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Abstract 
 
 

This is a thesis by publication for a PhD degree of engineering in the university of Adelaide. 

The current dissertation comprises five published/submitted journal articles. Three of these 

journal papers have already been published in the journal of  "International Communications 

in Heat and Mass Transfer" and one has been accepted by the editorial board of "Chemical 

Engineering Communications". This study, based on research undertaken in the area of 

Inverse Heat Transfer Problems (IHTP), aims at analyzing the applicability of Intelligent 

Techniques (ITs) to solve sequential (real-time) heat  flux estimation class of IHTPs, 

especially those involving in the most complicated form of heat transfer , radiation. 

Currently, several optimization based methods have been developed and applied to solve heat 

flux estimation problems. These methods normally require detailed and accurate information 

regarding physical properties. Often, the measurement of such physical properties is 

extremely difficult, if not impossible. Moreover, all optimization-based methods require that 

the direct problem must be solved first. This constraint of the need for iterated direct problem 

solutions can produce significant computing errors and calculations may be excessively time-

consuming. This thesis offers new inverse models to estimate heat flux based on a sequence 

of measured temperatures. The offered models developed by ITs, in accordance with the 

achievement of this research, only requires a series of temperature-input heat data for a few 

minutes of operation; the dimensions and thermophysical properties are not needed. As 

another significant advantage, the estimation stage by the trained ITs only includes a small 

number of simple calculations excluding any recursive computation; this means the method is 

very fast-paced in comparison with classical avenues of numerical heat transfer for similar 

problems. 

At the outset, the most general form of  ITs in engineering applications, Artificial Neural 

Networks (ANNs), employed to formulate an inverse model in the studied furnace/dryer (see 

chapter 4). The promising results confirmed that ITs are sound candidates to create inverse 

models. In that study, some deficiencies in ANNs such as finding the relevant parameters by 

trial and errors motivated the authors to check GA-ANNs and ANFIS as the possible  

alternatives for ANNs. The comparison study between aforementioned methods (see chapter 

5) provided good outlines to find the best method in different situation. As the ANNs 
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optimized by Genetic Algorithms (GA) discovered as the best method in the chapter 5, 

different types of  ANNs were compared to find the best one (see chapter 6) in terms of 

accuracy and computation time. The results demonstrated that Multilayer Perceptron (MLP) 

optimized by GA can perform the best among all studied ANNs.  

Since the literatures lack of a practical comparison between the proposed and optimization 

based methods, as the next phase of study, these two method were compared (see chapter 7) 

to reconfirm the superiority of inverse models developed by ITs. In the last stage (chapter 8), 

a two -input/ two-output problem defined to check the capability of the proposed method in 

the problems more closer to the real-world industrial applications. 

In short, a series of very accurate methods for inverse heat transfer problems is proposed and 

successfully tested using experimental data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ii 
 



Declaration 
 

I certify that this work contains no material which has been accepted for the award of any 

other degree or diploma in my name, in any university or other tertiary institution and, to the 

best of my knowledge and belief, contains no material previously published or written by 

another person, except where due reference has been made in the text. In addition, I certify 

that no part of this work will, in the future, be used in a submission in my name, for any other 

degree or diploma in any university or other tertiary institution without the prior approval of 

the University of Adelaide and where applicable, any partner institution responsible for the 

joint-award of this degree. 

 

I give consent to this copy of my thesis when deposited in the University Library, being made 

available for loan and photocopying, subject to the provisions of the Copyright Act 1968. 

 

I acknowledge that copyright of published works contained within this thesis resides with the 

copyright holder(s) of those works. 

 

I also give permission for the digital version of my thesis to be made available on the web, 

via the University’s digital research repository, the Library Search and also through web 

search engines, unless permission has been granted by the University to restrict access for a 

period of time. 

 
 

 

Singed………………………………………………….Date………………………………. 

 

 

iii 
 



Acknowledgements 

Firstly, I would like to thank my supervisors Dr. Lei Chen and A/Prof. Brian O’Neil for 

introducing me to this exciting project and for their endless enthusiasm, support, 

encouragement, and numerous invaluable advices and discussions in the last five years. 

Without their great input I would never have had such an incredible experience or produce 

this thesis. 

I am particularly grateful to Dr. Morteza Mohammadzaheri who went through all the details 

to clarify many points regarding the subject matter. He constantly encouraged and motivated 

me and was always available to share problems and success. I am also indebted to Ms. 

Alison-Jane Hunter for her comments and suggestions with the preparation of this thesis. 

Finally, I thank my parents for giving me the opportunity to live, to learn, to love and to be 

loved and for their continual support and understanding. I would like express appreciation 

to my beloved wife, Azin, who spent sleepless nights with and was always my support in 

the moments when there was no one to answer my queries. She deserves special thanks 

for always being supportive and patient. She is not just my partner, she is my lover. She is 

not just my companion, she is my inspiration. She is not just my wife, she is my life. Thanks 

for everything, you give me wings

iv 



Preface 

This thesis is submitted as a portfolio of publications according to the “PhD Rules & 

Specifications for thesis” of the University of Adelaide. The journals in which the papers 

were published or submitted are closely related to the research field of this work. The citation 

is listed and the journals are ranked in the order of the impact factor in reference to their 

scientific significance (Journal Citation Report 2007, Thomson ISI). 

The main structure of this thesis is based on the following three published, one accepted and 

one submitted papers: 

1. Mirsepahi, A., M. Mohammadzaheri, L. Chen, and B. O'Neill, "An artificial

intelligence approach to inverse heat transfer modeling of an irradiative dryer".

International Communications in Heat and Mass Transfer, 2012. 39(1): p. 40-45.

Copyright of this paper belongs to Elsevier Ltd. (Chapter 4).

2. Mirsepahi, A., L. Chen and B. O'Neill, "A comparative artificial intelligence

approach to inverse heat transfer modeling of an irradiative dryer". International

Communications in Heat and Mass Transfer, 2013. 41: p. 19-27. Copyright of this

paper belongs to Elsevier Ltd. (Chapter 5).

3. Mirsepahi, A., L. Chen and B. O'Neill, "A comparative approach of inverse

modelling applied to an irradiative batch dryer employing several artificial neural

networks". International Communications in Heat and Mass Transfer, 2014. 53: p.

164-173.Copyright of this paper belongs to Elsevier Ltd. (Chapter 6).

Accepted: 

1. Mirsepahi, A., L. Chen and B. O'Neill, " An artificial intelligence solution for heat

flux estimation using temperature history: a two-input/two-output problem".

Submitted to Chemical Engineering Communications. Copyright of this paper belongs

to Elsevier Ltd. (Chapter 6).

v 

2. Mirsepahi, A., Mehdizadeh, A., L. Chen and B. O'Neill, " Comparison of Inverse

Modelling and Optimization-Based Methods in the Heat Flux Estimation Problem of

an Irradiative Dryer/Furnace". Submitted to Journal of Computational Science.

Copyright of this paper belongs to Elsevier Ltd  (Chapter 7).



Table of contents 
ABSTRACT ......................................................................................................................................... i 

DECLARATION ............................................................................................................................... iii 

ACKNOWLEDGEMENTS............................................................................................................... iv 

PREFACE .......................................................................................................................................... v 

CHAPTER 1: INTRODUCTION ...................................................................................................... 1 

1.1 INTRODUCTORY BACKGROUND ......................................................................................... 2 

1.2 LITERATURE REVIEW AND SIGNIFICANCE/CONTRIBUTION ..................................... 4 

1.2.1 INVERSE HEAT TRANSFER PROBLEMS .................................................................................................... 4 

1.2.2 LITERATURE SURVEY IN CLASSICAL (OPTIMIZATION BASED) METHODS ............................................... 5 

1.2.3 MORE CRITICAL LITERATURE REVIEW  IN CLASSICAL METHODS .......................................................... 7 

1.2.4 THE CLASSICAL METHODS LIMITATIONS ............................................................................................... 7 

1.2.5 A SURVEY ON EMPLOYING INTELLIGENT TECHNIQUES IN HEAT TRANSFER ........................................... 8 

1.2.6 ADVANTAGES OF INTELLIGENT TECHNIQUE BASED METHODS IN HEAT TRANSFER ............................... 9 

1.2.7 APPLICATION TO PROBLEMS WHERE RADIATION PROVIDES THE DOMINANT ...................................... 11 

1.3 RESEARCH GAP ....................................................................................................................... 12 

1.4 RESEARCH QUESTIONS ........................................................................................................ 12 

1.5 AIMS/OBJECTIVES OF THE PROJECT ............................................................................... 12 

1.6 THESIS ORGANIZATION ....................................................................................................... 13 

CHAPTER 2:A CRITICAL REVIEW OF CLASSICAL SOLUTIONS ...................................... 21 

2.1 INTRODUCTION ...................................................................................................................... 22 

2.2 GENERAL CONCEPT .............................................................................................................. 22 

2.3 INVERSE HEAT TRANSFER PROBLEMS ........................................................................... 22 

2.4 CLASSIFICATION OF IHTPS ................................................................................................. 22 

2.5 FOUR PROMINENT TECHNIQUES TO SOLVE IHTPS .................................................... 23 

2.5.1 LEVENBERG–MARQUARDT METHOD .................................................................................................. 24 

2.5.1.1 Direct problem ............................................................................................................................. 24 
2.5.1.2 Inverse problem ........................................................................................................................... 24 

2.5.1.3 Iterative procedure ...................................................................................................................... 25 
2.5.1.4 Stopping criteria........................................................................................................................... 26 
2.5.1.5 Computational algorithms ........................................................................................................... 27 

vii 



2.5.2. CONJUGATE GRADIENT METHOD ........................................................................................................ 27 
2.5.2.1. Direct problem ............................................................................................................................ 28 
2.5.2.2 Inverse problem ........................................................................................................................... 28 

2.5.2.3 Iterative procedure ...................................................................................................................... 28 
2.5.2.4 Stopping criterion ........................................................................................................................ 30 
2.5.2.5 Computational algorithms ........................................................................................................... 30 

2.5.3 CONJUGATE GRADIENT METHOD WITH ADJOINT PROBLEM FOR PARAMETER ESTIMATION ................ 30 

2.5.3.1 Inverse problem ........................................................................................................................... 31 
2.5.3.2 Sensitivity problem ...................................................................................................................... 31 
2.5.3.3 Adjoint problem ........................................................................................................................... 31 
2.5.3.4 Gradient equation ........................................................................................................................ 32 

2.5.3.5 Iterative procedure of the CG method with adjoint problem .................................................... 33 
2.5.3.6 Stopping criterion for the CG method with adjoint problem..................................................... 33 
2.5.3.7 Computational algorithms for the CG method with adjoint problem ....................................... 34 

2.5.4 CONJUGATE GRADIENT METHOD WITH ADJOINT PROBLEM FOR FUNCTION ESTIMATION ................... 34 

2.5.4.1 Inverse problem ........................................................................................................................... 35 
2.5.4.2 Sensitivity problem ...................................................................................................................... 35 
2.5.4.3 Adjoint problem ........................................................................................................................... 35 
2.5.4.4. Gradient equation ....................................................................................................................... 36 

2.5.4.5 Iterative procedure ...................................................................................................................... 36 
2.5.4.6 Stopping criterion ........................................................................................................................ 37 
2.5.4.7 Computational algorithms ........................................................................................................... 38 

2.6 AIMS OF INTRODUCING THE FOUR PROMINENT METHODS.................................... 38 

CHAPTER 3: EXPERIMENTAL SET UP AND IMPLEMENTATION ..................................... 43 

3.1 INTRODUCTION ...................................................................................................................... 44 

3.2 GENERAL DESCRIPTION ...................................................................................................... 44 

3.3 REQUIRED RESOURCES ........................................................................................................ 45 

3.4 THE FURNACE/DRYER BODY .............................................................................................. 47 

3.5 THERMOCOUPLES ................................................................................................................. 48 

3.6 THE THERMOCOUPLE AMPLIFIER ................................................................................... 49 

3.7 THE INPUT/OUTPUT CARD ................................................................................................... 50 

3.8 THE POWER CONTROLLER UNIT ...................................................................................... 51 

3.9 THE LAMPS ............................................................................................................................... 52 

CHAPTER 4:AN ARTIFICIAL INTELLIGENCE APPROACH TO INVERSE HEAT 

TRANSFER MODELING OF AN IRRADIATIVE DRYER ....................................................... 55 

viii 



4.1 ABSTRACT................................................................................................................................. 56 

4.2 INTRODUCTION ...................................................................................................................... 56 

4.3 EXPERIMENTAL SETUP ........................................................................................................ 58 

4.4 PROBLEM STATEMENT ........................................................................................................ 59 

4.5 ANN APPROACH TO THE PROPOSED IHTP ..................................................................... 61 

4.6 DATA PREPARATION ............................................................................................................. 62 

4.7 NEURAL NETWORK MODELING OF THE RADIATING FURNACE ............................ 63 

4.8 EXPERIMENTAL RESULTS ................................................................................................... 64 

4.9 A SUMMARY OF ADVANTAGES OF THE PROPOSED METHOD ................................. 66 

4.10 CONCLUSION ......................................................................................................................... 66 

CHAPTER 5: A COMPARATIVE ARTIFICIAL INTELLIGENCE APPROACH TO 

INVERSE HEAT TRANSFER MODELING OF AN IRRADIATIVE DRYER ......................... 71 

5.1 ABSTRACT................................................................................................................................. 72 

5.2 INTRODUCTION ...................................................................................................................... 72 

5.3 EXPERIMENTAL SETUP ........................................................................................................ 75 

5.4 PROBLEM STATEMENT ........................................................................................................ 76 

5.5 INTELLIGENT TECHNIQUES APPROACH FOR THE PROPOSED IHTP .................... 77 

5.6 DATA PREPARATION ............................................................................................................. 78 

5.7 INTELLIGENT MODELING OF THE IRRADIATIVE FURNACE/DRYER .................... 79 

5.8 GA-ANN MODELING FOR THE PROPOSED IHTP ........................................................... 79 

5.9 ANFIS ARCHITECTURE ......................................................................................................... 82 

5.10 ANFIS MODELING FOR THE PROPOSED IHTP ............................................................. 83 

5.11 EXPERIMENTAL RESULTS ................................................................................................. 87 

5.12 ADVANTAGES AND COMPARISONS................................................................................. 89 

5.13 CONCLUSION ......................................................................................................................... 90 

CHAPTER 6:A COMPARATIVE APPROACH OF INVERSE MODELLING APPLIED TO 

AN IRRADIATIVE BATCH DRYER EMPLOYING SEVERAL ARTIFICIAL NEURAL 

NETWORKS ..................................................................................................................................... 96 

6.1 ABSTRACT................................................................................................................................. 97 

ix 



6.2 INTRODUCTION ...................................................................................................................... 97 

6.3 EXPERIMENTAL SETUP ...................................................................................................... 100 

6.4 PROBLEM STATEMENT ...................................................................................................... 101 

6.5 INTELLIGENT TECHNIQUES APPROACH TO THE PROPOSED IHTP ..................... 102 

6.6 DATA PREPARATION ........................................................................................................... 102 

6.7 INTELLIGENT MODELING OF THE RADIATING FURNACE ..................................... 103 

6.8 COMPARISON OF A NUMBER OF ANNS TO DISCOVER THE BEST ONE ................ 104 

6.9 GA-ANN MODELLING OF THE PROPOSED IHTP .......................................................... 105 

6.10 EXPERIMENTAL RESULTS ............................................................................................... 108 

6.11 SUMMARY ............................................................................................................................. 111 

6.12 CONCLUSIONS ..................................................................................................................... 112 

CHAPTER 7:COMPARISON OF INVERSE MODELLING AND OPTIMISATION-BASED 

METHODS IN THE HEAT FLUX ESTIMATION PROBLEM OF AN IRRADIATIVE 

DRYER/FURNACE: A SINGLE-INPUT/SINGLE-OUTPUT STUDY ..................................... 118 

7.1 ABSTRACT............................................................................................................................... 119 

7.2 INTRODUCTION .................................................................................................................... 119 

7.3 INVERSE MODELLING VS. OPTIMIZATION-BASED ESTIMATION ......................... 121 

7.4 EXPERIMENTAL SETUP ...................................................................................................... 122 

7.5 SOLUTIONS TO A REAL PROBLEM USING ARTIFICIAL INTELLIGENCE ............ 124 

7.5.1 IDENTIFYING THE INVERSE MODEL, FI ............................................................................................... 125 

7.5.2 IDENTIFYING THE DIRECT MODEL, FD ............................................................................................... 125 
7.5.3 OPTIMIZATION ALGORITHM .............................................................................................................. 126 

7.5.3.1. Harmony Search ....................................................................................................................... 126 

7.6 EXPERIMENTAL RESULTS ................................................................................................. 128 

7.6.1 DIRECT MODEL RESULTS ................................................................................................................... 128 

7.6.2 OPTIMISATION-BASED RESULTS......................................................................................................... 130 

7.7 COMPARISON AND DISCUSSION ...................................................................................... 132 

7.8 CONCLUSION ......................................................................................................................... 134 

x 



CHAPTER 8:AN ARTIFICIAL INTELLIGENCE SOLUTION FOR HEAT FLUX 

ESTIMATION USING TEMPERATURE HISTORY; A TWO-INPUT/TWO-OUTPUT 

PROBLEM ...................................................................................................................................... 138 

8.1 ABSTRACT............................................................................................................................... 139 

8.2 INTRODUCTION .................................................................................................................... 139 

8.3 TITO INVERSE MODELLING PROBLEM ......................................................................... 141 

8.4 EXPERIMENTAL SETUP ...................................................................................................... 141 

8.5 SOLUTIONS TO A REAL PROBLEM USING ARTIFICIAL INTELLIGENCE ............ 143 

8.5.1 IDENTIFYING THE INVERSE MODEL, FI .............................................................................................. 143 
8.5.1.1 Data preparation ........................................................................................................................ 143 

8.6 EXPERIMENTAL RESULTS ................................................................................................. 144 

8.7 CONCLUSIONS ....................................................................................................................... 148 

CHAPTER 9:CONCLUSION ........................................................................................................ 153 

9.1 INVERSE MODELLING OF ANNS: SISO STUDY ............................................................. 154 

9.2 ANNS, GA-ANNS AND THE ANFIS APPROACH OF IHTPS: SISO STUDY .................. 155 

9.3 DIFFERENT APPROACH BY ANNS TO INVERSE MODELLING OF THE STUDIED 

FURNACE: SISO STUDY ............................................................................................................. 156 

9.4 COMPARISON BETWEEN INTELLIGENT METHODOLOGIES AND CLASSICAL 

METHODS: SISO STUDY ............................................................................................................ 157 

9.5 ANN INVERSE MODELLING: TITO STUDY ..................................................................... 157 

9.6 FUTURE WORK ...................................................................................................................... 158 

APPENDIX A: CHAPTER 6 APPENDIX .................................................................................... 159 

APPENDIX B:CHAPTER 7 FIRST APPENDIX ......................................................................... 164 

APPENDIX C: CHAPTER 7 SECOND APPENDIX ................................................................... 167 

xi 



Chapter 1 

INTRODUCTION 



Chapter1: Introduction 

1.1 Introductory background 

Heat transfer involves the transport of energy due to temperature gradients. There are three 

different modes of heat transfer: Conduction in which temperature gradients arise in solid or 

fluid media;  Convection where energy is transferred between a surface and a passing fluid 

that are not at thermal equilibrium; and radiation in which electromagnetic waves are emitted 

from surfaces at finite temperatures [1, 2].  

Heat transfer remains a significant field of interest to engineering researchers, designers, 

developers, and manufacturers. Applications include a wide variety of systems and 

components of energy devices used in power plants, heat exchangers, high performance gas 

turbines and other power conversion systems. In addition, applications are ubiquitously found 

in chemical processes, general manufacturing, bio-heat transfer, electronic cooling, comfort 

heating and cooling towers [3]. 

Thermal processes play an important role in plethora engineering applications. Energy 

consumption resulting from thermal processes has always been a major concern in industry, 

hence a significant amount of research has been undertaken to devise the most efficient 

methods to minimize the energy consumption of thermal process [4-6]. The most important 

criterion which strongly influences our ability to reduce the energy consumption of thermal 

processes is the accuracy of the model of thermal processes.  In other words, to what extent 

the model can reliably predict the behavior of thermal systems in order to avoid wasting 

energy, which can help to minimize the production of greenhouse gases and environmental 

footprints [4, 6]. Consequently, many investigations have been undertaken to improve and 

develop robust modeling strategies [7-9] 

Each system needs an efficient and reliable method and model for process identification. The 

main purpose of process modeling is to predict plant behavior and to drive the process to 

operate at its optimal production rate [6]. 

Heat transfer modelling problems can be divided into two separate categories: direct and 

inverse problems [10]. Thermophysical properties, boundary, and initial conditions are all 

known in direct problems.  The purpose of the solution of a direct problem is to determine the 

temperature distribution for a geometrically well-defined domain [11]. Direct heat transfer 

problems are usually considered to be “well-posed”. Conversely, inverse heat transfer 

problems are normally “ill-posed” [10]. In these problems, there is a lack of knowledge in 
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boundary conditions, initial conditions or thermo-physical properties. These unknowns are to 

be estimated using measured temperature data at one or several locations within the domain.  

As a consequence of the ill-posed nature of the problem, unavoidable random errors (noise) 

in the measured data may induce errors which are amplified by several orders of magnitudes 

and the unknowns may be poorly estimated. Hence, inverse heat transfer problems are 

considered to be more “difficult” than direct heat transfer problems [10-13]. 

Industrial heat transfer processes are often highly complex and the modeling of such 

processes is a difficult task because of the large number of physical parameters for the heat 

transfer media [14, 15]. Optimization based (classical methods in some part of the current 

thesis) methods used for such modelling are primarily based on energy balances and rate 

equations which allow us to develop and solve the governing differential equations [16]. 

Unfortunately, these models are quite complex and the resulting highly non-linear differential 

equations are seldom solvable by analytical solutions [14]. As a consequence, numerical 

solutions normally have to be employed [17-22]. 

Additionally, existing  mathematical models are predicated on many assumptions due to the 

complexity of heat transfer systems [18, 21] and many of these simplifications may conflict 

with the real conditions of operation.  Further, many systems are not easily modeled 

mathematically [15] due to anisotropic properties, complex geometries, unknown 

thermodynamics, etc. and such difficulties mean that classical methods may not be suitable.  

A significant body of research on inverse heat transfer problems has accumulated in the past 

thirty or so years [23]. A classical method for the solution of inverse design problems is to 

guess an input for heat flux and then employ mathematical models to check the accuracy of 

the desired temperature distribution. The guessed heat flux is then modified based on 

previous results.  Such methods are known as trial-and-error methods. They are time 

consuming and computationally expensive, in addition, smooth and physically feasible 

solutions are exceedingly difficult to achieve [24]. 

