ⌦⇤(M)⇥G ! ⌦⇤(M) for ! 2 ⌦n(M) can be written

�
⌦

(!, g) := �⇤
g

!,

however we will usually take the shorthand ! · g. A di↵erential form is G-invariant if ! · g = !

for every g 2 G.

The Lie algebra of G carries information about the infinitesimal action of G on M . In

particular, there is a natural vector field associated to each Lie algebra element ⇠ 2 g. The

curve �
x

: [�1, 1] ! M through a point x 2 M given by

�
x

(t) = �(x, exp(t⇠))

defines a tangent vector in T
x

M by calculating its derivative at zero. Using the notation X(M)

to denote smooth vector fields on M we see that since the functions � and exp are smooth, the

vector field X
⇠

: M ! TM defined by

X
⇠

(x) =
d

dt
�
x

(t)

����
t=0
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is well defined and smooth for each ⇠ 2 g. If the vector field X
⇠

does not vanish, we say the

action of G is locally free. Defining a basis {⇠
1

, . . . , ⇠
n

} of g in turn defines a corresponding basis

{X
⇠1 , . . . , X⇠

n

} of vector fields generated by the infinitesimal action of g. The Lie bracket on g

defines associated structure constants ck
ij

2 R relative to the chosen basis where

[⇠
i

, ⇠
j

] = ck
ij

⇠
k

and Einstein summation convention is observed. The vector fields generated by the infinitesimal

action share a similar structure to the Lie algebra in that

[X
⇠

i

, X
⇠

j

] = ck
ij

X
⇠

k

= X
[⇠

i

,⇠

j

]

.

These vector fields are fundamental in the study of equivariant cohomology and possess many

properties that allow an analogue of de Rham’s theorem to emerge. Perhaps the most natural

action that a vector field X
⇠

2 X(M) has on a di↵erential form is via the interior product,

◆
⇠

: ⌦n(M) ! ⌦n�1(M), given by

◆
⇠

!(X
1

, . . . , X
n�1

) = !(X
⇠

, X
1

, . . . , X
n�1

), (2.30)

for X
1

, . . . , X
n

smooth vector fields on M . Note that this notation is a contraction of the more

standard ◆
X

⇠

which will be avoided for simplicity. One checks that

◆
⇠

(! ^ µ) = (◆
⇠

!) ^ µ+ (�1)n! ^ (◆
⇠

µ)

to verify that this is a graded derivation of degree �1. An element of the Lie algebra also

determines a one-parameter subgroup of G which naturally acts on di↵erential forms via

t 7! ! · exp(t⇠).

Taking the derivative at t = 0 of this map is precisely the Lie derivative of ! with respect to the

vector field X
⇠

, which shall be denoted L
⇠

. The Lie derivative observes the identity

L
⇠

= d◆
⇠

+ ◆
⇠

d (2.31)

which is known as ‘Cartan’s magic formula’ and is attributed to Élie Cartan (and occasionally

Henri Cartan), a proof of which can be found in [CCL99]. This identity immediately implies

that L
⇠

is a derivation of degree 0 and commutes with d. Since di↵erential forms are linear in

their first term, the sets spanned by these derivations are vector spaces with respective bases

{◆
⇠1 , . . . , ◆⇠n} and {L

⇠1 , . . . ,L⇠

n

} corresponding to the basis of g.

2.2.2 Connections and Curvature

Let P
⇡��! B be a principal G-bundle. The action of G on the total space is free and thus vector

fields generated by the infinitesimal action of g do not vanish. To each vector field X
⇠

i

there
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exists a 1-form ✓i 2 ⌦⇤(P ) that is in some sense ‘dual’ in that

✓i(p;X
⇠

j

) = �
ij

=

(
1 if i = j

0 if i 6= j

for each p 2 P . If the collection of these forms {✓i} span a G-invariant subspace of ⌦1(P ), this

is precisely the definition of ‘connection forms’ on the total space P in [GS99]. A di↵erential

1-form that takes values in g defined by

✓ = ✓i ⌦ ⇠
i

2 ⌦1(P )⌦ g

(and where Einstein summation convention is observed) is an example of the more standard

definition of a connection form. One can check that for any ⇠ 2 g and every p 2 P ,

✓(p;X
⇠

) = ⇠.

This di↵erential form identifies tangent vectors generated by the Lie algebra and a ‘complement’

defined by

{u 2 T
p

P : ✓(p;u) = 0}
in a smooth (but not necessarily unique) way. This di↵erential form can also be realised in a

more classical way via parallel transport, as seen in Dupont [Dup78, Ch. 3], which motivates

the following discussion. At a point p 2 P there is a map v
p

: g ! T
p

P given by

v
p

(⇠) = X
⇠

(p)

corresponding to the derivative of the map g 7! p · g as seen in the definition of X
⇠

. Note that

this map is injective since the action of G is free. The projection ⇡ : P ! B is G-invariant and

so results in the following short exact sequence

0 ! g
v

p��! T
p

P
⇡⇤���! T

⇡(p)

B ! 0

where ⇡⇤ : TP ! TB is the derivative of ⇡. At each point p 2 P the di↵erential form ✓ defines

a linear map

✓
p

:= ✓(p;�) : T
p

P ! g

such that ✓
p

� v
p

= idg. Thus, the connection ✓ splits the exact sequence at every point and

allows us to define the following.

Definition 2.32: Let P
⇡��! B be a principal G-bundle, ✓ 2 ⌦1(P )⌦ g a connection on P and

u 2 T
p

P for some p 2 P . We say u is vertical if u 2 ker(⇡⇤) and horizontal if u 2 ker(✓
p

).

Likewise, a vector field X is called vertical if all vectors X(p) are vertical and horizontal if all

vectors X(p) are horizontal. Denote the collection of all vertical vectors at a point p 2 P as V
p

and the collection of all vertical vectors at a point p 2 P as H
p

.
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Remark 2.33: The short exact sequence

0 ! g
v

p��! T
p

P
⇡⇤���! T

⇡(p)

B ! 0

means that a vertical vector can equivalently be defined as a tangent vector u 2 T
p

P such that

u 2 im(✓
p

).

Since the connection 1-form determines these subspaces of the tangent space, we would also

like the definition of a connection to be ‘equivariant’ in the sense that it preserves these subspaces

under the group action. Put more explicitly, we would like

V
p·g = V

p

· g, H
p·g = H

p

· g

where the action of g 2 G is taken to be (�
g

)⇤, the derivative of action �g. The derivative of the

action of g 2 G on a vertical vector X
⇠

(p) is given by

(�
g

)⇤X
⇠

(p) = (�
g

)⇤
d

dt
�(x, exp(t⇠))

����
t=0

=
d

dt
�(x, exp(t⇠)g)

����
t=0

=
d

dt
�(x · g, g�1 exp(t⇠)g)

����
t=0

= X
Ad(g

�1
)⇠

(p · g) (2.34)

where Ad(g�1) : g ! g is the adjoint representation of g�1 2 G, the derivative of the map h 7!
g�1hg at the identity. This immediately shows that V

p·g = V
p

·g, trivially. Let u = u
v

+u
h

2 T
p

P

where u
v

is vertical and u
h

is horizontal. If H
p·g = H

p

· g then it must be true that

(�
g

)⇤u
h

2 H
p·g,

or in terms of the connection this can rewritten as

✓
p·g ((�g)⇤(u

h

)) = 0. (2.35)

If we let u
v

= X
⇠

(p) for some ⇠ 2 g, the e↵ect that (2.35) has on a connection can thus be

calculated by seeing that

✓
p·g ((�g)⇤u) = ✓

p·g ((�g)⇤uv) + ✓
p·g ((�g)⇤u

h

)

= ✓
p·g ((�g)⇤X

⇠

(p))

= ✓
�
p · g;X

Ad(g

�1
)⇠

(p · g)�

= Ad(g�1)⇠

= Ad(g�1)✓
p

(u).
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More concisely, this calculation shows that H
p·g = H

p

· g implies that �⇤
g

✓ = Ad(g�1) � ✓. In

fact, if �⇤
g

✓ = Ad(g�1) � ✓ it implies that H
p·g = H

p

· g, so this can be taken to be an equivalent

condition. With this in mind, we precisely define what is meant by a connection on a principal

bundle.

Definition 2.36: Let P
⇡��! B be a principal G-bundle. A connection on P is a g-valued

1-form ✓ 2 ⌦1(P )⌦ g such that

1. ✓
p

� v
p

= idg, and

2. �⇤
g

✓ = Ad(g�1) � ✓

for all p 2 P and every g 2 G.

Consider the principal G-bundle G ! {1} where G acts on itself by a right G-action. Since

every vector in TG is vertical and G acts transitively, every vector u 2 T
g

G can be written as

u = g · ⇠

for some ⇠ 2 g where the action of g 2 G on g corresponds to the derivative of the map h 7! gh

at the identity. These correspond precisely to the vector fields generated by the infinitesimal

action of g since

X
⇠

(g) =
d

dt
g · exp(t⇠)

����
t=0

= (�
g

)⇤⇠ = g · ⇠.

The left Maurer-Cartan form ✓
L

on G can explicitly defined as ✓
L

(g; g · ⇠) = ⇠ or, less opaquely,

✓
L

(g;u) = (�
g

�1)u. (2.37)

One checks that �⇤
g

✓
L

= Ad(g�1) � ✓
L

to verify this is a connection form. Since we have such an

explicit description of this connection we can calculate its exterior derivative

d✓
L

(X,Y ) = X✓
L

(Y )� Y ✓(X)� ✓
L

([X,Y ])

= L
X

✓
L

(Y )� L
Y

✓(X)� ✓
L

([X,Y ]).

If we let X,Y be vector fields generated by the infinitesimal action of g we notice that it greatly

simplifies this expression. For example, for ⇠, ⌘ 2 g,

d✓
L

(X
⇠

, X
⌘

) = L
⇠

✓
L

(X
⌘

)� L
⌘

✓(X
⇠

)� ✓
L

([X
⇠

, X
⌘

])

= �✓
L

([X
⇠

, X
⌘

])

= �✓
L

([X
[⇠,⌘]

)

= �[⇠, ⌘]

= �[✓
L

(X
⇠

), ✓
L

(X
⌘

)]
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since ✓
L

(X
⇠

), ✓
L

(X
⌘

) are constant functions. Now it is enough to note that at a point g 2 G,

X(g) = g · ⇠ and Y (g) = g · ⌘ for some ⇠, ⌘ 2 g and therefore the identity

d✓
L

= �1

2
[✓

L

, ✓
L

],

holds for every vector field X,Y 2 X(G); where for !
1

,!
2

2 ⌦1(M)⌦ g,

[!
1

,!
2

](X,Y ) = [!
1

(X),!
2

(Y )]� [!
1

(Y ),!
2

(X)].

This identity clearly carries over to the trivial principal bundle B⇥G ! B and thus a connection

✓ on a principal bundle P
⇡��! B is said to be flat if

d✓ = �1

2
[✓, ✓].

The ‘curvature’ of a principal bundle is then a measure of a connections failure to be flat. That

is, for a connection form ✓, define the g-valued curvature 2-form ⌦ by

d✓ = ⌦� 1

2
[✓, ✓].

Recall that by definition, ✓ vanishes on horizontal vectors. In contrast, the curvature 2-form is

horizontal.

Definition 2.38: Let P
⇡��! B be a smooth principal G-bundle. A di↵erential form ! 2 ⌦⇤(P )

is said to be horizontal if it vanishes on vertical vector fields. Equivalently, a di↵erential form

is horizontal if

◆
⇠

! = 0

for every ⇠ 2 g.

The curvature form is an important ingredient for equivariant cohomology, so the following

proposition will be useful for performing calculations.

Proposition 2.39: Let P
⇡��! B be a smooth principal G-bundle with connection ✓ and curva-

ture ⌦.

1. ⌦ is horizontal,

2. ⌦ is equivariant in the sense that �⇤
g

⌦ = Ad(g�1) � ⌦ and

3. d⌦ = [⌦, ✓].

In the same vein, Dupont’s proof that every principal bundle admits a connection will be

used in the discussion that follows. For a proof of these two propositions, the reader is directed

to [Dup78, p. 47- 49].
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Proposition 2.40: Every principal bundle has a connection.

Associated to a basis of g is a dual basis {⇠⇤
1

, . . . , ⇠⇤
n

} of g⇤ = Hom(g,R). Thus, to each

connection ✓ 2 ⌦1(P )⌦ g are 1-forms

✓i := ⇠⇤
i

✓ 2 ⌦1(P ).

Perhaps the most obvious equation these di↵erential forms satisfy is

✓i(p;X
⇠

j

) = �
ij

for every p 2 P , reminiscent of the connection forms as defined in [GS99]. By the same token,

for ⌦ 2 ⌦2(P )⌦ g, the curvature of ✓, define

µi := ⇠⇤
i

⌦ 2 ⌦2(P ).

In terms of these di↵erential forms, we have the following identities.

Proposition 2.41:

1. ◆
⇠

j

✓i = �
ij

.

2. d✓i = µi � 1

2

ci
jk

✓j ^ ✓k.

3. ◆
⇠

j

µi = 0.

4. dµi = ci
jk

µj ^ ✓k.
Note that all these identities are corollaries of previous calculations in this section. We will

revisit these identities in Section 2.3.1.

2.2.3 Basic Di↵erential Forms

Suppose P
⇡��! B is a principal G-bundle. By de Rham’s theorem, the cohomology of B can

be calculated using di↵erential forms via calculating the cohomology of the cochain complex

(⌦⇤(B), d).

⌦0(B)
d��! ⌦1(B)

d��! ⌦2(B)
d��! · · ·

The pullback ⇡⇤ : ⌦⇤(B) ! ⌦⇤(P ) allows us to recover the cohomology of B by only looking at

the basic forms of P . That is, the subspace of basic di↵erential forms

⇡⇤(⌦⇤(B)) ⇢ ⌦⇤(P )

is a well defined subcomplex of the de Rham complex of P since it is closed under the di↵erential

d. This definition is clumsy for the purposes of performing any actual calculations and so a

definition of this subcomplex using only information about P is sought after.
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Proposition 2.42: Let P
⇡��! B be a principal G-bundle. A di↵erential form ! 2 ⌦⇤(P ) is

basic if and only if ◆
⇠

! = 0 and ! · g = ! for every ⇠ 2 g and g 2 G.

Proof. Let ! be a basic di↵erential form in ⌦q(P ). That is, there is a form ⌫ 2 ⌦q(B) such that

⇡⇤⌫ = !. For any ⇠ 2 g the vector field X
⇠

is vertical, hence

⇡⇤X(p) = 0

for every p 2 P and thus, ◆
⇠

(⇡⇤⌫) = 0. Similarly we could ask how the action of G a↵ects the

pullback ⇡⇤⌫. Let g 2 G and consider that since ⇡ � �
g

= ⇡, we have

(⇡⇤⌫) · g = �⇤
g

⇡⇤⌫

= (⇡ � �
g

)⇤⌫

= ⇡⇤⌫.

These two calculations show that if ! is basic, then ◆
⇠

! = 0 and ! · g = !.

Now suppose ◆
⇠

! = 0 and ! · g = ! for every ⇠ 2 g and g 2 G. Let s : B ! P be a section.

We assert that s⇤! 2 ⌦⇤(B) satisfies ⇡⇤s⇤! = !. Note too, if u 2 T
p

P is a tangent vector at

p 2 P , the vector u� (�
g

� s � ⇡)⇤u is vertical since

⇡⇤(�g � s � ⇡)⇤u = ⇡⇤u

for every g 2 G. To check that ! = ⇡⇤s⇤!, it is enough to calculate

(! � ⇡⇤s⇤!)(p;u
1

, . . . , u
q

)

at an arbitrary point p with arbitrary tangent vectors u
1

, . . . , u
q

2 T
p

P . If

(⇡ � s)(p) = p · g

for some g 2 G then at the point p

(! � ⇡⇤s⇤!)(p;u
1

, . . . , u
q

)

= !(p;u
1

, . . . , u
q

)� !((s � ⇡)(p); (s � ⇡)⇤u1, . . . , (s � ⇡)⇤uq)
= !(p;u

1

, . . . , u
q

)� (! · g�1)((s � ⇡)(p); (s � ⇡)⇤u1, . . . , (s � ⇡)⇤uq)
= !(p;u

1

, . . . , u
q

)� !(p; (�
g

�1 � s � ⇡)⇤u1, . . . , (�
g

�1 � s � ⇡)⇤uq)
= !(p;u

1

� (�
g

�1 � s � ⇡)⇤u1, . . . , uq � (�
g

�1 � s � ⇡)⇤uq)
= 0

since ! vanishes on vertical vectors. So ! is basic when P ! B admits a section. If P ! B does

not admit a section, it admits local sections by Corollary 2.14. Let {U
i

}
i2J be local trivialisations

with local sections s
i

: B ! P and define

⌫
i

:= s⇤
i

(!|
U

i

) 2 ⌦q(U
i

).
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By letting b 2 U
i

\ U
j

and v
1

, . . . , v
q

2 T
b

B and supposing that s
i

(b) = s
j

(b) · g for some g 2 G

we see that

(⌫
i

� ⌫
j

)(b; v
1

, . . . , v
q

)

=!(s
i

(b); (s
i

)⇤v1, . . . , (si)⇤vq)� !(s
j

(b); (s
j

)⇤v1, . . . , (sj)⇤vq)

=!(s
i

(b); (s
i

)⇤v1, . . . , (si)⇤vq)� !(s
i

(b); (�
g

�1 � s
j

)⇤v1, . . . , (�
g

�1 � s
j

)⇤vq)

=!(s
i

(b); (s
i

)⇤v1 � (�
g

�1 � s
j

)⇤v1, . . . , (si)⇤vq � (�
g

�1 � s
j

)⇤vq)

= 0

since ⇡ � s
i

= ⇡ � �
g

�1 � s
j

= id. So defining ⌫ 2 ⌦⇤(B) by ⌫|
U

i

= ⌫
i

is well defined since ⌫
i

= ⌫
j

on U
i

\ U
j

for every i, j 2 J which shows that ⇡⇤⌫ = ! as required.

Since the set of basic di↵erential forms of a principal bundle P
⇡��! B is closed under the

di↵erential d, the set of basic di↵erential forms is also a complex. The following definition of

basic will be more helpful for the purposes of calculation.

Definition 2.43: Let P
⇡��! B be a smooth principal G-bundle. A di↵erential form is said to

be basic if it is horizontal and G-invariant. That is, ◆
⇠

! = 0 and ! · g = ! for every ⇠ 2 g and

g 2 G. The complex of basic di↵erential forms is denoted ⌦⇤(P )
bas

.

2.3 Equivariant de Rham Theory

2.3.1 The Weil Algebra

Let G be a Lie group and M be a manifold with right G-action. From the previous discussion

of basic di↵erential forms, one might wonder whether there is an equivalent way to find a de

Rham complex for the total space of the principal bundle

M ⇥ EG ! (M ⇥ EG)/G.

That is, if we can find a de Rham complex for M ⇥EG then the basic subcomplex will calculate

the equivariant cohomology of M . The space EG does not admit a smooth structure in general,

so de Rham theory can not be used in the ordinary sense. Instead, we will define a complex

called the Weil algebra W (g) which acts as a surrogate for di↵erential forms on EG. This allows

us to form a complex

W (g)⌦ ⌦⇤(M)

and study the basic forms of this complex. In this section we will define and study the complex

W (g).

Definition 2.44: Let G be a Lie group with Lie algebra g. Define the Weil Algebra W (g) to be

the complex

W (g) = ⇤(g⇤)⌦ S(g⇤)
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where ⇤, S are the exterior and symmetric algebras over R and g⇤ is the dual space of g. The

grading and di↵erential of W (g) will be explained further in the exposition below.

