Enteral Docosahexaenoic Acid Supplementation To Attenuate Inflammation In The Preterm Infant

Naomi Hayden Fink

BMSc (Hons), MSc

A thesis submitted for the degree of Doctor of Philosophy

Faculty of Health Sciences

School of Medicine

Discipline of Paediatrics

The University of Adelaide, Adelaide, South Australia

February 2017

TABLE OF CONTENTS

List of tables	vii
List of figures	ix
Abstract	xi
Declaration	xiii
Acknowledgements	xiv
List of abbreviations	xvi
CONTEXTUAL STATEMENT	1
CHAPTER 1	6
OMEGA-3 LONG-CHAIN POLYUNSATURATED FATTY ACIDS AND INFLAMMATION IN THE PRETERM INFANT: A REVIEW OF THE	
LITERATURE	6
1.1. INTRODUCTION	7
1.2. EARLY IMMUNE DEVELOPMENT IN THE PRETERM INFANT	8
1.2.1. Transition from innate to adaptive immune response in the preterm infant	8
1.2.2. Polarisation of the immune system	9
1.2.3. Characterising the immune response in a preterm infant	9
1.3. FATTY ACIDS IN THE DIET	11
1.3.1. Lipid metabolism	11
1.3.2. Brief overview of fatty acids	12
1.3.3. Endogenous synthesis of LCPUFA	13
1.3.4. Lipid derivatives and their role in inflammation	15
1.4. NUTRITION FOR PRETERM INFANTS	15
1.4.1. Fatty acids in nutritional regimens	16
1.4.2. Docosahexaenoic acid and its role in early immune development	17
1.5. OMEGA-3 LCPUFA AND NEONATAL INFLAMMATORY DISORDERS	18
1.5.1. Evidence for an effect of omega-3 LCPUFA supplementation on neonatal	
inflammatory outcomes	18

1.5.2.	Characterising the evidence	29
1.5.3.	Bronchopulmonary dysplasia	31
1.5.4.	Necrotising enterocolitis	32
1.5.5.	Sepsis	34
1.5.6.	Retinopathy of prematurity	35
1.6. C	MEGA-3 LCPUFA AND IMMUNE REGULATION	36
1.6.1.	Known targets for immunoregulation by omega-3 LCPUFA	36
1.6.2.	Evidence for an effect of omega-3 LCPUFA supplementation on immune	
	responses	37
1.6.3.	Characterising the evidence	41
1.6.4.	Cytokine synthesis and release	42
1.6.5.	Lipid mediators and the resolution of inflammation	45
1.6.6.	Mediation of oxidative stress	46
1.6.7.	The role of surfactant proteins in the innate immune system	47
1.6.8.	Interaction between gut bacteria and host immune system	48
1.7. S	TUDY RATIONALE	50
1.8. A	IMS OF THE THESIS	52
СНАРТЕВ	8.2	54
THE EFFI	ECT OF OMEGA-3 AND OMEGA-6 FATTY ACIDS IN LIPID	
EMULSIO	NS ON ALVEOLAR CYTOKINE RELEASE	54
Manuscr	pt: Omega-3 long-chain polyunsaturated fatty acids in lipid emulsions and the	
impact of	n cytokine release from human alveolar cells	54
Statemen	t of authorship	55
CHAPTER	83	73
DOCOSAI	HEXAENOIC ACID AS AN IMMUNOMODULATORY AGENT IN	
PRETERM	1 INFANTS	73
Manuscr	pt: Effect of omega-3 LCPUFA on the immune response of preterm infants < 2	9
weeks ge	station: Results from a single-centre nested study in the N3RO randomised	
controlle	d trial	73
Statemen	t of authorship	74