Commonly applied techniques applied to solve inverse heat transfer problems are the least 

squares methods modified by the addition of regularization. Unfortunately, the regularization 

imposes more restrictions on the permissible solutions. These iterative algorithms require 

multiple solutions of the governing equations. In addition, a complete data base is required 

which makes them non-recursive [25]. 
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In classical methods, detailed physical property data are normally required [23, 26, 27]. In 

many cases the measurement of such physical properties is extremely difficult - if not 

impossible. Moreover, in order to use all classical inverse models, the direct problem must be 

solved first. This constraint of repeated solutions of the direct problem can produce 

significant computing errors and calculations may be excessively time-consuming [10, 23, 

24, 26-28]. 

In such situations, new methods such as “Intelligent Techniques” which are based on other 

forms of knowledge about the system may produce more accurate solutions in a reasonable 

time frame. Intelligent techniques exploit experimental data rather than mathematical 

equations, consequently detailed knowledge of physical properties may not be necessary. 

Intelligent techniques are able to model complex systems without the need for complex 

mathematical models.  Input and output data are the sole requirement for the application of 

“Intelligent Techniques” to model systems. This is the principal reason that many researchers 

adopt intelligent techniques for the analysis of complex systems [29]. They can be also 

employed to avoid time consuming calculations. 

1.2 Literature review and significance/contribution  

1.2.1 Inverse heat transfer problems 

Applications for a diverse array of inverse heat transfer problems (IHTP) have been increased 

in many branches of engineering especially in chemical, mechanical and aerospace 

engineering [30]. IHTPs are typically ill-posed in a mathematical sense and  the solution of 

those problems are difficult, in contrast to the standard heat transfer problems which are 

normally well-posed [30]. 

The solution of a well-posed problem should satisfy three conditions: the solution must exist, 

unique and stable. Conversely, the existence of solution may be proved by physical reasoning 

but IHTPs are extremely sensitive to the existence of errors in measured data.  Consequently, 

to satisfy stability condition, special techniques are needed in IHTPs [11, 31, 32]. An inverse 

problem can be solved when it is reformulated as an appropriate well-posed problem.  
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Application areas of inverse heat transfer: 

• Estimation of thermo-physical properties of material [11, 26, 33, 34]. 

• Estimation of bulk radiation properties and boundary conditions in absorbing, 

emitting and scattering semi-transparent materials [11, 35-40]. 

• Control of the motion of the solid liquid interface during solidification [11, 41, 42]. 

• Estimation of inlet condition and boundary heat flux in forced convection inside ducts 

[11]. 

• Estimation of interface conductance between periodically contacting surfaces [11, 

43]. 

• Monitoring the radiation properties of reflecting surfaces of heaters and cryogenic 

panels [11, 31, 32]. 

• Estimation of heat release during friction of two solids [11, 31, 32]. 

• Estimation of reaction function [11, 44]. 

• Control and optimization of the curing process of rubber [11]. 

• Estimation of the boundary shapes of bodies [11]. 

• Estimation of the temperature or heat rate distribution within the combustion region 

[23] 

• Estimation of source term or temperature distribution in radiative heat transfer [23, 

25, 27, 39, 45, 46]. 

1.2.2 Literature survey in classical (optimization based) methods 

In this review, several classical methods in inverse heat transfer have been surveyed in order 

to find the most prominent methods employed in the literature: 

Li [28] presented an approach for the estimation of the source term of two-dimensional 

cylindrical absorbing, emitting and scattering gray medium. Minimization of the square of 

errors was employed in order to solve inverse problems. Park and Yoo [37] considered an 

inverse radiation problem of determining the time-varying strength of a heat source. In their 

study radiation and conduction occurred simultaneously. A conjugate gradient method was 

employed to solve inverse problems. Fan et al. [23] presented a new inverse analysis in order 

to estimate the heat rate and temperature distributions in combustion region from the 

information of the temperature and heat flux profiles of wall elements in that system. They 

employed the Monte-Carlo method to solve direct problems and the conjugate gradient 
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method for inverse use. Park and Lee [47] employed the modified conjugate gradient method 

to determine the time-varying strength of a heat source from temperature measurements in 

three dimension participating mediums where radiation and conduction occurred 

simultaneously. Lu and Hsu [40] conducted RMC (Reverse Monte Carlo method) for 

transient radiative transfer process within absorbing, scattering and non-emitting participating 

media. This method took up much less computational time than the Monte Carlo method. 

Chen and Wu [26] used the finite difference method in conjunction with the least-squares 

cubic spline and temperature measurements to predict the distribution of the heat transfer 

coefficient on a surface exposed to a moving fluid. Pourshaghagh et al. [36] presented an 

algorithm for inverse design of radiative furnaces filled by a scattering medium. Radiative 

heat flux solved the issues by means of Modified Discrete Transfer Method (MDTM) using 

the correction factors and for inverse designs, they employed conjugate gradient method. Kim 

and Baek [38] solved an Inverse Conduction-Radiation problem in a two-dimensional 

concentric cylindrical absorbing, emitting and isotropically scattering medium. They 

employed the finite-volume method for direction and Levenberg-Marquardt method for 

inverse problems. The direct problem was to calculate the total heat flux on one design 

surface and the inverse problem was to estimate boundary temperature on heater surface and 

resulting total heat flux on the heater and design surface. Rukolaine [27] presented the adjoint 

problem method in iterative regularization with Tikhonov and parametric inverse heat 

transfer problems in radiation. During their method, regularization is first applied to an 

original inverse problem and then regularization was fulfilled by solving the direct problem. 

The adjoint problem becomes linear, even if the original was nonlinear.  Mossi et al. [48] 

worked on an inverse boundary design problem which involved convection and radiation heat 

transfer. They found the heat flux distribution required on heaters located on the top and side 

walls of a two-dimensional enclosure. Truncated Singular Value Decomposition (TSVD) was 

used in order to solve that inverse problem.  Liu et al. [35] presented an inverse radiation 

analysis for determining the three dimensional temperature field. The forward Monte Carlo 

method was used to describe the radiative energy propagation. The inverse problem was 

formulated as an ill-posed matrix equation and was solved by the least square QR 

decomposition (LSQR) method. The direct problem was to find the exit radiation energy 

received by CCD cameras at the boundary surfaces for unknown temperature field and 

radiative properties. In the inverse problem, the temperature field was regarded as unknown. 

Wang et al. [49] presented a backward Monte Carlo method to determine the three-

dimensional (3-D) temperature distribution in a large rectangular enclosure containing the 
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participating medium. For the inverse problem, the temperature distribution was regarded as 

unknown and the inverse problem was solved by the least square conjunction gradient 

(LSQR) method. 

Commonly used techniques to solve inverse heat transfer problems are the least squares 

methods modified by the addition of regularization. Regularization imposes more stringent 

restrictions on the permissible solutions. The iterative algorithms require repeated solutions 

of the governing energy transfer equations[25]. 

The classical non trial-error based methods such as conjugate gradient (CG) and Levenberg-

Marquardt are capable of estimating the solution in short time in comparison to trial-error 

based methods [50] but the resulting mathematical problems are challenging and must be 

solved simultaneously. In addition, if the initial guess is poor, an infeasible solution may be 

obtained or in a worse case, the solution may not be convergent [51]. In such instances, non 

trial-error based methods can only provide a local minimum solution depending on the initial 

value [51]. As an alternative to classical non trial-error based methods, evolutionary methods, 

such as genetic algorithms have been received increased attention because of their ease of 

coding and superior convergence characteristics when applied in non-linear optimization 

problems. The results were promising but some deficiencies have been observed in genetic 

algorithms (GA).  Moreover, GA and other evolutionary algorithms require large populations 

and involve long computing times for convergence which make them inappropriate for many 

inverse heat transfer problems [52]. 

1.2.3 More critical literature review  in classical methods 

A critical review has been conducted in Chapter 2, the great body of this section reviews four 

prominent classical methods to find their constraints and limitations. 

1.2.4 The classical methods limitations 

As mentioned previously, the problems involved in the use of classical methods can be 

categorized as follows: 

• The solution procedure of some of classical methods is based on trial-and-error. The 

probability of error is extremely high for such methods and they are normally time-

consuming [23]. 
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• Iterative methods inherent in other classical methods also incur heavy penalty of long 

time for convergence [27, 28]. 

• Detailed and accurate physical properties are needed in many classical methods.  

Their unavailability makes the solution difficult to achieve (impossible in some cases) 

and necessitate simplified (and often physically unrealistic) assumptions given the 

complexity of heat transfer systems [23]. 

• In order to use classical methods, the direct problem must be solved first.  The 

resulting inverse solution is susceptible to serious computing errors and time-

consuming calculations are required [23]. 

1.2.5 A survey on employing intelligent techniques in heat transfer 

Intelligent techniques are accepted as a technology offering an alternative way to tackle 

complex and ill-defined problems. Intelligent techniques have also been used in system 

modeling [23], control [23], robotics [53], forecasting [53, 54], power systems [53] and 

optimization [53]. 

 Cortés et al. used an Artificial Neural Network (ANN) to solve an inverse heat transfer 

problem. The problem involved a heat conduction problem with internal heat source in 

cylindrical coordinates [55]. Mittal and Zhang used ANN for real-time calculations of the air 

properties required in drying of agricultural and food materials, and for ventilation of farm 

buildings [54]. Bhattacharjee and Kothari used ANN to predict of thermal residence of textile 

fabrics [56]. Spieker et al. used Neural Network  for modeling of several thermal processes 

[6]. Radhakrishnan and Mohamed worked on developing a neural network based soft sensor 

for online estimation of the composition variables in the hot metal and slag in a blast furnace 

[57]. Fan et al. presented a new inverse radiation analysis for estimating the heat rate and 

temperature distributions in the combustion region from the information of the temperature 

and heat flux profiles of wall elements in the system [23]. Sablani and Shafiur Rahman 

presented an ANN model for the prediction of thermal conductivity of food as a function of 

moisture content, temperature and apparent porosity [58]. Hernández et al. proposed a 

predictive model for heat and mass transfer using ANN to obtain online predictions of 

temperature and moisture kinetics during the drying of cassava and mango [59]. Sablani et al. 

presented ANN models to allow prediction of the convective heat transfer coefficient at the 

surface of a cube and semi-infinite plate from measurement of the temperature-time history 

inside the solid body [60]. Pedreñ-Molina et al. applied neural architecture to model and 
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predict the sample temperature and moisture content evolution in microwave assisted drying 

processes during a long time interval [16].  Shiguemori et al. used a NN based inverse 

procedure from satellite data, non-linear function estimation, to infer vertical temperature 

profiles [61]. Chen et al. proposed an overlapped type of local neural network to improve 

accuracy of the heat transfer coefficient estimation of the supercritical carbon dioxide [15]. 

Scalabrin et al. studied on the heat transfer modeling of flow boiling inside horizontal tubes at 

saturation conditions [62]. Yuzgec developed a non-linear predictive control technique to 

determine the optimal drying profile for a drying process [63]. Romeo and Gareta presented 

the methodology of NN design and application for a biomass boiler monitoring and pointed 

out the advantages of NN in these situations [53].  Hakeem et al. developed ANNs model for 

the prediction of temperature profiles and temperatures for a vertical thermo siphon reboiler 

[64]. Wu et al. employed an ANN to predict the performance of a gas cooler in a carbon 

dioxide trans-critical air conditioning system. The well-trained ANN was used to predict the 

effects of the five input parameters individually [65]. Agyare et al. employed ANN to 

estimate saturated hydraulic conductivity [66]. Sun presented an ANN for improving the 

accuracy of simplified hot-plate method used for measuring material thermal conductivity 

[67]. Tahavvor and Yaghoubi used an ANN to determine natural convection heat transfer and 

fluid flow around a cooled horizontal circular cylinder having constant surface temperature 

[68]. Varol et al. used an ANFIS temperature and flow field due to buoyancy-induced heat 

transfer in a partially heated right-angle triangular enclosure [69]. 

1.2.6 Advantages of intelligent technique based methods in heat transfer 

Intelligent techniques allow computers to ‘make decisions’ by interpreting data and selecting 

amongst alternatives, and they may prove more useful and simpler to apply than numerical 

methods.  What is required for setting up such a system is data that represent the past history 

and performance of the real system and a selection of a suitable model.  The performance of 

the selected models should be tested with the data from the past history of the real system. 

The reasons for the lead scientist to use intelligent techniques in heat transfer applications 

can be categorized as follows: 

• Intelligent techniques are generic techniques for mapping non-linear 

relationships between inputs and outputs without knowing the details of these 

relationships 
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• Intelligent techniques are able to learn and generalize the relationship in 

complex data sets 

• Intelligent techniques are much faster than classical methods 

• Intelligent techniques can handle more than two variables to predict two or 

more outputs. 

Intelligent techniques are good for tasks involving incomplete data sets, fuzzy or incomplete 

information, and for highly complex and ill-defined problems. 

In the past three decades, a large number of computer based algorithms have been developed.  

Many problems have been solved using these algorithms (especially in engineering) which 

were difficult to deal with using conventional mathematical algorithms. These algorithms are 

principally based on models of human intelligence; therefore, they are mainly known as 

intelligent technique methodologies. They generally involve very simple computational steps 

repeated over a very large number of computational cycles. Clearly, they present a different 

paradigm to conventional mathematical algorithms involving the numerical solutions to 

differential equations [70]. 

An important area of application of these soft computing tools lies in thermal engineering 

problems. These problems were usually solved by traditional hard computing methods. 

Unfortunately, traditional methods are often not robust and the resulting model error renders 

them inappropriate for the solution of new complex problems. New complex challenges are 

coming from the desire to solve intractable problems. Steady-state problems are rapidly 

replaced by dynamic ones thereby changing our needs for new solutions when dealing with 

control, optimization dynamics and system performance problems [70]. 

Many recent studies have confirmed that intelligent techniques show promising results to deal 

with many types of aforementioned complexities. Several significant reasons and advantages  

have stimulated this interest in the application of intelligent techniques to solve a diverse 

suite of problems [70], namely: 

1. Pattern recognition:  Inherent relationships between any set of input and output data 

can be recognized precisely by intelligent techniques. This ability is completely 

independent of physical models. Uncertain and noisy input output data, nonlinearity 

of relationships and multiple variables can not affect the exactness of intelligent 

techniques [70]. 
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2. Fault tolerant: the large number of processing parts in the structure of intelligent 

techniques and benefits of parallel data processing make intelligent techniques a fault 

tolerant methodology [70]. 

3. Ease of extension to dynamic modeling: The learning procedure of intelligent 

techniques enables them to adapt to changes in parameter, as a result, intelligent 

techniques are able to deal with time-dependent dynamic modeling [70]. 

4. Ease of incorporating with other methodologies: This characteristic enables intelligent 

techniques to incorporate with fuzzy logic, GA to improve their ability to deal with 

significantly more complex thermal processes [70]. 

Three reasons have been proposed to explain this increased interest in using intelligent 

techniques in thermal and energy related process modeling: 

1. Fundamental technical knowledge has lagged behind industrial requirements in the 

constantly increasing complexity of the field of application in thermal engineering 

processes. Thus intelligent techniques as new model-free paradigms are able to 

provide improved solution to meet the demand [70]. 

2. Industrially relevant thermal problems often involve a large number of state variables 

coupled with complex geometries and their interactions. Classical (optimization 

based) methods are often restricted to dealing with a small part of the broad spectrum 

of problems required in modern critical applications.  Consequently experimentally 

based solutions have played important roles in the progress of thermal science and 

engineering [70]. 

3. Considerable recent advances in the application of various ANNs and their delivery 

excellent results has attracted the attention of a considerable number of thermal 

engineers to employ the ANN analysis to critical and challenging thermal problems 

[70]. 

1.2.7 Application to problems where radiation provides the dominant energy 

transfer mode 

Despite the fact that thermal radiation is the most important heat transfer mechanisms in 

high-temperature equipment (e.g. furnaces, high temperature reactors, etc), inverse radiation 

problems are rarely addressed (in contrast to inverse heat conduction problems). 

An obvious reason for this lack of attention is the fact that radiation is a significantly more 

complex phenomenon than conduction and convection. The nature of the integro-differential 
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equation that governs radiative heat transfer defies easy solutions even for direct problems. 

Thus, inverse radiation problems that have been solved to date are rather simple cases. 

Because of aforementioned characteristics of radiation, it was decided to focus on inverse 

radiation heat transfer as the key area for the current thesis.. 

1.3 Research gap 

In this research, several issues were surveyed involving inverse heat transfer problems. First, 

analytical and numerical methods were observed to be time-consuming and the resulting 

solutions are not accurate in many instances, especially for radiation dominant problems.  

The spectrum of classical (optimization based) techniques were investigated ; it was noted 

that the need for extensive and accurate physical property and repeated solutions of a direct 

problem as a mandatory step in the iterative solution process significantly increases the 

probability of error in classical methods especially for the radiation mechanism. Moreover, 

the recent application of intelligent techniques to a variety of heat transfer problems confirm 

their applicability, ease of use to solve the difficult inverse problems. 

However, the above addressed issues did not consider “Intelligent Techniques” as alternative 

methods to solve inverse heat transfer problems, which would be crucial in the solution of 

those problems (specifically in radiation problems). Most studies focused on improvements to 

classical methods and focused on the use of intelligent techniques in other cases rather than 

inverse problems. The inverse heat transfer problems could be solved more efficiently with 

the aid of “Intelligent Techniques”. 

1.4 Research questions 

The goal of this study is to research and develop intelligent techniques as an alternative 

technique for the solution of inverse heat transfer problems, specifically those involving 

radiation as the dominant mode of heat transfer.  In order to conduct this research, at least one 

experiment should be set up to verify the merit of the developed theory. The details of this 

setup is addressed in Chapter 3.  

1.5 Aims/Objectives of the project 

• To Build a furnace/dryer in which the experimental investigation will be conducted to 

assess the capability of the proposed solution methodologies. 
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• To define a complicated SISO (single-input single-output) inverse heat transfer 

problem and check the capability of different intelligent techniques to solve that. 

• To define complicated MIMO (multi-input multi-output) inverse heat transfer 

problems and check the capability of different intelligent techniques to solve those. 

• To find the best method among different intelligent techniques and find/devise an 

appropriate method in order to model/study inverse heat transfer problems dominated 

by the radiation mechanism using experimental data in both SISO and MIMO modes. 

• To validate the merit of the developed theoris by comparison with experimental data. 

 

1.6 Thesis organization 

To achieve afore-mentioned objectives, the appropriate experimental set-up was constructed 

and is described in Chapter 3. The main body of the thesis is divided into three parts: 

 a. To check the possibility of intelligent techniques in the inverse heat transfer modeling 

problems of the dryer (Chapters 4 and 8),  

 b. To find the optimal intelligent techniques for the solution of the IHTPs of studied setup 

(Chapters 5 and 6), and to compare between classical methods and intelligent techniques in 

IHTPs of employed rig (Chapter 7). 

The research can be also divided in two other categories: 

The single input-single output (SISO) in chapters 4 to 7 and the two input- two output (TITO) 

study (Chapter 8). 

In chapters 4 and 8 in SISO and TITO studies respectively, the possibility of Artificial Neural 

Networks (ANNs) was checked and promising results achieved. In chapters 5 and 6 the best 

possible intelligent techniques were tested to discover the optimal one in terms of accuracy 

and computation time. In chapter 7, a comparison study between intelligent techniques and 

optimization based method was conducted. 
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2.1 Introduction 

A quick review in Chapter 1 revealed that the complex nature of inverse heat transfer 

problem (IHTPs) was responsible for fewer studies the subject. Since the most common 

solutions for solving IHTPs are optimisation based methods, in the current chapter, a 

comprehensive literature review is conducted to find the deficiencies of such methods. The 

review demonstrates that some defects make these methods time consuming and inaccurate, 

especially for irradiative thermal systems. 

 2.2 General concept 

When all information about a thermal model is known, including boundary and initial 

conditions, governing equations, thermophysical properties and all relevant forces, the 

corresponding mathematical problem is considered solvable. If any information is missing, 

the mathematical problem becomes ill-posed and is categorised as an indirect or inverse 

problem (IP) because its solution usually starts with the results, and the causes are calculated 

subsequently. IPs are solvable if sufficient additional information, such as measurement data, 

can be provided [1, 2]. 

2.3 Inverse heat transfer problems 

When unknown quantities appear in the mathematical formulation of a heat transfer model, it 

results in an IHTP. Parameters such as temperature distribution, heat flux and radiation 

intensities are usually measured to find the unknown quantities to solve an IHTP [3, 4]. For 

instance, solving an inverse heat conduction problem (IHCP) usually involves estimating an 

unknown boundary condition (usually heat flux) by measuring the temperature history in the 

relevant domain. Thus, in a direct heat transfer problem, the cause (boundary condition) is 

known and the effect (temperature history) should be determined; however, in an IHTP, the 

cause should be estimated based on some knowledge of the effect [5]. 

2.4 Classification of IHTPs 

IHTPs are grouped into two categories. The first category is based on the nature of the heat 

transfer process [3, 5]: 

• inverse heat conduction problems, 

• inverse heat convection problems, 
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• inverse heat surface radiation problems, 

• inverse radiation problems in participating media, 

• inverse heat transfer problems in conduction and convection simultaneously, 

• inverse heat transfer problems in conduction and radiation simultaneously, 

• inverse heat transfer problems of phase changing. 

The second classification is based on the type of unknown quantity in the mathematical 

equation of the IHTP [3, 5]: 

• inverse heat transfer of boundary conditions 

• inverse heat transfer of thermophysical properties 

• inverse heat transfer of initial condition 

• inverse heat transfer of source term 

• inverse heat transfer of geometric. 

Inverse problems can be further subdivided into function estimation problems and parameter 

estimation problems. If information on the functional form of the unknown quantity is 

available, such as thermal parameters, a given IHTP can be solved by simply estimating a 

few unknown parameters. Conversely, if no information is obtainable on the functional form 

of the unknown quantity, the IHTP is considered a function estimation problem[6-8]. 

2.5 Four prominent techniques to solve IHTPs 

In general, IHTPs are solved by minimising an objective function using some stabilisation 

techniques in the estimation part of the employed procedure: 

𝑆 = (𝑌 − 𝑇)𝑇(𝑌 − 𝑇) (2-1) 

where S represents the objective function and Y and T represent the measured and estimated 

quantities (usually temperature). The estimated quantity is obtained from the solution of the 

corresponding direct problem [1, 3, 4, 9]. 