Let g have basis {⇠
1

, . . . , ⇠
n

} and g⇤ have dual basis {⇠⇤
1

, . . . ⇠⇤
n

}. Both the exterior and

symmetric algebras are graded and generated by their degree 1 elements. The sets ⇤1(g⇤)

and S1(g⇤) can be naturally identified with g⇤ as vector spaces, hence a choice of basis for g

induces generating sets for ⇤(g⇤) and S(g⇤) which will be denoted {✓1, . . . , ✓n} and {µ1, . . . , µn}
respectively. The Weil algebra is hence generated by the ✓i, µi elements and inherits a grading

by letting the ✓i have degree 1 and the µi have degree 2. Explicitly, one might express the set

of degree n elements of W (g) by

Wn(g) =
M

p+2q=n

⇤p(g⇤)⌦ Sq(g⇤).

The notation is deliberately suggestive of the remarks following Proposition 2.40. To this

end, we define an operator (of degree 1) on the generators of W (g) by defining

d✓i = µi � 1

2
ci
jk

✓j✓k and dµi = ci
jk

µj✓k.

Further, we define the linear operator (of degree �1) ◆
⇠

j

similarly by

◆
⇠

j

✓i = �
ij

and ◆
⇠

j

µi = 0

so as to mirror the identities in Proposition 2.41. (We take ◆
⇠

to act trivially on elements of

order 0.) By linearity it is clear that for any ⇠ = ki⇠
i

2 g (for constants ki 2 R)

◆
⇠

= ◆
k

i

⇠

i

= ki◆
⇠

i

.

Clearly these operators can be extended to be derivations on W (g). The operator ◆
⇠

clearly

satisfies ◆2
⇠

= 0 and leads to an analogous definition of a horizontal element.

Definition 2.45: An element ↵ 2 W (g) is said to be horizontal if

◆
⇠

↵ = 0

for every ⇠ 2 g.

Proposition 2.46: The operator d above satisfies d2 = 0.

Proof. The proof that ◆
⇠

j

is a derivation is clear from its definition. As for d, since µi can be

written as

µi = d✓i � 1

2
ci
jk

✓j✓k
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we need only check that d2✓i = 0. The calculation expands out as

d2✓i = d(µi � 1

2
ci
jk

✓j✓k)

= dµi � 1

2
ci
jk

d✓j✓k +
1

2
ci
jk

✓jd✓k

= dµi � 1

2
ci
jk

(µj � 1

2
cj
ab

✓a✓b)✓k +
1

2
ci
jk

✓j(µk � 1

2
ck
ab

✓a✓b).

Some terms immediately cancel, for example

�1

2
ci
jk

µj✓k = �1

2
dµi

and thus

dµi � 1

2
ci
jk

µj✓k +
1

2
ci
jk

µk✓j = 0

since ci
jk

= �ci
kj

. The calculation of d2✓i = 0 thus reduces to showing that

0 =
1

4
ci
jk

cj
ab

✓a✓b✓k � 1

4
ci
jk

ck
ab

✓j✓a✓b

=
1

2
ci
jk

cj
ab

✓a✓b✓k. (2.47)

This rather tedious calculation can be summarised by observing that the Jacobi identity takes

its form in the structure constants by requiring that they satisfy

ci
jk

cj
ab

+ ci
ja

cj
bk

+ ci
jb

cj
ka

= 0 (2.48)

for every fixed i. Further observe that fixing ↵,�, � we pull the term

1

2
ci
j�

cj
↵�

✓↵✓�✓� +
1

2
ci
j�

cj
↵�

✓↵✓�✓� +
1

2
ci
j�

cj
�↵

✓�✓↵✓� +
1

2
ci
j↵

cj
��

✓�✓�✓�

+
1

2
ci
j�

cj
�↵

✓�✓↵✓� +
1

2
ci
j↵

cj
�↵

✓�✓�✓↵

out of the sum in 2.47 (where Einstein summation convention is not being observed). We can

simplify this term to get

1

2
✓↵✓�✓�(ci

j�

cj
↵�

� ci
j�

cj
↵�

� ci
j�

cj
�↵

+ ci
j↵

cj
��

+ ci
j�

cj
�↵

� ci
j↵

cj
��

)

= ✓↵✓�✓�(ci
j�

cj
↵�

+ ci
j↵

cj
��

+ ci
j�

cj
�↵

)

whence it becomes clear that d2 = 0.

The algebra W (g) can thus be thought of a cochain complex with di↵erential d. The de

Rham complex of a contractible space is acyclic, so W (g) should be acyclic in order to mirror

this property. The following proposition follows a similar approach to [GS99] and [Mei06].
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Theorem 2.49: W (g) is an acyclic algebra.

Proof. Note that the algebra W (g) can be generated by the elements {✓i, d✓i}, since the equation

µi = d✓i +
1

2
ci
jk

✓j✓k

shows that any element w 2 W p(g) may be written in the form

w =
X

n+2m=p

k
n,m

✓↵1 · · · ✓↵nd✓�1 · · · d✓�m =
X

n+2m=p

k
n,m

w
n,m

where k
n,m

is some real constant and w
n,m

2 Wn+2m(g). Note that the set

{w
n,m

: n+ 2m = p}

is a basis for W p(g) when thought of as a vector space. On these generators of W (g) we can

define a derivation Q by Q(✓i) = 0 and Q(d✓i) = ✓i. Calculating dQw on its summands we find

dQ(w
n,m

) = dQ(✓↵1 · · · ✓↵nd✓�1 · · · d✓�m)

= d

 
mX

i=1

✓�i✓↵1 · · · ✓↵nd✓�1 · · · ˆd✓�i · · · d✓�m

!

=
nX

i=1

mX

i=1

(�1)j✓�i✓↵1 · · · ˆ✓↵j · · · ✓↵nd✓↵jd✓�1 · · · ˆd✓�i · · · d✓�m

+
mX

i=1

✓↵1 · · · ✓↵nd✓�1 · · · d✓�m

where the caret denotes omission from the sequence (e.g. ˆ✓↵j ). Similarly, calculating Qdw on

its summands we find

Qd(w
n,m

) = Qd(✓↵1 · · · ✓↵nd✓�1 · · · d✓�m)

= Q

 
nX

i=1

(�1)j✓↵1 · · · ˆ✓↵j · · · ✓↵nd✓↵jd✓�1d✓�m

!

=
nX

i=1

✓↵1 · · · ✓↵nd✓�1 · · · d✓�m

+
mX

i=1

nX

i=1

(�1)j+1✓�i✓↵1 · · · ˆ✓↵j · · · ✓↵nd✓↵jd✓�1 · · · ˆd✓�i · · · d✓�m

whence it becomes clear that

(dQ+Qd)w
n,m

= (n+m)w
n,m
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for each summand w
n,m

. Since the w
n,m

elements form a basis for W p(g) it is possible to define

a linear map Q
n,m

: W p(g) ! W p�1(g) by

Q
n,m

(w
s,t

) =

(
1

n+m

Qw
s,t

if s = n, t = m

0 otherwise

and hence a chain homotopy K where K
p

=
P

n+2m=p

Q
n,m

. That is, it has been shown that

dK +Kd = id

and hence, W (g) is acyclic.

Remark 2.50: In fact, this proof shows that any cochain complex generated by {✓i, d✓i} (where

d✓i 6= 0 for any i) is acyclic.

The complex W (g) also carries a natural action of G. The action �g⇤ : g⇤ ⇥ G ! g⇤ is

induced by the contragredient (or coadjoint) action of G on g⇤. When considering the natural

bilinear product h·, ·i : g⇤ ⇥ g ! R, the contragredient action is the unique action such that

h⇠⇤ · g, ⌘ · gi = h⇠⇤, ⌘i = ⇠⇤(⌘)

for every ⇠⇤ 2 g⇤, ⌘ 2 g, g 2 G. Since both ⇤(g⇤) and S(g⇤) are generated by their elements of

order 1 (and g⇤ ⇠= ⇤1(g⇤) ⇠= S1(g⇤) as vector spaces) the contragredient action defines an action

on W (g).

Definition 2.51: An element of W (g) is said to be basic if it is horizontal and G-invariant.

That is, ◆
⇠

! = 0 and ! · g = ! for every ⇠ 2 g and g 2 G. The complex of basic di↵erential

forms is denoted W (g)
bas

.

The action of G on W (g) further induces an action of g via the Lie derivative which again

agrees with Cartan’s magic formula

L
⇠

= d◆
⇠

+ ◆
⇠

d.

This formula makes it much easier to calculate the action of g on W (g) and indeed,

L
⇠

j

(✓i) = (d◆
⇠

j

+ ◆
⇠

j

d)✓i

= ◆
⇠

j

(µi � 1

2
ci
ab

✓a✓b)

= � 1

2
ci
jb

✓b +
1

2
ci
aj

✓a

= � ci
jk

✓k
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since a, b sum over the same numbers and

L
⇠

k

(µi) = (d◆
⇠

k

+ ◆
⇠

k

d)µi

= ◆
⇠

k

(ci
ab

µa✓b)

= ci
ak

µa.

It follows that the di↵erential d may be redefined as

d✓i = µi � 1

2
✓jL

⇠

j

(✓i)

on the ⇤(g⇤) elements and

dµi = ✓kL
⇠

k

(µi) (2.52)

on the S(g⇤) elements. With this in mind, the Weil algebra can be thought of as the total

complex of a double complex (C⇤,⇤, �
1

, �
2

) where

Cp,q = ⇤p�q(g⇤)⌦ Sq(g⇤),

and Cp,q = 0 when p� q < 0. The map �
2

: Cp,q ! Cp,q+1 is defined on generators by

�
2

(✓i) = µi, �
2

(µi) = 0

and the map �
1

: Cp,q ! Cp+1,q is defined on generators by

�
1

(✓i) = �1

2
✓jL

⇠

j

(✓i), �
1

(µi) = ✓kL
⇠

k

(µi). (2.53)

...
...

...

0 0 ⇤0(g⇤)⌦ S2(g⇤) · · ·

0 ⇤0(g⇤)⌦ S1(g⇤) ⇤1(g⇤)⌦ S1(g⇤) · · ·

⇤0(g⇤)⌦ S0(g⇤) ⇤1(g⇤)⌦ S0(g⇤) ⇤2(g⇤)⌦ S0(g⇤) · · ·

�
2

�
2

�
2

�
1

�
1

�
1

�
1

�
1

�
1

q

p
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Lemma 2.54: Let ↵ 2 W (g). Then

◆
⇠

↵ = 0

for every ⇠ 2 g if and only if ↵ 2 ⇤0(g⇤)⌦ Sm(g⇤) for some integer m.

Proof. The statement is trivial for m = 0. Showing that ◆
⇠

↵ = 0 implies ↵ 2 ⇤0(g⇤) ⌦ Sm(g⇤)

for m > 0 can be done most concisely by observing that the equation

✓i◆
⇠

i

= n · id

holds on ⇤n(g⇤)⌦ Sm(g⇤) for any n > 1. The converse follows by the definition of ◆
⇠

.

By Lemma 2.54 there are no horizontal elements in ⇤p�q(g⇤)⌦ Sq(g⇤) where p� q > 0. But

Cp,q = 0 when p� q < 0 hence the only horizontal elements lie in Cq,q = ⇤0(g⇤)⌦Sq(g⇤). Since

◆
⇠

µi = 0 for every ⇠ 2 g the horizontal elements are precisely those in ⇤0(g⇤) ⌦ Sq(g⇤). The

di↵erential �
2

is trivial on the horizontal elements. Since the horizontal elements are generated

by S(g⇤), for a basic element w 2 W (g)
bas

�
1

w = ✓kL
⇠

k

w = 0

since L
⇠

w = 0 for all ⇠ 2 g if w is G-invariant. Taking the total complex of the basic subalgebra

of this double complex yields the complex

⇤0(g⇤)⌦ S0(g⇤) ! 0 ! ⇤0(g⇤)⌦ S1(g⇤) ! 0 ! ⇤0(g⇤)⌦ S2(g⇤) ! · · ·

where every arrow is the 0 map. Consequently, we have proved the following theorem.

Theorem 2.55: W (g)
hor

⇠= S(g⇤) and hence W (g)
bas

⇠= S⇤(g⇤)G. Moreover,

H⇤(W (g)
bas

) = S(g⇤)G

since d is trivial on W (g)
bas

.

2.3.2 The Weil Model

Let G be a compact Lie group and M be a manifold with right G-action. For any principal

G-bundle P
⇡��! B, the space P ⇥M is a manifold with free G-action and so

(P ⇥M)/G

is also a manifold and hence admits a de Rham complex. By Proposition 2.42 we can identify

the di↵erential forms on (P ⇥M)/G thusly

⌦⇤((P ⇥M)/G) = ⌦⇤
bas

(P ⇥M) ⇠= (⌦⇤(P )⌦ ⌦⇤(M))
bas

.

Treating W (g) as a de Rham complex for EG motivates the following definition.
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Definition 2.56: Let G be a compact Lie group and M a manifold with right G-action. The

Weil model for the equivariant cohomology of M is defined to be the complex

(W (g)⌦ ⌦⇤(M))
bas

.

The fact that this is an adequate model for the equivariant cohomology of M is a well

understood result and accordingly we have the following classical theorem which will be proved

in the final chapter of this thesis.

Theorem 2.57: Let G be a compact Lie group and M a manifold with right G-action. There

is an isomorphism

H
G

(M) ⇠= H⇤((W (g)⌦ ⌦⇤(M))
bas

).

2.3.3 The Chern-Weil Homomorphism

Let P
⇡��! B be a principal G-bundle with connection ✓

P

2 ⌦1(P ) ⌦ g and curvature ⌦
P

2
⌦2(P )⌦g. Recall from Section 2.2.2 that a choice of connection is equivalent to choosing 1-forms

✓i
P

:= ⇠⇤
i

✓ 2 ⌦1(P ).

such that ✓i(p;X
⇠

j

) = �
ij

such that the subspace they span is invariant under the action of G.

There are also 2-forms

µi

P

:= ⇠⇤
i

⌦ 2 ⌦2(P )

related to the curvature form ⌦. Associated to the choice of connection is a unique homomor-

phism w(✓
P

) : W (g) ! ⌦⇤(P ) such that

w(✓
P

)(✓i) = ✓i
P

, w(✓
P

)(µi) = µi

P

.

This is the Weil homomorphism which is an equivariant chain map for which one can easily

check that the identities

1. dw(✓
P

)� w(✓
P

)d = 0 and

2. ◆
⇠

w(✓
P

)� w(✓
P

)◆
⇠

= 0

hold for every ⇠ 2 g. In particular, this means that w(✓
P

) descends to a chain map on basic

di↵erential forms and the following diagram commutes

W (g)

S(g⇤)G

⌦⇤(P )

⌦⇤(B)

w(✓
P

)

w̄(✓
P

)
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since W (g)
bas

⇠= S(g⇤)G. Moreover, from Theorem 2.55 the basic cohomology ring of W (g)

is S(g⇤)G so the map further induces the classical map in cohomology called the Chern-Weil

homomorphism


G

: S(g⇤)G ! H⇤(B)

which does not depend on the choice of connection ✓
P

(see [Bot73] or [AB82] for details).

2.3.4 The Mathai-Quillen Isomorphism

Let G be a Lie group with corresponding Lie algebra g of dimension n and basis {⇠
1

, · · · , ⇠
n

}.
Let M be a manifold with right G-action. Consider the operator

⇣ := ✓i ⌦ ◆
⇠

i

: W (g)⌦ ⌦⇤(M) ! W (g)⌦ ⌦⇤(M)

where for ↵ 2 W (g) and ! 2 ⌦⇤(M)

⇣(↵⌦ !) =
nX

i=1

✓i↵⌦ ◆
⇠

i

!. (2.58)

Proposition 2.59: The series

exp(⇣) = 1 + ⇣ +
1

2!
⇣2 + · · ·

converges.

Proof. Since ✓i✓i = 0, by the pigeonhole principle one notes that

✓i1 · · · ✓in+1 = 0

and hence ⇣n+1 = 0.

Since exp(⇣) converges, it has an inverse exp(�⇣) and is thus an automorphism of W (g) ⌦
⌦⇤(M) which is known as the Mathai-Quillen isomorphism. One notes that ⇣ is equivariant and

hence exp(⇣) is equivariant. The derivations d and ◆
⇠

are not preserved by exp(⇣) and so we

turn to calculations of [MQ86], [Kal93] via [GS99, p. 41 - 44].

Theorem 2.60: The automorphism exp(⇣) satisfies

exp(⇣)d exp(�⇣) = d� µk ⌦ ◆
⇠

k

+ ✓k ⌦ L
⇠

k

(2.61)

and

exp(⇣)(1⌦ ◆
⇠

+ ◆
⇠

⌦ 1) exp(�⇣) = ◆
⇠

⌦ 1 (2.62)

for every ⇠ 2 g.
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The identity 2.62 shows that the automorphism exp(⇣) can be restricted to the horizontal

subspace (W (g)⌦ ⌦⇤(M))
hor

to yield the following corollary.

Corollary 2.63: exp(⇣) : (W (g)⌦ ⌦⇤(M))
hor

! S(g⇤)⌦ ⌦⇤(M).

Proof. Let ↵ 2 (W (g)⌦ ⌦⇤(M))
hor

. Then ↵ satisfies

(◆
⇠

⌦ 1) exp(⇣)↵ = 0,

thus exp(⇣)↵ 2 W (g)
hor

⌦ ⌦⇤(M) ⇠= S(g⇤)⌦ ⌦⇤(M) by Theorem 2.55.

The horizontal subspace is not closed under d, but the basic subspace is. Thus the automor-

phism exp ⇣ restricts further to an algebra automorphism on the basic subalgebra.

2.3.5 The Cartan Model

Following the last section (specifically Corollary 2.63), the Mathai-Quillen isomorphism defines

an algebra isomorphism

exp(⇣) : (W (g)⌦ ⌦⇤(M))
bas

! (S(g⇤)⌦ ⌦⇤(M))G .

The di↵erential as described in 2.61 can be further simplified on G-invariant elements, too. By

the calculation in 2.52,

d = d⌦ 1 + 1⌦ d = ✓kL
⇠

k

⌦ 1 + 1⌦ d

and hence

exp(⇣)d exp(�⇣) = ✓kL
⇠

k

⌦ 1 + 1⌦ d� µk ⌦ ◆
⇠

k

+ ✓k ⌦ L
⇠

k

= 1⌦ d� µk ⌦ ◆
⇠

k

+ ✓k ⌦ 1(L
⇠

k

⌦ 1 + 1⌦ L
⇠

k

).

Since the basic subalgebra is G-invariant, L
⇠

k

⌦ 1 + 1⌦ L
⇠

k

= 0 on (S(g⇤)⌦ ⌦⇤(M))G and the

di↵erential simplifies to

d
G

:= 1⌦ d� µk ⌦ ◆
⇠

k

.

Definition 2.64: Let M be a manifold and G be a Lie group with Lie algebra g. Define the

Cartan Model to be the complex

(S(g⇤)⌦ ⌦⇤(M))G

with di↵erential

d
G

:= 1⌦ d� µk ⌦ ◆
⇠

k

.

Taking Theorem 2.57 for granted, we have proved the following theorem about the Cartan

model for equivariant cohomology.

Theorem 2.65: Let G be a compact Lie group and M a manifold with right G-action. Then

there is an isomorphism

H⇤
G

(M) ⇠= H⇤((S(g⇤)⌦ ⌦⇤(M))G).
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Chapter 3

Simplicial Methods

3.1 Simplicial and Cosimplicial Objects

3.1.1 The Simplicial Category

Define the simplicial category, �, to be the category whose objects are ordered sets of integers

[n] = {0 < 1 < · · · < n} (for n � 0) and whose morphisms µ : [n] ! [m] are non-decreasing maps

(i.e. µ(i)  µ(j) if i < j). In particular, for an injective non-decreasing map µ : [n � 1] ! [n]

there are only a total of n+ 1 morphisms to choose from, which may canonically be indexed by

di : [n� 1] ! [n] for 0  i  n as

di(k) = j if k < i and di(k) = k + 1 if k � i.