iii

CHAPTER 4	99
OMEGA-3 LCPUFA AND GASTROINTESTINAL COLONISATION BY STAPHYLOCOCCUS AND METHICILLIN-RESISTANT BACTERIA	99
Manuscript: Assessment of Staphylococcus and methicillin-resistant bacteria in prete	
infants and the influence of omega-3 long-chain polyunsaturated fatty acids	99
Statement of authorship	100
CHAPTER 5	128
GENERAL DISCUSSION, CONCLUSIONS AND DIRECTIONS FOR FUTUR	E
RESEARCH	128
5.1. Main findings reported in this thesis	128
5.2. General discussion	129
5.2.1. Supplemental DHA did not reduce the burden of inflammatory mediators	129
5.2.2. Surfactant protein D and immunoregulation	130
5.2.3. Enteral DHA does not appear to influence <i>Staphylococcus</i> or <i>mecA</i> + bacter	ia
levels	130
5.2.4. Comparing and contrasting the results from cell culture experiments and pr	eterm
infants	131
5.3. Strengths and limitations of the thesis	132
5.4. Research questions raised by this thesis and direction for future research	134
5.4.1. Does DHA have a dose-response effect in preterm infants?	134
5.4.2. Can DHA influence the immunoregulatory capacity of surfactant?	135
5.4.3. Can DHA program the immune response?	136
5.5. Concluding remarks	136
CHAPTER 6	138
REFERENCES	138
APPENDIX 1	159
CONFERENCE ABSTRACTS/PRESENTATIONS ARISING FROM DATA	
PRESENTED IN THIS THESIS	159

APPENDIX 2	160
PUBLICATION ARISING FROM THIS THESIS	160
Statement of authorship	161
APPENDIX 3	169
PROTOCOL FOR THE NESTED STUDY WITHIN THE N3RO RANDOMISED CONTROLLED TRIAL	169
APPENDIX 4	190
DATA ANALYSIS PLAN FOR THE NESTED STUDY IN THE N3RO RANDOMISE CONTROLLED TRIAL	ED 190
APPENDIX 5	197
N3RO RANDOMISED CONTROLLED TRIAL CONSENT FORM	197
APPENDIX 6	201
N3RO RANDOMISED CONTROLLED TRIAL PATIENT INFORMATION SHEET	201
APPENDIX 7	206
STANDARD OPERATING PROCEDURE: BLOOD SAMPLE COLLECTION	206
APPENDIX 8	211
STANDARD OPERATING PROCEDURE: STOOL SAMPLE COLLECTION	211
APPENDIX 9	216
MATERIALS AND METHODS	216
MATERIALS	216
METHODS	220
1.1. A549 CELLS AND CELL CULTURE	220
1.1.1. A549 subculturing	220
1.1.2. Cryopreservation of A549 cells	221
1.1.3. Optimisation of cell culture conditions	221
1.1.3.1. Development of A549 cell growth curves	221
1.1.3.2. Assessment of cytotoxicity of lipid emulsions in A549 cells	223

v

1.1.3.3. Cytokine stimulation of A549 cells in the presence of DHA/LA 22	25
1.1.3.4. Flow cytometric analysis of cytokines in A549 cell culture supernatants 2	26
1.1.3.5. Determination of SP-D concentration in A549 cell culture lysates 22	27
1.1.3.6.Fatty acid extraction and methylation2.	28
1.1.3.7.Analysis of fatty acids by gas chromatography2	29
1.2. COLLECTION AND PROCESSING OF BIOLOGICAL SAMPLES FROM	
PRETERM INFANTS 22	31
1.2.1. Peripheral blood sample2	31
1.2.1.1. Collection 2.	31
1.2.1.2. Stimulation of whole blood with <i>E. coli</i> LPS	31
1.2.1.3. Isolation and cryopreservation of supernatants from whole blood culture and	
plasma 2	31
1.2.2. Faecal matter samples2.	32
1.2.2.1. Collection 2.	32
1.2.2.2. Cryopreservation 22	33
1.3. ANALYSIS OF IMMUNE MARKERS IN PLASMA AND WHOLE BLOOD 2	33
1.3.1. Determination of cytokine concentration in plasma samples2	33
1.3.2. Flow cytometric analysis of cytokines in supernatant from whole blood culture	
2	35
1.3.3. Determination of TGF β concentration supernatant from whole blood culture 2.	35
1.3.4. Determination of SP-D concentration in plasma samples2.	36
1.4. ANALYSIS OF STAPHYLOCOCCUS AND MECA+ BACTERIA IN FAECAL	
SAMPLES 2	36
1.4.1. DNA extraction and quantification2.	36
1.4.2. In silico primer analysis2.	37
1.4.3. Assessment of specificity of primer sets2.	37
1.4.4. qPCR primer design2	38
1.4.5. PCR-based enumeration of total bacteria, staphylococci, and <i>mecA</i> + bacteria 2.	38
	39
1.4.7. Antibiotic and probiotic exposure data2.	39
APPENDIX 10 24	41