Several mathematical techniques have been proposed in the literature to solve IHTPs. This 

thesis describes four techniques that are sufficiently general, straightforward and vigorous to 

deal with the difficulties associated with solving IHTPs. 
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2.5.1 Levenberg–Marquardt Method 

The Levenberg–Marquardt (LM) technique has been employed to solve a variety of inverse 

problems, including IHTPs [[6, 7, 10-15]. To use this technique, a sensitivity matrix J is 

calculated: 

𝐽𝑖𝑗 = 𝜕𝑇𝑖
𝜕𝑃𝑗

  (2-2) 

where: 𝐽𝑖𝑗 is the sensitivity coefficient; i=1,2,…, I; j=1,2,…,N; I is the number of 

measurements; N is the number of unknown parameters; 𝑇𝑖 is the ith estimated quantity 

(usually temperature); and 𝑃𝑗 is the jth unknown parameter. The sensitivity matrix is also 

employed in a few other methods. 

The LM method can be used for nonlinear parameter estimation problems, as well as linear 

problems that are too ill-conditioned to solve using typical linear methods. There are five 

steps involved in solving an IHTP using the LM method, including the direct problem, 

inverse problem, iterative procedure, stopping criteria and computational algorithms. 

2.5.1.1 Direct problem 

The direct problem is usually associated with the physical modelling of each thermal system, 

and it is the same as the inverse problem. However, in the direct problem, the unknown 

parameter is deemed to be known based on an initial guess, which is improved in an iterative 

procedure. 

2.5.1.2 Inverse problem 

The inverse problem is the same as the direct problem, but the unknown quantity remains 

unknown. To solve an IHTP using this method, Equation 2-1 should be reformulated as 

follows: 

S(P)= ∑ [Yi-Ti (P )]2I
i=1   (2-3) 

here, S is the sum of the squares error or objective function, P=[P1,P2,…,PN] is the vector of 

unknown parameters, Ti (P)=T (P, ti) is the estimated unknown quantity at time ti (from the 

solution of the direct problem), where I ≥ N. The matrix form of  Equation 2-3 is: 

S(P)=[Y-T(P)]T[Y-T(P)]  (2-4) 
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2.5.1.3 Iterative procedure 

To minimise the least squares norm in Equation 2-1,we find the derivatives of S(P) with 

respect to the unknown parameters: 

𝜕𝑆(𝑃)
𝜕𝑃1

= 𝜕𝑆(𝑃)
𝜕𝑃2

= ⋯ = 𝜕𝑆(𝑃)
𝜕𝑃𝑁

= 0  (2-5) 

The matrix format of Equation 2-5 is: 

𝛻𝑆(𝑃) = 2[− 𝜕𝑇𝑇(𝑃)
𝜕𝑃

][𝑌 − 𝑇(𝑃)] = 0  (2-6) 

[𝜕𝑇𝑇(𝑃)
𝜕𝑃

] =

⎣
⎢
⎢
⎢
⎢
⎡

𝜕
𝜕𝑃1

𝜕
𝜕𝑃2
⋮
𝜕

𝜕𝑃𝑁⎦
⎥
⎥
⎥
⎥
⎤

[𝑇1 𝑇2 ⋯ 𝑇𝐼]  (2-7) 

The sensitivity matrix is: 

𝐽(𝑃) = �∂𝑇𝑇(𝑃)
∂𝑃

�
𝑇

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

∂𝑇1
∂𝑃1

∂𝑇1
∂𝑃2

∂𝑇1
∂𝑃3

⋯ ∂𝑇1
𝜕𝑃𝑁

∂𝑇2
∂𝑃1

∂𝑇2
∂𝑃2

∂𝑇2
∂𝑃3

… ∂𝑇2
∂𝑃𝑁

∂𝑇3
∂𝑃1

∂𝑇3
∂𝑃2

∂𝑇3
∂𝑃3

⋯ ∂𝑇3
∂𝑃𝑁

⋮ ⋮ ⋮ ⋱ ⋮
∂𝑇I
∂𝑃1

∂𝑇I
∂𝑃2

∂𝑇I
∂𝑃3

… ∂𝑇I
∂𝑃𝑁⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

  (2-8) 

Thus, Equation 2-6 becomes: 

−2𝐽𝑇(𝑃)[𝑌 − 𝑇(𝑃)] = 0  (2-9) 

The abovementioned equation needs to be solved iteratively. To this end, we employ the 

Taylor series expansion to linearize the vector of the estimated parameters: 

𝑇(𝑃) = 𝑇(𝑃𝑘) + 𝐽𝑘(𝑃 − 𝑃𝑘), (2-10) 

where T(Pk) and Jk are the estimated unknown quantities and the sensitivity matrix calculated 

in iteration k, respectively. Equation 2-10 can then be substituted into Equation 2-9: 

𝑃𝑘+1 = 𝑃𝑘 + [(𝐽𝑘)𝑇𝐽𝑘]−1(𝐽𝑘)𝑇[𝑌 − 𝑇(𝑃𝑘)] (2-11) 
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The Gauss method (Equation 2-11) is the iterative procedure of the LM method. Actually, it 

is an approximation of the Newton–Raphson method. In Equation 2-11, 𝐽𝑇𝐽 should not be 

singular or: 

|𝐽𝑇J| ≠ 0 (2-12) 

The equation (2-12) is called the identifiability condition. If this condition exists, the 

unknown parameter P cannot be determined using the iteration procedure of Equation 2-11, 

and the problem is ill-conditioned. Obviously, all IHTPs are ill-conditioned. The LM method 

is an alternative to the iterative procedure to overcome the aforementioned constraint: 

𝑃𝑘+1 = 𝑃𝑘 + [(𝐽𝑘)𝑇𝐽𝑘 + 𝜇𝑘𝛺𝑘]−1(𝐽𝑘)𝑇[𝑌 − 𝑇(𝑃𝑘)] (2-13) 

where 𝜇𝑘 is a damping parameter and Ω𝑘is a diagonal matrix. The matrix of 𝜇𝑘Ω𝑘 is used to 

decrease instabilities caused by the ill-conditioned nature of IHTPs. At the start of the 

iterative procedure, after the first guess, the abovementioned matrix is made larger. In this 

step, 𝐽𝑇𝐽 does not need to be non-singular[3, 4]; therefore, the LM tends to be the steepest 

decent method. After some initial iterations, 𝜇𝑘 is gradually reduced; the LM method then 

tends to act as the Gauss method (Equation 2-13). 

2.5.1.4 Stopping criteria 

As the stopping criteria for the LM method, Dennis and Schnable [16] suggested the 

following criteria: 

𝑆(𝑃𝑘+1) < 𝜀1 (2-14.a) 

‖(𝐽𝑘)𝑇[𝑌 − 𝑇(𝑃𝑘)]‖ < ε2 (2-14.b) 

‖𝑃𝑘+1 − 𝑃𝑘‖ < ε3 (2-14.c) 

where 𝜀1, 𝜀2 and 𝜀3 are user-prescribed tolerances and ‖𝑥‖ = (𝑥𝑇𝑥)1/2. Details of the 

stopping criteria can be found in [16]. 
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2.5.1.5 Computational algorithms 

Several diagonal matrices have been described in the literature[5, 16]. As such, the LM 

method can be configured in various ways to solve an IHTP. In this study, we selected the 

MRQMIN (details in [17]) method: 

𝛺𝑘 = 𝑑𝑖𝑎𝑔𝑔[(𝐽𝑘)𝑇𝐽𝑘]                                                                                                    (2-15.a) 

The corresponding computational algorithms are shown in Figure 2-1. 

Make an initial guess 
for P (the unknown 

parameter)

Solve the direct 
problem by the 

initial guess to find
 )( kpT K

KK andMatrixJPS

Calculate

Ω

),(

:

Solve the direct 
problem  to find

and  )( 1+kPT )( 1+kPS

)()( 1 kk PSPS ≥+
Yes

No

kk µµ 1.0→
Stopping criteria 

reached?

No

is the optimum
)( kpT

132

1

−→

+

eqfrom

P

find
k

kk µµ 10→

 

Figure 2-1: Computational algorithms of the LM method 

2.5.2. Conjugate gradient method 

The conjugate gradient (CG) method is another powerful method for solving IHTPs—

especially those involving parameter estimation. In the CG method, a suitable step size is 

selected in each iteration[18-21]. This step size helps the method minimise the objective 

function. The step size is taken along a descent, and the descent can be calculated as a linear 

combination of the negative gradient in one iteration with the direction of descent in the 

previous iteration [5]. The linear combination should be made such that the consequential 

angle is less than 90°. Many convergence methods have been described in the literature[22-

25]. Similar to the LM method, the CG method involves five steps, including the direct 

problem, inverse problem, iterative procedure, stopping criterion and computational 

algorithms, which are described below. 
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2.5.2.1. Direct problem 

The direct problem is related to the physical nature of the problem. There is a time-varying 

unknown parameter in all direct problems, which makes the problems ill-posed. The 

unknown parameter should be determined using an iterative procedure. 

2.5.2.2 Inverse problem 

Similar to the LM method, to solve the inverse problem, parameter estimation can be 

performed by minimising the ordinary least squares norm: 

S(𝑃) = [𝑌 − 𝑇(𝑃)]𝑇[𝑌 − 𝑇(𝑃)] (2-4) 

2.5.2.3 Iterative procedure 

To minimise S(P) using the CG method, we employ the following iterative procedure: 

Pk+1=Pk-βkdk, (2-15.b) 

where βk is the search step size, d 𝑘 is the direction of descent and k is the number of 

iterations. To find the direction of descent, we conjugate the gradient direction [∇𝑆(𝑃𝑘)] and 

the direction of the previous iteration (d 𝑘−1) as follows: 

d 𝑘=𝛻𝑆(𝑃𝑘) + 𝛾𝑘d k-1  (2-16) 

Many different expressions are available in the literature for expressing the conjugate 

coefficient (𝛾𝑘). Two such expressions are Polak–Ribiere[26] and Fletcher–Reeves[23], 

which are given by Equations 2-17 and 2-18, respectively: 

𝛾𝑘 =
∑ ���∇𝑆�𝑃𝑘��𝑗�∇𝑆�𝑃𝑘�−∇𝑆�𝑃𝑘−1��𝑗��𝑁

𝑗=1

∑ ��∇𝑆�𝑃𝑘��𝑗
2�𝑁

𝑗=1
, (2-17) 

𝛾𝑘 =
∑ ��∇𝑆�𝑃𝑘��𝑗

2�𝑁
𝑗=1

∑ ��∇𝑆�𝑃𝑘−1��𝑗
2�𝑁

𝑗=1
 ,  (2-18) 

where 𝛾0 = 0 for K=0. To obtain the gradient direction using Equation 2-4 with respect to 

the unknown parameter P, this equation can be rewritten as follows: 

∇𝑆(𝑃𝑘)=-2(𝐽𝑘)𝑇[Y-T(𝑃𝑘)] (2-19) 
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where 𝐽𝑘 is one component of the sensitivity matrix in Equations 2-7 and 2-8: 

[∇𝑆(𝑃𝑘)]𝑗 = −2 ∑ 𝜕𝑇𝑖
𝑘

𝜕𝑃𝑗

𝐼
𝑖=1 �𝑌𝑖-𝑇𝑖(𝑃𝑘)� (2-20) 

A review of the literature shows that, for nonlinear problems, the Polak–Ribiere expression 

provides better convergence. Most, if not all, IHTPs are nonlinear; thus, we selected the 

Polak–Ribiere in this study [17, 22]. 

The steepest descent method can be acquired if we substitute 𝛾𝑘 = 0 in Equation 2-15 in all 

iterations. This method is considerably simpler than the CG method, but its convergence time 

is substantially higher[3, 4, 9, 27]. 

By minimising the function 𝑆(𝑃𝑘+1) with respect to β 𝑘 in Equation 2-15, β 𝑘 can be found as 

follows: 

𝑚𝑖𝑛
𝛽𝑘
𝑆�𝑃𝑘+1� = 𝑚𝑖𝑛

𝛽𝑘
[𝑌−𝑇�𝑃𝑘+1�]𝑇[𝑌−𝑇�𝑃𝑘+1�] (2-21) 

By substituting 𝑃𝑘+1 in Equation 2-20, we obtain: 

𝑚𝑖𝑛
𝛽𝑘
𝑆�𝑃𝑘+1� = 𝑚𝑖𝑛

𝛽𝑘
[𝑌−𝑇�𝑃𝑘−𝛽𝑘𝑑𝑘�]𝑇[𝑌−𝑇�𝑃𝑘−𝛽𝑘𝑑𝑘�] (2-22) 

After linearising the vector T�P k − β kd k�  using the Taylor series, we obtain: 

𝛽𝑘 =
∑ ��

𝜕𝑇𝑖
𝜕𝑃𝑘�

𝑇
𝑑𝑘��𝑇𝑖�𝑃𝑘�−𝑌𝑖�𝐼

𝑖=1

∑ ��
𝜕𝑇𝑖
𝜕𝑃𝑘�

𝑇
𝑑𝑘�

2
𝐼
𝑖=1

 (2-23) 

where: 

�𝜕𝑇𝑖
𝜕𝑃𝑘�

𝑇
= � 𝜕𝑇𝑖

𝜕𝑃1
𝑘 , 𝜕𝑇𝑖

𝜕𝑃2
𝑘 , ⋯ , 𝜕𝑇𝑖

𝜕𝑃𝑁
𝑘� (2-24) 

and the matrix form: 

𝛽𝑘 = �𝐽𝑘𝑑𝑘�
𝑇

�𝑇�𝑃𝑘�−𝑌�

�𝐽𝑘𝑑𝑘�𝑇�𝐽𝑘𝑑𝑘�
 (2-25) 
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2.5.2.4 Stopping criterion 

The discrepancy principle is employed to stop the iterative procedure of the CG method. The 

CG method is stopped when: 

S�Pk+1� < ε (2-26) 

The value of ε should be selected such that satisfactory stable solutions are obtained. The 

iterative procedure should be stopped when residuals between the measured and estimated 

unknown quantities are of the same order of magnitude as the measurement errors: 

|𝑌(𝑡𝑡𝑖) − 𝑇(𝑥𝑚𝑒𝑎𝑛𝑠, 𝑡𝑡𝑖)| ≈ 𝜎𝑖 (2-27) 

where 𝜎𝑖 is the standard deviation of the measurement errors at time 𝑡𝑡𝑖. If 𝜎𝑖 is constant, we 

obtain: 

𝜀 = ∑ 𝜎𝑖
2𝐼

𝑖=1 = 𝐼𝜎2 (2-28) 

Details of the aforementioned assumption can be found in [5, 28]. 

2.5.2.5 Computational algorithms 

Figure 2-2 shows the computational algorithms for the CG method. 

Make an initial guess for P (the 
unknown parameter)

Solve the direct problem by the 
initial guess to find
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Figure 2-2: Computational algorithms for the CG method 

2.5.3 Conjugate gradient method with adjoint problem for parameter estimation 

This method is suitable for the function estimation class of IHTPs, which usually involve the 

estimation of coefficients in a function. In continuous problems, Equation 2-4 can be 

rewritten as: 
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𝑆(𝑃) = ∫ [𝑌𝑚(𝑡𝑡) − 𝑇(𝑥𝑚𝑒𝑎𝑠, 𝑡𝑡; 𝑃)]2𝑑𝑡𝑡𝑡𝑓
𝑡=0  (2-29) 

where Y(t) is the measured parameter (such as temperature), T(xmeas, t;P) is the estimated 

parameter at the single measurement location 𝑥𝑚𝑒𝑎𝑠 and 𝑡𝑡𝑓 is the experiment duration.The 

direct problem is the same as those in the aforementioned methods. 

2.5.3.1 Inverse problem 

The inverse problem deals with the estimation of a function’s unknown parameters by 

employing measured data received from a measurement device (such as a sensor) at 𝑥 =

𝑥𝑚𝑒𝑎𝑠. The unknown function is called 𝑔𝑔𝑝𝑝(𝑡𝑡) and is parameterised in a general linear form 

given by: 

𝑔𝑔𝑝(𝑡𝑡) = ∑ 𝑃𝑗𝐶𝑗(𝑡𝑡)𝑁
𝑗=1 . (2-30) 

2.5.3.2 Sensitivity problem 

The sensitivity function ∆𝑇(𝑥, 𝑡𝑡) is defined as the directional derivative of the known 

parameter or function (such as 𝑇(𝑥, 𝑡𝑡)) in the direction of the perturbation of the unknown 

function [28, 29]. It is needed when computing the search step size 𝛽𝑘 in this method. 

To formulate the sensitivity problem, we assume that 𝑇(𝑥, 𝑡𝑡) is perturbed by an amount 

∆𝑇(𝑥, 𝑡𝑡) when the unknown function 𝑔𝑔𝑝(𝑡𝑡) is perturbed by ∆𝑔𝑔𝑝(𝑡𝑡); hence, we obtain: 

∆𝑔𝑔𝑝(𝑡𝑡) = ∑ ∆𝑃𝑗𝐶𝑗(𝑡𝑡)𝑁
𝑗=1 . (2-31) 

The sensitivity problem can be obtained by replacing 𝑇(𝑥, 𝑡𝑡) with ∆𝑇(𝑥, 𝑡𝑡) and 𝑔𝑔𝑝(𝑡𝑡) with 

∆𝑔𝑔𝑝(𝑡𝑡) in the direct problem. 

2.5.3.3 Adjoint problem 

To minimise the 𝑆(𝑃) function in Equation 2-29, a Lagrange multiplier 𝜆(𝑥, 𝑡𝑡) needs to be 

included because the measured parameters 𝑇(𝑥𝑚𝑒𝑎𝑠, 𝑡𝑡; 𝑃) in such a function are required to 

satisfy a constraint (the solution of the direct problem). To derive the adjoint problem, the 

following extended function should be written as: 

𝑆(𝑃) = ∫ [𝑌𝑚(𝑡𝑡) − 𝑇(𝑥𝑚𝑒𝑎𝑠, 𝑡𝑡; 𝑃)]2𝑡𝑓
𝑡=0 dt + ∫ ∫ 𝜆(𝑥, 𝑡𝑡)𝐹(𝑥, 𝑡𝑡)𝑑𝑥𝑑𝑡𝑡 𝑡𝑓

𝑡=0
𝑙

𝑥=0  (2-32) 
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where 𝐹(𝑥, 𝑡𝑡) is the direct problem equation: 

∆𝑆(𝑃) = ∫ ∫ 2[𝑌𝑚(𝑡𝑡) − 𝑇(𝑥𝑚𝑒𝑎𝑠, 𝑡𝑡; 𝑃)] ∆𝑇(𝑥, 𝑡𝑡)𝑙
𝑥=0

𝑡𝑓
𝑡=0 𝛿(𝑥 − 𝑥𝑚𝑒𝑎𝑠)dt 

+∫ ∫ 𝜆(𝑥, 𝑡𝑡). ∆𝐹(𝑥, 𝑡𝑡)𝑑𝑥𝑑𝑡𝑡 𝑡𝑓
𝑡=0

𝑙
𝑥=0  (2-33) 

After some simplification [5], we obtain: 

∆𝑆(𝑃) = � � {
𝜕2𝜆(𝑥, 𝑡𝑡)

𝜕𝑥2 +
𝜕𝜆(𝑥, 𝑡𝑡)

𝜕𝑡𝑡
+ 2[𝑇(𝑥, 𝑡𝑡; 𝑃) − 𝑌(𝑡𝑡)]

𝑙

𝑥=0

𝑡𝑓

𝑡=0
𝛿(𝑥

− 𝑥𝑚𝑒𝑎𝑠)∆𝑇(𝑥, 𝑡𝑡) 𝑑𝑥 𝑑𝑡𝑡 ∆𝑇(𝑥, 𝑡𝑡) 𝑑𝑥

+ �
𝜕𝜆(0, 𝑡𝑡)

𝜕𝑥 ∆𝑇(0, 𝑡𝑡)𝑑𝑡𝑡
𝑡𝑓

𝑡=0

+ �
𝜕𝜆(1, 𝑡𝑡)

𝜕𝑥
∆𝑇(1, 𝑡𝑡)𝑑𝑡𝑡

𝑡𝑓

𝑡=0

− � 𝜆�𝑥, 𝑡𝑡𝑓�∆𝑇�𝑥, 𝑡𝑡𝑓�𝑑𝑥 + � 𝜆(0.5, 𝑡𝑡)∆𝑔𝑔𝑝(𝑡𝑡)𝑑𝑡𝑡
𝑡𝑓

𝑡=0

𝑡𝑓

𝑡=0
. 

 (2-34) 

2.5.3.4 Gradient equation 

By substituting ∆𝑔𝑔𝑝(𝑡𝑡) in the parametric form given by Equation 2-31 into Equation 2-34 

after eliminating ∆𝑇(𝑥, 𝑡𝑡) as described in [5], we obtain: 

∆𝑆(𝑃) = ∫ 𝜆(0.5, 𝑡𝑡) ∆𝑔𝑔𝑝(𝑡𝑡)𝑑𝑡𝑡𝑡𝑓
𝑡=0 . (2-35) 

The parametric form of this equations: 

∆𝑆(𝑃) = ∑ ∫ 𝜆(0.5, 𝑡𝑡)𝐶𝑗(𝑡𝑡)∆𝑔𝑔𝑝(𝑡𝑡) 𝑑𝑡𝑡𝑡𝑓
𝑡=0

𝑁
𝑗=1  ∆𝑃𝑗, (2-36) 

where: 

∆𝑃 = [∆𝑃1, ∆𝑃2, ⋯ , ∆𝑃𝑁]. (2-37) 

The 𝑗𝑡ℎ component of the gradient vector ∇𝑆(𝑃) can be obtained as: 

[∇𝑆(𝑃)]𝑗 = ∫ 𝜆(0.5, 𝑡𝑡)𝐶𝑗(𝑡𝑡)𝑑𝑡𝑡𝑡𝑓
𝑡=0  for j= 1 to N. (2-38) 
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2.5.3.5 Iterative procedure of the CG method with adjoint problem 

The iterative procedure can be obtained in the same manner as the CG method. However, the 

gradient vector components should be computed using Equation 2-38. The search step size 

𝛽𝑘 is chosen by minimising 𝑆(𝑃) at each iteration k: 

𝑚𝑖𝑛𝛽𝑘
𝑆(𝑃𝑘+1) = 𝑚𝑖𝑛

𝛽𝑘
∫ [𝑌(𝑡)−𝑇(𝑥𝑚𝑒𝑎𝑠,𝑡;𝑃𝑘−𝛽𝑘𝑑𝑘)]2𝑑𝑡

𝑡𝑓
𝑡=0 , (2-39) 

with the aid of the Taylor series expansion: 

𝛽𝑘 =
∫ �𝑇�𝑥𝑚𝑒𝑎𝑠,𝑡;𝑃𝑘�−𝑌(𝑡)�∆𝑇(𝑥𝑚𝑒𝑎𝑠,𝑡;𝑑𝑘)𝑑𝑡

𝑡𝑓
𝑡=0

∫ [∆𝑇(𝑥𝑚𝑒𝑎𝑠,𝑡;𝑑𝑘)]2𝑡𝑓
𝑡=0  𝑑𝑡

. (2-40) 

2.5.3.6 Stopping criterion for the CG method with adjoint problem 

Similar to the procedure for the CG method, the stopping criterion is based on the 

discrepancy principle. The standard deviation σ is given by: 

𝑆(𝑃) < 𝜖 

Then: 

|𝑌(𝑡𝑡) − 𝑇(𝑥𝑚𝑒𝑎𝑠, 𝑡𝑡; 𝑃)|~𝜎 

The tolerance ԑ is determined as: 

𝜀 = 𝜎2𝑡𝑡𝑓 
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2.5.3.7 Computational algorithms for the CG method with adjoint problem 

The computational algorithms are shown in Figure 2-3.