These canonical maps are often referred to as the coface maps (or cofaces). Similarly we may

also define non-decreasing maps si : [n+ 1] ! [n] for 0  i  n as

si(k) = k if k  i and si(k) = k � 1 if k > i,

that can be seen to be, in some sense, complementary to the di morphisms and are often referred

to as the codegeneracy maps (or codegeneracies). With these definitions it is not di�cult to check

that the following cosimplicial identities hold whenever their composition is defined.

dj di = di dj�1 if i < j. (3.1)

sj di =

8
>><

>>:

di sj�1 if i < j.

id if i = j or i = j + 1.

di�1 sj if i > j + 1.

(3.2)

sj si = si sj+1 if i  j. (3.3)

The codegeneracies are complementary to the cofaces in the sense that disi = id and that

any morphism µ : [n] ! [m] can be written as the composition of these morphisms as seen in

the following result of May [May67].
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Proposition 3.4: Let µ : [n] ! [m] be a map in �. Then µ decomposes into a unique sequence

of maps

µ = dir · · · di1sj1 · · · sjt

where 0  i
1

 · · ·  i
r

 m and 0  j
1

 · · ·  j
s

 m.

Proof. The image of µ contains at most n elements. Let I = {i
1

, i
2

, . . . i
r

} be the set of elements

that are not in the image of µ in increasing order and let J = {j
i

, . . . , j
t

} be the set of elements

such that µ(j
i

) = µ(j
i

+ 1) in increasing order. We check that the map decomposes into

µ = dir · · · di1sj1 · · · sjt

by applying induction.

First suppose that µ(0) = p
0

. Note that si(0) = 0 for every i � 0 and hence we need only

check how di a↵ects the calculation. Since µ is non-decreasing, 0, 1, . . . , p
0

� 1 are necessarily in

I and one notes that dp0�1dp0�2 · · · d0(0) = p
0

. But p
0

62 I and di(p
0

) = p
0

for every i > p
0

and

so

µ(0) = dir · · · di1sj1 · · · sjt(0).
Now assume that µ(k) = dir · · · di1sj1 · · · sjt(k). If µ(k) = µ(k + 1) then k 2 J . Note that if

i � k+1 then si(k) = k and si(k+1) = k+1 and in particular, sksi(k) = k and sksi(k+1) = k.

From this observation we can deduce that induction holds if µ(k) = µ(k+1). If we suppose that

µ(k + 1) = µ(k) + c for some c 6= 0 then k 62 J and so

sj1 · · · sjt(k + 1) = sj1 · · · sjt(k) + 1.

Also, it must be true that k + 1, . . . , k + c� 1 2 I and so

dir · · · di1sj1 · · · sjt(k + 1) = dir · · · di1sj1 · · · sjt(k) + 1 + c� 1 = µ(k + 1)

as required. In fact, since n � t is the number of elements in the image µ([n]) and r is the

number of missed elements, it is true that n� t+ r = m which confirms that dir · · · di1sj1 · · · sjt
is indeed a morphism from [n] to [m].

In category theory there is the notion of the opposite category. For any category C there is

its opposite category C op with objects Aop for each object A 2 C , morphisms aop : Bop ! Aop 2
Hom(Bop, Aop) for each morphism a : A ! B 2 Hom(A,B) and insisting that aopbop = (ba)op

whenever the morphism ba is defined.

Definition 3.5: A simplicial object in a category C is a functor

F : �op ! C .

If F and G are simplicial objects in C then a simplicial map from F to G is a natural transfor-

mation

↵ : F ! G.
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Thus the simplicial objects in C , together with the simplicial maps between them form a category

sC . Moreover, let di : [n � 1] ! [n] be a coface map of � for 0  i  n. The map d
i

:= F (di)

is called a face map of F . Similarly, let si : [n + 1] ! [n] be a codegeneracy map of � for

0  i  n. The map s
i

:= F (si) is called a degeneracy map of F .

This definition is helpful in understanding the relationships between simplicial objects later

in the discussion, but may not be satisfying to the average reader. To help develop the idea of

simplicial objects, some simplicial objects will be defined more explicitly and then shown to be

equivalent to their definition as functors. It will thus be useful to have the following corollary

of Proposition 3.4.

Corollary 3.6: Let µop : [m]op ! [n]op be a morphism in the category �op. Then µop decomposes

into a unique sequence of maps

µop = (sjt)op · · · (sj1)op(di1)op · · · (dir)op.

where 0  i
1

 · · ·  i
r

 m and 0  j
1

 · · ·  j
s

 m.

This corollary means that a simplicial object F : �op ! C can be uniquely determined by

the images of objects F
i

= F ([i]), face maps d
i

and degeneracy maps s
i

so long as they meet

the simplicial identities corresponding to (3.1) — (3.3),

d
i

d
j

= d
j�1

d
i

if i < j. (3.7)

d
i

s
j

=

8
>><

>>:

s
j�1

d
i

if i < j.

id if i = j or i = j + 1.

s
j

d
i�1

if i > j + 1.

(3.8)

s
i

s
j

= s
j+1

s
i

if i  j. (3.9)

Since a simplicial map f : F ! G is a natural transformation between simplicial objects, it can

simply be checked that

d
i

f = fd
i

and s
i

f = fs
i

for every corresponding pair of face and degeneracy map of F and G. Although simplicial objects

will be the main focus of later sections, it will be helpful to first have an example of a particular

cosimplicial object first.

3.1.2 Cosimplicial Objects

Definition 3.10: A cosimplicial object in a category C is a functor

F : �! C .
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If F and G are cosimplicial objects in C then a cosimplicial map from F to G is a natural

transformation

↵ : F ! G.

Thus the cosimplicial objects in C , together with the cosimplicial maps between them form a

category. Moreover, let di : [n � 1] ! [n] be a coface map of � for 0  i  n. The map

di := F (di) is called a coface map of F . Similarly, let si : [n+ 1] ! [n] be a codegeneracy map

of � for 0  i  n. The map si := F (si) is called a codegeneracy map of F .

Similarly, Proposition 3.4 implies that a cosimplicial object F : � ! C can be uniquely

determined by the images of objects F
i

= F ([i]), face maps di and degeneracy maps si meeting

the cosimplicial identities (3.1) — (3.3). One example of a cosimplicial object that will appear

several times in this thesis is the collection of topological n-simplices, �•.

Example 3.11: The standard topological n-simplex is the space

�n = {(t
0

, t
1

, . . . , t
n

) 2 Rn+1 : t
0

, t
1

, · · · , t
n

� 0,
nX

i=0

t
i

= 1}.

If we let {e
0

, . . . , e
n

} be the standard basis of Rn+1, equivalently �n is the convex hull of this

basis. A map ↵ : [m] ! [n] induces a unique linear map ↵̃ : �m ! �n determined by

↵̃(e
i

) = e
↵(i)

.

We can also explicitly define the coface and codegeneracy maps which, as mentioned in 3.1.1,

will uniquely determine a functor F : �op ! C . The n-simplex can be canonically embedded in

the (n + 1)-simplex by defining coface maps di : �n ! �n+1 for every 0  i  n, which maps

the n-simplex into the ‘ith boundary component’ by

di(t
0

, . . . , t
n

) = (t
0

, . . . , t
i�1

, 0, t
i

, . . . , t
n

).

Note that the n-simplex has n + 1 vertices where the ith vertex is at t
i

= 1, t
j

= 0 for j 6= i.

There are then codegeneracy maps si : �n ! �n�1 which ‘collapse the ith vertex’ defined by

si(t
0

, . . . , t
n

) = (t
0

, . . . , t
i�1

, t
i

+ t
i+1

, t
2

. . . , t
n

).

With the coface and codegeneracy maps thus defined, it becomes apparent that �• = {�n}
n�0

is a cosimplicial object by defining a functor F : �! Top by the obvious assignment

F ([n]) = �n, F (di) = di, F (si) = si,

and noting that the maps satisfy the cosimplicial identities (3.1) — (3.3).
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3.1.3 Simplicial Objects

The following construction of the cosimplicial object �• leads naturally to the singular simplicial

set and singular homology. Let X be a topological space and define a singular n-simplex � to

be a continuous map from the topological n-simplex into X,

� : �n ! X.

Denote the set of all singular n-simplices of X by S
n

(X). Note that there are natural face and

degeneracy maps on the family of sets {S
n

(X)}
n�0

induced by the coface and codegeneracy

maps on �•. Namely, for an n-simplex �, we define the face maps d
i

: S
n

(X) ! S
n�1

(X) by

the composition

d
i

(�) = � � di : �n�1 ! X 2 S
n�1

(X) (3.12)

and respectively define the degeneracy maps s
i

: S
n

(X) ! S
n+1

(X) by the composition

s
i

(�) = � � si : �n+1 ! X 2 S
n+1

(X) (3.13)

for every 0  i  n. One checks that these satisfy the simplicial identities (3.7) — (3.9). Denote

the family of sets {S
n

(X)}
n�0

together with face and degeneracy maps the singular simplicial

set of a topological space X, which can be thought of as a functor

S•(X) : �op ! Set.

Letting � : �n ! X be an n-simplex of X, a continuous map f : X ! Y induces a map on the

simplicial set S(f) : S
n

(X) ! S
n

(Y ) for each n � 0 by

S(f)� = f � � : �n ! Y.

For an n-simplex of X, it is a simple calculation to check that

d
i

(S(f)�) = d
i

(f�)

= f�di

= f(d
i

�)

= S(f)(d
i

�)

and similarly for the degeneracy maps; thus S(f) is a simplicial map. Leaving the categorical

definition behind, we o↵er an alternative definition of a simplicial set.

Definition 3.14: A simplicial set X• is a family of sets X• = {X
q

}
q�0

together with face

operators d
i

: X
q

! X
q�1

and degeneracy operators s
i

: X
q

! X
q+1

, i = 0, 1, . . . , q, such that
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the identities (3.7) — (3.9) hold.

d
i

d
j

= d
j�1

d
i

if i < j.

d
i

s
j

=

8
>><

>>:

s
j�1

d
i

if i < j.

id if i = j or i = j + 1.

s
j

d
i�1

if i > j + 1.

s
i

s
j

= s
j+1

s
i

if i  j.

A map of simplicial sets f : X• ! Y• is then defined to be a sequence of functions {f
q

: X
q

!
Y
q

}
q�0

such that they commute with the face and degeneracy operators. That is, f
q

d
i

= d
i

f
q+1

and f
q+1

s
i

= s
i

f
q

for every q � 0. The collection of simplicial sets forms the category of simplicial

sets which we will denote sSet.

Remark 3.15: We may also take X• to be a family of topological spaces, manifolds, groups,

etc and replace the face and degeneracy maps with the appropriate morphisms – continuous

maps, smooth maps, homomorphisms, etc respectively.

Proposition 3.16: The category sSet of simplicial sets is equal to the category of functors

F : �op ! Set.

Proof. Let X• = {X
q

}
q�0

be a simplicial set. In Corollary 3.6 we saw that any map µop : [n]op !
[m]op in the category�op can be decomposed uniquely into the map (sjt)op · · · (sj1)op(di1)op · · · (dir)op.
Then define a functor F : �op ! Set such that

F ([q]) = X
q

, F ([n]
µ

op

���! [m]) = s
j

t

· · · s
j1di1 · · · dir : X

n

! X
m

.

Conversely, by using identities (3.7) — (3.9) that any combination of face and degeneracy maps

on the simplicial set X•, say ⌫ : X
n

! X
m

, may also be rearranged such that

⌫ = s
j

t

· · · s
j1di1 · · · dir .

Now let Y• = {Y
q

}
q�0

be a simplicial set associated to the functor G : �op ! Set and suppose

we have a map f : X• ! Y•. Necessarily the diagrams

X
q

X
q�1

Y
q

Y
q�1

X
q

X
q+1

Y
q

Y
q+1

d
i

d
i

f
q

f
q�1

s
i

s
i

f
q

f
q+1

commute for all q � 0. This can be rewritten in the language of functors, in which case the

diagrams become
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F ([q])

F ([q � 1])

G([q])

G([q � 1]) F ([q])

F ([q + 1])

G([q])

G([q + 1])

F (d
i

) G(d
i

)

f
q

f
q�1

F (s
i

) G(s
i

)

f
q

f
q+1

after which it becomes clear that f : X• ! Y• can be realised as a natural transformation

between functors f : F ! G since we can write all morphisms in the simplicial category � as a

combination of the face and degeneracy maps.

Denote the free vector space of singular n-simplices over R by C
n

(X). That is, a general

element of C
n

(X), or a singular n-chain, will be a finite formal sum of elements

X

i

c
i

�
i

2 C
n

(X)

for n-simplices �
i

and coe�cients c
i

2 R. We define the face and degeneracy maps to be the

linear extensions of d
i

, s
i

(i.e. (3.12), (3.13)) on the formal sums of n-simplices. Let VectR
denote the category of vector spaces over R, whose morphisms are linear maps. One notes that

the family of vector spaces C•(X) = {C
n

(X)}
n�0

can thus be thought of as a functor

F : �op ! VectR.

We call C•(X) the singular simplicial chain complex of the topological space, X. Since a

continuous map f : X ! Y induces a map S(f) : C•(X) ! C•(Y ), the linear extension

f
#

: C•(X) ! C•(X) is a simplicial map. That is, given a singular n-chain
P

i

c
i

�
i

, define

f
#

X

i

c
i

�
i

=
X

i

c
i

S(f)�
i

.

We recall (e.g. [Hat01]) that there is a di↵erential operator

@
n

: C
n

(X) ! C
n�1

(X),

sometimes called the boundary operator, such that an n-simplex is sent to the sum of its bound-

ary components and @
n

@
n+1

= 0. This boundary operator can be constructed using the face

maps by

@
n

=
nX

i=0

(�1)id
i

.
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One checks that using the relation in (3.7)

@
n

@
n+1

=
X

i,j

(�1)i+jd
i

d
j

=
X

i<j

(�1)i+jd
j�1

d
i

+
X

ji

(�1)i+jd
i

d
j

=
X

q<p+1

(�1)p+q+1d
p

d
q

+
X

ji

(�1)i+jd
i

d
j

= 0

since q < p+ 1 is equivalently restated as q  p and sums over the same integers.

If M is a manifold, one may also consider a smooth n-simplex on M to be a smooth map

� : �n ! M.

One may also consider the subspace S1
• (M) ⇢ S•(M) of smooth singular simplices on M and

hence C1
• (M) ⇢ C•(M) the smooth singular chains on M . By the Whitney Approximation

Theorem any singular simplex is homotopic to a smooth singular simplex and the inclusion

C1
n

(M) ! C
n

(M)

is an isomorphism in homology of chain complexes (see [Lee02, Theorem 16.6] for further details).

By dualising the singular complex C
n

(X) one obtains the set of singular n-cochains Cn(X) whose

elements are maps

✏ : C
n

(X) ! R.

These vector spaces naturally carry face maps di : Cn(X) ! Cn+1 by the precomposition

di✏ = ✏ � d
i

and degeneracy maps

si✏ = ✏ � s
i

.

Similarly, Cn(X) is endowed with a natural di↵erential operator d : Cn(X) ! Cn+1(X) given

by

d =
nX

i=0

(�1)idi

for each n � 0. For any topological space, one defines the cohomology of X with real coe�cients

by the sequence of cohomology groups Hn(X) where

Hn(X) =
ker d \ Cn(X)

imd \ Cn(X)

46



in the usual way (e.g. [Hat01]). Let M be a manifold and Cn

1(M) denote the subspace of

smooth singular cochains from dualising C
n

(X). The Whitney Approximation Theorem tells us

that there is an isomorphism

Hn(M) ⇠= ker d \ Cn

1(M)

imd \ Cn

1(M)

which we will use later in a proof of de Rham’s theorem.

3.1.4 The Nerve of a Category

Definition 3.17: Let C be a category with objects Ob(C ), morphisms Hom(C ) and denote

Hom(C ) �Hom(C ) by the class of pairs of composable morphisms. A topological category C is

a category where Ob(C ) and Hom(C ) are both topological spaces and

• The source map S : Hom(C ) ! Ob(C ), S(A ! B) = A, is continuous,

• the target map T : Hom(C ) ! Ob(C ), T (A ! B) = B, is continuous and

• composition C : Hom(C ) �Hom(C ) ! Hom(C ), C(f, g) = g � f , is continuous

where A,B 2 Ob(C ) and f, g 2 Hom(C ) with T (f) = S(g).

Let C be a topological category. The nerve of the category C , NC• = {NC
i

}
i�0

, is the

simplicial space where NC
0

= Ob(C ), NC
1

= Hom(C ) and for n > 1

NC
n

= Hom(C ) � · · · �Hom(C ) (n times)

is the subset of n composable morphisms in C . For example, consider the string of morphisms

A
n+1

f

n��! A
n

f

n�1����! · · · f2��! A
2

f1��! A
1

.

Then (f
1

, . . . , f
n

) is an element of NC
n

. We define face maps d
i

: NC
n

! NC
n�1

by

d
i

(f
1

, . . . , f
n

) =

8
>><

>>:

(f
2

, . . . , f
n

) if i = 0

(f
1

, . . . , f
i

� f
i+1

, . . . , f
n

) if 0 < i < n

(f
1

, . . . , f
n�1

) if i = n

(3.18)

and degeneracy maps s
i

: NC
n

! NC
n+1

for i = 0, . . . , n by

s
i

(f
1

, . . . , f
n

) = (f
1

, . . . , f
i�1

, id
A

i

, f
i

, . . . , f
n

) (3.19)

where X = S(f
i

) = T (f
i�1

).

Remark 3.20: If C ,D are topological categories, then there is a natural notion of a continuous

functor from C to D . The topological categories and continuous functors between them form

a category Cat
T

. Note that one may consider the nerve N : Cat
T

! Top as a functor. For a

continuous functor F : C ! D , NF : NC• ! ND• is a simplicial map of simplicial topological

spaces.
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We finish this subsection with an example of a simplicial object that will become ubiquitous

in the rest of this thesis.

Example 3.21: A topological group G can be considered a topological category where the only

object is the group itself endowed with the trivial topology, Ob(G) = {G}, and the morphisms

are multiplication by group elements, Hom(G) = G endowed with the topology of the group.

That is, the only object is the group itself and the morphisms of the group are the group

elements, g 2 G.

G

g

Since every pair of morphisms in G is composable, Hom(G)�Hom(G) = G⇥G and moreover, the

nerve of this category NG is the simplicial space where NG
0

is the single object {G} (treated

as a point) and in general

NG
n

= Gn = G⇥G⇥ · · ·⇥G (n times).

Explicitly, the face maps d
i

: NG
n

! NG
n�1

are

d
i

(g
1

, . . . , g
n

) =

8
>><

>>:

(g
2

, . . . , g
n

) if i = 0

(g
1

, . . . , g
i

g
i+1

, . . . , g
n

) if 0 < i < n

(g
1

, . . . , g
n�1

) if i = n

(3.22)

and the degeneracy maps s
i

: NG
n

! NG
n+1

are

s
i

(g
1

, . . . , g
n

) = (g
1

, . . . , g
i�1

, 1, g
i

, . . . , g
n

). (3.23)

Perhaps more naturally, one may also consider a topological group as a category G whose

objects are the group elements, Ob(G) = G, endowed with the topology of the group and whose

morphisms are the maps Hom(G) = {g ! h : g, h 2 G} = G ⇥ G endowed with the product

topology. We could think of a map g ! h between elements of G as a pair (h, g) to make this

clearer.

g

h

(g, g)

(h, g)
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Two morphisms g ! h and g0 ! h0 with h = g0 may be composed

(g ! h) � (g0 ! h0) = g ! h0.