CERTIFICATES OF ANALYSIS FOR LIPID EMULSIONS USED IN CELL CULTURE

241

LIST OF TABLES

CHAPTER 1

Table 1. Summary of current enteral feeding guidelines for preterm infants	16
Table 2. Characteristics of key studies reporting effect of omega-3 long- chain polyunsaturated fatty acids on inflammatory clinical outcomes in preterm infants	20
Table 3. Characteristics of key studies reporting effect of omega-3 long- chain polyunsaturated fatty acids on functional outcomes in preterm infants	38

CHAPTER 2

Table 1. Oil sources of enteral and parenteral lipid emulsions used in A549 cell culture	61
Table 2. Fatty acid analysis of pre- and post-incubation media preparations for parenteral and enteral lipid emulsions	68
Table 3. Omega-3 and omega-6 fatty acids in unstimulated cell membranes of A549 cells incubated with parenteral and enteral emulsions	69

CHAPTER 3

Table 1. Baseline characteristics of participants by group	84
Table 2. Clinical characteristics of participants at study end by group	85
Table 3. Fatty acid levels at baseline and study end in blood samples	86
Table 4. Pro-inflammatory and regulatory cytokines and SP-D in plasma	88
Table 5. Cytokine levels at in supernatants from unstimulated and LPS (<i>E. coli</i>) stimulated whole blood culture	91
Supplementary Table 1 (S1). Minimum concentration detected and range of standards for each cytokine assessed with the BD Biosciences enhanced sensitivity human cytometric bead array	98
Supplementary Table 2 (S2). Limit of detection and range of standards for each cytokine assessed with the MILLIPLEX® MAP high sensitivity T cell magnetic bead panel	98

LIST OF TABLES (CONTINUED)

CHAPTER 4

Table 1. PCR primers for qPCR assay to quantify total bacteria, <i>Staphylococcus</i> spp. and <i>mecA</i> + bacteria in DNA extracts from stool samples	107
Table 2. Classification of antibiotic and antifungal medications administered to preterm infants enrolled in the N3RO nested study	108
Table 3. Baseline patient characteristics of neonates enrolled in the N3RO nested study	111
Table 4. Clinical outcomes of neonates enrolled in the N3RO nested study	111
Table 5. Estimated weekly change in relative abundance of <i>Staphylococcus</i> spp. and <i>mecA</i> + bacteria in faecal samples	114
Supplementary Table 1 (S1). Antibiotic, probiotic and antifungal medication exposure in infants in intervention and control groups between postnatal weeks one to six	127
APPENDIX 4	
	191
APPENDIX 4 Appendix 4 Table 1. Stratification variables for the analysis of data resulting	191
APPENDIX 4 Appendix 4 Table 1. Stratification variables for the analysis of data resulting from the nested study in the N3RO RCT	191 234
 APPENDIX 4 Appendix 4 Table 1. Stratification variables for the analysis of data resulting from the nested study in the N3RO RCT APPENDIX 9 Appendix 9 Table 1. Limit of detection and range of standards for each cytokine assessed via the Millipore Human High Sensitivity T Cell Magnetic 	-