Compute gp(t)
Compute T(x meas, t)

by solving The direct problem

Stopping 
Criteria 

Satisfied ? FinishYes

Compute 𝝀(0.5, t)

by solving  the adjoint problem

NO

   Compute 

  by equation 2-38

)(PS∇         Compute  

by equations 2-16 & 17

KK d,γKK Pd ∆→

   Compute  

by  sensitivity problem

);,(),( dtxTtg m easP ∆

Compute  βK

by equation 2-15

Compute  PK+1

by equation 2-40

 

Figure 2-3: Computational algorithms for the CG method with adjoint problem 

2.5.4 Conjugate gradient method with adjoint problem for function estimation 

This method is appropriate for IHTPs involving function estimation with no available 

information about the functional form of the unknown function, except for the functional 

space it belongs to [5, 23, 27-35]. 

To describe this technique, we assume 𝑔𝑔𝑃(𝑇) of a plane energy source, which is recorded by 

a sensor located at 𝑥𝑚𝑒𝑎𝑠. It is assumed that the unknown function belongs to the Hilbert 

space of square-integrable functions[28, 36]. The functions in the aforementioned space 

satisfy: 

∫ [𝑔𝑔𝑃(𝑡𝑡)]2𝑡𝑓
𝑡=0 𝑑𝑡𝑡 < ∞.  (2-41) 
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To solve the problem, we define the functional S(𝑔𝑔𝑃(𝑡𝑡)) as: 

S(𝑔𝑔𝑃(𝑡𝑡))= ∫ {𝑌(𝑡𝑡) − 𝑇[𝑥𝑚𝑒𝑎𝑠, 𝑡𝑡; 𝑔𝑔𝑃(𝑡𝑡)]}2dttf
t=0  . (2-42) 

2.5.4.1 Inverse problem 

In this technique, the source term 𝑔𝑔𝑃(𝑡𝑡) is an unknown function of time. However, the 

measured data Y(t) are known. To implement the iterative procedure, we need the sensitivity 

function ∆𝑇(𝑥, 𝑡𝑡) and the Lagrange multiplier 𝜆(𝑥, 𝑡𝑡).Therefore, we develop the sensitivity 

problem and the adjoint problem. The derivations of these two problems are similar to those 

of the previous method (CG for parameter estimation). 

2.5.4.2 Sensitivity problem 

This is similar to the previous method (CG for parameter estimation). When 𝑔𝑔𝑃(𝑡𝑡) undergoes 

an increment ∆𝑔𝑔𝑃(𝑡𝑡), the temperature changes by ∆𝑇(𝑥, 𝑡𝑡). In the direct problem, 𝑇(𝑥, 𝑡𝑡) and 

𝑔𝑔𝑃(𝑡𝑡) are replaced by [𝑇(𝑥, 𝑡𝑡) + ∆𝑇(𝑥, 𝑡𝑡)] and 𝑔𝑔𝑃(𝑡𝑡) + ∆𝑔𝑔𝑃(𝑡𝑡), respectively, to obtain the 

sensitivity problem. 

2.5.4.3 Adjoint problem 

In line with the CG method, the direct problem is multiplied by a Lagrange multiplier 𝝀(x, t). 

The resulting expression is then integrated over the spatial domain and the time domain. The 

expression obtained is then added to the functional 𝑆[𝑔𝑔𝑝(𝑡𝑡)] given by Equation 2-42: 

𝑆[𝑔𝑔𝑝(𝑡𝑡)] =∫ {�𝑌(𝑡𝑡) − 𝑇[𝑥𝑚𝑒𝑎𝑠, 𝑡𝑡; 𝑔𝑔𝑃(𝑡𝑡)]}�2𝑑𝑡𝑡𝑡𝑓
𝑡=0  +∫ ∫ 𝜆(𝑥, 𝑡𝑡)𝑡𝑓

𝑡=0
1

𝑥=0 𝐹(𝑥, 𝑡𝑡) (2-43) 

For ∆𝑆[𝑔𝑔𝑝(𝑡𝑡)], we obtain: 

∆𝑆(𝑃) = � � 2{�𝑇[𝑥, 𝑡𝑡; 𝑔𝑔𝑃(𝑡𝑡)] − 𝑌(𝑡𝑡)}� ∆𝑇(𝑥, 𝑡𝑡)
𝑙

𝑥=0

𝑡𝑓

𝑡=0
𝛿(𝑥 − 𝑥𝑚𝑒𝑎𝑠)𝑑𝑥𝑑𝑡𝑡 

+∫ ∫ 𝜆(𝑥, 𝑡𝑡). ∆𝐹(𝑥, 𝑡𝑡)𝑑𝑥𝑑𝑡𝑡𝑡𝑓
𝑡=0

𝑙
𝑥=0  (2-44) 

where𝐹(𝑥, 𝑡𝑡) is the direct problem and 𝜕(. ) is the Dirac delta function. 
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2.5.4.4. Gradient equation 

Using the same process as in the CG method, we obtain: 

∆𝑆�𝑔𝑔𝑝(𝑡𝑡)� = ∫ 𝜆(0.5, 𝑡𝑡). ∆𝑔𝑔𝑝(𝑡𝑡)𝑑𝑡𝑡𝑡𝑓
𝑡=0  (2-45) 

Equation 2-31 is substituted into the above equation to obtain the components of Equation 2-

45: 

∆𝑆�𝑔𝑔𝑝(𝑡𝑡)� = ∫ 𝛻𝑆�𝑔𝑔𝑝(𝑡𝑡)�∆𝑔𝑔𝑝(𝑡𝑡) 𝑑𝑡𝑡𝑡𝑓
𝑡=0 . (2-46) 

It can be concluded that: 

∇𝑆�𝑔𝑔𝑝(𝑡𝑡)� =  𝜆(0.5, 𝑡𝑡) (2-47) 

2.5.4.5 Iterative procedure 

We obtained the direct and adjoint problems for computing the functions 𝑇(𝑥, 𝑡𝑡), ∆𝑇(𝑥, 𝑡𝑡) 

and 𝝀(x, t). The measured data (𝑌(𝑡𝑡)) are available. The unknown function is estimated by 

minimising 𝑆�𝑔𝑔𝑝(𝑡𝑡)�, which is given in Equation 2-38. This can be achieved using the 

iterative procedure as follows: 

𝑔𝑔𝑝
𝑘+1(𝑡𝑡) = 𝑔𝑔𝑝

𝑘(𝑡𝑡) − 𝛽𝑘𝑑𝑘(𝑡𝑡), (2-48) 

where 𝛽𝑘 is the search step size and 𝑑𝑘(𝑡𝑡) is the direction of descent, defined as: 

𝑑𝑘(𝑡𝑡) = ∇𝑆�𝑔𝑔𝑝
𝑘(𝑡𝑡)� + 𝛾𝑘𝑑𝑘−1(𝑡𝑡), (2-49) 

𝛾𝑘 can be calculated from the Polak–Ribiere expression (2-50) or the Fletcher–Reeves 

expression (2-51): 

𝛾𝑘 =
∫ ∇𝑆�𝑔𝑝

𝑘(𝑡)��∇𝑆�𝑔𝑝
𝑘(𝑡)�−∇𝑆�𝑔𝑝

𝑘−1(𝑡)��𝑑𝑡
𝑡𝑓

𝑡=0

∫ {∇𝑆�𝑔𝑝
𝑘(𝑡)�}2𝑑𝑡

𝑡𝑓
𝑡=0

    for k=1,2,…, (2-50) 

𝛾𝑘 =
∫ {∇𝑆�𝑔𝑝

𝑘(𝑡)�}2𝑑𝑡
𝑡𝑓

𝑡=0

∫ {∇𝑆�𝑔𝑝
𝑘−1(𝑡)�}2𝑑𝑡

𝑡𝑓
𝑡=0

   for k=1,2,…, (2-51) 

where 𝛾0 = 0 for k=0. By minimising 𝑆[𝑔𝑔𝑝
𝑘+1(𝑡𝑡)] in Equation 2-42 with respect to 𝛽𝑘,the 

step size 𝛽𝑘is obtained as follows: 
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𝑚𝑖𝑛
𝛽𝑘
𝑆[𝑔𝑝

𝑘+1(𝑡)] = 𝑚𝑖𝑛
𝛽𝑘
∫ {𝑌(𝑡)−𝑇�𝑥𝑚𝑒𝑎𝑠,𝑡;𝑔𝑝

𝑘(𝑡)−𝛽𝑘𝑑𝑘(𝑡)�}2𝑑𝑡
𝑡𝑓

𝑡=0  (2-52) 

Using the Taylor expansion equation, we obtain: 

𝑚𝑖𝑛
𝛽𝑘
𝑆[𝑔𝑝

𝑘+1(𝑡)] = 𝑚𝑖𝑛
𝛽𝑘
∫ {𝑌(𝑡)−𝑇�𝑥𝑚𝑒𝑎𝑠,𝑡;𝑔𝑝

𝑘(𝑡)�+𝛽𝑘∆𝑇[𝑥𝑚𝑒𝑎𝑠,𝑡;𝑑𝑘(𝑡)]}2𝑑𝑡
𝑡𝑓

𝑡=0  (2-53) 

After a few manipulations, we obtain: 

𝛽𝑘 =
∫ �𝑇�𝑥𝑚𝑒𝑎𝑠,𝑡;𝑔𝑝

𝑘(𝑡)�−𝑌(𝑡)�∆𝑇[𝑥𝑚𝑒𝑎𝑠,𝑡;𝑑𝑘(𝑡)]𝑑𝑡
𝑡𝑓

𝑡=0

∫ �∆𝑇[𝑥𝑚𝑒𝑎𝑠,𝑡;𝑑𝑘(𝑡)]�2𝑡𝑓
𝑡=0 𝑑𝑡

 (2-54) 

2.5.4.6 Stopping criterion 

Similar to the two previous methods, the stopping criterion is given by: 

𝑆[𝑔𝑔𝑝(𝑡𝑡)] < 𝜖 (2-55) 

The solution accuracy is sufficient when: 

|𝑌(𝑡𝑡) − 𝑇[𝑥𝑚𝑒𝑎𝑠, 𝑡𝑡; 𝑔𝑔𝑃(𝑡𝑡)]| ≈ 𝜎 (2-56) 

where σ is the standard deviation (see [5] for more details ) and ԑ can be calculated as: 

ԑ=𝜎 2𝑡𝑡𝑓 (2-57) 
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2.5.4.7 Computational algorithms 

The computational algorithms for the CG method with adjoint problem for function 

estimation are shown in Figure 2-4 

Suppose an initial guess 
for  

Compute T(x , t)

by solving The direct problem

Stopping 
Criteria 

Satisfied ? FinishYes

Compute 𝝀(0.5, t)

by solving  the adjoint problem

NO

   Compute 

  by equation 2-47

)(PS∇         Compute  

by equations 2-49 & 50

KK d,γ
)(tgd k

p
K ∆→

   Compute  

by solving sensitivity problem

);,(),( dtxTtg m easP ∆

Compute  βK

by equation 2-54

Compute  

by equation 2-48

 𝑔𝑔𝑝𝑝
0(𝑡𝑡) 

)(1 tg k
p
+

 

Figure 2-4: Computational algorithms for the last method 

2.6 Aims of introducing the four prominent methods 

A survey of the literature on irradiative systems showed that, with the exception of scattering 

media problems [37] (which are not the focus of the current study), almost all classical 

methods have been derived from the methods mentioned in this chapter. 

By introducing these methods, it can be concluded that the procedures for all classical 

methods (optimisation-based algorithms) include the solution of direct problems, and that the 

procedures are iterative. The first method adds the complexity of the direct problem to 

inverse algorithms, and the last method makes their procedures time-consuming.  
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Chapter 3: Experimental Set Up and Implementation 
 

3.1 Introduction 

In the current chapter , The experimental setup is introduced. At the first stage , the main 

structure is illustrated , then the differences of two experimental setups are described. Finally, 

the details of any components are introduced.  

3.2 General description 

The main structure of the experimental setup is shown in Figure 3-1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1: The furnace/dryer experimental setup 

 

The infrared dryer has two radiational heat sources (lamps) and the capacity of many 

temperature sensors (thermocouples). Both lamps and thermocouples can be arranged 

asymmetrically to generate more complicated modeling/control problems to test different 

methodologies.  As a result of this asymmetry, the effect of any of the lamps on any of the 

temperature sensors is unique. For instance, if we have two lamps and five sensors, ten 

single-input/single-output control problems, and then two-input two-output control problems 

can be defined with this system, each of which may have different features because of the 

various positions of the sensors with regard to the lamps and furnace walls [1-3]. 

In current research, two different modeling/control problems have been considered: a SISO 

(Single input-Single output) system and a TITO (Two inputs–Two outputs) system. For the 
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SISO problem, one lamp and one sensor are involved. In the TITO problem, to make a more 

complicated modeling/control problem, a partition was located inside the dryer/furnace with a 

hole in the middle, two lamps, and two sensors were involved in the data gathering (Figure 3-

2). 

 

Figure 3-2: SISO and TITO studied furnace structures 

 

3.3 Required resources 

In order to make a control loop, two methods can be employed.  In the first one, as shown in 

Figure 3-3, two computers are needed: the first one, the host PC with operation system, can 

be used to control our system using MATLAB fuzzy and neural networks Simulinks.  The 

second computer, the target PC without an operation system, will act as a bridge between our 

software and the furnace. 

In the host PC, MATLAB software has been installed. By using MATLAB Simulink 

software, the coming data from the target PC will be processed in order to find the best 

intelligent techniques from the possibilities for the modeling of our system in both direct and 

inverse modes [4]. 

Consequently, the required program for controlling our system will be compiled to C++ by 

the Real-time workshop Simulink (RTW). Finally the xPC target Simulink will be installed 

on the Target PC. The Target PC will communicate with our hardware (the furnace) in order 

to receive and send data.  
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Figure 3-3: The first probable Software process needed to set up our experiment 

 

In the first method, the xPC target has been used in MATLAB software as a bridge between  

the Real-time workshop Simulink and the hardware part of our control loop. In order to use 

the xPC target, two computers are needed (the host and target computers). During our 

investigations, it was found that the xPC target is normally used for high bandwidths, 

whereas, in our application; a sampling time of 0.01s is used, which is appropriate for our 

temperature control purposes.  It means the frequency of sending data from the sensors to the 

computer/controller or from the computer/controller to the actuator (lamps) is 100 Hz. 

Consequently, it was decided to expand the study to find an alternative method, which might 

be simpler for this application. 

Real-time Windows Target, the chosen method for the current research, is another “Links and 

Targets”, like the xPC target which is appropriate for lower bandwidths (less than 1 KHz), 

moreover it works in a single PC and simultaneously uses that PC as both the host and target 

(Figure 3-4) [4]. 

 
Figure 3-4: Connecting signals in the experimental setup 
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RTWT, prototyping software, is a PC solution in order to prototype and test real-time 

systems. RTWT employs a single computer as both host and target PC.  In this computer, the 

MATLAB environment, Simulink software can be used to produce models using Simulink 

blocks and State flow diagrams. 

After producing a model and simulating it with the aid of Simulink software, an executable 

code can be generated by the RTWT code generation software and the Open Watcom C/C++ 

compiler. This application can be run in real time by the Simulink external mode [5]. 

3.4 The furnace/dryer body 

Figure 3-5 shows the furnace/dryer body dimensions. The furnace/dryer body is made of steel 

frame and insulation boards (Figure 3-6).  

 

 

Figure 3-5: The size of the dryer body 

 

The insulation boards are made from inorganic insulation glass fibers. They are bonded using 

thermosetting materials and manufactured in various thicknesses from 3 up to 75 millimeters . 

These boards are normally used for electrical insulation and heat protection. 
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Figure 3-6: The walls of the dryer made by insulation boards and steel sheets 

 

A SUPERWOOL 607 insulation board with a thickness of 20 millimeters, made by the 

Morgan Crucible Company in South Australia, was used in this project. 

3.5 Thermocouples  

A thermocouple is generally utilized to convert heat into electrical power, based on the 

discrepancy between the electrical potential generated in two wires made of different metals, 

forming the thermocouple. There is a nonlinear relationship between the temperature change 

(ΔT) and output voltage (V), as shown in Equation 3-1:  

∆𝑇 =  ∑ 𝑎𝑛
𝑁
𝑛=0  𝑉𝑛                                                                                                               (3-1) 

where an is a constant available in the manual for n from zero to nine for different 

thermocouples.  Thermocouples are quick sensors (with very short time delays), which are 

able to measure a wide range of temperatures.  

 

 

  

 

 

 

 

 

 

 

Figure 3-7: A type T thermocouple 
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Among different kinds of thermocouples, type T (Figure 3-7) was selected for this application 

(see Table 3-1). 

Table 3-1: Thermocouple type T characteristics 

 

Type 

 

Temperature range °C 

(continuous) 

 

Tolerance class one (°C) 

 

Tolerance class two (°C) 

 

T 
−250 to +400 

±0.5 between 

−40 & 125 

 

±0.004×T between 

125 and 350 

±1.0 between 

−40 & 133 

 

±0.0075×T between 

133 & 350 

 

3.6 The thermocouple amplifier 

In the thermocouple amplifier (Figures 3-8), the signal coming from the thermocouple (43 

µV/°C) is amplified to 10 mV/°C. This signal is sent to the computer. The thermocouple 

amplifier type is AD595 and was purchased from the ANALOG DEVICES Company [6]. 

This amplifier has six input and output channels which make the experimental setup 

appropriate for several SISO and MIMO problems. 

.  

Figure 3-8: Thermocouple Amplifier 
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Figure 3-9 shows the location of the thermocouple amplifier in the experimental setup. 

 

Figure 3-9: Thermocouple amplifier located between the I/O card and the dryer 

 

3.7 The Input/output card 

In this project, the selected I/O card (Figure 3-10) converts analog signals coming from the 

thermocouple amplifier to digital signals and sends them to the computer (Figure 3-11). At 

the same time, the I/O card converts digital signals coming from the computer to analog ones 

and send them to the power controller, then to the halogen lamp(s). I/O card type MF624 was 

selected, which is compatible with the RTWT toolbox of the MATLAB software and was 

specifically produced for thermal processes. The MF 624 has an 8-channel 14-bit A/D 

converter with a simultaneous sample/hold circuit, eight independent 14-bit D/A converters, 

an 8-bit digital input port and an 8-bit digital output port, 4 quadrature encoder inputs, and 5 

time counters.  
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Figure 3-10: MF 624 Multifunction I/O Card 

 

 

 

 

 

 

 

 

 

Figure 3-11: The I/O card connects the computer to the power and thermocouple amplifiers 

 

3.8 The power controller unit 

Power controllers (Figure 3-12) provide circuit breaker functions such as protection of the 

load and wiring from overload conditions. In addition, the power controller provides an 

on/off control of the conduction of the load circuit and is used to protect an AC wire harness 

against damage if the power controller experiences a short circuit failure caused by over-

current or short-circuiting.  

 

 

 

 

 

 

 

Figure 3-12: The power controller for the dryer lamps 
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The load (output) voltage of the power controller is adjusted by varying the time within each 

electrical half-cycle. The AC electrical current and a control signal is entered in to a power 

controller; if the electrical half-cycle is T, for a portion of T, the power controller is ON and 

allows the current to pass through. For the rest of the electrical half-cycle the power 

controller is OFF. This portion is defined by the control signal. We used an FCAL/2 power 

controller manufactured by the UNITED AUTOMATION Company [6]. In fact, our power 

control unit has two power controllers for two lamps.  

3.9 The lamps 

There were two important factors for the radiation sources. They need to have a quick 

response to the control command (the voltage coming from the computer) and also they need 

to change the emitted heat flux continuously. Halogen lamps could meet the criteria.  

From a variety of options, two 2kW halogen lamps were selected. Figures 3-13 and 3-14 show 

lamps and their support clamps. 

 

 

 

 

 

Figure 3-13: Halogen lamps in the dryer 
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Figure 3-14: TITO furnace/dryer structure 
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4.1 Abstract 

In this chapter/publication, a new solution approach was developed for heat flux estimation class 

of inverse heat transfer problems where radiation provides the dominant mode thermal energy 

transport. An Artificial Neural Network (ANN) was designed, trained and employed to estimate 

the heat emitted to the irradiative batch drying process.  

In a simple laboratory drying furnace, various input signals (different input power functions) 

were applied to the dryer's halogen lamp and the resulting temperature history were measured 

and recorded for a point on the bottom surface of the dryer. After estimating the order, the 

sampling time and the dead-time of the system, the recorded data were arranged for inverse 

modelling purposes. Next, an ANN was designed and trained to play the role of the inverse heat 

transfer model. The results showed that ANNs are applicable to solve inverse heat estimation 

problems of irradiative batch drying process. An important advantage of this method in 

comparison with classical inverse heat transfer modelling approaches, in that detailed knowledge 

of the geometrical and thermal properties of the system (such as wall conductivity, emissivity , 

etc.) is not necessary. Such properties are difficult to measure and may undergo significant 

changes during the temperature transient.  

4.2 Introduction 

Thermal processes dominated by radiative transport of energy play an important role in a 

plethora of engineering applications such as furnaces, dryer and reactors. Such systems are 

significantly more difficult to model compared to processes dominated by conduction and 

convection. Radiation is a highly non-linear phenomena and the effects of geometry need to be 

carefully considered. In industrial practice, designers wish to develop steady state and dynamic 

models to optimize the processes, ensure a quality product and increase production rates [1]. 

Current heat transfer modeling methods for thermal processes (particularly those involving 

radiation) rely on broad assumptions and simplifications that fail to adequately account for the 

real conditions of operation [2].  

Heat transfer modelling problems can be divided into two separate categories: direct and inverse 

problems [3]. In direct problems, all relevant thermophysical properties, boundary, and initial 
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conditions are specified. Direct problems are normally considered to be "well-posed". By 

contrast, for inverse problems, there is lack of knowledge of the boundary conditions, initial 

conditions or thermophysical properties and such problems are normally "ill-posed" [3]. The 

unknown conditions must be estimated using measured temperature data at one or several 

locations within the domain. As a consequence of the ill-posed nature of the problem, inevitable 

random errors in the measured data result in error magnification by several orders of magnitudes 

and the unknown boundary conditions or thermophysical parameters may be poorly estimated. 