Phrasing this in the pair notation, two pairs (h, g) and (h0, g0) with h = g0 may be composed

(h0, g0) � (h, g) = (h0, g). In this way, an element g
0

! g
1

! g
2

of Hom(G) � Hom(G) can be

thought of as a triple (g
2

, g
1

, g
0

). Explicitly, the face maps d
i

: NG
n

! NG
n�1

are

d
i

(g
0

, . . . , g
n

) = (g
0

, . . . , g
i�1

g
i

, . . . , g
n

) (3.24)

and the degeneracy maps s
i

: NG
n

! NG
n+1

are

s
i

(g
0

, . . . , g
n

) = (g
0

, . . . , g
i�1

, g
i

, g
i

, . . . , g
n

). (3.25)

Consider the functor � : G ! G where �(g) = G for every g 2 G and

Hom(G) 3 (h, g)
�7���! hg�1 2 Hom(G).

Clearly the functor is continuous and hence N� is a simplicial map under the nerve. Specifically,

the simplicial map � = N� : NG• ! NG• is the collection of maps {�
n

: Gn+1 ! Gn}
n�0

where

�
n

(g
0

, . . . , g
n

) = (g
0

g�1

1

, g
1

g�1

2

, . . . , g
n�1

g�1

n

).

In fact, this is a simplicial principal G-bundle in the sense of the following definition.

Definition 3.26: Let G be a Lie group. A simplicial principal G bundle P• ! B• is a family

of principal G-bundles P• = {P
q

}
q�0

together with face bundle maps d
i

: P
q

! P
q�1

and

degeneracy bundle maps s
i

: P
q

! P
q+1

, i = 0, 1, . . . , q, such that the identities (3.7) — (3.9)

hold.

d
i

d
j

= d
j�1

d
i

if i < j.

d
i

s
j

=

8
>><

>>:

s
j�1

d
i

if i < j.

id if i = j or i = j + 1.

s
j

d
i�1

if i > j + 1.

s
i

s
j

= s
j+1

s
i

if i  j.

3.1.5 Geometric Realisation

In this thesis, simplicial methods will be used to prove cohomological results. Since cohomology is

a topological property there will be machinery needed to relate a simplicial object to a topological

space. In the paper [Mil57], Milnor introduced the notion of geometric realisation which assigned

a topological space to a simplicial set.
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Definition 3.27: Let X• = {X
n

}
n�0

be a simplicial space. The geometric realisation of X is

the topological space

|X•| =
a

n�0

X
n

⇥�n/ ⇠

where, for x 2 X
n

, t 2 �n�1, we have the identification

(d
i

x, t) ⇠ (x, dit)

and for x 2 X
n

, t 2 �n+1, we have the identification

(s
i

x, t) ⇠ (x, sit).

The definition of geometric realisation above may also be extended to all simplicial sets by

endowing them with the discrete topology.

Proposition 3.28: Geometric realisation, |� | : sTop ! Top, is a functor.

Proof. Clearly for X• = {X
n

}
n�0

a simplicial space |X•| is a topological space. Consider

f : X• ! Y• a family of maps {f
n

: X
n

! Y
n

}
n�0

. The map |f | : |X•| ! |Y•| is the map

[x, t] 7! [f(x), t]

where [x, t] denotes an equivalence class in |X•|. This is well defined because f : X• ! Y•,

being a map of simplicial spaces, commutes with the face and degeneracy operators. From this

construction it is immediately clear that |id
X• | = id|X•| : |X•| ! |X•|.

Now let Y = {Y
n

}
n�0

, Z = {Z
n

}
n�0

be simplicial sets and f, g be simplicial maps

X•
f��! Y•

g��! Z•.

First we need to show that given f : X• ! Y•, |f | : |X•| ! |Y•| is continuous. First consider

the diagram

`
n�0

X
n

⇥�n

|X•|

`
n�0

Y
n

⇥�n

|Y•|

f̃

|f |

where f̃(x, t) = (f(x), t). A set U is open in |Y•| if and only if there is an open set

Ũ ⇢
a

n�0

Y
n

⇥�n
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that is sent to U under the quotient topology. Then, for an open set U ⇢ |Y•|,

|f |�1(U) = {[x, t] 2 |X•| : [f(x), t] 2 U}

is open if and only if

f̃�1(U) = {(x, t) 2 |X•| : (f(x), t) 2 U}
is open in

`
n�0

X
n

⇥�n. Since f is a map of simplicial spaces, f̃�1(U) will be open in the product

topology and hence |f | : |X•| ! |Y•| is a continuous map. Finally,

|g � f |[x, t] = [(g � f)(x), t]
= [g(f(x)), t]

= |g|[f(x), t]
= (|g| � |f |)[x, t].

Hence |g � f | = |g| � |f |.

In Dupont’s monograph [Dup78] he uses the fat realisation. There will be more exposition

comparing these two topological constructions in Section 4.1.2.

Definition 3.29: Let X• = {X
n

}
n�0

be a simplicial space. The fat realisation of X• is the

topological space

kX•k =
a

n�0

X
n

⇥�n/ ⇠

where, for x 2 X
n

, t 2 �n�1, we have the identification

(d
i

x, t) ⇠ (x, dit).

Corollary 3.30: Fat realisation, k � k : sTop ! Top, is a functor.

Proof. This proof immediately follows from Proposition 3.28.

For the following theorems regarding the geometric realisation of products require that we

must restrict ourselves to the category U of compactly generated Hausdor↵ spaces. Specifically

we turn our attention to the category SU , a subcategory of STop, whose objects are functors

F : �op ! U .

For more details, the reader is directed to [May72, Ch. 11].

Theorem 3.31: Let X•, Y• be simplicial spaces in the category SU . Then there is a homeomor-

phism

|X• ⇥ Y•| ! |X•|⇥ |Y•|.
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Proof. The reader is directed to [May72, Theorem 11.5] for a proof of this statement.

Corollary 3.32: Let f : X• ! B• and p : Y• ! B• be maps in the category SU . Then

|X• ⇥B• Y•| is naturally homeomorphic to |X•|⇥|B•| |Y•| via the map

|p
X

|⇥ |p
Y

| : |X• ⇥B• Y•| ! |X•|⇥|B•| |Y•|

where p
X

, p
Y

are the projections onto X•, Y• respectively.

Proof. The reader is directed to [May72, Corollary 11.6] for a proof of this statement.

Example 3.33: As Segal illustrates in [Seg68], ifX• is a simplicial space its geometric realisation

|X•| has a natural filtration

|X•|0 ⇢ |X•|1 ⇢ |X•|2 ⇢ · · · ⇢ |X•|

where |X•|i is the image of �i ⇥X
i

in |X•|. Applying this to the simplicial principal G-bundle

NG•
���! NG•

one obtains the natural filtration below.

|NG•|0 |NG•|1 |NG•|2 |NG•|

|NG•|0 |NG•|1 |NG•|2 |NG•|⇢ ⇢ ⇢ · · · ⇢

⇢ ⇢ ⇢ · · · ⇢

|�|
0

|�|
1

|�|
2

|�|

One can also ‘reverse engineer’ the geometric realisation of a simplicial spaceX• given enough

data. Since the geometric realisation is a gluing along degeneracies and faces, the space |X•|n can

be built from |X•|n�1

, the space �n ⇥X
n

and the gluing instructions. The gluing instructions

for the faces are contained in the image of

@�n ⇥X
n

and the gluing instructions for the degeneracies are contained in the image of

�n�1 ⇥
n[

i=0

s
i

(X
n

).

We will be referring to the union of the sets s
i

(X
n

) with some frequency and so the notation

s(X
n

) =
n[

i=0

s
i

(X
n

) (3.34)

will be adopted for clarity and brevity. The construction alluded to above is best described in

the following proposition.

52



Proposition 3.35: If X• is a simplicial space, the following diagram is a pushout diagram of

topological spaces.

@�n ⇥X
n

[�n�1 ⇥ s(X
n

)

�n ⇥X
n

|X•|n�1

|X•|n

Proof. The reader is directed to [May74, Theorem A.4] or [GJ99, Proposition 1.7, Ch. VII] for

a proof of this statement.

3.2 A Simplicial Construction of the Universal Bundle

In section 2.1.2 equivariant cohomology of a topological space X with right G-action was defined

as the singular cohomology of the quotient

H⇤ ((X ⇥ EG)/G)

where EG is any model for the universal G-bundle. The following section will motivate a model

for the universal bundle constructed via a simplicial principal G-bundle. The advantage of

this model will be that the model for the universal bundle, which is typically not a smooth

principal G-bundle, will be built from a sequence of smooth principal G-bundles which preserve

cohomological properties under geometric realisation. This section will primarily focus on the

construction of EG ! BG which will then be used extensively in the last chapter.

3.2.1 Basic Properties of |NG•|
Let G be a topological group and X be a topological space with right G-action. The space

X ⇥
X/G

X ⇢ X ⇥X

is the set of pairs (x, y) 2 X ⇥X such that x = y · g for some g 2 G. We say that the action of

G on X is strongly free if there is a continuous function ⌧ : X ⇥
X/G

X ! G satisfying

y = x · ⌧(x, y). (3.36)

Example 3.37: Let G act on itself by right multiplication. Then for any g, h 2 G, clearly

⌧(g, h) = g�1h.

This map is clearly continuous since the inverse map and right multiplication map are both

continuous on a topological group.
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Lemma 3.38: Let G be a topological group. Then the action of G is strongly free on the space

|NG•|.
Proof. Firstly note that since NG• is the total space of the simplicial principal G-bundle over

NG•, we may associate the orbits of NG
n

with the space NG
n

. The action of G on the space

NG
n

is clearly strongly free for every n � 0. Specifically, there is a map

⌧
n

: NG
n

⇥
NG

n

NG
n

! G

that satisfies Equation 3.36. In fact, this defines a simplicial map

⌧ : NG• ⇥NG• NG• ! G

since the face and degeneracy maps are equivariant. Taking geometric realisation, there is a

continuous map

|⌧ | : |NG• ⇥NG• NG•| ! G.

and by Corollary 3.32, there is a homeomorphism induced by the respective projections

|NG• ⇥NG• NG•| ⇠��! |NG•|⇥|NG•| |NG•|

which completes the proof.

In order to show |NG•| is contractible, we will use the following theorem without proof. For

a complete proof of this fact, the reader is directed to [Eng89, p. 151].

Theorem 3.39: For every locally compact space X and any quotient mapping g : Y ! Z, the

Cartesian product f = id
X

⇥ g : X ⇥ Y ! X ⇥ Z is a quotient mapping.

Lemma 3.40: The space |NG•| is contractible.

Proof. Let [g
0

, . . . , g
n

;u
0

, . . . , u
n

] denote an equivalence class inNG• with g
i

2 G and (u
0

, . . . , u
n

) 2
�n. Let h : |NG•|⇥ I ! |NG•| be the homotopy

h([g
0

, . . . , g
n

;u
0

, . . . , u
n

], t) = [1, g
0

, . . . , g
n

; t, (1� t)u
0

, . . . , (1� t)u
n

].

Note that by the construction of h,

h([g
0

, . . . , g
n

;u
0

, . . . , u
n

], 0) = [1, g
0

, . . . , g
n

; d0(u
0

, . . . , u
n

)]

= [g
0

, . . . , g
n

;u
0

, . . . , u
n

]

and also

h([g
0

, . . . , g
n

;u
0

, . . . , u
n

], 1) = [1, g
0

, . . . , g
n

; dn · · · d1(1)]
= [1; 1].
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It is perhaps easiest to show that the homotopy h is continuous by noting that it lifts to a

continuous map

h̃ :
a

n�0

Gn+1 ⇥�n ⇥ I !
a

n�0

Gn+1 ⇥�n

given by the obvious choice of lift, for (g
0

, . . . , g
n

;u
0

, . . . , u
n

) 2 `
n�0

Gn+1 ⇥�n and t 2 I,

h̃((g
0

, . . . , g
n

;u
0

, . . . , u
n

), t) = (1, g
0

, . . . , g
n

; t, (1� t)u
0

, . . . , (1� t)u
n

).

Consider the commutative diagram below.

`
n�0

�n ⇥Gn+1 ⇥ I

|NG•|⇥ I

`
n�0

�n ⇥Gn+1

|NG•|

q ⇥ id
I

q

h̃

h

The space I is locally compact so by Theorem 3.39 the map q ⇥ id
I

is a quotient map and thus

an open mapping. Hence, for an open set U ⇢ |NG•|,

h�1(U) = (q ⇥ id
I

� h̃�1 � q�1)(U)

which is clearly open and thus h is continuous.

Lemma 3.41: Under the quotient of a topological group G there is a homeomorphism

|NG•|/G ⇠= |NG•|.

Proof. Define �
n

: Gn+1 ! Gn by the map

�
n

(g
0

, . . . , g
n

) = (g
0

g�1

1

, . . . , g
n�1

g�1

n

) (3.42)

and note that the collection of maps {�
n

}
n�0

=: � : NG• ! NG• is a map of simplicial

manifolds. Moreover, � is equivariant since

�
n

((g
0

, . . . , g
n

) · h) = �
n

((g
0

h, . . . , g
n

h))

= (g
0

h(g
1

h)�1, . . . , g
n�1

h(g
n

h)�1)

= �
n

(g
0

, . . . , g
n

)

for every n � 0 and every h 2 G. The map � descends to a map

�
G

: NG•/G ! NG•
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under the identifications of the quotient by G since it is a G-invariant map. Moreover, we define

a map  
G

: NG• ! NG•/G defined by the collection of maps

 
n

(g
1

, · · · , g
n

) = [g
1

g
2

· · · g
n

, g
2

g
3

· · · g
n

, . . . , g
n

, 1].

Notice that  
G

is a simplicial map and a continuous inverse to �
G

. Since �
G

and  
G

are

simplicial maps, they descend again to continuous maps under geometric realisation and we

thus have shown that

|NG•/G| ⇠= |NG•|.
To show that |NG•/G| = |NG•|/G it su�ces to note that for x 2 NG•, |x| 2 |NG•| its

corresponding equivalence class and any g 2 G

|x · g| = |x| · g.

Hence, we have shown that |NG•|/G = |NG•/G| ⇠= NG•.

3.2.2 Principal Bundles and Local Trivialisations

Lemma 3.43: Let G be a topological group and X be a topological space with strongly free G-

action. Then X
⇡��! X/G is a trivial bundle if and only if ⇡ : X ! X/G has a continuous

section.

Proof. Suppose ⇡ : X ! X/G is a trivial bundle. That is, there is a homeomorphism ' : X !
(X/G) ⇥ G such that the induced map on base spaces X/G ! X/G is the identity. Let [x]

denote the equivalence class in X/G such that ⇡(x) = [x]. There is an obvious choice of section

for the bundle (X/G)⇥G ! (X/G), s : (X/G) ! (X/G)⇥G given by

s([x]) = ([x], e)

after which we note that ' � s : (X/G) ! X is also a continuous global section.

Now suppose instead that ⇡ : X ! X/G has a continuous section, s : X/G ! X. Since G is a

strongly free action, there is a continuous map ⌧ : X⇤ ! G and another map Q : X ! (X/G)⇥G

defined by

Q(x) = ([x], ⌧(s([x]), x)).

Note that Q is an equivariant homeomorphism with continuous inverse defined by

Q�1([x], g) = s([x]) · g.

Thus X ⇠= (X/G)⇥G and X
⇡��! X/G is a trivial bundle.

Corollary 3.44: Let G be a topological group and X be a topological space with strongly free

G-action. Then X
⇡��! X/G is a Principal G-bundle if and only if ⇡ : X ! X/G has continuous

local sections.
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Proof. Consider U
i

⇢ X/G. It follows from the above lemma that local sections s
i

: U
i

!
⇡�1(U

i

) correspond to trivialisations of ⇡�1(U
i

) since G is strongly free on ⇡�1(U
i

).

Lemma 3.45: Let G be a group and X be a topological set with right G-action. If U is a

G-stable subset of X then an equivariant map

f : U ! G

is equivalent to a local section s : U/G ! U .

Proof. Suppose there exists such a map f : U ! G and let [u] be an equivalence class in U/G.

Define the map s : U/G ! U by

s[u] = u · f(u)�1.

The map is well defined since for any representative u · g 2 [u],

s[u · g] = u · g · f(u · g)�1

= u · g · (f(u) · g)�1

= u · f(u)�1.

Remark 3.46: Note that the converse of this lemma is true when the action of G is strongly

free.

3.2.3 The Homotopy Extension Property and NDR Pairs

Definition 3.47: Let (X,A) be a pair of spaces with A
i

,�! X. We say that (X,A) has the

Homotopy Extension Property (HEP), or that A has the HEP with respect to X, if for every

map F : X ! Y and for every homotopy h : A⇥ I ! Y such that h(a, 0) = F � i(a) there exists

a map

H : X ⇥ I ! Y

such that H � (i⇥ 1) = h and H(x, 0) = F (x).

If we let i
0

(x) = (x, 0) we can rephrase this definition by requiring that there exists a map

H that makes the diagram below commute.

A A⇥ I

X X ⇥ I

Y
i

F

h

i⇥ id

i
0

i
0

H

57



The following theorem of Palais leads to a great number of examples of pairs (X,A) that

have the HEP.

Theorem 3.48: Let X be a metrisable manifold and let A be a closed subspace of X which is

also a manifold. Then (X,A) has the HEP.

Proof. The reader is directed to [Pal65, Theorem 6] for a proof of this statement.

Remark 3.49: If G is a Lie group then this theorem implies that (G, {1}) has the HEP.

Lemma 3.50 (Pasting Lemma): Let X,Y be closed subspaces of a topological space A = X [Y .

If a function f : A ! B is continuous when restricted to both X and Y , then f is continuous.

Proof. Let C be a closed subset ofB. Then since f is continuous when restricted to X, f�1(C)\X
is closed and similarly f�1(C) \ Y is closed. Then the set

f�1(C) =
�
f�1(C) \X

� [ �f�1(C) \ Y
�

is also closed, hence f : A ! B is continuous.

Proposition 3.51: Let X be a topological space and A ⇢ X be a closed subspace. The pair of

spaces (X,A) has the HEP if and only A⇥ I [X ⇥ {0} is a retract of X ⇥ I.

Proof. Suppose A⇥ I [X ⇥ {0} is a retract of X ⇥ I with retraction

r : X ⇥ I ! A⇥ I [X ⇥ {0}.
If there is a map F : X ! Y and a homotopy h : A ⇥ I ! Y such that F � i = h � i

0

then we

define a new function g : A⇥ I [X ⇥ {0} ! Y where

g(x, t) =

(
F (x) if t = 0

h(x, t) if t 6= 0
.

The function g is well defined since x 2 A if t 6= 0 and continuous by the previous pasting

lemma. Then we may define a homotopy H = g � r : X ⇥ I ! Y .

Now suppose (X,A) has the HEP. Then by letting F : X ! A⇥ I [X ⇥ {0} be the function

F (x) = (x, 0)

and the homotopy h : A⇥ I ! A⇥ I [X ⇥ {0} be the inclusion

h(a, t) = (a, t)

there is a function H : X ⇥ I ! A ⇥ I [ X ⇥ {0} such that H|
A⇥I

= h and H(x, 0) = F (x).

Note that H is precisely a retract of X ⇥ I since

H(a, t) = h(a, t) = (a, t)

for every (a, t) 2 A⇥ I.
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Example 3.52: For any n � 1, consider the pair (Dn, Sn�1) where

Dn = {x 2 Rn : |x|  1}

and Sn�1 = @Dn. We wish to find a retraction r : Dn ⇥ I ! Dn ⇥ {0}[Sn�1 ⇥ I. First, embed

Dn ⇥ I ,! Dn ⇥ R and fix a point N = (x, t) 2 Dn ⇥ R where x is in the interior of Dn and

t > 1. Then for any point M = (y, s) 2 Dn ⇥ I consider the straight line L passing through N

and (y, s). Then define r(M) to be the point

r(M) = L \ (Dn ⇥ {0} [ Sn�1 ⇥ I).