PAGE

LIST OF FIGURES

	PAGE
CHAPTER 1	
Figure 1. Simplified schematic of the anabolic pathway of essential fatty acids	14
CHAPTER 2	
Figure 1. Effect of incubation of unstimulated A549 cells with parenteral and enteral lipid emulsions on secretion of IL-8	65
Figure 2. Effect of incubation with parenteral and enteral lipid emulsions on secretion of IL-1 β , IL-6, IL-8 and IFN γ from A549 cells following TNF α stimulation	67
CHAPTER 3	
Figure 1. Flow diagram for the N3RO nested study according to the CONSORT statement	83
Figure 2. Pro-inflammatory cytokines, regulatory cytokines and surfactant protein D in plasma	89
Figure 3. Pro-inflammatory and regulatory cytokines in supernatants from unstimulated and <i>E. coli</i> LPS-stimulated whole blood	92
CHAPTER 4	
Figure 1. Flow diagram for the infants on whom stool analysis was conducted in the N3RO nested study according to the CONSORT statement	110
Figure 2. Yield of total bacteria, <i>Staphylococcus</i> spp. and <i>mecA</i> + bacteria in stool samples collected from 41 infants	113
Supplementary Figure 1 (S1). Total bacteria detected and <i>Staphylococcus</i> spp. in stool samples collected from 41 infants	120
Supplementary Figure 2 (S2). <i>Staphylococcus</i> spp. and <i>mecA+</i> bacteria in stool samples collected from 41 infants	120
Supplementary Figure 3 (S3). Correlation between <i>Staphylococcus</i> spp. and <i>mecA</i> + bacteria yield in stool samples collected from 41 infants	121

LIST OF FIGURES (CONTINUED)

Supplementary Figure 4 (S4). Profiles of total bacteria, Staphylococcus spp.	122
and mecA+ bacteria yield in stool samples collected from 10 infants	

APPENDIX 9

Appendix 9 Figure 1. A549 cellular growth curves	222
Appendix 9 Figure 2. Percent confluency by day for A549 cells.	222
Appendix 9 Figure 3. A549 cellular proliferation in the presence of 0- 400 μ M docosahexaenoic acid	224
Appendix 9 Figure 4. A549 cellular proliferation in the presence of 0- 400 μ M linoleic acid	224
Appendix 9 Figure 5. Scatter plot of singlet gate applied to the top standard (200 000fg/mL)	227
Appendix 9 Figure 6. Flow diagram detailing A549 cell culture experiments	230
Appendix 9 Figure 7. Flow diagram detailing analysis of blood samples obtained from preterm infants	232
APPENDIX 10	
Appendix 10 Figure 1. High-DHA fish oil emulsion (Nu-Mega Ingredients Pty, VIC, Australia) certificate of analysis	242
Appendix 10 Figure 2. Soy oil emulsion (Nu-Mega Ingredients Pty, VIC, Australia) certificate of analysis	243
Appendix 10 Figure 3. ClinOleic (Baxter Healthcare; Old Toongabbie, NSW, Australia) product insert	244
Appendix 10 Figure 4. SMOFlipid (Fresenius Kabi; Mount Kuring-Gai, NSW, Australia) product insert	246
Appendix 10 Figure 5. Intralipid (Fresenius Kabi; Mount Kuring-Gai, NSW,	
Australia) product insert	247

Appendix 10 Figure 6. Omegaven (Fresenius Kabi; Mount Kuring-Gai,249NSW, Australia) product insert249

PAGE

ABSTRACT

Preterm infants have an underdeveloped immune system and as such they are predisposed to developing unregulated inflammatory responses that are associated with disease in the postnatal period. Docosahexaenoic acid (DHA) is an omega-3 long-chain polyunsaturated fatty acid (LCPUFA) with known immunomodulatory properties, however the effect of dietary DHA on the regulation of immune responses in preterm infants is largely unknown. This thesis employs a multi-system approach to address questions related to the efficacy of omega-3 DHA to regulate inflammation in preterm infants and in human type II alveolar epithelial cells (AEC). The N3RO randomised controlled trial (RCT) provided the opportunity to carry out a single-centre nested study to examine the effect of supplemental DHA in preterm infants on pro-inflammatory and regulatory biomarkers in blood and levels of a common bacterial pathogen in the gastrointestinal tract. The aim of the N3RO RCT was to assess the efficacy of an enteral DHA emulsion to reduce bronchopulmonary dysplasia (BPD) in preterm infants < 29 weeks gestation compared to a standard soy emulsion without DHA.