Consequently, inverse heat transfer problems are known to be considerably more "difficult" 

compared to the corresponding direct heat transfer problems [3-6].  

Heat function estimation in radiative problems is an important type of IHTPs [6]. A variety of 

trial-error-based methods based on iterative solution guessing a value for heat flux and then 

employing conventional mathematical models to check satisfaction of the desired temperature 

distribution have been used to solve such problems. Faulty solutions are common and the 

methods are time consuming due to heavy computational requirements [7-11]. 

Other applied techniques to solve inverse heat transfer problems involve least squares 

optimizations modified by the addition of regularization. Regularization imposes more 

restrictions on the permissible solutions [12]. Optimization methods such as conjugate gradient 

(CG) and Levenberg-Marquardt have also been used to improve the initially guessed values of 

heat flux to solve heat flux estimation problems.  

These iterative algorithms require multiple solutions of governing equations. However, they are 

capable of estimating the solution in significantly shorter time than the trial and error based 

methods [12]. Iterative methods of solution also incur a heavy penalty due to the long time to 

convergence [13,14]. If the initial guess is poor, an infeasible solution may be obtained or in the 

worst case, the solution may not converge [15]. In such instances, non trial-error based methods 

can only provide a local minimum solution depending on the initial value [15]. As an alternative, 

evolutionary methods, such as genetic algorithm (GA), have received increased attention 

because of their ease of coding and superior convergence characteristics when applied in non-

linear optimization problems. The results were promising but some deficiencies have been 

observed in GA [12,15]. Moreover, GA and other evolutionary algorithms require large 

populations and involve long computing times for convergence which make them inappropriate 
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for many inverse heat transfer problems [16].  

In all aforementioned conventional methods, detailed physical property information is normally 

required [7,10,13]. In many cases the measurement of such physical properties is extremely 

difficult, if not impossible. Moreover, in order to use all conventional inverse methods, the direct 

problem must be solved first. This constraint of repeated direct problem solutions can produce 

significant computing errors and calculations may be excessively time-consuming 

[3,7,9,10,13,14].  

The aim of the present work is to check the applicability of artificial neural networks (ANNs) to 

solve heat flux estimation class of IHTPs especially those involving presence of the most 

complicated form of heat transfer, radiation. The nature of the integro-differential equation that 

governs radiative heat transfer defies easy solution even for direct problems. Thus, inverse 

radiation problems that have been solved to date are rather simple cases. ANN solutions are 

based on experimental data rather than mathematical governing equations; consequently, 

detailed knowledge of physical properties may not be necessary. Input and output data are the 

sole requirement for the application of ANNs to model systems. 
 
4.3 Experimental setup 

Figure 1 presents a schematic of experimental rig used in the study. A single halogen lamp was 

attached to the top surface to provide the heat source and a thermocouple sensor was attached at 

the base is used as the sensor; both were located asymmetrically (Figure 4-1). All connected 

through an electronic I/O card, a power controller, an amplifier and Real Time Windows Target 

(RTWT) Toolbox of MATLAB/Simulink software.  

 

 

 

 

 

 

 

 

 

Figure 4-1: The dryer experimental setup 
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4.4 Problem Statement 

This research is aimed to propose a new approach to estimate the input irradiative heat to an 

enclosure using the history of temperature distribution on one of the surfaces of the enclosure. It 

will be discussed later that the temperature history of a single point is enough to estimate the 

emitted heat by a single heat source. In this work, this latter case was experimentally studied.  

A mathematical model of such a system can be achieved by the first law of thermodynamics. 

The furnace can be assumed as an enclosure with Diffuse-Gray Surfaces. The following 

assumptions are considered for thermo-dynamics-based modeling [18]: 

1. The surfaces’ properties are non-uniform 

2. εk (emissivity factor of each surfaces) is independent of the wavelength and the 

direction of radiation. 

3. All energy is emitted and reflected diffusely. 

Incident and reflected energy flux is non-uniform; as a result, the enclosure (dryer/furnace) 

boundary must be subdivided into infinitesimal areas. 

In order to find the mathematical model of the dryer, an infinitesimal element on the bottom 

surface is considered (Figure 4-2):                   

 

 
Figure 4-2: An element at the bottom side of the studied furnace 

 

 In general:   

Input Energy –Output Energy+ Generated Energy-Consumed Energy= Energy Accumulation          (4-1)       

The input energy to this element comes from the conduction in x and y directions, the radiation 

from the halogen lamp and the radiation from other surfaces:  
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Input Energy= �-Kcond

∂T(x,y,t)
∂x

�
x=x0

.l.dy �-Kcond
∂T(x,y,t)

∂y
�
y=y0

.l.dx+qlamp(x,y,t)                              (4-2)    

Where kcond is the heat conduction coefficient (W/mK), t is time (s), l is the thickness of dryer 

body (m), T is temperature (K), q is input heat energy (W), j is the index of elements on the 

surfaces where the studied element is not located on them, and N is the number of these 

elements.  

 Fj (x, y) is the exchange factor of the inner surface of jth element and the element located at (x, y) 

.qo,j is the output radiation heat of jth element on the surfaces where the studied element is not 

located on them . 

   The output energy can be divided in three categories: output energy through conduction, 

radiation due to high temperature of the element and reflecting radiation 

 Output Energy= �-Kcond
∂T(x,y,t)

∂x
�
x=x0+dx

.l.dy �-Kcond
∂T(x,y,t)

∂y
�
y=y0+dy

ldx  +εkσT�4dxdy+ 

   ��1-εk� ∑ qo,j
n
i=1  �Fj(x,y)�(x,y)=(xo,yo)

� dx.dy                                                                                          (4-3)                                                                                                      

 

Where σ is the Stefan-Boltzmann Constant=5.6703×10-8 W/m2K4  and T is the average 

temperature of the inner side of the element.  

According to Taylor’s series:  

 �∂T(x,y,t)
∂x

�
x=x0+dx

≅ �∂T(x,y,t)
∂x

�
x=x0

+ �∂2T(x,y,t)
∂x2 �

x=x0

                                                                                (4-4) 

 �∂T(x,y,t)
∂y

�
y=y0+dy

≅ �∂T(x,y,t)
∂x

�
y=y0

+ �∂2T(x,y,t)
∂y2 �

y=y0

                                                                                (4-5)                                                

  

Also 

Generated Energy=Consumed Energy=0                                                                             (4-6) 

and, 

Accumulated Energy=ρVCp
∂T(x,y,t)

∂t
=ρ(l.dx.dy)Cp

∂T(x,y,t)
∂t

                                                    (4-7) 

Where V is the volume of the element and Cp is the specific heat capacity at a constant pressure. 

After considering  Equation 4-7 to Equation 4-2 in Equation 4-1:  
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Kcond

�∂2T(x,y,t)
∂x2 �

x=x0

+Kcond
�∂2T(x,y,t)

∂y2 �
y=y0

- εk
l

σT�4+ εk
l

�Fj(x,y)�
(x,y)=(xo,yo)

+qlamp
''' (x,y,t)=ρCP

∂T(x,y,t)
∂t

            (4-8) 

 

 

Due to insulation, following known boundary conditions can be considered for the dryer (Figure  

4-3):  

 

T(x,y,0)=To                               ∂T(l1,y,t)
∂x

=0                                     ∂T(x,l2,t)
∂y

=0                          (4-9) 

                 

 
Figure 4-2: bottom surface of the studied furnace 

 

Emitted heat to the system= ∫ qlamp
''' �x*,y*,t� dx* dy*    (In transient situation) is subject to estimation in 

this research, where **and yx represent the coordinates of the surfaces of the enclosure (i.e. x and 

y in Figure  2).  Having the solution of this problem, one can estimate the emitted heat that will 

lead to a special temperature distribution.  

 

4.5 ANN approach to the proposed IHTP 

As previously stated, the inverse model is often used as a controller to generate the input heat 

that leads to a special temperature distribution. In control, the number of controlled variables 

(e.g. temperature of points on the surface) cannot exceed the number of control actuators (e.g. 

heat sources). In order to impose a desired temperature distribution on a surface in a batch 

infrared dryer we need to control a large number of heat sources simultaneously using an 

accurate inverse model.  This research addresses the initial step of this task. An accurate inverse 

model was generated through this work. This model is able to estimate the transient input heat 
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that has led to a specific temperature history.  A general form of this inverse model is shown in 

Equation 4-10: 

Q� �k- Dead time
Sampling time

� =F[T(k),T(k+1),…,T(k+r)]                                                                      (4-10)    

where Q�   represents estimated input heat (hat sign represents estimated). Dead time is the time 

needed for the input heat to affect the temperature at a particular point, the system dead time 

calculated by a step function in the MATLAB environment; sampling time is the time interval 

between two consequent measurements and r (or the order) shows how long the temperature of 

the particular point is affected by the input heat emitted at any moment. Sampling time and order 

are both calculated by trial and error.  F is a function which is to be estimated by an ANN.   

4.6 Data Preparation 

During the experiments, data were recorded and stored as a matrix with two columns of the input 

heat and the temperature. Q represents the input heat and T represents the temperature. 

 

 Matrix of raw recorded/sensed data = 

⎣
⎢
⎢
⎢
⎡
Q1
Q2
Q3
⋮

T1
T2
T2
⋮

Qn Tn⎦
⎥
⎥
⎥
⎤

                                                                 (4-11)  

 
where n is the number of collected data. It was found experimentally that the delay or dead time 

of the system is 1.4 seconds. Sampling time of 𝑇𝑠 = 0.2  second was considered due to the 

nature of the system. Raw data matrix after considering of the dead time is: 

 

 Matrix of data after considering the dead time=

⎣
⎢
⎢
⎢
⎢
⎡

Q1
Q2
Q3
⋮

Td+1
Td+2
Td+2

⋮
Qn-d Tn ⎦

⎥
⎥
⎥
⎥
⎤

                                                (4-12)                                           

 

where        d= dead time
sampling time
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For an inverse model with the order of r; the data should be arrange as shown below: 

 

Prepared Data=

⎣
⎢
⎢
⎢
⎡

      
Td+1 … Td+r

⋮ ⋱ ⋮
Tn-r+1 … Tn

�������������
Input

   
Q1
⋮

Qn−d−r+1

�������
Output

⎦
⎥
⎥
⎥
⎤

                                                                 (4-13) 

 

The order was found five based on several trial and errors.  

 

4.7 Neural Network Modeling of the radiating furnace 

In this research, the input to the inverse model is temperature history in Kelvin and the output is 

input heat in kilo Watt. The dead time is 1.4 seconds or Equation 4-10 can be written in the 

following form:  

Q��k-7�=F[T(k),T(k+1),T(k+2),T(k+3),T(k+4)]                                                      (4-14) 

 
Variables with a hat are the estimated/predicted ones. After applying the dead time and the 

order, a set of 1000 pieces of recorded data were prepared as below:  

 

Prepared data=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

T8 T9
T9

⋮
⋮

T10
⋮
⋮

T996 T997 

   

T10 T11 T12
T11

⋮
⋮

T12
⋮
⋮

T13
⋮
⋮

T998 T999 T1000

  

���������������������
Input

 

Q1
Q2

⋮
⋮

Q989

�
Output

⎦
⎥
⎥
⎥
⎥
⎥
⎤

                                          (4-15) 

 
An ANN network with three layers of neurons was designed to be trained using the prepared 

data. Input and output layer has five and one neurons respectively with linear activation 

functions with the slope of one. The hidden layer has five neurons with sigmoid activation 

functions. The training method is Levenberg-Marquardt batch error back propagation .The ANN 

has been trained in 83 epochs (iterations) and the performance function is the mean of squared 

errors (MSE). 
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4.8 Experimental Results  

After achieving the ANN model, four different functions different from one used in training 

process were used to verify the method. Their resultant temperature were arranged (as explained 

in data preparation section) and given to the proposed ANN and the corresponding input heat 

functions were estimated by the ANN (shown in Figure 4-5). 

The estimation process for each datum of input heat takes 0.023 seconds (a for loop employed to 

calculate this time); due to the fact that training and estimation process are apart and the 

estimation process solely includes simple non-recursive mathematical operations. 

The mean of absolute error is 43.00245 watt in average for four data series for the input heat in 

the range of 0~2 KW. 

N

Q(i)(i)Q̂
mae

N

1i
∑
=

−
=                                                                                                         (4-16) 

where, 

N: the number of data after data preparation process, 

Q: input heat. 

The accuracy of the estimation is completely acceptable with temperature sensing error of ±1°C. 
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                                        (a)                                                                                       (b)                                                          

                                 (c)                                                                                      (d) 

 

Figure 4-3 : Actual and estimated input heat data for four checking data series (blue stars show estimated input heat 

by the proposed ANN and red lines show real input heat applied to the system) 

 

 

Table 4-1: Prediction accuracy for different trained models (mae and maximum of error) 

Criterion mae (W) Maximum of error (W) 

Checking data 1st  series 2nd  series 3rd series 4th series 1st  series 2nd  series 3rd series 4th series 

Error (W) 52.0675 27.8197 44.6249 47.4982 169.4966 91.7501 380.4250 177.3014 
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4.9 A summary of advantages of the proposed method  

• The solution procedure for conventional inverse methods is based on trial-and-error.  The 

probability of error is extremely high for such methods and they are normally time-

consuming [8, 9, 11, 12] but in the proposed method this restriction does not exist. 

• Iterative methods inherent in other conventional inverse methods also incur heavy penalty of 

long time to convergence [14, 15]. In ANN the only iterative part is in training which is 

containing simple mathematical relations, therefore proposed method is much faster than 

conventional iterative methods. 

• Detailed and accurate physical properties are needed in many inverse methods.  Their 

unavailability makes the solution difficult to achieve (impossible in some cases) and 

necessitate simplified (and often physically unrealistic) assumptions given the complexity of 

heat transfer systems [9, 11, 12, 14, 19-28]. The proposed method does not need physical 

properties as it is only based on input and output data. 

• In order to use many conventional inverse methods, the direct problem must be solved first. 

Hence, the resulting inverse solution will be subject to serious computing errors and time-

consuming calculations are required [9, 11, 12, 14, 19-28]. However, in proposed method, 

there is no need to make and solve the direct model. 

 

4.10 Conclusion  

In this paper, for an irradiative batch dryer, an Artificial Neural Network model was designed 

and successfully trained and utilized as an appropriate alternative for conventional methods for 

input irradiative heat estimation. This ANN model was trained using experimental data. For this 

purpose, heat was applied through a halogen lamp hung from the top surface of the dryer, and 

the temperature was measured by a thermocouple at the bottom surface. All these data were 

recorded, processed and employed to make an inverse ANN model of the system. This model 

receives temperature history of a point and estimates the input heat to the system.  It was 

demonstrated that the heat estimated by the designed neural network were consistent with the 

real heat applied during the experiment 

  From a practical point of view, in accordance with the achievement of this research, the only 
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requirement to make a highly accurate neural network model for a heat estimation problem is a 

series of Temperature-Input heat data for a few minutes of operation and the dimensions and 

thermophysical properties are not needed. As another significant advantage, the estimation stage 

by the trained neural networks only included a small number of simple calculations excluding 

any recursive computation; this means the method is very fast-paced in comparison with 

classical techniques of numerical heat transfer for similar problems 

In short, a very accurate method for the inverse heat transfer problems was proposed and 

successfully tested using experimental data.  
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5.1 Abstract 

In this chapter, a variety of new approaches is developed and results are compared for solving 

inverse heat transfer problems where radiation is the dominant mode of thermal energy transport. 

An artificial neural network ANN), two hybrid methods of genetic algorithms and artificial 

neural networks (GA-ANNs), and an adaptive neuro-fuzzy inference system network (ANFIS) 

were designed. These were trained and then employed to estimate the required input power in an 

irradiative batch drying process. A comparison of the results shows that the most accurate 

method is ANFIS but the number of parameters in ANFIS is larger than that of ANNs. 

Consequently, the ANFIS solution is time consuming in this application; however other neuro-

fuzzy techniques may require fewer parameters and these will be considered in future studies. 

For the studied ANNs, the hybrid method of  GA-ANN is optimal (using the Levenberg-

Marquardt as the optimization algorithm during back propagation) in terms of accuracy and 

network's performance.  

5.2 Introduction 

Heat transfer involves the transport of thermal energy. Fundamental methods in engineering 

include conduction, convection, and radiation. Conduction refers to the heat transfer that occurs 

across the medium. The medium may be solid or a fluid. Convection refers to the heat transfer 

that will occur between a surface and a moving fluid when they are at different temperatures. 

Finally in radiation, energy is transported by electromagnetic waves emitted from surfaces at 

finite temperatures [1,2].  

Heat transfer is a significant field of interest for engineering researchers, designers, developers 

and manufacturers. Industrial applications include a wide variety of systems and components 

for energy devices used in power plants, heat exchangers, high performance gas turbines and 

other power conversion systems. A diverse range of applications occurs in chemical processing, 

general manufacturing, biological- heat transfer, electronic cooling, comfort heating and cooling 

towers [3].  

Thermal processes dominated by the radiative transport of energy play an important role in a 

plethora of engineering applications such as furnaces, dryer and reactors. Such systems are 
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significantly more difficult to model when compared to processes dominated by conduction and 

convection as radiation is a highly non-linear phenomenon and the effects of geometry need to 

be carefully considered. In industrial practice, designers wish to develop steady state and 

dynamic models to optimize these processes, ensure a quality product and increase production 

rates [4,5]. Current heat transfer modeling methods for thermal processes (particularly those 

involving radiation) rely normally on broad assumptions and simplifications that do not 

adequately account for the real conditions of operation [6-9].  

In heat-transfer modeling problems when all thermophysical properties, and initial and boundary 

conditions are specified the energy balance equations are "well-posed". Such problems are 

known as direct heat transfer problems [10]. By contrast, inverse heat transfer problems (IHTPs) 

frequently lack detailed knowledge of relevant parameters and subsequently derived equations 

are normally "ill-posed" [4,7]. For inverse heat transfer problems, the unknown conditions, 

inputs and parameters must be estimated using measured temperature data at one or several 

locations within the domain. As a consequence of the ill-posed nature of the problem, random 

errors inevitable in the measured data may be accumulated and result in error magnification by 

several orders of magnitude and the unknown boundary conditions and/or thermophysical 

parameters are often poorly estimated [4,6-9].  

Estimation of the energy input and fluxes for radiative heat-transfer problems is clearly an 

important type of IHTPs [4,8]. Several trial-error and iterative based methods have been 

developed and applied to solve indirect problems, such as input power estimation (e.g. Mirsepahi 

et al. [4]). A plethora of optimization algorithms have been introduced to solve such IHTPs 

[11,12].  

Unfortunately, these methods normally require detailed and accurate physical property 

information [13,14]. Normally, measurement of such physical properties is extremely difficult, if 

not impossible. Moreover, all conventional inverse methods require an initial solution of the 

direct problem [15]. This constraint requiring the solution of  a large number of iterated direct 

problems may produce significant computing errors and/or calculations may be excessively time-

consuming [7,14,16-18]. Mirsepahi and his co-workers developed a number of popular ANNs as 

an alternative solution methodology which was based on gathering and examining experimental 
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data rather than developing and solving the complex mathematical energy transport equations. 

Consequently, detailed knowledge of the system's physical properties is no longer necessary. 

Likewise, the ANNs are able to model complex systems without the need for complex 

mathematical models involving energy balances [19]. Accurate input and output test data are the 

sole requirement for the application of ANNs to model these systems. Such methods provide an 

additional benefit by avoiding time-consuming calculations [20]. In a previous study [4], an 

ANN was designed, trained and then employed to estimate the input power in a batch drying 

process where radiation provides the dominant mode of thermal energy transport. This ANN 

allowed simple development of the inverse heat transfer model and promising results were 

reported. The ANN was a simple three layer perceptron whose key parameters (number of 

neurons in the hidden layers, the momentum and the learning rates) were ascertained by trial and 

error. This type of ANN has been widely applied to solve a diverse range of modeling tasks but 

the earlier study was the first time that such simple ANNs were applied to an application 

dominated by radiative transfer of thermal energy. Subsequently, it was hypothesized that if the 

structure of employed ANN was optimized, the aforementioned parameters could be determined 

more quickly and with higher accuracy. A search of the literature suggested that an improved 

method known as a genetic-algorithm artificial neural net (GA-ANN) could optimize the 

parameters of the ANNs using a genetic algorithm (GA) [21-24]. Hence, a study of GA-ANN to 

solve power input estimation for this class of IHTPs was performed and the results were 

compared with those from the previous work. The class of simple ANNs used initially [4] is very 

efficient in adapting and learning but an inherent disadvantage of these tools is that they provide 

an empirical 'black box' solution. An alternative, experimentally based method which in part 

overcomes this weakness is the application of fuzzy logic (FL) modeling originally introduced 

by Lofti Zadeh [25]. FL deals with reasoning which is approximate rather than fixed and exact. 

Variables are assigned a truth value ranging from 0 to 1 and such analysis mimics to some 

degree normal human reasoning. It allows the designer to develop more robust solutions and 

utilize approximate values and inferences as well as incomplete or ambiguous data rather than 

relying on crisp data. Unfortunately, fuzzy logic learning is a time consuming process; however, 

the trade off is that it provides the advantage of approximate reasoning [4,26-28]. Furthermore, 

literature review suggests that the combination of ANNs with fuzzy methods may provide an 

efficient approach for various modeling dynamic systems, as each method mitigates the other 
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method's weakness and deficiencies thereby increasing the combined efficiency of the resulting 

neuro-fuzzy (NF) system. A NF system uses learning methods derived from ANN in order to 

determine the optimal parameters of fuzzy model including appropriate membership functions 

and fuzzy rules. Numerous investigations have been performed applying ANFIS modeling to 

solve significant engineering problems [29-33].  

The aim of the present study is to compare these three intelligent technique methods (ANNs, 

GA-ANN and ANFIS) to solve power input estimation for a class of IHTPs, specifically, a 

process dominated by the most complex form of heat transfer, namely radiation. 

5.3 Experimental setup 

Figure 5-1 presents a schematic of the experimental rig used in the study. A single halogen lamp 

was attached to the top surface of a simple furnace to provide the required radiative heat source 

and temperature measurements were obtained using a thermocouple sensor attached to the base; 

both items were located asymmetrically (Figure 5-2). An I/O card, a power controller, an 

amplifier and Real Time Windows Target (RTWT) Toolbox of MATLAB/Simulink software 

were used. The dryer body was insulated and enclosed in a steel frame. T-type thermocouples 

with the accuracy of 1 °K were selected as sensors. A thermocouple amplifier was used to 

increase the output voltage of thermocouples and direct signals to a digital input-output card; the 

control command was generated in the computer and sent to the power control (power amplifier) 

unit which amplifies input voltage to the lamp(s) based on received signal form the computer.  