One may check that this map is well defined, continuous and the identity on

Dn ⇥ {0} [ Sn�1 ⇥ I,

hence a retraction. Thus, the pair (Dn, Sn�1) has the HEP. Since the topological n-simplex is

homeomorphic to Dn, and similarly its boundary is homeomorphic to Sn�1, we may conclude

that the pair (�n, @�n) has the HEP.

Definition 3.53: A pair (X,A) is a neighbourhood deformation retract pair, or an NDR pair,

if there is a map u : X ! I such that u�1(0) = A and a homotopy h : X ⇥ I ! X such that:

• h(�, 0) = id
X

,

• h(a, t) = a for all a 2 A, t 2 I and

• h(x, 1) 2 A if u(x) < 1.

We say an NDR pair (X,A) is a deformation retract pair, or a DR pair, if u(x) < 1 for all

x 2 X.

The following three results are proven in [May99] but first proved by Puppe in [Pup67].

Proposition 3.54: Let (X,A) and (Y,B) be NDR pairs. Then

(X ⇥ Y,A⇥ Y [X ⇥B)

is an NDR pair. Moreover, if (X,A) or (Y,B) is a DR pair, then

(X ⇥ Y,A⇥ Y [X ⇥B)

is a DR pair.

The proof is technical and will be omitted for brevity, but the reader is referred to [May99,

p. 45] for a complete proof.
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Corollary 3.55: Let X be a topological space and A ⇢ X a closed subspace. Then (X,A) is an

NDR pair if and only if A⇥ I [X ⇥ {0} is a retract of X ⇥ I.

Proof. This follows from the fact that (I, {0}) is a DR pair. This is shown by letting u = id
I

and h : I ⇥ I ! I be defined by

h(s, t) = t(1� s).

Thus, from the proposition above, (X ⇥ I, A ⇥ I [ X ⇥ {0}) is a DR pair with homotopy

k : (X ⇥ I)⇥ I ! X ⇥ I. Then there is a retraction r : X ⇥ I ! A⇥ I [X ⇥ {0} given by

r(x, t) = k ((x, t), 1) .

Now suppose there is a retraction r : X ⇥ I ! A ⇥ I [ X ⇥ {0}. Let p
X

: X ⇥ I ! X and

p
I

: X ⇥ I ! I be the projections and define u : X ! I by

u(x) = sup{t� (p
I

� r)(x, t) : t 2 I}

and h : X ⇥ I ! X by

h(x, t) = p
X

� r(x, t).
Then h(�, 0) = id

X

, h(a, t) = a for all a 2 A, t 2 I and h(x, 1) 2 A if u(x) < 1. We observe

that u�1(0) � A since if a 2 A then

p
I

(a, t) = p
I

r(a, t) =) t = p
I

r(a, t) for every t 2 I.

Suppose x 2 X\A. Since r is continuous there is a neighbourhood V of x and an ✏ > 0 such

that r(V ⇥ [0, ✏)) ⇢ X ⇥ {0}. But then if (x, t) 2 V ⇥ (0, ✏), p
I

(x, t) > p
I

r(x, t) in which case

u(x) > 0.

Corollary 3.56: Let X be a topological space and A ⇢ X be a closed subspace. Then (X,A)

has the HEP if and only if it is an NDR pair.

This corollary means that for a Lie group G, (G, {1}) is an NDR pair. We will use this fact

in conjunction with the following lemma.

Lemma 3.57: If (X,A) is an NDR pair then there is an open set U ⇢ X such that A ⇢ U and

there is a retraction

r : U ! A.

Proof. Recall that since (X,A) is an NDR pair, there is a continuous map u : X ! I and a

homotopy h : X ⇥ I ! X satisfying certain properties. By taking ✏ 2 (0, 1] and letting

U = u�1 ((0, ✏))

there is a retraction r : U ! A given by r(x) = h(x, 1) for every x 2 U .
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3.2.4 Constructing Local Sections

We are particularly interested in s(NG
n

) which, by Equation 3.34, is the space

s(NG
n

) =
n+1[

i=0

s
i

(NG
n

) =
n+1[

i=0

Gi ⇥ {1}⇥Gn�i.

The pair (NG
n+1

, s(NG
n

)) has the HEP by Theorem 3.48 and hence is an NDR pair by Corollary

3.56. Also note the space

s(NG
n

) =
n+1[

i=0

s
i

(NG
n

)

contains elements (g
0

, . . . , g
n

) where g
i

= g
i+1

for some i = 0, 1, . . . , n�1. Since (NG
n+1

, s(NG
n

))

and (�n+1, @�n+1) are both NDR pairs, Proposition 3.54 and Corollary 3.56 implies that

�
�n+1 ⇥NG

n+1

, @�n+1 ⇥NG
n+1

[�n+1 ⇥ s(NG
n+1

)
�

(3.58)

has the HEP. Moreover, we have a pullback diagram

@�n+1 ⇥NG
n+1

[�n+1 ⇥ s(NG
n+1

)

@�n+1 ⇥NG
n+1

[�n+1 ⇥ s(NG
n+1

)

�n+1 ⇥NG
n+1

�n+1 ⇥NG
n+1

�
n+1

and hence both vertical maps are the projections of trivial principal G-bundles. Because of this,

we have equivariant homeomorphisms

' : �n+1 ⇥NG
n+1

⇠���! (�n+1 ⇥NG
n+1

)⇥G

and

'0 : @�n+1 ⇥NG
n+1

[�n+1 ⇥ s(NG
n+1

)
⇠���! (@�n+1 ⇥NG

n+1

[�n+1 ⇥ s(NG
n+1

))⇥G.

Since the pair in Equation 3.58 is an NDR pair, Lemma 3.57 implies that there is an open set

U ⇢ �n+1 ⇥NG
n+1

and a retraction

r : U ! @�n+1 ⇥NG
n+1

[�n+1 ⇥ s(NG
n+1

). (3.59)

Let V = ��1

n+1

(U) and notice that this set is G-stable. We may construct an equivariant

retraction

⇢ : V ! @�n+1 ⇥NG
n+1

[�n+1 ⇥ s(NG
n+1

) (3.60)
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defined by

⇢ = '0�1 � (r ⇥ 1) � '.
Since the maps '0�1, (r⇥1),' are equivariant, so too is the map ⇢. We first start by constructing

the G-stable open set U
0

⇢ |NG•|0 = �0 ⇥G and equivariant map h
0

: U
0

! G. This is clearly

achieved by letting U
0

= |NG•|0 and projecting onto G,

h
0

(t, g) = g.

Now, assume inductively that we have a G-stable set U
n

⇢ |NG•|n and an equivariant map

h
n

: U
n

! G. Note that there is a map

@�n+1 ⇥NG
n+1

[�n+1 ⇥ s(NG
n+1

)
m

n����! |NG•|n
where

m
n

(dit; g
0

, . . . , g
n

) = [t; g
0

, . . . , ĝ
i

, . . . , g
n

] &

m
n

(t; g
0

, . . . , g
i

, g
i

, . . . , g
n

) = [t; g
0

, . . . , g
i

, g
i+1

, . . . , g
n

].

which is clearly a continuous equivariant map. Hence, the set

W
n

= m�1

n

(U
n

) ⇢ @�n+1 ⇥NG
n+1

[�n+1 ⇥ s(NG
n+1

)

is a G-stable set. That is, since U
n

is G-stable, and for w 2 W
n

, m(w · g) = m(w) · g 2 U
n

and

therefore, w · g 2 W
n

. By Equation 3.60, there is a G-equivariant retraction from an open set

A ⇢ �n+1 ⇥NG
n+1

to @�n+1 ⇥NG
n+1

[�n+1 ⇥ s(NG
n+1

)

r : A ! @�n+1 ⇥NG
n+1

[�n+1 ⇥ s(NG
n+1

).

Hence, the retraction may be restricted to the set W
n

by letting V
n

= r�1(W
n

) ⇢ �n ⇥NG
n+1

r
n

= r|
V

n

: V
n

! W
n

.

Hence, we have a G-equivariant function k
n

= h
n

�m
n

�r
n

: V
n

! G. Then let U
n+1

= V
n

[
W

n

U
n

be the pushout and h
n+1

: U
n+1

! G be the unique map defined by the diagram below.

W
n

V
n

U
n

V
n

[
W

n

U
n

G

m
n

k
n

h
n

h
n+1
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It follows that U
n+1

is G-stable since U
n

and V
n

are G-stable and h
n+1

: U
n+1

! G is equivariant

since k
n

and h
n

are equivariant. Finally, the set U
n+1

can naturally be thought of as a subset

of |NG•|n+1

and is open since both U
n

and V
n

are open. Thus, we have proven the proposition.

Proposition 3.61: Let G be a topological group. Then

|NG•| |�|���! |NG•|

is a principal G-bundle with contractible total space.

A proof that |NG•| ! |NG•| is numerable can be found in [Dol63] and hence Proposition

3.61 yields a model for the universal bundle EG ! BG.

Let G be a Lie group and M be a manifold with right G-action. Note that M can be turned

into a simplicial manifold M• by letting M
q

= M for every q � 0 and setting each face and

degeneracy map to the identity

d
i

= id
M

: M
n

! M
n�1

, s
i

= id
M

: M
n

! M
n+1

for every 0  i  n. It is simple to check that |M•| = M in this case. If P• ! B• is a simplicial

principal G-bundle then, as a slight abuse of notation, we will write P• ⇥M instead of P• ⇥M•
and the corresponding simplicial principal G-bundle as

P• ⇥M ! P• ⇥G

M

where we define P• ⇥G

M := (P• ⇥M)/G for simpler notation.

Corollary 3.62: Let G be a Lie group and M be a manifold with right G-action. Then

|NG• ⇥M | = EG⇥M

and moreover

|NG• ⇥G

M | = (EG⇥M)/G.

Proof. This is simply application of Theorem 3.31 to Proposition 3.61.
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Chapter 4

Simplicial Equivariant de Rham
Theory

4.1 Dupont’s Simplicial de Rham Theorem

4.1.1 The Double Complex of a Simplicial Space

As seen in Chapter 3, associated to every topological space X there is a singular cochain complex

C⇤(X). For any simplicial topological space X• there is thus a sequence of associated singular

cochain complexes C⇤(X
p

). The face maps d
i

: X
p

! X
p�1

for 0  i  p of X• induce coface

maps d#
i

: C⇤(X
p�1

) ! C⇤(X
p

) from which we can construct a di↵erential � : C⇤(X
p�1

) !
C⇤(X

p

) by defining

� =
pX

i=0

(�1)id#
i

(4.1)

and noting that (3.7) — (3.9) implies that �2 = 0 in keeping with the calculation in Section

3.1.3. So, for a fixed p � 0 we obtain a cochain complex Cq(X•). Since we have two di↵erential

operators on Cp,q(X•) := Cq(X
p

) we have a double complex (Cp,q(X•), d, �) which can be drawn

diagrammatically as
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...
...

...

C0,2(X•) C1,2(X•) C2,2(X•) · · ·

C0,1(X•) C1,1(X•) C2,1(X•) · · ·

C0,0(X•) C1,0(X•) C2,0(X•) · · ·

d d d

d d d

d d d

� � �

� � �

� � �

in which every square commutes. If M• is a simplicial manifold, there is also a de Rham complex

⌦⇤(M
p

) associated to every M
p

and p � 0. The face and degeneracy maps on M• induce face

and degeneracy maps on ⌦⇤(M
p

) and once again we define a ‘horizontal’ di↵erential

� =
pX

i=0

(�1)id⇤
i

: ⌦⇤(M
p

) ! ⌦⇤(M
p+1

) (4.2)

such that we obtain a cochain complex ⌦q(M•) for a fixed q � 0. Clearly the di↵erential

operators d and � commute (as pullbacks commute through d) so in the same way we define

⌦p,q(M•) := ⌦q(M
p

) and define the associated double complex (⌦p,q(M•), d, �).

...
...

...

⌦0,2(M•) ⌦1,2(M•) ⌦2,2(M•) · · ·

⌦0,1(M•) ⌦1,1(M•) ⌦2,1(M•) · · ·

⌦0,0(M•) ⌦1,0(M•) ⌦2,0(M•) · · ·

d d d

d d d

d d d

� � �

� � �

� � �

Let (B⇤,⇤, d
B

, �
B

), (C⇤,⇤, d
C

, �
C

) be two double complexes. A morphism of double complexes

or chain map is a homomorphism f : B⇤,⇤ ! C⇤,⇤ such that

f � d
B

= d
C

� f and f � �
B

= �
C

� f.
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Associated to every double complex (B⇤,⇤, d, �) is the total complex whose elements of degree n

are

Totn(B) =
M

p+q=n

Bp,q.

Since d, � commute

D = � + (�1)pd :
M

p+q=n

Bp,q !
M

p+q=n

Bp,q (4.3)

naturally defines a di↵erential operator on Tot⇤(B). Note that a map of double complexes

f : B⇤,⇤ ! C⇤,⇤ determines a chain map f : Tot⇤(B) ! Tot⇤(C) since

f � (� + (�1)pd) = (� + (�1)pd) � f.
Thus, to each double complex we may associate cohomology groups where the nth cohomology

group is defined to be

Hn

Tot

(B) := Hn(Tot⇤(B)) =
kerD \ Totn(B)

imD \ Totn(B)

and a map of double complexes induces a map f⇤ : Hn

Tot

(B) ! Hn

Tot

(C). The classical result of

de Rham’s gives us a result about the singular and de Rham cohomology groups of a manifold

M .

Theorem 4.4 (de Rham’s Theorem): Let M be a manifold and define the map I(�) : ⌦q(M) !
Cq

1(M) by

I(!) (�) =

Z

�

q

�⇤!

where ! 2 ⌦q(M) and � : �q ! M is a smooth map. It is clear that I(!) extends linearly to a

singular cochain in Cq

1(M). Then the map I induces an isomorphism of cohomology groups

Hn(⌦⇤(M)) ⇠= Hn(C⇤(M))

for every non-negative integer n.

We refer the reader to [Lee02] or [Dup78] for the proof of this theorem. For a simplicial

manifold M•, we thus have the following application.

Corollary 4.5: Let M• be a simplicial manifold and consider the map I(�) : ⌦q(M
p

) !
Cq

1(M
p

) defined by

I(!) (�) =

Z

�

q

�⇤!

where ! 2 ⌦q(M
p

) and � : �q ! M
p

is a smooth map. Then the map I induces an isomorphism

of cohomology groups

Hn(⌦p,⇤(M•)) ⇠= Hn(Cp,⇤(M•))

for every non-negative integer n and p.
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Lemma 4.6: Let B⇤,⇤, C⇤,⇤ be two double chain complexes and f : B⇤,⇤ ! C⇤,⇤ be a chain map

of double complexes. Then f restricts to a chain map on columns

f
p

: Bp,⇤ ! Cp,⇤.

If f
p

induces an isomorphism H⇤(Bp,⇤) ⇠= H⇤(Cp,⇤) for every p � 0 then f induces an isomor-

phism

H⇤
Tot

(B) ⇠= H⇤
Tot

(C).

Proof. The reader is directed to Proposition 9.13 in [BT82] or Lemma 2.7.3 of [Wei94].

Letting f : M ! N be a smooth map, it is a simple calculation to show that

I(f⇤!)

 
X

i

c
i

�
i

!
=
X

i

c
i

Z

�

p

�⇤
i

f⇤!

=
X

i

c
i

Z

�

p

(f � �
i

)⇤!

= I(!)

 
X

i

c
i

(f � �
i

)

!

= f#I(!)

 
X

i

c
i

�
i

!
,

establishing that I � f⇤ = f# � I. In particular, this means that

I � � = � � I

which implies that I is a map of double complexes and yields the following corollary of Theorem

4.4.

Corollary 4.7: The map I can be thought of as a map

I : ⌦⇤,⇤(M•) ! C⇤,⇤(M•)

that induces an isomorphism in cohomology

H⇤
Tot

(⌦⇤,⇤(M•)) ⇠= H⇤
Tot

(C⇤,⇤(M•)).

4.1.2 Geometric Realisation of a Simplicial Manifold

The goal of this section is to show that the double complex ⌦⇤,⇤(M•) calculates the cohomology

of the geometric realisation |M•|. Firstly we have the following result of Dupont.
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Lemma 4.8: Let X• = {X
p

}
p�0

be a simplicial topological space. Then there is an isomorphism

in cohomology

H⇤(kX•k) ⇠= H⇤
Tot

(C⇤,⇤(X•)).

Proof. The reader is directed to Proposition 5.15 in [Dup78].

Secondly, we observe that the work of Segal establishes a homotopy equivalence between the

fat and geometric realisation under suitable conditions.

Definition 4.9: A simplicial space X• is good if every inclusion

s
i

(X
n

) ,! X
n+1

is a closed cofibration for every degeneracy map s
i

: X
n

! X
n+1

and n � 0.

Lemma 4.10: Let X• be a simplicial topological space. If X• is good, then there is a homotopy

equivalence

kX•k '���! |X•|.
Proof. The reader is directed to proposition A.1 of Segal in [Seg72].

Remark 4.11: If the pairs (X
n+1

, s
i

(X
n

)) have the HEP and s
i

(X
n

) is closed in X
n+1

for every

n � 0 and 0  i  n then X• is good.

Example 4.12: Let G be a Lie group. Then the simplicial manifold NG• is good. The image

of s
i

on NG
n

is precisely

s
i

(Gn+1) = Gi ⇥ {1}⇥Gn+1�i

as demonstrated in Chapter 3, which is clearly closed in NG
n+1

. It remains to show that the

inclusion is a cofibration. This is also demonstrated in Chapter 3 since this is an NDR pair and

hence a HEP pair. A pair (s
i

(NG
n

), NG
n+1

) has the HEP precisely when the inclusion is a

cofibration.

It remains to show that a simplicial manifold is always good in order to prove the original

stated goal of this section.

Lemma 4.13: A simplicial manifold M• is good.

Proof. The reader is directed to [Pal65] for proof that if M is a smooth manifold and A ⇢ M

is closed, then the pair (M,A) has the HEP. Since d
i

s
i

= id and s
i

d
i

: M
n+1

! s
i

(M
n

) is a

retraction, the map

s
i

: M
n

! s
i

(M
n+1

)

is a homeomorphism. Both M
n

,M
n+1

are smooth manifolds and are thus completely metriz-

able. Combining these facts means that s
i

(M
n

) is closed in M
n+1

since M
n

is closed. Hence

(M
n+1

, s
i

(M
n

)) has the HEP, and s
i

(M
n

) is closed for every n � 0 and 0  i  n which

completes the proof by Remark 4.11.
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Theorem 4.14: Let M• = {M
p

}
p�0

be a simplicial manifold. Then there is an isomorphism in

cohomology

H⇤(|M•|) ⇠= H⇤
Tot

(⌦⇤,⇤(M•)).

Proof. From Lemma 4.10 and Lemma 4.13 we have an isomorphism of cohomology

H⇤(|M•|) ⇠= H⇤(kM•k).

By also considering Lemma 4.8 and Lemma 4.7, the sequence of isomorphisms

H⇤(|M•|) ⇠= H⇤(kM•k) ⇠= H⇤
Tot

(C⇤,⇤(M•)) ⇠= H⇤
Tot

(⌦⇤,⇤(M•))

becomes apparent.

4.1.3 Simplicial Di↵erential Forms

In the final section of Chapter 3, we saw that we can build M ⇥ EG by taking the geometric

realisation of a simplicial space M ⇥NG•. In [Dup78], Dupont defines geometric objects called

simplicial di↵erential forms as a way of defining sequences of di↵erential forms on simplicial

spaces to approximate a de Rham complex for the topological fat realisation of a simplicial

manifold kM•k.
Definition 4.15: Let M• = {M

p

}
p�0

be a simplicial manifold. A simplicial (di↵erential) q-form

!• on M• is a sequence of di↵erential q-forms !
p

2 ⌦q(�p ⇥M
p

) such that

(di ⇥ id)⇤!
p+1

= (id⇥ d
i

)⇤!
p

(4.16)

for every p � 0 and i = 0, 1, . . . , p. The vector space of simplicial q-forms will be denoted

A⇤(M•). Moreover, the di↵erential d on each complex ⌦⇤(�p ⇥ M
p

) commutes with pullbacks

and so A⇤(M•) is naturally a complex with di↵erential d.