Prior to analysis of biological samples from preterm infants, the immune response to enteral DHA and soy emulsions in human type II AECs, one of the primary cell types affected in respiratory disorders, was assessed *in vitro*. The enteral emulsions assessed in the N3RO RCT were tested in conjunction with other commercially available parenteral lipid emulsions. Omega-3 DHA in both enteral and parenteral emulsions significantly reduced pro-inflammatory cytokines (IL-1 β , IL-8 and IFN γ) when compared to soy-based emulsions.

There are very few studies that have assessed what, if any, targets DHA interacts with to exert an immunomodulatory effect in preterm infants. Inflammatory cytokines are known to play a crucial role in the progression of airway inflammation, epithelial and vascular damage and subsequent development of BPD. Such inflammatory mediators are also involved in the development of other neonatal inflammatory disorders such as sepsis, necrotising enterocolitis and retinopathy of prematurity. A total of 144 blood samples were collected from 51 preterm infants enrolled in the nested study. Supplemental DHA did not reduce pro-inflammatory cytokine levels in plasma or whole blood culture supernatants (after a 24 hour incubation with *E. coli* lipopolysaccharide).

Inflammatory mediators in the gut environment can influence initial colonisation and resulting abundance of both commensal and pathogenic bacteria. *Staphylococcus* is among the first colonisers of the respiratory and gastrointestinal tracts and it is one of the most important pathogens in the neonatal intensive care unit. Colonisation by methicillin-resistant bacteria including *Staphylococcus* in preterm infants also causes significant morbidity and mortality in the neonatal intensive care unit. In the neonatal period, diet has a significant effect on microbial colonisation of the gut, however the effect of supplemental omega-3 LCPUFA on *Staphylococcus* colonisation in preterm infants is unknown. A total of 220 stool samples were collected from 41 preterm infants enrolled in the nested study. Levels of *Staphylococcus* and bacteria carrying the gene coding for methicillin-resistance (*mecA*) decreased significantly over time in both groups, but DHA did not have an effect on abundance.

The original contribution this thesis makes to the knowledge base is that supplementing preterm infants < 29 weeks gestation enterally with 60 mg/kg/day of DHA does not affect circulating levels of pro-inflammatory or regulatory cytokines, the immune response to an infectious stimuli nor does it influence *Staphylococcus* and *mecA*+ bacteria in the gut. This thesis contributes important information regarding the use of DHA at supplemental levels in nutrition regimens for preterm infants.

DECLARATION

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I acknowledge that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed:

Naomi H. Fink

Date: 17 February, 2017

ACKNOWLEDGEMENTS

My deepest gratitude goes to my supervisors A/Prof Irmeli Penttila, Prof Maria Makrides and Prof Robert Gibson, who expertly guided me through all stages of my postgraduate education and provided invaluable feedback. I am extremely grateful to these leaders for investing in their students. A special thanks to Irmeli Penttila who was a tremendous mentor and exemplary role model. Your scholarly advice, meticulous scrutiny and scientific approach inspired me to strive for greatness during my research pursuit. Thank you for opening my eyes to new stages of opportunity and strength; your contribution towards my success today is highly acknowledged.

My appreciation also extends to my laboratory colleagues Colleen Bindloss, Irene Kanter, and Dr. Adaweyah Donato for your expert tutelage and unwavering patience as I grasped new techniques in the lab. Thank you to A/Prof Geraint Rogers and Dr. Lex Leong for guiding me through the unfamiliar territory of qPCR and for providing a welcoming work environment.

I would like to extend my gratitude to the team at CNRC, particularly Dr Jacquie Gould, Dr Carmel Collins, Dr Merryn Netting, Dr Lisa Yelland and Dr Edna Bates for your advice and academic support. To colleagues both past and present, Dr Lenka Malek, Dr Karen Best, Ashlee Davies and Chloe Douglas, for fostering such a positive atmosphere. Thank you also to Dr Jennie Louise and Suzanne Edwards at the Data Analysis and Management Centre for your statistical support.