Figure 5-1: The dryer experimental setup 
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5.4 Problem statement 

The goal of this work is to compare the aforementioned intelligent techniques to determine the 

optimal method for estimation of the input power to an enclosure using the experimental data in 

terms of accuracy and computing time. The required experimental data was gathered from a 

model infrared dryer/furnace.  

It was also assumed that the furnace is an enclosure with diffuse-gray surfaces. A mathematical 

model of the energy balance for such a system can be determined. Some simplifying assumptions 

are necessary in order to model such a system: the non-uniformity of the prosperities of the 

surfaces, the independency of the emissivity factor (εk) from the wavelength and the direction of 

radiation from each surface. As the last assumption it was assumed that all energy has been 

emitted and reflected diffusely [34].  

As incident and reflected energy flux is non-uniform; in order to find the mathematical model of 

the dryer, an infinitesimal element on the bottom surface is considered (Figure 5-2).  

 

Figure 5-2: An element at the bottom side of the studied furnace (conduction in z direction is negligible) 

 

The procedure of finding  Equation 5-1 was described in [4]:  

Kcond
�∂2T(x,y,t)

∂x2 �
x=x0

+Kcond
�∂2T(x,y,t)

∂y2 �
y=y0

- εk
l

σT�4+ εk
l

�Fj(x,y)�(x,y)=(xo,yo)
+qlamp

''' (x,y,t)=ρCP
∂T(x,y,t)

∂t
 (5-1) 
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Where kcond is the heat conduction coefficient (W/m°K), t is time (s), l is the thickness of dryer 

body (m), T is temperature (°K), q is input heat energy (W), j is the index of elements on the 

surfaces where the studied element is not located on them, and N is the number of these 

elements.  

Due to insulation, following known boundary conditions can be considered for the dryer (Figure 

5-3):  

T(x,y,0)=To                               ∂T(l1,y,t)
∂x

=0                                     ∂T(x,l2,t)
∂y

=0                           (5-2) 

 

Figure 5-3: Bottom surface of the studied furnace 

 

Emitted heat to the system= ∫ qlamp
''' �x*,y*,t� dx* dy* (In transient situation) is subject to 

estimation in this research, where **and yx represent the coordinates of the surfaces of the 

enclosure (i.e. x and y in Figure 5-2). Having the solution of this problem, one can estimate the 

emitted heat that will lead to a special temperature distribution.  

5.5 Intelligent techniques approach for the proposed IHTP 

As previously stated, an inverse model is often used as a controller to regulate the input power 

that produces the desired temperature distribution within the furnace or dryer. A perfect inverse 

would negate the requirement for feedback control. In control, the number of controlled 

(measured) variables (e.g. temperature at points on the surface) cannot exceed the number of 

control actuators (manipulated variables) (e.g. the input power). In order to impose a desired 

temperature distribution on a surface in a batch infrared dryer we need to control a large number 

of heat sources simultaneously using an accurate inverse model. This research addresses the 

initial step of this task namely the development of accurate high fidelity inverse model. 
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 This model will enable the designer to estimate the transient input voltage to produce a desired 

temperature history. The general form of the required inverse model is shown below:  

𝑄� �𝑘 − 𝜏𝑑
𝜏𝑠

� = 𝐹[𝑇(𝑘), 𝑇(𝑘 + 1), … , 𝑇(𝑘 + 𝑟)]                                                                         (5-3)   

 where 𝑄�  is the estimated input heat, 𝜏𝑑  is the dead time and  𝜏𝑠 is the sampling time. r is the 

order of the model and characterizes how long the temperature at a particular point is affected by 

the input thermal energy emitted at any moment.  F is a function to be estimated.  

5.6 Data preparation  

Experimental data for the transient is stored as a matrix with two columns of containing the input 

power (Q) and temperature (T).  

A = �
𝑄1 𝑇1
⋮ ⋮

𝑄𝑛 𝑇𝑛

�                                                                                                                              (5-4)  

where n is the number of collected data and A is the matrix of the raw recorded data.  

It was found experimentally that the delay or dead time of the system is 1.4 seconds.  The 

sampling time (0.2 seconds in current job) and order (5 in this research) should be guessed [4]  

B is the matrix of raw data and prepared data: 

B=  �
𝑄1 𝑄2 ⋯ 𝑄𝑛−𝑑
⋮ ⋮ ⋮ ⋮

𝑇𝑑+1 𝑇𝑑+2 ⋯ 𝑇𝑛

�                                                                                                     (5-5)  

where   B is matrix of data after considering the dead time and d = 𝜏𝑑
𝜏𝑠

  

For an inverse model of order of r; the data should be arranged as shown below: 

C=

⎣
⎢
⎢
⎢
⎡

      
Td+1 … Td+r

⋮ ⋮ ⋮
Tn-r+1 … Tn

�������������
Input

   
Q1
⋮

Qn−d−r+1

�������
Output

⎦
⎥
⎥
⎥
⎤

                                                                                   (5-6) 
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C is the matrix of prepared data. 

5.7 Intelligent modeling of the Irradiative furnace/dryer 

In this work, the input to the inverse model is temperature history in °K and the output is input 

power in kW.  Equation 5-1 and the model function may be summarized in the following form:  

Q�(k+7)  =  F[T(k),T(k+1),T(k+2),T(k+3),T(k+4)]                                                               (5-7)                                            

Variables with a hat are the estimated/predicted ones.  After applying the dead time and the 

order, a set of 1000 pieces of recorded data were prepared as below:  

Prepared data  =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡

T8 T9
T9

⋮
⋮

T10
⋮
⋮

T996 T997 

   

T10 T11 T12
T11

⋮
⋮

T12
⋮
⋮

T13
⋮
⋮

T998 T999 T1000

  

���������������������
Input

 

Q1
Q2

⋮
⋮

Q989

�
Output

⎦
⎥
⎥
⎥
⎥
⎥
⎤

                                          (5-8) 

 

5.8 GA-ANN modeling for the proposed IHTP 

The back propagation ANNs (BPN) used in previous study [4] are widely applied in various 

engineering applications.  Their solution is not robust and their parameters are highly sensitive 

and lack robustness, hence slight changes in the value of ANN’s parameters may cause 

significant change in the ANN’s performance [22].  

In the absence of any accurate and defined theory to calculate parameter settings such as the 

number of hidden layers, momentum rate and learning rate must be determined heuristically and 

by trial and error methods.  This fact makes the procedure of finding structure of the simple 

conventional ANNs time and effort consuming.  In this new study, a GA is used to find the 

optimal values of aforementioned parameters. 

The Levenberg-Marquardt (LM) optimization algorithm was used in our initial study[4].  In 

order to investigate the effectiveness of GA-ANN, we compared the performance of two popular 

optimization algorithms (LM and the Momentum Algorithm) and the parameters of both 
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networks were optimized using the evolutionary GA.  The commercially available 

NeuroSolutions software was used in order to optimize effectively aforementioned parameters.  

This software allows us to optimize the number of neurons in hidden layer using the Levenberg 

Marquadt algorithm and if the Momentum algorithm is employed the number of hidden layers, 

momentum rate and learning rate can be optimized.   

GA is an optimization method based on evolutionary principles.  NeuroSolutions software 

permits the user to employ the genetic algorithm as a learning algorithm for training multilayer 

perceptron ANNs.  In this study, three parameters are used for the ANNs using the Momentum 

algorithm for training (the number of hidden layers, the momentum rate and the learning rate) 

whilst a single parameter (number of neurons in hidden layer) was used with the LM algorithm.  

These parameters form the genes in a chromosome for the evolution algorithm. 

The fitness of a chromosome can be quantified as the fitness is inversely related to the Mean 

Absolute Error (MAE) of the ANNs outputs.  An initial population of chromosomes was 

determined in a random manner; the algorithm is initiated and continues in a “survival of the 

fittest” mode to develop a better population.  The key operations that commonly employed 

include selection, crossover and mutation [3, 35, 36].  

Chromosomes with higher fitness numbers were chosen in the selection step.  In the crossover 

step, two chromosomes are selected randomly, then cut at a random position and the binary 

values are exchanged to create two new chromosomes.  The genes of a chromosome are changed 

in the mutation step with a low probability.  This procedure is repeated to finally reach a 

population of chromosomes with an accurate fitness number. 

In this study, the ANNs previously tested by Mirsepahi et al.[4] were optimized by applying the 

evolutionary algorithm.  As the optimization method in the back propagation BP part was LM 

the number of hidden layers and input columns were optimized by GA.  Another well-known 

method of optimization called momentum algorithm was tested and its parameters were 

optimized by GA.  

In NeuroSolutions software for both networks in the GA optimization process, the number of 

epochs was set to 1000, maximum generation was 100 and maximum evolution time was set to 
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60 minutes.  The lower and upper bonds for both step size and momentum algorithm were 0 and 

1.  Roulette was selected for the selection method, one point for crossover and the uniform 

method for mutation part. 

Table 5-1 summarizes the results of four networks based on cross validation and training data 

(from training input 80% of data used as cross validation data). 

Table 5-2: Summary of results (a) Back Propagation (BP) using LM to determine neurons number by trial and error 

(b) BP using LM to determine the number of neurons using GA (c) BP using momentum algorithm with the 

parameters fixed by trial and error (d) BP using momentum algorithm with the parameters determined using 

GA 

 

Best Networks Training 
Cross 

Validation 
 

Optimization 
Summary Best Fitness Average Fitness 

Epoch # 202 103 
 

Generation # 42 53 
Minimum 
MSE 0.0011 0.0014 

 

Minimum 
MSE 0.001 0.001 

Final MSE 0.0012 0.0015 
 

Final MSE 0.001 0.001 

 
(a) 

   
(b) 

 
Best Networks Training 

Cross 
Validation 

 

Optimization 
Summary Best Fitness Average Fitness 

Epoch # 10000 10000 
 

Generation # 99 84 
Minimum 
MSE 0.0017 0.0022 

 

Minimum 
MSE 0.0015 0.0017 

Final MSE 0.0017 0.0022 
 

Final MSE 0.0015 0.0026 

 
(c) 

   
(d) 

  

Figure 5-4 shows that the optimal method for back propagation is the LM algorithm and the 

optimal network’s performance is attained using optimization of relevant parameters by the 

genetic algorithm (GA). 

For the momentum back propagation the optimized step size is 0.515 and the momentum rate is 

0.769.  The number of neurons in hidden layer for previous study was 5 (Levenberg-Marquadt 

BP). The optimal number of neurons in hidden layer using the GA is 4, whilst, the optimal 

number of neurons using the Momentum BP method was 10 with the GA and 7 without GA 

optimization. 
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Figure 5-4: Average and best fitness in each generation for after optimization the parameters by GA for two BP 

methods (LM right-hand graphs and Momentum left-hand graphs) 

 

5.9 ANFIS Architecture 

In recent years, two prominent intelligent techniques (artificial neural networks and fuzzy logic), 

have been applied to solve a wide variety of highly non-linear heat transfer problems in various 

applications.  ANNs possess basic computational structures which allow them to perform well 

when dealing with raw data.  Fuzzy logic deals with reasoning on a higher level and uses 

linguistic information obtained from domain experts.  The aforementioned abilities make the 

ANN and fuzzy logic combination a very powerful tools for solving numerous difficult non-

linear modeling problems, especially instances where data may be complex or where a limited or 

an insufficient amount of accurate data is available [26, 27, 37].The combination of ANNs 

coupled with a fuzzy logic modeling method provides an efficient approach for various modeling 

systems. Each method compensates for the others weakness.  A neuro-fuzzy (NF) system 

employs learning methods derived from ANNs in order to discover the parameters of fuzzy 

system including appropriate membership functions and fuzzy rules as shown in Figure 5-5 [26, 

27, 37] (Table 5-2). 
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The NFs normally compute the node outputs up to the preceding layer in each period of 

instruction. Thus, the resulting parameters are calculated by the least squares error (LSE) 

method.  When the error has been calculated in the backward route, the ratios of error have been 

distributed on condition parameters and their values are corrected by error descending gradient 

method. A variety of formations have been recommended to establish a NF model.  One of the 

most powerful of those which have been introduced by Jang is known as adaptive neuro-fuzzy 

inference system (ANFIS). The key approach in this structure is error back propagation which 

scatters the error value towards inputs by algorithm of the gradient descent and corrects the 

parameters [26, 27, 37]. 

5.10 ANFIS Modeling for the Proposed IHTP 

In this study one of the most common structures of NF network identified as adaptive neuro-

fuzzy inference systems (ANFIS) has been employed. In this method, a fuzzy inference system is 

designed based on system specifications. This initial model is transformed to a neuro-fuzzy 

network and then trained using the recorded experimental data from the system. The training 

procedure involves both gradient error back propagation to adjust membership function 

coefficients and LSE to adjust linear output parameters. 

Following determination of the ANFIS model using training, four input functions significantly 

different from those used in training process were utilized to verify predictive capability of the 

method. The resultant temperature profiles were arranged (as explained in data preparation 

section) and given to the proposed ANFIS and the corresponding input heat functions were 

estimated by the ANFIS [38]. In fuzzy inference systems, the number of fuzzy rules is equal to 

number of membership functions powered by the number of inputs.  To cover the complete input 

space, many rules are needed.  Training such FIS’s is too time consuming or sometimes 

impossible.  In order to reduce fuzzy rules number whilst incurring the minimum accuracy loss, a 

method known as subtractive clustering is applied [1, 7]. In this method, rules with the most 

probable antecedents in the recorded data from the actual system are selected. The model derived 

from subtractive clustering is then used as initial model for training. The training procedure 

involves both gradient error back propagation (to adjust membership function coefficients) and 
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LSE (to adjust linear output parameters). Figure 5-5 shows the architecture of proposed ANFIS 

model. 

        

Figure 5-5: The architecture of proposed ANFIS model 

 

A key parameter in the subtractive clustering method is Range Of Influence (ROI).  In this study, 

for the first time, the effect of changes in the initial ROI guess was studied using four different 

sets of test data.  Surprisingly, for all the aforementioned data sets of data, a constant value  = 0.3 

provided the best guess in terms of accuracy measured using the mean of the absolute error 

(Mae) and the maximum error (Max error).  Figure 5-6 shows this criterion versus different ROI 

as the initial guess. where, 

N

Q(i)(i)Q̂
mae

N

1i
∑
=

−
=                                                                                                                (5-9) 

where N : the number of data after data preparation process, Q : real input power  

Q̂ : predicted input power 
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In order to determine the optimal Range of Influence, training data was trained with different 

ROIs and check with each sets of checking data. 

 

 

 

 

 

 

 

 

 

(a)                                                                              (b) 

 

 

  

 
 

 

                                   (c)                                                                            (d) 

 

          (c) (d) 

Figure 5-6: Range of Influence (ROI) vs. errors for testing data sets which are completely separate from training 

data 
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Table 5-2: Fuzzy rule base for inverse modeling 

Number 
of rules 

Rule description 

1 If (T1 is T1cluster1) and (T2 is T2cluster1) and (T3 is T3cluster1) and (T4 is T4cluster1) and (T5 is T5cluster1) then (q1 is 
q1cluster1) 

2 If (T1 is T1cluster2) and (T2 is T2cluster2) and (T3 is T3cluster2) and (T4 is T4cluster2) and (T5 is T5cluster2) then (q1 is 
q1cluster2) 

3 If (T1 is T1cluster4) and (T2 is T2cluster4) and (T3 is T3cluster4) and (T4 is T4cluster4) and (T5 is T5cluster4) then (q1 is 
q1cluster4) 

4 If (T1 is T1cluster4) and (T2 is T2cluster4) and (T3 is T3cluster4) and (T4 is T4cluster4) and (T5 is T5cluster4) then (q1 is 
q1cluster4) 

5 If (T1 is T1cluster5) and (T2 is T2cluster5) and (T3 is T3cluster5) and (T4 is T4cluster5) and (T5 is T5cluster5) then (q1 is 
q1cluster5) 

6 If (T1 is T1cluster6) and (T2 is T2cluster6) and (T3 is T3cluster6) and (T4 is T4cluster6) and (T5 is T5cluster6) then (q1 is 
q1cluster6) 

7 If (T1 is T1cluster7) and (T2 is T2cluster7) and (T3 is T3cluster7) and (T4 is T4cluster7) and (T5 is T5cluster7) then (q1 is 
q1cluster7) 

8 If (T1 is T1cluster8) and (T2 is T2cluster8) and (T3 is T3cluster8) and (T4 is T4cluster8) and (T5 is T5cluster8) then (q1 is 
q1cluster8) 

9 If (T1 is T1cluster9) and (T2 is T2cluster9) and (T3 is T3cluster9) and (T4 is T4cluster9) and (T5 is T5cluster9) then (q1 is 
q1cluster9) 

10 If (T1 is T1cluster10) and (T2 is T2cluster10) and (T3 is T3cluster10) and (T4 is T4cluster10) and (T5 is T5cluster10) then 
(q1 is q1cluster10) 

11 If (T1 is T1cluster11) and (T2 is T2cluster11) and (T3 is T3cluster11) and (T4 is T4cluster11) and (T5 is T5cluster11) then 
(q1 is q1cluster11) 

12 If (T1 is T1cluster12) and (T2 is T2cluster12) and (T3 is T3cluster12) and (T4 is T4cluster12) and (T5 is T5cluster12) then 
(q1 is q1cluster12) 

13 If (T1 is T1cluster13) and (T2 is T2cluster13) and (T3 is T3cluster13) and (T4 is T4cluster13) and (T5 is T5cluster13) then 
(q1 is q1cluster13) 

 

The proposed ANFIS model was composed of 164 nodes, 130 nonlinear parameters and 13 fuzzy 
rules as summarized in Figure 5-7:  

 

Figure 5-7: the proposed ANFIS rules 
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5.11 Experimental Results 

After completing the training using the aforementioned methods, four functions different from 

those used in training process employed to compare each method’s effectiveness as shown in 

Figure 5-8.  Their resultant temperature were arranged (as explained in data preparation section) 

and given to the proposed techniques and the corresponding input energy functions were 

estimated by the each method (Table 5-3). 

Results show that for the back propagation (BP) section of the ANN, the LM optimization 

proved to be more accurate when compared with results from the momentum algorithm.  As 

well, the performance of ANNs can be improved and optimized by use of the genetic algorithm 

(GA).  However, the ANFIS algorithm provided better predictions than the results derived by 

application of any of the other methods. 

Without GA-ANN optimization, the neural net’s parameters must be discovered by trial and 

error.  Use of the GA allows the designer to determine the optimal parameters for the net.  Its 

benefits are twofold, namely a more accurate solution with the additional bonus that the structure 

of the networks is simplified (providing, for instance, a reduced number of hidden layers).  This 

simplification result in a faster response for the network. 
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(a)                                                                    (b) 

   

        (c)                                                       (d) 

Figure 5-8: Actual and estimated input power data (average of all proposed techniques) for four checking data 

series  (blue stars signify estimated input power by the proposed ANFIS and red lines show real input power 

applied to the system) 

 

In general, as the number of parameters increases so does the training time.  Training times for 

the ANFIS method exceed those for an ANN structure.  This could result from use of a standard 

ANFIS structure which is not very flexible.  Other NFs methods may be checked to determine if 

this penalty can be significantly reduced. 
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Table 5-3: Prediction accuracy for different trained models and techniques (minimum absolute error      (MAE) and 

maximum error) 

 

Int. Tech. Criterion MAE (W) Maximum Error (W) 

 
 

LM 

Checking 
data 

1st  
series 

2nd  
series 

3rd 
series 

4th 
series 

1st  
series 

2nd  
series 

3rd 
series 

4th 
series 

Error (W) 52 27.8 44.6 47.4 169.4 91.7 380.4 177.3 

MOMENTUM 65.4 72.4 49.2 
 

48.4 286.1 
 

246 172.4 
 

161 

GA-LM 40.2 
 

22.4 35.6 42 156.2 86.2 143.4 167.3 
 

GA-MOMENTUM 51.1 44 42.9 44.5 223 179 167 139.7 
 

ANFIS with the optimal 
ROI 

40 20.3 27.2 32.4 129.4 81.1 101.5 149.2 

 

5.12 Advantages and Comparisons 

As mentioned in a previous study of multi-layer perceptron (MLP), the proposed intelligent 

methods are not plagued by time consuming trial-and-error calculations in their procedures that 

impede the use of classical methods.  The sole iterative section of the proposed methods occurs 

during training and as this involves simple mathematical relations the problem solution can be 

derived must faster when compared with classical solutions. 

Detailed physical properties and solution of direct problem are not required in the proposed 

methods.  The sole requirement is high quality, input-output data.  There is a substantial time 

saving and the resulting solutions are more accurate compared with the solutions derived by 

classical methods. 

For the classical ANN methods employed in a previous study, the key parameters were found 

using a trial-and-error method.  The use of evolutionary algorithms such as GA-ANN provides 

an optimized solution, consequently less effort is expended. 
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When using GA-ANN, the training phase requires a slightly longer time but this trade-off is 

acceptable as an optimal structure is defined.  Furthermore, following training to produce an 

improved network, the solution time to determine the inverse is significantly reduced as the key 

parameters are optimized and the resulting structure is much simpler. 

For the back propagation phase of MLPs, the Levenberg-Marquardt method provides a more 

accurate solution when compared to Momentum algorithm’s solution. This observation is 

reasonable because LM uses a quadratic method for updating the weights and consequently 

would be expected to outperform linear methods. 

As noted in the introduction, the inverse model is routinely used to develop a controller to 

generate the input power profile that produces the desired temperature distribution.  The black 

box nature of the ANN solution is often cited as weakness as some control problems require 

human expertise or linguistic knowledge. The proposed ANFIS can address this deficiency and 

this procedure provided the best results in terms of fitted responses among all the methods 

considered in this work. 

The number of parameters and training time are significantly increased using the ANFIS 

methodology.  However, this trade-off is also acceptable given the improvement in prediction 

accuracy.  The NF solution methodology was chosen because of its popularity efficacy for in 

solving a broad range of engineering problems. Other NFs may be applied in future studies to 

determine if this furnace can be modelled inversely with fewer parameter and improved 

structures. 

In this study only MLP checked, Other ANNs can also be checked to find if they can perform 

better or not in this application. 