The wedge product also commutes with pullbacks and so there is a natural wedge product

defined on A⇤(M•),

^ : An(M•)⌦Am(M•) ! An+m(M•).

Let M and F be manifolds and M ⇥ F ! M be a trivial fibre bundle. If F is compact,

oriented and of dimension k, one may integrate along the fibre
Z

F

: ⌦q(M ⇥ F ) ! ⌦q�k(M).

Consequently, there is a sensible notion of integrating a di↵erential form !
p

2 ⌦q(�p⇥M
p

) over

�p to be left with a di↵erential form
Z

�

p

!
p

2 ⌦q�p(M
p

).
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For any simplicial di↵erential form !• = {!
p

} 2 A⇤(M•), each di↵erential form !
p

can be

thought of as a sum

!
p

=
X

k,l

!k,l

p

(4.17)

where !k,l

p

is thought of loosely as a k-form on �p and a l-form on M
p

. This is in the sense that

!k,l

p

can locally be written in the form

!k,l

p

=
X

f
k,l

· dt
i1 · · · dti

k

d'
j1 · · · d'j

k

.

where f : �p ⇥ M ! R and {t
i

}, {�
i

} are the local coordinates of �p,M
p

respectively. The

decomposition of the simplicial form !• in Equation 4.17 satisfies
X

k,l

(di ⇥ id)⇤!k,l

p+1

=
X

k,l

(id⇥ d
i

)⇤!k,l

p

for every 0  i  p by Equation 4.16 and hence

(di ⇥ id)⇤!k,l

p+1

= (id⇥ d
i

)⇤!k,l

p

for every p � 0 by linear independence.

Moreover, one defines a di↵erential d
�

: Ak,l

• (M•) ! Ak+1,l

• (M•) by restricting d to the

coordinates of �p and d
M• : Ak,l

• (M•) ! Ak,l+1

• (M•) by restricting d to the coordinates on M
p

.

This means we have a natural decomposition of A⇤(M•) into a double complex Ak,l(M•) and

from construction it is clear that

Tot⇤(A⇤,⇤(M•)) ⇠= A⇤(M•).

Letting !• = {!
p

} 2 Ak,l(M•) be a simplicial form, we have a map of double complexes I
�

:

Ak,l(M•) ! ⌦k,l(M•)

I
�

!• =

Z

�

k

!
k

2 ⌦l(M
k

).

By Stokes’ theorem and the identifications in Equation 4.16

I
�

d
�

!• =

Z

�

k+1
d
�

k

!
k+1

=

Z

@�

k+1
!
k+1

=
kX

i=0

(�1)i
Z

�

k

(di ⇥ id)⇤!
k+1

=
kX

i=0

(�1)i
Z

�

k

(id⇥ d
i

)⇤!
k

=
kX

i=0

(�1)id⇤
i

Z

�

k

!
k
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and hence I
�

d
�

= �I
�

. Also, it is easy for one to check

I
�

d
M

= dI
�

and thus I
�

is a chain map.

Dupont also constructs a chain map of double complexes E
�

: ⌦⇤,⇤(M•) ! A⇤,⇤(M•) where

E
�

(!)
p

= p!
pX

s=0

(�1)st
i

s

dt
i0 · · · ˆdt

i

s

· · · dt
i

p

^ p⇤
M

! (4.18)

and !• = {E
�

(!)
p

} defines a simplicial di↵erential form. The reader is directed to [Dup75] for

more details on the map E
�

in which he establishes the identity

I
�

� E
�

= id. (4.19)

An important theorem proved in [Dup78] is the following.

Theorem 4.20: Let M• be a simplicial manifold. Then the maps I
�

and E
�

induce natural

isomorphisms on cohomology

H⇤(A⇤(M•)) ⇠= H⇤
Tot

(⌦⇤,⇤(M•)) ⇠= H⇤(|M•|).

4.2 Simplicial Chern-Weil Theory

4.2.1 Basic Simplicial Di↵erential Forms

Let G be a Lie group and suppose M• is a simplicial manifold with right G-action

�• : M• ⇥G ! M•.

Letting G act trivially on �p, there is a natural right action on each manifold �p⇥M
p

and thus

the de Rham complex ⌦⇤(�p ⇥M
p

). Moreover, the simplicial identities (4.16) clearly commute

with the action of G and so A⇤(M•) inherits an action induced by �•,

�
A

: A⇤(M•)⇥G ! A⇤(M•).

The complex A⇤(M•) inherits an action of the Lie algebra of G, g, in the usual sense too.

That is, for a simplicial di↵erential form !• 2 Ak(M•) and ⇠ 2 g we define an operator ◆
⇠

:

Ak(M•) ! Ak�1(M•) defined by

◆
⇠

!• := {◆
⇠

!
n

}
n�0

.

To show this is a simplicial di↵erential form, we will first prove the following lemma.
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Lemma 4.21: Let f : M ! N be an equivariant map between manifolds M,N with right G-

action with derivative f⇤ : TM ! TN . Let X
⇠

2 X(M) and Y
⇠

2 X(N) be the vector fields

generated by the infinitesimal action of ⇠ 2 g on M,N respectively. Then

f⇤X
⇠

(x) = Y
⇠

(f(x))

for every x 2 M and every ⇠ 2 g. Put diagrammatically, this square

TM TN

M N

f⇤

f

X
⇠

Y
⇠

commutes for every ⇠ 2 g.

Proof. By definition of X
⇠

, the left hand side of the equation is precisely

f⇤X
⇠

(x) = f⇤
d

dt
�(x, exp(t⇠))

����
t=0

where � : M ⇥ G ! M is the right action of G on M . By the chain rule, this is precisely the

derivative of the composition t 7! f � �(x, exp(t⇠)) at t = 0, hence

f⇤X
⇠

(x) =
d

dt
f � �(x, exp(t⇠))

����
t=0

.

By equivariance, f(x) ·g = f(x ·g) – or in the notation above f ��(x, exp(t⇠)) = �(f(x), exp(t⇠))

– and hence

f⇤X
⇠

(x) =
d

dt
�(f(x), exp(t⇠))

����
t=0

at which point it is noted that the right hand side is precisely the definition of Y
⇠

(f(x)).

Corollary 4.22: Let f : M ! N be an equivariant map. Then

f⇤◆
⇠

= ◆
⇠

f⇤

for every ⇠ 2 g.

Proof. Let X
⇠

, Y
⇠

be the vector fields generated by the infinitesimal action of ⇠ 2 g on M,N

respectively. Let !• = {!
q

}
q2N and x 2 M . Then

f⇤(◆
⇠

!
q

)(x;Y
0

, . . . , Y
n�1

) = ◆
⇠

!
q

(f(x); f⇤ Y0, . . . , f⇤ Yn�1

)

= !
q

(f(x);X
⇠

, f⇤ Y0, . . . , f⇤ Yn�1

)

= f⇤!
q

(x;Y
⇠

, Y
0

, . . . , Y
n�1

)

= ◆
⇠

(f⇤!
q

)(x;Y
0

, . . . , Y
n�1

)

by Corollary 4.22, where f⇤ is the derivative of f .
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So ◆
⇠

commutes with the equivariant maps (4.16) on M• and can thus be considered a

well defined derivation (of degree �1) on A⇤(M•). We say a simplicial di↵erential form !• is

horizontal if

◆
⇠

!• = 0

for every ⇠ 2 g. From Cartan’s Magic Formula, it follows that

L
⇠

= d◆
⇠

+ ◆
⇠

d

is a derivation (of degree 0) on A⇤(M•) and may be explicitly be defined to be

L
⇠

!• := {L
⇠

!
n

}
n�0

.

Suppose P•
⇡•���! B• is a simplicial principal G-bundle. From Proposition 2.42 we know that

for every n � 0 there is an isomorphism ⌦⇤(B
n

) ⇠= ⌦⇤(P
n

)
bas

and hence it follows that there is

an isomorphism

A⇤(P•)
bas

⇠= A⇤(B•).

Definition 4.23: Let P•
⇡•���! B• be a simplicial principal G-bundle. A simplicial di↵erential

form !• is said to be basic if it is horizontal and G-invariant. That is, ◆
⇠

!• = 0 and !• · g = !•
for every ⇠ 2 g and g 2 G. The complex of basic di↵erential forms is denoted A⇤(P•)

bas

.

4.2.2 Simplicial Connections and Curvature

The complex A⇤(NG) gives us a model for di↵erential forms on EG and thus we would like

to further define connection and curvature elements on this complex in keeping with previous

calculations in Chapter 2.

Definition 4.24: Let P•
⇡��! B• be a simplicial principal G-bundle. A simplicial connection

on P• is a g-valued 1-form

✓• = {✓
n

}
n�0

2 A1(P•)⌦ g

such that each ✓
n

is a connection form on the bundle �n ⇥ P
n

! �n ⇥B
n

.

Recall the connection ✓
L

on the trivial G-bundle G ! {1} as defined in (2.37). When con-

sidering the manifold NG
n

= Gn+1 we could define projections p
i

: NG
n

! G where

p
i

(g
0

, . . . , g
n

) = g
i

for i = 0, 1, . . . , n. We would like to show that p⇤
i

✓
L

is a connection on the bundle NG
n

! NG
n

for each i which amounts to proving the following lemma.

Corollary 4.25: Let f : P ! Q be an equivariant map of principal bundles and ✓ be a connec-

tion on Q. Then f⇤✓ 2 ⌦1(P )⌦ g is a connection on P .
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Proof. Let X
⇠

be the vector field generated by the infinitesimal action of ⇠ on P . By the previous

lemma, we have that

f⇤✓(x;X
⇠

) = ✓(f(x), Y
⇠

) = ⇠

and hence f⇤✓ is itself a connection.

The projection maps p
i

are clearly equivariant bundle maps, and hence define connections

p⇤
i

✓
L

on ⌦1(NG
n

)⌦ g. In fact, we are trying to build connection forms on the bundle

NG
n

⇥�n ! NG
n

⇥�n

where G acts trivially on �n. We now sketch a standard result about connections.

Proposition 4.26: Any convex combination of connections is again a connection.

Proof. Let ✓
1

, . . . , ✓
k

be connections on a principal bundle P and �
1

, . . . ,�
k

be smooth, real

valued functions on P such that
kP

i=0

�
i

= 1. For any vector field ⇠ 2 g one calculates that

kX

i=0

�
i

✓
i

(x;X
⇠

) =
kX

i=0

�
i

(x)⇠ = ⇠.

It is also clear that for any g 2 G,

kX

i=0

�⇤
g

�
i

✓
i

(x;X
⇠

) =
kX

i=0

�
i

(x · g)Ad(g�1)⇠ = Ad(g�1)⇠.

These two calculations verify that
kP

i=0

�
i

✓
i

is indeed a connection.

On the standard n-simplex �n we use the coordinates (t
0

, . . . , t
n

) where
nP

i=0

t
i

= 1. From

this and the previous proposition the di↵erential form defined by

✓
n

=
nX

i=0

t
i

p⇤
i

✓
L

2 ⌦⇤(NG
n

⇥�n)⌦ g

is a connection form. Moreover, by construction it is true that

(di ⇥ id)⇤✓
n

= (id⇥ d
i

)⇤✓
n�1

for each i = 0, 1, . . . , n and hence

✓• = {✓
n

}
n�0

2 A1(NG•)⌦ g (4.27)

is a well defined simplicial connection on NG•. Similarly, we can define the simplicial curvature

2-form by

⌦• = {d✓
n

� 1

2
[✓

n

, ✓
n

]}
n�0

2 A2(NG•)⌦ g (4.28)

which we will use shortly.
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4.2.3 The Simplicial Chern-Weil Homomorphism

Let G be a Lie group with Lie algebra g and ✓• be a connection form on a principal G-bundle

P• ! B•. Since ✓
n

is a connection on �n ⇥ P
n

! �n ⇥ B
n

it is clear that for any ⇠ 2 g and

p 2 P
n

,

✓
n

(p;X
⇠

) = ⇠.

Let {⇠
1

, . . . , ⇠
n

} be a basis for g and {⇠⇤
1

, . . . , ⇠⇤
n

} the corresponding dual basis for g⇤. Similarly

to the discussion in Section 2.2.2, we define a series of 1-forms

✓i• := {⇠⇤
i

✓
n

}
n�0

2 A1(P•).

Likewise, if ⌦• is the curvature 2-form associated to ✓• we define a corresponding series of 2-forms

µi

• := {⇠⇤
i

⌦
n

}
n�0

2 A2(P•).

Associated to the choice of connection ✓• is a unique homomorphism

w(✓•) : W (g) ! A⇤(P•)

given by the natural identifications

w(✓•)(✓
i) = ✓i•, w(✓•)(µ

i) = µi

•.

As previously calculated in Section 2.3.3, for each n � 0 this homomorphism can be thought of

as the ordinary Weil homomorphism

w(✓
n

) : W (g) ! ⌦⇤(P
n

)

and hence the identities

1. dw(✓•)� w(✓•)d = 0

2. ◆
⇠

w(✓•)� w(✓•)◆
⇠

= 0

are satisfied accordingly. First, a useful lemma will be proved.

Lemma 4.29: Let M , N be manifolds and F be a compact manifold of dimension k. If g :

M ! N is a smooth function then the diagram

⌦q(N ⇥ F )

⌦q�k(N)

⌦q(M ⇥ F )

⌦q�k(M)

R
F

g⇤

R
F

(g ⇥ id)⇤
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commutes.

Proof. If ! is a di↵erential n-form on N ⇥ F it can locally be written as

! =
X

f
i1···iqdxi1 · · · dxind'j1 · · · d'j

q�n

where f
i1···iq : N ⇥ F ! R and {x

i

}, {'
i

} are local coordinates on F and N respectively. Then

one notes that for any y 2 N , we may consider the smooth map

f
i1···iq(y,�) : F ! R.

If n = k we can thus consider Z

F

f
i1···iqdxi1 · · · dxi

k

: N ! R

as a smooth map which, at a point y 2 N , takes the value
✓Z

F

f
i1···iqdxi1 · · · dxi

k

◆
(y) =

Z

F

f
i1···iq(y,�)dx

i1 · · · dxi
k

.

It follows that if g : M ! N is a smooth map,
✓
g⇤
Z

F

f
i1···iqdxi1 · · · dxi

k

◆
(y) =

✓Z

F

f
i1···iq dxi1 · · · dxi

k

◆
(g(y))

=

Z

F

f
i1···iq(g(y),�)dx

i1 · · · dxi
k

=

Z

F

(f
i1···iq � (g ⇥ id)) dx

i1 · · · dxin
and hence

g⇤
Z

F

! =
XZ

F

(f
i1···iq � (g ⇥ id⇤)) dx

i1 · · · dxind('j1 � g) · · · d('j

q�n

� g)

=

Z

F

(g ⇥ id⇤)!

proving the lemma.

Lemma 4.30: Let M• be a simplicial manifold and F be a compact manifold of dimension m.

Define M• ⇥ F to be the sequence of simplicial manifolds

M
n

⇥ F

where the face and degeneracy maps are simply

d̄
i

:= d
i

⇥ id
F

: M
n

⇥ F ! M
n�1

⇥ F & s̄
i

:= s
i

⇥ id
F

: M
n

⇥ F ! M
n+1

⇥ F

where 0  i  n and n � 0. Then the integration map over the fibre F ,
Z

F

: Aq(M• ⇥ F ) ! Aq�k(M•),

is well defined.
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Proof. Let !• = {!
p

} be a simplicial di↵erential form on A⇤(M• ⇥ F ). By Equation 4.16, we

have that

(di ⇥ id
M

p+1 ⇥ id
F

)⇤!
p+1

= (id
�

p ⇥ d̄
i

)⇤!
p

for every p � 0. By two applications of Lemma 4.29, we see that

(di ⇥ id
M

p+1)
⇤
Z

F

!
p+1

=

Z

F

(di ⇥ id
M

p+1 ⇥ id
F

)⇤!
p+1

(4.31)

=

Z

F

(id
�

p ⇥ d̄
i

)⇤!
p

(4.32)

= (id
�

p ⇥ d
i

)⇤
Z

F

!
p

(4.33)

and hence
R
F

!• is well defined.

Theorem 4.34: Let P• ! B• be a simplicial principal bundle and ✓•, ✓0• be two connections on

P•. Then there is a chain homotopy

w(✓•) ' w(✓0•).

Moreover, since the Weil homomorphism descends to a map on basic di↵erential forms, the

induced maps on cohomology

w(✓•), w(✓
0
•) : S(g

⇤) ! H⇤(A⇤(P•))

are equal.

Proof. Let P• ! B• be a simplicial principal G-bundle with simplicial connections ✓•, ✓0•. As-

sociated to each connection are the respective simplicial curvature 2-forms ⌦•,⌦0
•. We restrict

our attention to individually considering connections ✓
n

, ✓0
n

on the principal bundle

�n ⇥ P
n

! �n ⇥B
n

.

Associated to this bundle is the bundle �n⇥P
n

⇥ I ! �n⇥B
n

⇥ I and projection bundle maps

p
n

: �n ⇥ P
n

⇥ I ! �n ⇥ P
n

given by p
n

(t, p, s) = (t, p) and inclusion bundle maps

is
n

: �n ⇥ P
n

! �n ⇥ P
n

⇥ I

given by is
n

(t, p) = (t, p, s) for every s 2 I. Note that these maps commute with the maps defined

in (4.16) and hence for any simplicial di↵erential form !• 2 A⇤(P•) the simplicial di↵erential

form

p⇤•!• = {p⇤
n

!
n

}
n�0

2 A⇤(P• ⇥ I)
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is well defined as well as the simplicial di↵erential form

is•
⇤⌫• = {is

n

⇤⌫
n

}
n�0

2 A⇤(P•)

for ⌫• 2 A⇤(P• ⇥ I) and any s 2 I. Then define a connection ✓̃• 2 A1(P• ⇥ I)⌦ g by

✓̃• := (1� s)p⇤•✓• + sp⇤•✓
0
•

and note that i0•
⇤
✓̃• = ✓• and i1•

⇤
✓̃• = ✓0•. The connection ✓̃• has curvature ⌦̃• which also satisfies

that i0•
⇤
⌦̃• = ⌦• and i1•

⇤
⌦̃• = ⌦0

• since curvature commutes with pullbacks.

The connection ✓̃• also induces a simplicial Weil homomorphism

w(✓̃•) : W (g) ! A⇤(P•).

Note that from the identities above,

i0•
⇤
w(✓̃•) = w(✓•) and i1•

⇤
w(✓̃•) = w(✓0•). (4.35)

By Lemma 4.30, we can define an operator h• : Aq(P• ⇥ I) ! Aq�1(P•) for every q by

h•!• =

Z

I

!•

The map h• is a homotopy operator in the sense that for every n � 0

(dh
n

+ h
n

d)!̃
n

= i1
n

⇤
!̃
n

� i0
n

⇤
!̃
n

and hence dh• + h•d = i1•
⇤ � i0•

⇤
. It follows that

(dh• + h•d)w(✓̃•) = (i1•
⇤ � i0•

⇤
)w(✓̃•)

= w(✓•)(↵)� w(✓0•)(↵) (4.36)

for every n � 0. Since w(✓̃•) is a chain map it follows by Equation 4.36 that for any ↵ 2 W (g)

⇣
d
⇣
h•w(✓̃•)

⌘
+
⇣
h•w(✓̃•)

⌘
d
⌘
↵ = w(✓•)(↵)� w(✓0•)(↵).