I am extremely grateful for the financial support provided by Centre for Research Excellence "Foods for Future Australians" scholarship and the Healthy Development Adelaide and Channel 7 Children's Research Foundation top-up scholarship. This support allowed me to focus my time solely on my research. Thank you also to my supervisors for providing opportunities to present at domestic and international conferences and engage with other experts in the field. This study would not have been possible without the families and infants participating in the N3RO trial; your willingness to partake in research is much appreciated. Thank you also to the clinical staff in the neonatal intensive care unit at the Women's and Children's Hospital, in particular Ros Lontis, Louise Goodchild and Dr. Andrew McPhee for your support and guidance.

I would like to thank my parents and siblings for always being by my side, even during my time overseas. Witnessing the exceptional work ethic and perseverance demonstrated by my parents over the years has developed in me a strong sense of personal responsibility and taught me that hard work is its own reward. Thank you to my fiancé Adam for your unconditional love and support every step of the way from undergraduate, to masters and throughout doctoral studies.

LIST OF ABBREVIATIONS

AA	Arachidonic acid
ACTRN	Australian Clinical Trials Registry Number
AEC	Alveolar epithelial cell
ALA	Alpha linolenic acid
APC	Antigen presenting cell
ATCC	American Type Culture Collection
BPD	Bronchopulmonary dysplasia
СА	Corrected age
CD	Cluster of differentiation
CRF	Case report form
CRP	C-reactive protein
Ct	Cycle threshold
DHA	Docosahexaenoic acid
DMSO	Dimethylsulfoxide
DPPC	Dipalmatoylphosphtidylcholine
EFA	Essential fatty acid
EN	Enteral nutrition
EPA	Eicosapentaenoic acid
FACS	Fluorescence-activated cell sorting
FBS	Fetal bovine serum
GA	Gestational age
GC	Gas chromatography
GPR	G-protein coupled receptor

LIST OF ABBREVIATIONS (CONTINUED)

GSH-PX	Glutathione peroxidase
LCPUFA	Long-chain polyunsaturated fatty acids
HCl	Hydrochloric acid
H_2SO_4	Sulfuric acid
KCl	Potassium chloride
KH ₂ PO ₄	Potassium phosphate
IL	Interleukin
IVH	Interventricular haemorrhage
ITT	Intention to treat
LA	Linoleic acid
LPS	Lipopolysaccharide
LxA4	Lipoxin A4
MIP	Macrophage inflammatory protein
MinDC	Minimum detectable concentration
MUFA	Monounsaturated fatty acid
NaCl	Sodium chloride
NaOH	Sodium hydroxide
Na ₂ HPO ₄	Sodium phosphate
NICU	Neonatal intensive care unit
NEC	Necrotising enterocolitis
PBS	Phosphate buffered saline
PN	Parenteral nutrition
РМА	Postmenstrual age

LIST OF ABBREVIATIONS (CONTINUED)

PP	Per protocol
PPAR	Peroxisome proliferator-activated receptor
PUFA	Polyunsaturated fatty acid
RBC	Red blood cell
RCT	Randomised controlled trial
ROP	Retinopathy of prematurity
RvD1	Resolvin D1
SCBU	Special care baby unit
SFA	Saturated fatty acid
SOD	Superoxide dismutase
SOP	Standard operating procedure
SP	Surfactant protein
TAE	Tris base, acetic acid and EDTA buffer
TAP	Total antioxidant potential
T-AOC	Total antioxidant capacity
TBL	Total bacterial load
TGF	Transforming growth factor
Th	T helper
TLR	Toll-like receptor
TNF	Tumor necrosis factor
TPN	Total parenteral nutrition
T-reg	T regulatory
VLBW	Very low birth weight

LIST OF ABBREVIATIONS (CONTINUED)

WCH	Women's and Children's Hospital
<	Less than
>	Greater than