5.13 Conclusion  

In this paper, four different intelligent techniques were designed, successfully trained and then 

utilized as an appropriate alternative to conventional methods to predict the input power required 

by an irradiative batch dryer.  The intelligent technique models were developed by training using 

experimental data.  For this purpose, input electrical power was applied to a halogen lamp 

attached to the dryer’s top surface and the resulting temperature was measured by a 
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thermocouple fixed to the bottom surface.  Data was recorded, processed and employed to 

produce an inverse ANN model of the system.  This model can then take the transient 

temperature history of a point and from this data estimate the input electrical power to the 

system.  The results demonstrate that the power estimated by the designed intelligent technique 

methods was consistent with the real power applied during the experiment. 

From a practical point of view, the only requirement to make a highly accurate intelligent 

technique models for a heat estimation problem is a series of input temperature data for a few 

minutes of operation and the dimensions and thermophysical properties are not needed.  

Comparisons show that application of a GA-ANN simplifies the structure of ANNs by 

optimizing key parameters and the resultant GA-ANN solves faster than a simple ANNs. 

For the backward-propagation step in defining the ANN, the level Levenberg-Marquadt 

algorithm provides more accurate results than the Momentum algorithm.  

The most accurate method for inverse model development was ANFIS which was included 

human expertise and linguistic knowledge, but significant increase in the number of parameters 

and training time was required.  Other ANNs and NF methods are open for study in this 

application. 
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Chapter6. A comparative approach of inverse modelling applied to an irradiative batch dryer employing several 
artificial neural networks 

6.1 Abstract 

The present chapter has focused on a comparison between commonly employed Artificial Neural 

Networks (ANNs) in engineering applications to identify the most efficient ANN for inverse 

modeling of an irradiating furnace/dryer in terms of accuracy and computing time. To this end, 

several ANNs were designed, trained and employed to estimate the heat emitted during the 

irradiative batch drying process with the aid of  NeuroSolution®.  

As part of the study, different ANNs were designed and trained to play the role of the inverse 

heat transfer model. The reasons for exploiting these ANNs were derived from various studies in 

the literature, in which ANNs were employed for engineering modelling purposes. The results 

showed that the Multi Layer Perceptron (MLP) with the Levenberg-Marquadt (LM) in the Back 

Propagation (BP) was the best ANN among the methods evaluated to solve the inverse heat 

estimation problems used in irradiative batch drying processes. An important advantage of the 

ANNs method in comparison with classical inverse heat transfer modelling approaches is that a 

detailed knowledge of geometrical and thermal properties of the system (such as wall 

conductivity, emissivity, etc.) are not required.  Such properties are difficult to measure and may 

undergo significant changes during the temperature transient mode.  

In this study, Genetic Algorithms (GA) has been employed to determine key parameters of the 

employed ANNs. These parameters are normally found heuristically or by a trial and error brute 

force process. The results demonstrate that the parameters may be estimated much more 

accurately and faster by GA. The performance of the networks has been improved and the 

number of required hidden layers has been discovered using a non trial-error method, which also 

eliminated time-consuming re-testing procedures and produced more accurate results. 

6.2 Introduction 

Thermal processes dominated by radiation, play important roles in a plethora engineering 

applications. The most important criterion that influences our ability to control thermal 

processes, is the extent to which the designed model can reliably predict the behaviour of thermal 

systems in order to maximize energy efficiency and to minimize the production of greenhouse 

gases and relevant environmental footprints [1, 2]. Consequently, many investigations have been 

undertaken to improve and develop more robust modelling strategies [3-5]. 
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Each system needs an efficient and reliable method, and a model for process identification. The 

main purpose of process modelling is to predict plant behaviour and drive the process to operate 

at its optimal production rate [2]. 

In the modelling of a thermal process, if there is a lack of knowledge of the system’s boundary 

conditions, initial conditions or thermophysical properties, then the derived equations are “ill-

posed”. These unknowns are estimated using measured temperature data at one or several 

locations within the domain. As a consequence of the ill-posed nature of the problem, 

unavoidable random errors (noise) in the measured data may induce significant errors amplified 

by several orders of magnitudes and the unknowns may be poorly estimated. Hence, inverse heat 

transfer problems (IHTPs) are normally considered to be complex and “difficult to solve” [6]. On 

the contrary, if all aforementioned properties are known and the derived equations are well-

posed, these problems are called “direct”. The purpose of the solution of a direct problem, is to 

find the temperature distribution for a geometrically well-defined domain [7]. 

Applications of inverse heat transfer schemes occur in numerous application including: the 

estimation of thermophysical properties of material [7-10], estimation of bulk radiation 

properties and boundary conditions in absorbing, emitting and scattering semi-transparent 

materials [7, 11-13], control of the motion of the solid liquid interface during solidification [7, 

14, 15], estimation of inlet condition and boundary heat flux in forced convection inside 

ducts[7], estimation of interface conductance between periodically contacting surfaces [7, 16], 

monitoring the radiation properties of reflecting surfaces of heaters and cryogenic panels [7, 17, 

18], estimation of heat release during friction of two solids [7, 17, 18], estimation of reaction 

function [7, 19], control and optimization of the curing process of rubber [7], estimation of the 

boundary shapes of bodies[7], estimation of the temperature or heat rate distribution within the 

combustion region [20], and estimation of source term or temperature distribution in radiative 

heat transfer [20-25]. 

Radiation processes are strongly non-linear, highly complex and the accurate modelling of such 

processes is a difficult and time consuming task as a consequence of the large number of 

physical parameters defined for the heat transfer media [26, 27].  Conventional modelling 

methods used for such systems are normally based on a solution of energy balances and rate 

equations which allow us to develop and solve the governing differential equations [28]. 
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Unfortunately, these models are rather complex and the resulting differential equations that are 

highly non-linear [26].   

Despite the fact that thermal radiation is the dominant and most important heat transfer mode in 

high-temperature equipment (e.g. furnaces, high temperature reactors, etc), the solution of 

inverse radiation problems is rarely addressed in the literature (in contrast to inverse heat 

conduction problems which are widely studied). 

An obvious reason for this lack of attention is the fact that radiation is a significantly more 

complex phenomenon than conduction and convection. The nature of the integro-differential 

equation that governs radiative heat transfer defies simple solutions even for direct problems. 

Hence, the inverse radiation problems that have been solved to date are generally simplistic and 

rather elementary cases [29].   

Heat function estimation in radiative problems is an important type of IHTPs [7, 30]. Several 

trial-error and iterative based methods have been developed and applied to solve indirect 

problems, such as heat function estimation introduced by Mirsepahi et al.[30].  

These methods normally require detailed and accurate information regarding physical properties 

[10, 20, 22]. Often, the measurement of such physical properties is extremely difficult, if not 

impossible.  Moreover, all conventional inverse methods require that the direct problem must be 

solved first. This constraint of the need for iterated direct problem solutions can produce 

significant computing errors and calculations may be excessively time-consuming [6, 10, 20, 22, 

31, 32]. 

Mirsepahi et al. proposed and applied a common ANN as an alternative method, based on the 

gathering and examination of experimental data, instead of the development of complex 

mathematical equations.  Consequently, detailed knowledge of the system’s physical properties 

is no longer necessary. ANNs are able to model complex systems without the need for complex 

mathematical models.  Accurate input and output test data are the sole requirement for the 

application of ANNs to model the system. These methods provide an additional benefit by 

avoiding time-consuming calculations [33].  
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In their study, an ANN was designed, trained and then employed to estimate the input power to a 

batch drying process where radiation provides the dominant mode of thermal energy transport 

[30]. In that study, the authors employed MLP (Multi-layer perceptron), as conventional wisdom 

suggests that in engineering applications, this type of ANNs often works best, in terms of 

accuracy and quick response. Additionally, the number of neurons in hidden layer was found by 

trial-and-error (the number of hidden layers is a key parameter in MLP).  

A variety of ANNs are able to solve function approximation problems. In order to determine if 

the ANNs proposed by Mirsepahi et al. provide a superior tool for the modelling of inverse 

radiation problems, this study has employed the NeuroSolutions®  software to generate selections 

based on fitness and rapidity of the solution among those possible ANNs.  

All ANNs possess a number of key parameters. These parameters are normally determined by 

trial and error. This method makes the procedure time consuming and inaccurate. For example, 

there is no criterion to specify key parameters such as the number of neurons in hidden layer(s). 

Mirsepahi et al. in their study found the number of hidden layers heuristically using a trial-and-

error procedure. In contrast to that work, here the key parameters are developed with the aid of a 

GA, in order to determine if the results may be improved in terms of reduced computing time 

and accuracy.   

6.3 Experimental setup 

Figure 6-1 illustrates a simple schematic of the experimental rig used in this study. A single 

halogen lamp was attached to the top surface of the furnace/dryer to provide the heat source and 

a thermocouple sensor was attached to the bottom surface as the sensor.  Both items were located 

asymmetrically. An I/O card, a power controller, an amplifier and the Real Time Windows 

Target (RTWT) Toolbox of MATLAB/Simulink software were used. 
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Figure 6-1: Setup for experimental dryer 

The dryer body was built using insulation boards and a steel frame. A T-type thermocouple with 

an accuracy of 1oK was selected as the sensor. A thermocouple amplifier was used to amplify the 

output power from the thermocouples.  This signal was sent to a digital input-output card and the 

control commands were generated in the computer and then sent to the power control (power 

amplifier) unit which amplifies input voltage to the lamp based on the received signal from the 

computer.  

6.4 Problem Statement 

The objective of this work is to find the best ANN among those employed in the literature in 

terms of accuracy and computing time, then optimize the relevant key parameters to determine 

the optimal method for the estimation of the input power to an enclosure using experimental 

data. The required experimental data were gathered from a model infrared dryer/furnace (Figure 

6-2).  

Figure 6-2: A simplified model of the dryer/furnace 
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It was also assumed that the furnace is an enclosure with diffuse-gray surfaces.  A mathematical 

model of the energy balance for such a system can be determined. Some simplifying assumptions 

are necessary in order to model such a system which includes non-uniformity of the relevant 

thermal properties of the surfaces, the independency of the emissivity factor (εk) from the 

wavelength and the direction of radiation from each surface. As a final assumption, it was 

assumed that all the energy was emitted and reflected diffusely [34]. 

6.5 Intelligent techniques approach to the proposed IHTP 

An inverse model is often used to develop a controller to regulate the input power that produces 

the desired temperature distribution. In control problems, the number of controlled (measured) 

variables (e.g. temperature at points on the surface) cannot exceed the number of control 

actuators (manipulated variables) (e.g. input power). In order to produce a desired temperature 

distribution on a surface in a batch infrared dryer, it is necessary to control a large number of 

heat sources simultaneously using an accurate inverse model. This research addresses the initial 

step of this task. An accurate inverse model was generated in this work. This model is able to 

estimate the transient input power to produce a desired temperature history. The general form of 

this inverse model is shown below: 

𝑄� �𝑘 − 𝜏𝑑
𝜏𝑠

� = 𝐹[𝑇(𝑘), 𝑇(𝑘 + 1), … , 𝑇(𝑘 + 𝑟)]    (6-1) 

where F is a function which is to be estimated, 𝜏𝑑  is the dead time (that is needed for input heat 

to affect the temperature at a practical point), 𝜏𝑠 is the sampling time (time interval between two 

consequent measurements), r is the order (which shows how long the temperature of the practical 

point is affected by the input heat emitted at any moment), T is the measured temperature and 𝑄�  

is the estimated/predicted input power.  

6.6 Data preparation 

Experimental data for the transient mode is stored in a matrix with two columns as: 

A=�
Q1 T1
⋮ ⋮

Qn Tn

�    (6-2) 
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Where n  is the number of collected data, A is the matrix of raw recorded/sensed data, Q is input 

power and T is recorded temperature.  

It was determined experimentally that the delay or dead time of the system is 1.4 seconds.  The 

sampling time of 0.2 seconds and the order of  5 were guessed [30].  

B= �
Q1 Td+1
⋮ ⋮

Qn-d Tn

�   (6-3) 

where  B is a matrix of data after considering the dead time and d= 𝜏𝑑
𝜏𝑠

 

For an inverse model with an order of  r; the data should be arranged in a matrix as shown below: 

C=

⎣
⎢
⎢
⎢
⎡

      
Td+1 … Td+r

⋮ ⋮ ⋮
Tn-r+1 … Tn

�������������
Input

Q1
⋮

Qn-d-r+1

�����
Output

⎦
⎥
⎥
⎥
⎤

(6-4) 

where  C is the matrix of prepared data. 

6.7 Intelligent modeling of the radiating furnace 

In this study, the input to the inverse model is the temperature history in degrees Kelvin and the 

output is input power in kW.  Equation 6-1 may be written in the following form:  

Q�(k+7)=F[T1(k),T1(k+1),T1(k+2),T1(k+3),T1(k+4),T2(k),T2(k+1),T2(k+2)]     (6-5) 

The variables with a hat are the estimated/predicted ones. After applying the dead time and the 

order, a set of 1000 pieces of recorded data were prepared as below:       

Prepared data=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

T8 T9
T9

⋮
⋮

T10
⋮
⋮

T996 T997 

T10 T11 T12
T11

⋮
⋮

T12
⋮
⋮

T13
⋮
⋮

T998 T999 T1000

���������������������
Input

Q1
Q2

⋮
⋮

Q989

�
Output

⎦
⎥
⎥
⎥
⎥
⎥
⎤

(6-6)    
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6.8 Comparison of a number of ANNs to discover the best one 

One objective of this study is to compare different ANNs to find the optimal one to provide an 

inverse model of the furnace/dryer (Figure 6-2). Accordingly, a set of training data and four 

completely different testing data sets were gathered from the experimental setup.  There are 80% 

of training data used for training and 20% used for cross validation. After determining the delay, 

sampling time and the order, the prepared matrices of data, as the input and output of ANNs, 

were entered into the NeuroSolutions for Excel 6®. Training data used to train ANNs and after 

completing this training, the sets of testing data were used to validate ANNs model. The results 

are presented in the Appendix A. 

This comparison indicates that the ANN employed by Mirsepahi et al. [35] is optimal for the 

studied IHTP (MLP with LM optimization method in the back propagation section). 

Table 6-1 contains the result of the four different testing data used to validate the model. 

Table 6- 1: Result of four sets of testing data by MLP (LM as the optimization method).  Key parameters were determined 

by trial-and-error 

Training Cross Val. Testing 

Number of Rows 477 105 118 

MSE 0.006 0.004 0.004 

Correlation (r) 0.992 0.994 0.994 

Min Absolute Error 0.000 0.002 0.001 

Max Absolute Error 0.227 0.126 0.199 

Mean Absolute Error (MAE) 0.060 0.052 0.054 

(a)   (b) 
Training Cross Val. Testing 

Number of Rows 480 101 94 

MSE 0.004 0.004 0.002 

Correlation (r) 0.994 0.993 0.995 

Min Absolute Error 0.000 0.000 0.000 

Max Absolute Error 0.189 0.263 0.134 

Mean Absolute Error (MAE) 0.047 0.052 0.035 

 (c)  (d) 

Training Cross Val. Testing 

Number of Rows 480 101 94 

MSE 0.005 0.004 0.004 

Correlation (r) 0.993 0.994 0.995 

Min Absolute Error 0.001 0.001 0.000 

Max Absolute Error 0.225 0.125 0.169 

Mean Absolute Error (MAE) 0.053 0.057 0.054 

Training Cross Val. Testing 

Number of Rows 480 101 94 

MSE 0.003 0.005 0.002 

Correlation (r) 0.995 0.995 0.997 

Min Absolute Error 0.000 0.000 0.000 

Max Absolute Error 0.163 0.170 0.173 

Mean Absolute Error (MAE) 0.043 0.059 0.032 
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6.9 GA-ANN modelling of the proposed IHTP 

Back propagation ANNs (BPN) are widely applied in a variety of engineering applications. 

Often, the resulting solutions are not robust and are highly sensitive to slight changes in the 

parameters. Hence, minor changes in the value of the key parameters may cause significant 

change in the ANN’s performance.  

In the absence of any accurate and defined theory to calculate parameter settings, the parameters 

such as the number of hidden layers must be determined heuristically and by trial and error 

methods. This fact makes the procedure for finding the structure of a simple conventional ANN 

very time consuming. In this study, a GA is used to determine the optimal values of the 

aforementioned parameters. 

In order to find the optimized number of neurons in the hidden layer, the commercially available 

NeuroSolutions 6 software was employed. This software allows one to optimize the number of 

neurons in hidden and input columns. 

The GA is an optimization method based on evolutionary principles. NeuroSolutions can be 

employed to use the GA as a learning algorithm for training multilayer perceptron ANNs.  In this 

study, the optimized number of neurons in hidden layer was found by applying the GA.  

When using the GA, the fitness of a chromosome can be quantified, as fitness is inversely related 

to Mean of Absolute Error (MAE) of the ANNs outputs.  An initial population of chromosomes 

is determined in a random manner; the algorithm subsequently starts and continues in a ‘survival 

of the fittest’ mode to develop a better population.  The commonly employed operators include 

selection, crossover and mutation (Table 6-2.).  

Table 6-2 compares the performance of proposed GA-ANN and ANN by using four different 

sets of testing data 
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Table 6-2: comparing of the performance of four different testing data before and after GA optimization 

(a) 

Performance criterion Trial-
Error 

GA 

MSE 0.009 0.004 

NMSE 0.033 0.016 

MAE 0.070 0.054 

Min Abs Error 0.0002 0.001 

Max Abs Error 0.3248 0.198 

R 0.983 0.993 

(b) 

Performance  

criterion 

Trial-Error GA 

MSE 0.0046 0.0043 

NMSE 0.0183 0.0170 

MAE 0.048 0.054 

Min Abs Error 0.0001 0.000 

Max Abs Error 0.229 0.169 

R 0.992 0.994 

(c) 

Performance 

criterion 

Trial-Error GA 

MSE 0.004 0.001 

NMSE 0.017 0.009 

MAE 0.054 0.034 

Min Abs Error 0.000 0.000 

Max Abs Error 0.169 0.134 

R 0.994 0.995 

(d) 

Performance 

criterion 

  Trial-Error GA 

MSE 0.0023 0.0021 

NMSE 0.008 0.007 

MAE 0.038 0.032 

Min Abs Error 0.0008 0.0003 

Max Abs Error 0.137 0.173 

r 0.997 0.996 
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The results show that the GA-ANN produces more accurate solutions.  In order to compare 

ANNs and GA-ANNs in terms of performance, the number of hidden layers in both methods 

should be compared. The number of hidden layers with ANNs is six (6) whilst with the GA-

ANN only four (4) are required; hence the performance of GA-ANN is also superior. 

   (a) 

 

 

 

 

 

 

 

  

      (b) 

 

 

 

 

 

 

 

 

Figure 6-3-a : Average and best fitness in each generation after optimization the parameters by GA for four 

different checking data ((a) first set of checking data, (b) the second) 
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         (c) 

 

 

 

 

 

 

  (d) 

 

 

 

 

 

 

 

Figure 6-3-b : Average and best fitness in each generation after optimization the parameters by GA for four 

different checking data ( (c) the third and (d) the fourth set of checking data) 

 

6.10 Experimental results 

As shown in Appendix A, the proposed method by Mirsepahi et al. (MLP with one hidden and 

Levenberg-Marquadt in optimization part) exhibits the best fitness with experimental data among 

all the ANNs compared by NeuroSolutions (Figures 6-3).   

As described in the previous parts, GA-ANNs perform better in comparison to ANNs in terms of 

accuracy and computing time. 
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Figures 6-4 illustrates the comparison of ANNs and GA-ANNs in terms of accuracy. 

(a) 

(b) 

Figure 6-4-a: Real and predicted input power for four different series of checking data and comparison between 

ANNs and GA-ANNs method for each ((a) first set of checking data, (b) the second) 
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(c) 

(d) 

Figure 6-4-b: Real and predicted input power for four different series of checking data and comparison between 

ANNs and GA-ANNs method for each ( (c) the third and (d) the fourth set of checking data) 

The number of hidden layers decreased by one third (33%) when using the GA-ANNs, therefore 

the performance of GA-ANNs is superior when compared to the ANNs in terms of computing 
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time as well. In the ANNs proposed by Mirsepahi et al. [30] the number of hidden layers was 

determined by trial and error but by using the GA-ANNs the number of layers was found by 

application of GA algorithms. 

6.11 Summary  

Here is a brief summary of the current chapter:  

• The normal solution procedure for conventional inverse methods is based on trial-and-

error.  The probability of error is extremely high for such methods and they are normally 

very time-consuming [10, 20, 23, 36] but in the proposed method this restriction does not 

exist. 

• Iterative methods inherent in other conventional inverse methods also incur a serious 

penalty of long convergence time [22, 31]. When ANNs are employed, the sole iterative 

part is in training which involves only simple mathematical relations; therefore the 

proposed method is much faster than conventional iterative methods. 

• Detailed and accurate physical properties are required in many inverse methods.  Their 

unavailability makes the solution difficult to achieve (impossible in some cases) and 

necessitate simplified (and often physically unrealistic) assumptions given the complexity 

of heat transfer systems [20, 22, 23, 29, 36-45]. The proposed method does not require 

detailed knowledge or estimation of the system’s physical properties as it is solely based 

on input and output data. 

• In order to use many conventional inverse methods, the direct problem must be solved 

first. Hence, the resulting inverse solution will be subject to serious computing errors and 

time-consuming calculations [20, 22, 23, 29, 36-45]. However, in the proposed method, 

there is no need to solve the direct model. 

• With the aid of the NeuroSolutions software tool, it has been demonstrated that the MLP 

is the best ANN among many possible ones for inverse modelling of the studied 

irradiative furnace/dryer 
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• For the classical ANN methods employed in a previous study, the key parameters were 

found using a trial-and-error method.  The use of evolutionary algorithms such as GA-

ANN provides an optimized solution, consequently less effort is required. 

• When using the GA-ANN, the training phase requires a slightly longer time, but this 

trade-off is acceptable as an optimal structure is defined.  Furthermore, following training 

to produce an improved network, the solution time to determine the inverse is 

significantly reduced as the key parameters are optimized and the resulting structure is 

much simpler. 

6.12 Conclusions 

In this paper, several different ANNs has been designed, then successfully trained and utilized as 

an appropriate alternative to conventional methods for predicting the input power required by an 

irradiative batch dryer. In this study, for the first time, several ANNs have been compared to find 

the optimal neural net in terms of accuracy and computing time. In previous studies MLP were 

employed and introduced as the best solution method without any comparison with other 

possible ANNs. Models using intelligent techniques were developed by training using 

experimental data.  For this purpose, input electrical power was applied to a halogen lamp 

attached to the dryer’s top surface and the resulting temperature was measured by a 

thermocouple fixed to the bottom surface.  Data was recorded, processed and employed to 

produce an inverse ANN model of the system.  This model can then use the transient temperature 

history of a point and from this data estimate the input electrical power to the system.  The 

results demonstrate that the power estimated by the MLP method was consistent with the real 

power applied during the experiment among several ANNs. 