The homomorphisms w(✓•), w(✓0•) are thus chain homotopic. The map w(✓̃•) descends to a map

on basic di↵erential forms and hence if ↵ is a closed and basic

d
⇣
h•w(✓̃•)(↵)

⌘
= w(✓•)(↵)� w(✓0•)(↵)

and hence the simplicial Chern-Weil homomorphism is independent of the choice of connection.
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4.3 An Analogue of the Weil Model

4.3.1 G⇤ Algebras

The term G⇤ algebra is due to [GS99] but the idea can be traced back to Cartan’s paper [Car50b].

Let G be a Lie group and A be a chain complex that has a right G-action. The general idea

of a G⇤ algebra is to isolate the conditions on a chain complex A such that it can be thought

of as an algebraic model for equivariant cohomology and is motivated by the graded derivations

d, ◆
⇠

and L
⇠

on ⌦⇤(M) that were encountered in Section 2.2.1. We first recall the definition of

a graded commutative algebra and some facts about these graded derivations.

Definition 4.37: A (Z�)graded commutative algebra A is an algebra

A =
M

i2Z
A

i

equipped with a multiplication satisfying

a · b = (�1)ijb · a

for a 2 A
i

and b 2 A
j

such that

A
i

·A
j

⇢ A
i+j

.

Definition 4.38: Let A be a graded commutative algebra. A graded derivation D of degree k is

an endomorphism D : A ! A satisfying the graded Leibniz identity

D(a · b) = (Da) · b+ (�1)kia · (Db) 2 A
i+j+k

for a 2 A
i

and b 2 A
j

.

The vector space of graded derivations of degree k is denoted Der
k

(A). The collection of all

derivations of A is defined as

Der(A) =
M

k2Z
Der

k

(A).

Because of this natural grading on the derivations of A, there is a bracket

[�,�] : Der
k

(A)⌦Der
l

(A) ! Der
k+l

(A)

called the graded commutator which is defined by

[C,D] = CD � (�1)klDC

where C is a graded derivation of degree k and D is a graded derivation of degree l. With this

bracket, it follows that Der
0

(A) has a natural Lie algebra structure.
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Example 4.39: Note that ifM is a manifold andM• is a simplicial manifold, the wedge product

on the graded algebras ⌦⇤(M) and A⇤(M•) satisfy the condition in Definition 4.37. Moreover,

the de Rham di↵erential d is a graded derivation of degree 1 satisfying Definition 4.38. The

fact that d2 = 0 means this is a di↵erential operator and the notion of a di↵erential graded

commutative algebra follows.

Definition 4.40: A di↵erential graded commutative algebra (A, d) is a graded commutative

algebra with a graded derivation d of degree 1 which is also a di↵erential operator (i.e. d2 = 0).

From this definition it is clear that (⌦⇤(M), d) and (A⇤(M•), d) are di↵erential graded com-

mutative algebras. We now recall some properties about the graded derivations d, ◆
⇠

and L
⇠

on

⌦⇤(M) which we will carry over to the definition of a G⇤ algebra.

The graded derivation ◆
⇠

of degree �1

The derivation ◆
⇠

can be thought of more abstractly as a map from g to the derivations of ⌦⇤(M)

◆ : g ! Der�1

(⌦⇤(M))

and hence can be acted upon by G. Firstly note that ◆2
⇠

= 0 for every ⇠ 2 g. The natural action

of G on g is the adjoint action and so one would expect that the identity

�⇤
g

◆
⇠

�⇤
g

�1 = ◆
Ad(g)⇠

(4.41)

is held.

Proof. Let ⇠ 2 g, g 2 G and consider an n-form ! 2 ⌦n(M). First recall

(�
g

)⇤X
⇠

(p) = X
Ad(g

�1
)⇠

(p)

from Equation 2.34. Then consider

(�⇤
g

◆
⇠

�⇤
g

�1!)(x;X
1

, . . . , X
n�1

)

where X
1

, . . . , X
n�1

are any n � 1 vector fields on M . The calculation is straightforward and

yields

�⇤
g

(◆
⇠

�⇤
g

�1!)(x;X
1

, . . . , X
n�1

) = (◆
⇠

�⇤
g

�1!)(x · g; (�
g

)⇤X1

, . . . , (�
g

)⇤Xn�1

)

= (�⇤
g

�1!)(x · g;X
⇠

, (�
g

)⇤X1

, . . . , (�
g

)⇤Xn�1

)

= !(x; (��1

g

)⇤X
⇠

, X
1

, . . . , X
n�1

)

= ◆
Ad(g)⇠

!(x;X
1

, . . . , X
n�1

)

which verifies that the identity in Equation 4.41 holds.
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The graded derivation L
⇠

of degree 0

Because the derivations of degree 0 are naturally a Lie algebra, the derivation L
⇠

can be thought

of more abstractly as a Lie algebra homomorphism

L : g ! Der
0

(⌦⇤(M))

and hence can be acted upon by G. We defined L
⇠

in 2.31 to be the Lie derivative

L
⇠

! =
d

dt
�⇤
exp t⇠

!

����
t=0

. (4.42)

Since this is thought of as ‘di↵erentiation in the direction ⇠’, one would expect this derivation

to agree with the group action in this way. Similarly to the case of ◆
⇠

, one would expect that

the identity

�⇤
g

L
⇠

�⇤
g

�1 = L
Ad(g)⇠

(4.43)

is held.

Proof. Cartan’s magic formula may be invoked to show that

�⇤
g

L
⇠

�⇤
g

�1 = �⇤
g

(d◆
⇠

+ ◆
⇠

d)�⇤
g

�1

= d�⇤
g

◆
⇠

�⇤
g

�1 + �⇤
g

◆
⇠

�⇤
g

�1d

= d◆
Ad(g)⇠

+ ◆
Ad(g)⇠

d

= L
Ad(g)⇠

which verifies that the identity in Equation 4.43 holds.

The graded derivation d of degree 1

The commutativity identity

�⇤
g

d�⇤
g

�1 = d (4.44)

holds since pullbacks commute with d.

We combine these identities associated to the di↵erential graded commutative algebra ⌦⇤(M)

as a blueprint to form the definition of a G⇤ algebra.

Definition 4.45: A G⇤-algebra is a di↵erential graded commutative algebra (A, d) with a right

G-action

� : A⇥G ! A
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together with maps

◆ : g ! Der�1

(A)

L : g ! Der
0

(A)

such that (◆
⇠

)2 = 0 for all ⇠ 2 g, L is a Lie algebra homomorphism, and the following identities

are satisfied:

L
⇠

= d◆
⇠

+ ◆
⇠

d, [L
⇠

, ◆
⌘

] = ◆
[⇠,⌘]

for all ⇠, ⌘ 2 g. Additionally the following identities involving the map � are satisfied:

1. d

dt

�
exp t⇠

��
t=0

= L
⇠

,

2. �
g

L
⇠

�
g

�1 = L
Ad(g)⇠

,

3. �
g

◆
⇠

�
g

�1 = ◆
Ad(g)⇠

and

4. �
g

d�
g

�1 = d.

Corollary 4.46: Let G be a Lie group and M a manifold with right G-action. Then ⌦⇤(M) is

a G⇤ algebra.

The natural notion of a homomorphism of G⇤ algebra arises as an algebra homomorphism

that commutes with the action of G and the graded derivations d, ◆
⇠

,L
⇠

.

Definition 4.47: Let A,B be G⇤ algebras. A G⇤ homomorphism

f : A ! B

is an algebra homomorphism such that

1. �
g

� f = f � �
g

,

2. d � f = f � d,

3. ◆
⇠

� f = f � ◆
⇠

and L
⇠

� f = f � L
⇠

for every g 2 G and ⇠ 2 g.

Remark 4.48: Note that a G⇤ homomorphism f : A ! B induces a natural chain map f :

A
bas

! B
bas

since it commutes with d, ◆
⇠

(for every ⇠ 2 g) and is equivariant.

Let G be a Lie group and M• be a simplicial manifold with right G-action. The complex

A⇤(M•) is built out of the complexes ⌦⇤(�p ⇥M
p

) which are G⇤ algebras from Corollary 4.46.

Because of this we only need to show is that the graded derivations L
⇠

, ◆
⇠

and d are well defined

on A⇤(M•) by showing that they commute with the face maps defined in 4.16. Recall that the
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pullbacks of equivariant maps commute with ◆
⇠

for all ⇠ 2 g by Proposition 4.22. It is clear that

they also commute with L
⇠

from the identity

L
⇠

= d◆
⇠

+ ◆
⇠

d.

Hence, we have the following corollary.

Corollary 4.49: Let f : M ! N be an equivariant map. Then

f⇤L
⇠

= L
⇠

f⇤

for every ⇠ 2 g.

From these last two corollaries, it is evident that since the face maps di ⇥ id and id⇥ d
i

are

equivariant the derivations L
⇠

, ◆
⇠

, d commute with them and hence A⇤(M•) is a G⇤ algebra for

any simplicial manifold with right G-action.

Proposition 4.50: Let M• be a simplicial manifold with right G-action. Then A⇤(M•) is a G⇤

algebra.

4.3.2 The Cohomology of a G⇤ Algebra

Since a G⇤ algebra A has a di↵erential operator d there is a well defined notion of cohomology

for A. Namely, the nth cohomology group of A is defined to be

Hn(A) =
ker d \A

im d \A

for every n � 0. We can also define the basic subalgebra of a G⇤ algebra.

Definition 4.51: Let A be a G⇤ algebra. The element a 2 A is said to be basic if it is horizontal

and G-invariant. That is, ◆
⇠

a = 0 and a·g = a for every ⇠ 2 g and g 2 G. The basic subcomplex

is the complex that contains all the basic elements of A and is denoted A
bas

.

Note that an implication of Cartan’s magic formula is that for any a 2 A
bas

, da 2 A
bas

. This

is because the action of G commutes with d,

◆
⇠

(da) = L
⇠

a� d(◆
⇠

a),

L
⇠

a = 0 when a is G-invariant and ◆
⇠

a = 0 by the definition of a basic element of A. Thinking

of (A, d) as a complex, this means that (A
bas

, d) is a well defined subcomplex. One defines the

basic cohomology of a A to be the cohomology of the basic subcomplex

H⇤(A
bas

).
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4.3.3 The Cartan Model for G⇤ Algebras

Recall from Section 2.3.4 that there was an operator

⇣ = ✓i ⌦ ◆
⇠

i

such that exp(⇣) : (W (g)⌦ ⌦⇤(M))
bas

! (S(g⇤)⌦ ⌦⇤(M))G was an isomorphism. If A is a G⇤

algebra, then Definition 4.45 gives a sensible notion of ⇣ on the complex W (g)⌦A. Namely, we

define the operator

⇣ = ✓i ⌦ ◆
⇠

i

: W (g)⌦A ! W (g)⌦A. (4.52)

Since the results of Secion 2.3.4 and 2.3.5 only rely on the G⇤ structure of ⌦(M), the fact that

the map

exp(⇣) : (W (g)⌦A)
bas

! (S(g⇤)⌦A)G

is an isomorphism can also be proven in a similar fashion. We will refer to the complex

(S(g⇤)⌦A⇤(M•))
G

as the Cartan Model of A. We state the results and direct the reader to [GS99, Ch. 4] for

further reading on the matter.

Proposition 4.53: Let G be a Lie group with Lie algebra g and A be a G⇤ algebra. Then the

Mathai-Quillen Isomorphism

exp(⇣) : (W (g)⌦A)
bas

! (S(g⇤)⌦A)G

satisfies the following identities.

1. d
G

:= exp(⇣)d exp(�⇣) = d� µk ⌦ ◆
⇠

k

.

2. exp(⇣)(1⌦ ◆
⇠

+ ◆
⇠

⌦ 1) exp(�⇣) = ◆
⇠

⌦ 1.

Example 4.54: Let ↵⌦ b 2 (S(g⇤)⌦A)G. Then

d
G

(↵⌦ b) = ↵⌦ db� µk↵⌦ ◆
⇠

k

b

where Einstein summation convention is observed.

We exploit the technology of Guillemin and Sternberg to further prove a result about homo-

morphisms between G⇤ algebras and the induced homomorphisms between their Cartan models.

Theorem 4.55: Let G be a compact group. Let A,B be G⇤ algebras and f : A ! B a G⇤

homomorphism that induces an isomorphism in cohomology. Then the map

1⌦ f : {S(g⇤)⌦A}G ! {S(g⇤)⌦B}G

is an isomorphism on cohomology with respect to the di↵erential operator d
G

.

Proof. The reader is directed to [GS99, Ch. 6] for a proof of this statement.
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4.4 Simplicial Equivariant Cohomology and Cartan’s Theorem

4.4.1 Constructing a G⇤ Homomorphism

At the end of the last section, we stated a result of Guillemin and Sternberg regarding induced

maps on the Cartan models ofG⇤ Algebras. In this section we will construct aG⇤ homomorphism

⌦⇤(M) ! A⇤(NG• ⇥M)

such that there is a chain map

{S(g⇤)⌦ ⌦⇤(M)}G ! {S(g⇤)⌦A⇤(NG• ⇥M)}G

that induces an isomorphism in cohomology via Theorem 4.55.

Recall that any manifold M can be turned into a simplicial manifold {M
n

}
n�0

by letting

M
n

= M and setting each face and degeneracy map to the identity

d
i

= id
M

: M
n

! M
n�1

, s
i

= id
M

: M
n

! M
n+1

for every 0  i  n. As a slight abuse of notation, for the rest of the section we will consider

⌦⇤,⇤(M) and A⇤(M) to refer to the chain complexes associated to the trivial simplicial manifold

constructed from the manifold M .

Lemma 4.56: The canonical inclusion

⌦⇤(M) ,! ⌦0,⇤(M)

of ⌦⇤(M) into the first column of ⌦⇤,⇤(M) induces an isomorphism in cohomology

H⇤(⌦⇤(M)) ⇠= H⇤
Tot

(⌦⇤,⇤(M)).

Proof. An element ⌫ 2 Totq(⌦⇤,⇤(M)) is of the form

⌫ = (⌫
0

, ⌫
1

, . . . , ⌫
q

)

where ⌫
i

2 ⌦q�i(M) = ⌦i,q�i(M). From the definition of � in Equation 4.2 we see that

�⌫
i

=

(
⌫
i

if i is odd

0 if i is even
(4.57)

for each ⌫
i

. It is perhaps easiest to see this as a diagram.
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...
...

...
...

⌦2(M) ⌦2(M) ⌦2(M) ⌦2(M) · · ·

⌦1(M) ⌦1(M) ⌦1(M) ⌦1(M) · · ·

⌦0(M) ⌦0(M) ⌦0(M) ⌦0(M) · · ·

d d d d

d d d d

d d d d

0 id⇤ 0 id⇤

0 id⇤ 0 id⇤

0 id⇤ 0 id⇤

Looking again at Equations 4.3 and 4.57,

D⌫ =

(
(d⌫

0

,�d⌫
1

, ⌫
1

+ d⌫
2

,�d⌫
3

, . . . ,�d⌫
q

, ⌫
q

) if q is odd

(d⌫
0

,�d⌫
1

, ⌫
1

+ d⌫
2

,�d⌫
3

, . . . , ⌫
q�1

+ d⌫
q

, 0) if q is even
(4.58)

for a general element ⌫. If ⌫ is a cocycle then the condition that d⌫
i

= 0 and ⌫
i

= �d⌫
i+1

for

each even odd i < q. If q is odd, we also have that ⌫
q

= 0. This means we can write any cocycle

⌫ as

⌫ = (⌫
0

, 0, . . . , 0) +D(0, ⌫
2

, 0, ⌫
4

, . . . )

and thus any cocycle can be represented by it’s first entry ⌫
0

. Ultimately, this means the

inclusion

! 7! (!, 0, . . . , 0)

is a surjection on cohomology. Clearly this map is an injection on cohomology as well and thus

the map

⌦⇤(M) ,! ⌦0,⇤(M)

defines an isomorphism on cohomology.

Proposition 4.59: The map p
M

: NG• ⇥M ! M induces a map

⌦⇤(M) ! A⇤(NG• ⇥M)

which is an isomorphism in cohomology.

Proof. From Lemma 4.56 we have a natural inclusion

⌦⇤(M)
i

,��! ⌦0,⇤(M).
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The map p
M

induces a map

⌦⇤,⇤(M)
p

⇤
M����! ⌦⇤,⇤(NG• ⇥M)

which is an isomorphism in cohomology by Theorem 4.14 and Corollary 3.62. From Theorem

4.20, the chain map

E
�

: ⌦⇤,⇤(NG• ⇥M) ! A⇤(NG• ⇥M)

induces an isomorphism in cohomology. Hence the map E
�

� p⇤
M

� i, which may be explicitly

written as

! 7!
(
p!

pX

s=0

(�1)st
i

s

dt
i0 · · · ˆdt

i

s

· · · dt
i

p

^ p⇤
M

!

)

p�0

,

induces an isomorphism in cohomology.

Proposition 4.60: The map E
�

� p⇤
M

� i : ⌦⇤(M) ! A⇤(NG• ⇥M) is a G⇤ morphism.

Proof. Firstly we note that each map E
�

, p⇤
M

, i is a chain map and hence

d(E
�

� p⇤
M

� i) = (E
�

� p⇤
M

� i)d.
The maps p⇤

M

, i are equivariant so it remains to verify that E
�

is equivariant. This is trivially

true since

E
�

(!)
p

· g = p!

 
pX

s=0

(�1)st
i

s

dt
i0 · · · ˆdt

i

s

· · · dt
i

p

^ !
!

· g

= p!
pX

s=0

(�1)st
i

s

dt
i0 · · · ˆdt

i

s

· · · dt
i

p

^ (! · g)

= E
�

(! · g)
p

for every g 2 G since G acts trivially on �p. Since E
�

� p⇤
M

� i is equivariant, by Definition 4.45

(1) it is also true that

L
⇠

(E
�

� p⇤
M

� i) = (E
�

� p⇤
M

� i)L
⇠

.

for every ⇠ 2 g. Finally, the fact that E
�

� p⇤
M

� i commutes with ◆
⇠

follows from the calculation

(◆
⇠

(E
�

� p⇤
M

� i)!)
p

= ◆
⇠

p!
pX

s=0

(�1)st
i

s

dt
i0 · · · ˆdt

i

s

· · · dt
i

p

^ p⇤
M

!

= p!
pX

s=0

(�1)st
i

s

dt
i0 · · · ˆdt

i

s

· · · dt
i

p

^ ◆
⇠

p⇤
M

!

= p!
pX

s=0

(�1)st
i

s

dt
i0 · · · ˆdt

i

s

· · · dt
i

p

^ p⇤
M

◆
⇠

!

= ((E
�

� p⇤
M

� i)◆
⇠

!)
p

for every ⇠ 2 g and every p � 0 since ◆
⇠

vanishes on �p and commutes with pullbacks by

Proposition 4.22.
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4.4.2 Cartan’s Theorem via Simplicial Di↵erential Forms

Lemma 4.61: Let P ! B be a principal G-bundle and g be the Lie algebra of G with basis

{⇠
1

, . . . , ⇠
n

}. Let P have connection ✓ and elements {✓1, . . . , ✓n} respectively to the basis of g.

Then a di↵erential form ! can be written uniquely as a sum

! =
X

✓i1 . . . ✓ik⌫
i1,...,i

k

where ⌫
i1,...,i

k

is a horizontal di↵erential form on P .

Proof. Let ! be a di↵erential form on P . Define the components ↵
i

= ◆
⇠

i

! and �
i

= ! � ✓i↵
i

such that ! = ✓i↵
i

+ �
i

. Clearly ↵ satisfies ◆
⇠

i

↵
i

= 0. Moreover, �
i

satisfies

◆
⇠

i

�
i

= ◆
⇠

i

! � ◆
⇠

i

(✓i◆
⇠

i

!)

= ◆
⇠

i

! � (◆
⇠

i

✓i)◆
⇠

i

! + ✓i◆
⇠

i

(◆
⇠

i

!)

= 0.

Since any di↵erential form ! can be written as

! = ✓i↵
i

+ �
i

,

the process can be repeated on ↵
i

and �
i

for a di↵erent index j 6= i to yield the decomposition

↵
i

= ✓j↵
ij

+ �
ij

, �
i

= ✓j↵0
ij

+ �0
ij

and thus ! = ✓i✓j↵
ij

+✓i�
ij

+✓j↵0
ij

+�0
ij

and each of the di↵erential forms ↵
ij

,�
ij

,↵0
ij

,�0
ij

vanish

on ◆
⇠

i

and ◆
⇠

j

. Repeating this for each index i = 1, . . . , n we obtain the unique decomposition

! =
X

✓i1 . . . ✓ik⌫
i1,...,i

k

as required.

Since the lemma above relies only on the existence of the operator ◆
⇠

and connection elements,

the above calculation can be repeated in the simplicial case to yield the following corollary.

Corollary 4.62: Let P• have simplicial connection ✓• and respectively elements {✓1•, . . . , ✓n• }.
Then a simplicial di↵erential form !• can be written uniquely as a sum

!• =
X

✓i1• . . . ✓ik• ⌫i1,...,i
k

•

where ⌫
i1,...,i

k

• is a horizontal simplicial di↵erential form on P•.

Let A⇤(NG• ⇥ M)
vert

be the set of elements generated by {✓1•, . . . , ✓n• }. Clearly from the

corollary we have the decomposition

A⇤(NG• ⇥M) = A⇤(NG• ⇥M)
vert

⌦A⇤(NG• ⇥M)
hor

.
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There is a natural projection onto the horizontal component of !•,

Hor(!•) = Hor(
X

✓i1• . . . ✓ik• ⌫i1,...,i
k

•) = ⌫
0

where ⌫
0

is the single summand in A⇤(NG•⇥M)
hor

. We are interested in the complex (S(g⇤)⌦
A⇤(NG• ⇥M))G which can thus be decomposed

(S(g⇤)⌦A⇤(NG• ⇥M))G =
M

Cp,q (4.63)

where Cp,q = (Sp(g⇤)⌦Aq(NG•⇥M)
vert

⌦A⇤(NG•⇥M)
hor

)G. That is, an element of c 2 Cp,q

can be written as

c =
X

↵⌦ ✓i1• · · · ✓iq• ⌫i1,...,iq•
where ↵ 2 Sp(g⇤) and ⌫

i1,...,iq• 2 A⇤(NG• ⇥ M)
hor

by Corollary 4.62. Note that C0,0 can

naturally be identified with A⇤(NG•⇥M)
bas

which we will occasionally refer to as a subcomplex

A⇤(NG• ⇥M)
bas

⇢ (S(g⇤)⌦A⇤(NG• ⇥M))G.

The following two results establish the existence of an explicit chain map that induces an iso-

morphism in cohomology

H⇤
⇣�

S(g⇤)⌦A⇤(NG• ⇥M)
�
G

⌘ ⇠= H⇤(A⇤(NG• ⇥M)
bas

)

and then an explicit description of the chain map. The results follow the proof of Theorem 5.9

of [GS99] closely.

Proposition 4.64: There is a chain map

� : (S(g⇤)⌦A⇤(NG• ⇥M))G ! (S(g⇤)⌦A⇤(NG• ⇥M))G

such that

im(�) = A⇤(NG• ⇥M)
bas

⇢ (S(g⇤)⌦A⇤(NG• ⇥M))G

and it is an isomorphism on cohomology.

Proof. Firstly let g have basis {⇠
1

, . . . , ⇠
n

} and correspondingly S(g⇤) has generators {µ
1

, . . . , µ
n

}.
Define an operator @

i

: S1(g⇤) ! S0(g⇤) by

@
i

µj =

(
1 if i = j

0 if i 6= j

for every i = 1, . . . , n. Since @
i

is defined on the generators of S(g⇤), this operator can be

extended as a map @
i

: Sp(g⇤) ! Sp�1(g⇤) for every p � 0. Moreover, it is clear that for

↵ 2 Sp(g⇤),

(µi@
i

)↵ =

(
p · ↵ if p > 0

0 if p = 0
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where Einstein summation convention is observed. Also, from Corollary 4.62, we know that any

simplicial di↵erential form ! 2 A⇤(NG• ⇥M) can be written as a sum

!• =
X

✓i1• . . . ✓
i

q

• ⌫i1,...,iq•.

One observes that for each summand � = ✓i1• . . . ✓
i

q

• ⌫i1,...,iq• we have a similar relation

(✓i•◆⇠
i

)� =

(
q · � if q > 0

0 if q = 0

as before. The two operators (µi@
i

) and (✓i•◆⇠
i

) can naturally be thought of as operators on the

tensor product (S(g⇤)⌦A⇤(NG• ⇥M))G and thus on Cp,q (as described in Equation 4.63) one

observes that

(µi@
i

) + (✓i•◆⇠
i

) = (p+ q) · id
and is hence invertible for every p, q such that p + q > 0. We construct an operator z :

(S(g⇤)⌦A⇤(NG• ⇥M))G ! (S(g⇤)⌦A⇤(NG• ⇥M))G by

z↵ :=

(
↵ if ↵ 2 A⇤(NG• ⇥M)

bas

0 otherwise
(4.65)

for every ↵ 2 (S(g⇤) ⌦ A⇤(NG• ⇥ M))G. One can restate this identity in the language of the

decomposition Cp,q by saying that the restriction of z to Cp,q is defined by

z =

(
id if p+ q = 0

0 otherwise
(4.66)

for every p, q � 0. We define z so that we can define an operator E : Cp,q ! Cp,q

E := (µi@
i

) + (✓i•◆⇠
i

) + z =

(
(p+ q) · id if p+ q > 0

id if p+ q = 0
(4.67)

that is clearly invertible on all of (S(g⇤) ⌦ A⇤(NG• ⇥M))G. Alternatively, define an operator

R := (d✓i•)@i. By direct calculation, we can show E �R is invertible. That is, since

E �R = (id�RE�1)E

we can write

(E �R)�1 = E�1(id +RE�1 + (RE�1)2 + · · · ) (4.68)

as long as the sum

id+RE�1 + (RE�1)2 + · · ·
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terminates. This sum must terminate however, since RE�1 lowers the degree of S(g⇤) by 1 and

thus for ↵ 2 Cp,q

(RE�1)p+1↵ = 0.

Let � = z(E � R)�1 and Q = (�✓i•@i)(E � R)�1. We will show, following the proof in [GS99,

Theorem 5.9], that

d
G

Q+Qd
G

= id� �

holds. I.e. that Q is a chain homotopy from id to � and hence � is an isomorphism on co-

homology. Thinking of A⇤(NG• ⇥ M)
bas

as a subspace of (S(g⇤) ⌦ A⇤(NG• ⇥ M))G, clearly

im(�) = A⇤(NG• ⇥M)
bas

by the definition of z in Equation 4.66. One checks by direct calcu-

lation that

�
d
G

(�✓i•@i) + (�✓i•@i)dG
�
↵ = (µi@

i

)↵+ (✓i•◆⇠
i

)↵� (d✓i•@i)↵

= (E �R� z)↵ (4.69)

for any ↵ 2 (S(g⇤)⌦A⇤(NG• ⇥M))G. In particular, this means that

d
G

(E �R)� (E �R)d
G

= d
G

z � zd
G

. (4.70)

From above, the operator (E � R) is invertible so conjugating both sides of Equation 4.70 by

its inverse yields

d
G

(E �R)�1 � (E �R)�1d
G

= (E �R)�1(d
G

z � zd
G

)(E �R)�1. (4.71)

Note that d
G

|
C

0,0 is the regular de Rham di↵erential d since µi◆
⇠

i

vanishes on A⇤(NG• ⇥M)
bas

and hence we can consider the operator d
G

z�zd
G

as a map onto the basic forms of A⇤(NG•⇥M)

d
G

z � zd
G

: Cp,q ! C0,0.

Also, since R vanishes on A⇤(NG• ⇥M)
bas

, (E �R)|
C

0,0 = id and thus

(E �R)�1(d
G

z � zd
G

) = id(d
G

z � zd
G

).

Thus one simplification we can make to Equation 4.71 is that

d
G

(E �R)�1 � (E �R)�1d
G

= (d
G

z � zd
G

)(E �R)�1. (4.72)

With these facts, we now expand the expression

d
G

Q+Qd
G

=d
G

(�✓i•@i)(E �R)�1 + (�✓i•@i)(E �R)�1d
G

=d
G

(�✓i•@i)(E �R)�1

+ (�✓i•@i)
�
(d

G

z � zd
G

)(E �R)�1 + d
G

(E �R)�1

�
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from Equation 4.72. Since (�✓i•@i) lowers the degree of S(g⇤),

(�✓i•@i)(dGz � zd
G

) = 0

which yields the equation

d
G

Q+Qd
G

= d
G

(�✓i•@i)(E �R)�1 + (�✓i•@i)dG(E �R)�1

= (d
G

(�✓i•@i) + (�✓i•@i)dG)(E �R)�1

= (E �R� z)(E �R)�1

= id� � (4.73)

proving the assertion that � is an isomorphism on cohomology.

The chain map � is studied further and we adapt the proof of [GS99, Theorem 5.2.1] to our

case.

Theorem 4.74: The map � : (S(g⇤) ⌦ A⇤(NG• ⇥ M))G ! (S(g⇤) ⌦ A⇤(NG• ⇥ M))G is the

map

�(↵⌦ !•) = 1⌦ w(✓•)(↵) ^Hor(!•).

Proof. Firstly, consider the series

� = zE�1(id +RE�1 + (RE�1)2 + · · · )

given by the definition of � and Equation 4.68. The map E does not change the degree of an

element in (S(g⇤)⌦A⇤(NG• ⇥M))G and z projects onto A⇤(NG• ⇥M)
bas

so it follows that

zE�1 = z

since E is the identity on A⇤(NG• ⇥M)
bas

. Moreover, by the definition of R,

zR = z(d✓i•@i)

= z(µi

• �
1

2
ci
jk

✓j•✓
k

•)@i

= zµi

•@i (4.75)

since z = 0 on elements of Cp,q with q > 0. Define the operator K = µi

•@i. From Equation 4.75

we have that zR = zK and hence

zRE�1 = zKE�1.

Since E does not decrease the index of q on Cp,q, the operator z(RE�1)n vanishes on Cp,q with

q > 0 for any n � 1 and it follows that we can write

z(RE�1)n = z(KE�1)n.
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From the definition of E in Equation 4.67, one can directly calculate that

(KE�1)n� =
1

p+ q
(KE�1)n�1K(�)

=
1

p+ q
· 1

p+ q � 1
(KE�1)n�2K2(�)

...

=
(p+ q � n)!

(p+ q)!
Kn(�) (4.76)

where � 2 Cp,q. But Kn(�) 2 Cp�n,q and so zKn(�) is only non-zero when q = 0 and p = n.

This fact combined with Equations 4.75 and 4.76 yield

� = z(id +K +
1

2!
K2 + · · · ) = z exp(K).

If � 2 Cp,0 then we may write � = ↵ ⌦ !• for some ↵ 2 Sp(g⇤). So the problem reduces to

evaluating Kp(↵⌦ !•) for which we assert that

Kp(↵⌦ !•) = p! · 1⌦ w(✓•)(↵)!•.

Since Sp(g⇤) is generated by {µ1, · · · , µn}, we can write

↵⌦ !• =
X

µi1 · · ·µi

p ⌦ !•.

If p = 1 then it is easy to see that

K(µi1 ⌦ !) = 1⌦ w(✓•)(µ
i) ^ !•

and thus by the linearity of K, K(↵⌦ !•) = 1⌦ w(✓•)(↵) ^ !•. Assume that

Kp�1(↵⌦ !•) = (p� 1)! · 1⌦ w(✓•)(↵) ^ !•

for every ↵ 2 Sp�1(g⇤). Then clearly in the case where ↵ =
P

µi1 · · ·µi

p

Kp(µi1 · · ·µi

p ⌦ !•) = Kp�1

 
pX

k=1

µi1 · · · µ̂i

k · · ·µi

p ⌦ w(✓•)(µ
i

k) ^ !•

!

=
pX

k=1

(p� 1)! · 1⌦ w(✓•)(µ
i1 · · · µ̂i

k · · ·µi

p)w(✓•)(µ
i

k) ^ !•

= p! · 1⌦ w(✓•)(µ
i1 · · ·µi

p) ^ !•

and thus we have shown

1

p!
Kp(↵⌦ !•) =

(
1⌦ w(✓•)(↵) ^ !• if ↵ 2 Sp(g⇤)

0 otherwise
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via induction. Since z vanishes on forms with any vertical component, only the horizontal

component of !• is preserved. As a result

�(↵⌦ !•) = 1⌦ w(✓•)(↵) ^Hor(!•).

Corollary 4.77: The map �̄ : (S(g⇤)⌦A⇤(NG• ⇥M))G ! A⇤(NG• ⇥M)
bas

given by

�̄(↵⌦ !•) = w(✓•)(↵) ^Hor(!•)

induces an isomorphism in cohomology. Moreover, the inclusion map

i : A⇤(NG• ⇥M)
bas

! (S(g⇤)⌦A⇤(NG• ⇥M))G

also induces an isomorphism in cohomology and is the chain homotopy inverse to �̄.

Proof. The fact that �̄ : (S(g⇤) ⌦ A⇤(NG• ⇥ M))G ! A⇤(NG• ⇥ M)
bas

is an isomorphism in

cohomology is an immediate corollary of Theorem 4.74.

One notices that i � �̄ = �̄ and so, looking back at Equation 4.73,

d
G

Q+Qd
G

= id� i � �.
One can consider �̄ � i = id on A⇤(NG• ⇥ M)

bas

and so clearly there is a respective chain

homotopy between these two maps. Thus we have established that i and �̄ are chain homotopy

inverses.

Theorem 4.78: Let G be a compact Lie group and M be a manifold with right G-action and

let ↵⌦ ! 2 (S(g⇤)⌦ ⌦⇤(M))G. There is a chain map

� : (S(g⇤)⌦ ⌦⇤(M))G ! A⇤(NG• ⇥M)
bas

given by

�(↵⌦ !) = w(✓•)(↵) ^Hor(!•)

that induces an isomorphism on cohomology.

Proof. From Theorem 4.55 and Proposition 4.59 and Proposition 4.60 the map

1⌦ (E
�

� p⇤
M

� i) : (S(g⇤)⌦ ⌦⇤(M))G ! �
S(g⇤)⌦A⇤(NG• ⇥M)

�
G

induces an isomorphism in cohomology. If we let

!• = (E
�

� p⇤
M

� i)(!)
then from Theorem 4.74 the map � := �̄ � 1⌦ (E

�

� p⇤
M

� i) which can be explicitly written as

�(↵⌦ !) = w(✓•)(↵) ^Hor(!•)

is an isomorphism on cohomology.
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This theorem derives the classical result of Cartan – that the Cartan model calculates the

equivariant cohomology of a manifold M acted upon by a compact Lie group G.

Corollary 4.79 (Cartan’s Theorem): Let G be a compact Lie group and M be a manifold with

right G-action. The Cartan model

(S(g⇤)⌦ ⌦⇤(M))G

computes the equivariant cohomology of M .

Proof. This follows as a result from Theorem 4.78, Theorem 4.14 and Corollary 3.62.

4.4.3 The Weil Model via Simplicial Di↵erential Forms

One may also derive results about the relation between the ordinary Weil model and Dupont’s

simplicial model for equivariant cohomology.

Proposition 4.80: Let G be a compact Lie group and M be a manifold with right G-action.

The chain map

 :
�
W (g)⌦A⇤(NG• ⇥M)

�
bas

! A⇤(NG• ⇥M)
bas

given by

 (↵⌦ !•) = w(✓•)(↵) ^ !•

induces an isomorphism on cohomology.

Proof. Consider the sequence of chain maps below.

�
W (g)⌦A⇤(NG• ⇥M)

�
bas

�
S(g⇤)⌦A⇤(NG• ⇥M)

�
G

A⇤(NG• ⇥M)
bas

exp(⇣) �̄

i

The map exp(⇣) is an isomorphism and hence induces an isomorphism in cohomology. That is

�̄ � exp(⇣) : �W (g)⌦A⇤(NG• ⇥M)
�
bas

! A⇤(NG• ⇥M)
bas

is an isomorphism in cohomology. As well, we have the map

 (↵⌦ !•) = w(✓•)(↵) ^ !•

which satisfies �̄ � exp(⇣) �  =  . Recall from Corollary 4.77 that the inclusion

i : A⇤(NG• ⇥M)
bas

! �
S(g⇤)⌦A⇤(NG• ⇥M)

�
G

is an isomorphism in cohomology and hence

exp(�⇣) � i : A⇤(NG• ⇥M)
bas

! �
W (g)⌦A⇤(NG• ⇥M)

�
bas
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is an isomorphism in cohomology. But for any !• 2 A⇤(NG• ⇥M)
bas

(⇣ � i)!• = (✓i ⌦ ◆
⇠

i

)(1⌦ !•) = 0

since !• is basic. So the map

exp(�⇣) � i : A⇤(NG• ⇥M)
bas

! �
W (g)⌦A⇤(NG• ⇥M)

�
bas

is a similar inclusion

(exp(�⇣) � i)!• = 1⌦ !•

and also an isomorphism on cohomology. One notes that

 � (exp(�⇣) � i) = id

and so  induces an isomorphism on cohomology.

Lemma 4.81: Consider the map

1⌦ (E
�

� p⇤
M

� i) : (S(g⇤)⌦ ⌦⇤(M))G ! �
S(g⇤)⌦A⇤(NG⇥M)

�
G

from Theorem 4.78. This map commutes with the Mathai-Quillen operator ⇣ from Equation

4.52.

Proof. This result naturally follows from Proposition 4.59 which establishes that the map E
�

�
p⇤
M

� i is a G⇤ morphism.

Theorem 4.82: Let G be a compact Lie group and M be a manifold with right G-action and

let ↵⌦ ! 2 (W (g)⌦ ⌦⇤(M))
bas

. There is a chain map

 : (W (g)⌦ ⌦⇤(M))
bas

! A⇤(NG• ⇥M)
bas

given by

 (↵⌦ !) = w(✓•)(↵) ^ !•

that induces an isomorphism on cohomology.

Proof. Firstly we note that since 1⌦ (E
�

� p⇤
M

� i) commutes with ⇣, the diagram

�
W (g)⌦A⇤(NG⇥M)

�
bas

(W (g)⌦ ⌦⇤(M))
bas

�
S(g⇤)⌦A⇤(NG⇥M)

�
G

(S(g⇤)⌦ ⌦⇤(M))G

1⌦ (E
�

� p⇤
M

� i)

exp(⇣)

1⌦ (E
�

� p⇤
M

� i)
exp(⇣)

97



is commutative. Accordingly,

1⌦ (E
�

� p⇤
M

� i) : (W (g)⌦ ⌦⇤(M))
bas

! W (g)⌦A⇤(NG⇥M)
bas

is an isomorphism on cohomology from Proposition 4.59. Thus the composition

 :=  � 1⌦ (E
�

� p⇤
M

� i) : (W (g)⌦ ⌦⇤(M))
bas

! A⇤(NG⇥M)
bas

is an isomorphism in cohomology from Proposition 4.80.

Corollary 4.83: Let G be a compact Lie group and M be a manifold with right G-action. The

Weil model

(W (g)⌦ ⌦⇤(M))
bas

computes the equivariant cohomology of M .

Proof. This follows as a result from Theorem 4.82, Theorem 4.14 and Corollary 3.62.
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