In the current study, a GA-ANN has employed to estimate key parameters by the aid of a GA 

optimizer. These parameters estimated by train-and-error in previous studies. A comparison of 

the results from the two methods prove that application of a GA-ANN simplifies the structure of 

ANNs by optimizing key parameters (the number of neurons in the hidden layers) and the 

resultant GA-ANN solves the problem faster than a simple MLP. 
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7.1 Abstract 

There are two major approaches in the sequential (real-time) heat flux estimation problems 

using measured temperatures: (i) development of inverse heat transfer models that directly 

estimate heat flux and (ii) use of a combination of a direct heat transfer model (which 

estimates temperature using heat flux information) and an optimisation algorithm. In physics-

based solutions, using thermodynamics and heat transfer laws, the first approach is 

considered ill-posed and challenging, and the second approach is more popular. However, the 

use of artificial intelligence (AI) techniques has recently facilitated heat transfer inverse 

modelling, even for complex irradiative systems.  Many of the claimed advantages of AI 

inverse models of irradiative systems result from the use of AI techniques rather than the 

inverse modelling approach. This research presents a rational comparison between the 

aforementioned approaches for an irradiative thermal system, both using AI techniques, for 

the first time. The results show that inverse models are superior because of their higher 

accuracy and shorter estimation delay time. 

7.2 Introduction 

All thermal modelling problems can be characterised into the following two classes: direct 

and inverse problems. For a known geometry, direct problems deal with temperature 

estimation, provided that the (i) boundary conditions (i.e., heat flux), (ii) thermo-physical 

parameters and (iii) initial conditions are known.  If the temperature distribution is known 

and any factor in the aforementioned three groups is missing, the problem is called an inverse 

heat transfer problem (IHTP) [1, 2]. In general, IHTPs are considered to be ill-posed 

problems [3].  This research focuses on a heat flux estimation case. This problem is tackled 

through two major approaches: whole domain and sequential. The whole domain method 

estimates the heat flux and requires temperature data for the entire operating time; therefore, 

it cannot be used in real time. A sample algorithm widely used in whole domain heat flux 

estimation is the Tikhonov regularisation [3].  In contrast, if the heat flux estimation is meant 

to be assessed in real-time, the problem is considered sequential [4]. This study focuses on 

sequential heat flux estimation. 

Two main approaches have been employed for sequential heat flux estimation: inverse 

modelling and optimisation-based heat flux estimation. In the first approach, a model is 

developed to estimate heat flux based on a sequence of measured temperatures. Examples 
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include the linear filters (models) suggested in [1, 4, 5] for flux estimation in inverse 

conduction problems.  Development of these so-called ‘inverse’ models using heat equations 

is a challenge, particularly if radiation is present as it adds nonlinearity to the system [6]. In 

contrast, optimisation-based heat flux estimation approaches consider a guessed heat flux as 

the input to the direct model of the system for a number of instants and then the heat flux is 

tuned such that the output temperature of the direct model matches the real temperature [5, 

7]. As direct modelling is well-posed, the difficulties of inverse modelling do not appear in 

the optimisation-based heat function estimation. In short, in inverse modelling, a model 

which can estimate heat flux in real time is identified, whereas in an optimisation-based 

approach, a heat flux value is estimated for each instant with the use of an optimisation 

algorithm. 

In this study, irradiative thermal systems in which the dominant heat transfer mode is 

radiation are specifically addressed due to their complexity and importance in various 

engineering applications. In solutions based on heat transfer and thermodynamics laws, 

optimisation-based algorithms with a variety of methods (e.g. conjugate-gradient [8-10], 

Levenberg–Marquardt [9] and genetic algorithm (GA) [11]) are the prominent approaches for 

real-time heat flux estimation of irradiative thermal systems, whereas inverse models based 

on thermal equations [12] are less common.  However, in recent years, artificial intelligence 

(AI) techniques have been used to provide solutions to both direct [13] and inverse [14] heat 

transfer problems with minimal use of thermal equations. AI techniques have specifically 

created a breakthrough in developing inverse models for real-time heat flux estimation in 

thermal systems [4, 15], including complicated irradiative ones [16]. AI inverse models have 

been claimed to outperform optimisation-based heat flux estimation, mainly based on two 

relative advantages: (a) AI inverse models do not require knowledge of the thermo-physical 

properties of the system and (b) they are not limited by the time-consuming numerical 

solutions of direct models. However, with the use of appropriate AI techniques, optimisation-

based algorithms can also be improved so as to possess the aforementioned advantages. No 

rational comparisons between the two approaches of heat flux estimation, inverse models and 

optimisation-based algorithms have been reported in the literature so far, particularly for 

irradiative thermal systems. This article presents such a comparison experimentally, although 

both approaches benefit from AI techniques. 
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7.3 Inverse modelling vs. optimization-based estimation 

For a system with a heat source and one temperature sensor, with emitted heat flux and 

measured temperature of q and T, respectively, an inverse model for heat flux estimation is 

( )ˆ( ) ( ), ( 1), , ( )I d d d Iq k F T k r T k r T k r r= + + + + + ,        (7-1) 

where 𝑟𝑑 = 𝑡𝑡𝑑/𝑡𝑡𝑠, 𝑡𝑡𝑑 and 𝑡𝑡𝑠 are the delay and sampling times, respectively. Delay time is the 

time needed for the heat source to influence the temperature of the sensor.  𝑟𝐼 , the order of the 

inverse model, is the number of temperature samples used in real-time heat flux estimation. 

Variables with hats are the estimated ones. Obviously, real-time estimation includes a 

reasonable estimation delay (= 𝑡𝑡𝑑 + 𝑟𝐼. 𝑡𝑡𝑠). The problem is to identify FI. 

A direct model is presented as 

( )ˆ( ) ( 1), , ( ), ( ), , ( )D T d d qT k F T k T k r q k r q k r r= − − − − − 
,        (7-2) 

where  𝑟𝑞 and  𝑟𝑑 are the heat flux and temperature orders, respectively. To formulate 

optimisation-based heat flux estimation algorithms 𝐹𝐷 and a sequence of temperatures at 

𝑟𝑇. 𝑡𝑡𝑠 seconds ahead of estimation as well as the past values of heat flux are assumed to be 

known. 

As a result, with a guessed heat flux q , the temperature can be estimated by 

( )ˆ( ) ( 1 ), , ( ), ( ), , ( )d D d T d qT k r F T k r T k r r q k q k r+ = − + − + − 

 
,      (7-3) 

where the measured value of  𝑇(𝑘 + 𝑟𝑑) is readily available. The solution of the heat flux 

estimation problem is 

( )ˆˆ( ) ( ) | ( ) ( ) is minimumE d dq k q k f T k r T k r= + − + ,           (7-4) 

where 𝑓𝐸 is a function used to represent the error, such as squared or absolute. An 

optimisation algorithm needs to be employed to solve the problem presented in Equation 7-4. 

In short, Equation 7-1 defines an inverse model and Equations 7-3 and 7-5 define the 

optimisation-based approach for a single-input/single-output thermal system. 
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7.4 Experimental setup 

The irradiative dryer/furnace contained two radiation heat sources (lamps) and several 

temperature sensors (T-type). Both the lamps and thermocouples are arranged non-

symmetrically to ensure that more complicated modelling/control problems can be employed 

to check different methodologies. 

 

Figure 7-1: Arrangement of lamps and thermocouples in the dryer/furnace. 

 

In the current study (Figure 7-1), only one of the heat sources (on the right) is working and an 

attached thermocouple is used as its sensor (coloured red in Figure 7-1). 

 

                              (a)                                                                      (b) 

Figure 7-2: (a) Dryer body dimensions and (b) dryer walls made from insulation boards and steel frame 
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The dryer body was constructed using insulation boards (thickness = 20mm) and a steel frame 

(Figure 7-2). An amplifier was employed to increase the output voltage of the thermocouples 

and to direct this signal to a digital input–output card connected to a computer. The control 

command was sent to the power amplifier unit from the MATLAB program. The power 

controller (amplifier) varied the input voltage to the lamp, based on the magnitude of the 

signal received from the personal computer (PC) (Figure 7-4). 

In the MATLAB environment of the PC, the real-time windows target (RTWT), a 

prototyping toolbox was employed to connect the furnace/dryer to a computer to facilitate 

data gathering. RTWT employs a single computer as both the host and target PC (Figure 7-3). 

 

Figure 7-3: Connecting signals in the experimental setup. 
 

In the calibration stage, both the lamp and sensors were calibrated, two lookup tables were 

prepared to convert the relevant voltages and currents to temperature and power values, 

respectively, for the lamp and thermocouple. 

Using the employed Simulink program, the power function applied to the system comes from 

the workspace to the lamp lookup table and then the relevant power is sent to the output card 

to the power controller and finally to the lamp. 

On the other hand, the current coming from the thermocouple amplifier to the I/O card is sent 

to the sensor lookup table, where it is converted to a degrees Kelvin value. The resultant data 
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is not noise-free, so a low-pass filter is used for noise removal. The data are then saved as the 

temperature history (Figure 7-4). 

In the data gathering stage, four different sets of data were obtained: the first set was used for 

training both artificial neural networks (ANNs) (an ANN was utilised as the inverse model 

and the other ANN was employed in the direct modelling part of the optimization-based 

method), and the other three sets were used to test the accuracy of both. The sampling time 

for all sets of data was 200 seconds. 

 

Figure 7-4: Simulink data gathering model. 

 

7.5 Solutions to a real problem using Artificial Intelligence 

The problem was the estimation of heat flux in an infrared dryer, shown in Figure 7-1, using 

the measured temperatures at a point on the bottom surface. The delay time for this problem 

was1.4 seconds.  To solve this problem using an inverse modelling with an optimisation-

based approach, FI and FD in Equations 7-1 and 7-2 needed to be identified, respectively, and 

the optimisation problem presented in Equation 7-4 had to be solved.  The accomplishment of 

these three aforementioned tasks is described in the following subsections. 
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7.5.1 Identifying the inverse model, FI 

The orders, rd, and inverse model, rI  (in Equation 7-1), were 2 and 5, respectively. An ANN 

model was used to identify FI. A three-layer, fully connected, multi-layer perceptron (MLP) 

with five neurons in its hidden layer was employed in this research to approximate FI. The 

Levenberg–Marquardt batch error back-propagation algorithm was employed to train the 

model.  Linear mapping of variables in to the range of [-1, 1] and the Nguyen–Widrow 

methods were used as normalisation and initialisation algorithms [17].  Amongst all series 

data used for training and validation,  30% were used for training and the remainder went to 

validation (to avoid overfitting) on a random basis.  A detailed explanation of the MLP used 

in this research, as well as the role of training and validation data, is presented in Appendix 

B, and a detailed explanation of the data preparation stage is presented in Appendix C. 

7.5.2 Identifying the direct model, FD 

In FD, presented in Equation 7-2, rT = 2, and rQ=5 an MLP (further detailed in Appendix B) 

with seven neurons in the hidden layers was employed to approximate FD. The following 

matrix outlines the training data set of the MLP. 

ොrݍ … ොr‐rQ൅1ݍ
⋮ ⋱ ⋮
ොnݍ … ොn‐rQ൅1ݍ

෠ܶr … ෠ܶ
r‐rt൅1

⋮ ⋱ ⋮
෠ܶ௡ … ෠ܶ

n‐rQ൅1

ᇩᇭᇭᇭᇭᇭᇭᇭᇭᇭᇪᇭᇭᇭᇭᇭᇭᇭᇭᇭᇫ
Input

෠ܶr൅1
⋮

෠ܶn൅1

ฑ
Output

																																																																																									(7-5) 

Details about Equation 7-5 can be found in Appendix C. FD   is a dynamic model,that is, its 

outputs (temperature) at each instant were fed back to the model to estimate the output for the 

next instant, for example, 

 ˆ ˆ( 1) ( ), , ( 1 ), ( 1 ), , ( 1 )D T d d qT k F T k T k r q k r q k r r         

                                 
(7-6) 

After rT × ts seconds have elapsed, all temperature inputs to the model are estimated 

 ˆ ˆ ˆ( ) ( 1), , ( ), ( ), , ( )D T d d qT k i F T k i T k i r q k i r q k i r r           

                       
(7-7) 

As a result, the inevitable estimation error at each iteration is returned to the estimation 

process, and the error accumulation phenomenon occurs [18, 19]. To ensure the reliability of 

dynamic models, error accumulation was taken into account by applying Equation 7-6 in 
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testing (cross-validating) the model. This approach is called simulation. On the other hand, if 

all inputs to the model were assumed to be known or if: 

( )ˆ( ) ( 1), , ( ), ( ), , ( )D T d d qT k i F T k i T k i r q k i r q k i r r+ = + − + − + − + − −                         
(7-8) 

A one-step prediction approach would be used, which would cause misleading results with 

very small values of testing error [20]. 

7.5.3 Optimization algorithm 

To minimise 𝑓𝐸 in Equation 7-4, we employed a metaheuristic algorithm, known as the 

harmony search (HS). Three sets of data, employed as checking data in the inverse model, 

were chosen. The results were then compared with those of our inverse model method. 

7.5.3.1. Harmony Search 

The HS, first developed in 2001, belongs to a breed of optimization algorithms referred to as 

metaheuristics [21].  Metaheuristics seek the optimal solution of a problem through two 

major operations: diversification and intensification [22].  During diversification, also known 

as exploration, random searches are attempted over a broad range of the search space. This 

avoids falling into a local optimum. On the other hand, intensification, also known as 

exploitation, is used to select potentially good solutions through the use of memory and/or 

elitism [23-25]. HS has been applied to a wide range of applications and results have 

confirmed that it is a viable alternative to other complex optimisation algorithms such as GA 

and simulated annealing [23, 26-29]. 

To find the solution vector to a multivariate problem, HS first generates a number of initial 

solution vectors called harmony memories (HM), either randomly or by educated guess. 

Next, through multiple iterations, each variable in the solution vector is either generated 

randomly (diversification) or chosen from the memory repository (HM) using an acceptance 

rate (typically 0.7 ≤ 𝑟a ≤ 0.95) and then slightly changed (intensification). 

Pitch adjustment is often performed through a linear adjustment expression given by: 

𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 + 𝑏,        (7-9) 

where  𝑥𝑛𝑒𝑤 is the adjusted value of a variable 𝑥𝑜𝑙𝑑, which is the existing value in the 

memory, 𝑏 is the pitch bandwidth and 𝜀 is a random number chosen from the uniform 
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distribution between [-1, 1]. The careful choice of HS parameters is an important factor in 

acquiring a good balance between the seemingly opposite components of intensification and 

diversification and the quality of results [30]. 

To obtain the optimised input parameters (input heat), the direct model (designed ANN) 

described in the previous section was implemented in MATLAB and then used to generate 

the corresponding output (i.e. the temperature function). The root mean square (RMS) value 

of the error between the estimated output from HS and the desired output (i.e. the measured 

temperature) was used as the HS fitness criterion. The objective was to find the optimal 

values of all input parameters (heat flux), such that the RMS error was minimised. The values 

of all input parameters ranged from 0 to 2 to avoid unrealistic results. 

Due to the large number of input variables and the small range of values, a number of 

different combinations of HS parameters were explored [22]. Then, according to the best 

results obtained, the parameter values in Table 7-1 were used in our HS implementation. 

The HS algorithm was implemented in C++, and all the simulations were run on a Dell 

Precision workstation with 20 GB SDRAM. The HS is first initialised by generating 30 

random solution vectors (HM), each containing the same number of input variables 

representing the desired inputs. Through iterations, HS then attempts to improve the quality 

of solutions through the previously outlined optimization processes. The process stops when 

either the difference between the fitness of the two best solution vectors is lower than the 

termination threshold (𝑇t) or when the maximum number of iterations (IT) is reached. Our 

results indicate no significant difference (less than 0.2%) between the average RMS error 

values using either an educated guess or randomly generated input as the initial condition of 

the problem set. 

Table 7-1: Selected HS parameters 

Parameter Notation Value 
Number of Iterations IT 15,000 
Number of Harmonies Memories HM 30 
Harmony Memory Consideration Rate 𝑟a 0.95 
Pitch Adjustment Rate 𝑟pa 0.6 
Pitch Adjustment Bandwidth b 0.1 
Termination Threshold 𝑇t 10-6 
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7.6 Experimental results 

7.6.1 Direct model results 

Figure 7-5 shows the accuracy of the estimated inputs (heat flux) using our model for three 

different temperature profiles.  As a criterion for the predictive accuracy (PA) of the ANN, 

we employed the PAN definition used in [31]: 

PAN= ∑ �Cb�(i)-Cb(i)�N
i=1  (7-10) 

where 𝐶𝑏(𝑖) is the measured quantity gathered from experimental data, and  𝐶�𝑏(𝑖) is the value 

estimated by the ANNs.  N is the number of instances of prediction. 

Table 7-2 presents PA50, PA100 and PA150 (the sums of absolute error of prediction for 50, 

100 and 150 future instants) for the three data series in Figure 7-6. 

A well-known use of ANN models is for neuro-predictive control solutions. In this mode, a 

few future intervals are employed (usually seven or less). The extremely high accuracies 

achieved are shown in Table 7-2 and these confirm that the designed ANN  fits for the 

purposes of a neuro-predictive model.  Note that both training and checking were performed 

with noisy data received from a thermocouple with an error of ±1°C.  Figure 7-6 indicates 

that the ANN can return accurate predictions even after a rather long period of time. A 

significant advantage of this method is that it does not require knowledge of the mechanical 

properties of the system (e.g. thermal conductivity or the system’s emissivity). In summary, 

three prominent error sources are eliminated with the proposed methodology when compared 

against the classical heat transfer methods: 

1. Inevitable errors in the value of mechanical properties and dimensions. 

2. Inevitable simplifications in heat transfer modelling (e.g. considering adiabatic 

boundary conditions and homogenous properties on surfaces). 

3. Numerical errors incurred by the large number of computations needed in numerical 

heat transfer. As a consequence, the furnished neural network model should produce 

high-fidelity predictions. 
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(a) 

 

(b) 

 

(c) 

 
Figure 7-5: Direct modelling results for three sets of data (predicted by ANN vs. experimental recorded data). 
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Table 7-2: PA for different trained models 

Criterion PA50(°C) PA100(°C) PA150(°C) 
Data Series 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 

Error(°C) 1.98 13.90 3.08 4.05 42.86 6.61 9.59 85.92 21.49 

 

7.6.2 Optimisation-based results 

To check the applicability of the optimisation-based method and compare the results with 

those of the inverse method, three different data sets were employed as benchmarks (Figure 

7-6).  The results from the optimization method were then compared with those acquired 

from the same data sets using our proposed inverse model. Note: the benchmark datasets in 

the following sections are different from data sets used to train the ANN employed in the 

inverse model. 

Estimated inputs obtained from the optimization method result in a mean absolute error of 

153.5 W over the three chosen benchmarks: 

𝐸𝑚𝑒𝑎𝑛 = ∑ |𝑄�(𝑖)−𝑄(𝑖)|𝑁
𝑖=1

𝑁
 (7-11) 

In Equation 7-11,  𝐸𝑚𝑒𝑎𝑛 is mean of absolute error,  N  is the number of data points after the 

data preparation process and Q is the input heat. The accuracy of the estimate is completely 

acceptable, with a temperature sensing error of ±1°C. Figure 7-6 and Table 7-3 illustrate the 

accuracy of the optimisation-based method. 
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(a) 

 

(b) 

 

(c) 

Figure 7-6: Comparison between the actual and estimated input heat data using the optimisation-based method. 
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The dots represent the estimated data, whereas the red line signifies the actual input to the system. (a) , (b) and 

(c) represents three different sets of data 

 

Table 7-3: PA of the optimisation-based method 

Criterion Emean (w) Emax(w) 
Data Series 1st 2nd 3rd 1st 2nd 3rd 

Error (w) 149.0 241.4 70.1 286.1 246 380.4 
 

7.7 Comparison and Discussion 

Table 7-4 summaries the prediction accuracy of the inverse model (direct heat flux 

estimation) vs. optimisation-based method. The results show that the inverse model can 

predict the input power in a much better way from the viewpoint of accuracy (Table 7-4 and 

Figure 7-7) 

Table 7-4: PA of the designed ANN 

Technique Criterion Emean (w) Maximum Error (w) 

 Data Series 1st 2nd 3rd 1st 2nd 3rd 
AIs 

Error (W) 
49.74 37.38 39.9 192.82 136.8 192.94 

Optimisation based 149.0 241.4 70.1 286.1 246 340.4 
 

The designed ANN for the inverse modelling estimation method requires only simple 

mathematical calculation, where as the training section simply uses a fraction of input and 

output measured data.  By comparison, the optimisation-based algorithms are dependent on 

an initial guess of their iterative nature. In conclusion, the inverse model method is 

significantly quicker than the optimisation-based method. 
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Figure 7-7: Accuracy of AIs (inverse method) vs. optimisation-based-methods 
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7.8 Conclusion 

In this chapter, when using an irradiative batch dryer, two major approaches in real-time heat 

flux estimation problems are compared. Therefore, heat was applied through a halogen lamp 

hung from the top surface of the dryer, and the temperature was measured by a thermocouple 

at the bottom surface. An ANN was designed and trained to check the applicability of AI 

techniques for estimating the heat flux directly. Subsequently, a direct heat transfer model 

was developed by an ANN linked to optimisation algorithms to check the capabilities of 

optimisation-based methods and compare the efficacy of these two methods. 

The results demonstrate that the power estimated using the AI technique closely followed the 

actual heat response applied during the experiment. The results from the optimisation-based 

algorithms consumed more computing time and resulted in higher errors when compared 

against those using the AIs. 

From a practical point of view, in accordance with the results obtained in this research, the 

dimensions and thermo-physical properties of the dryer are not required to solve the problem. 

Another significant advantage is that the first method requires only a small number of simple 

calculations, without any recursive computation, implying that this method is very fast and 

accurate, compared to the optimisation-based methods under similar circumstances. 
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Chapter8: An Artificial Intelligence Solution for Heat Flux Estimation using Temperature History; A Two-
Input/Two-Output Problem 

8.1 Abstract 

In order to check the applicability of Artificial Intelligent (AI) techniques as reliable inverse 

models to solve the multi-input/multi-output (MIMO) heat flux estimation classes of Inverse 

heat transfer problems (IHTPs), in a newly reconstructed experimental setup, a two-

input/two-two output (TITO) heat flux estimation problem was defined in which the radiation 

acts as the main mode of thermal energy. A  simple three layer perceptron Artificial Neural 

Network (ANN) was designed, trained and employed to estimate the input powers (represent 

emitted heats-heat fluxes from two halogen lamps) to irradiative batch drying process.  

To this end, different input power functions (signals) were input to the furnace/dryer's 

halogen lamps and the resultant temperature histories were measured and recorded for two 

different points of the dryer/furnace.  After determining the required parameters, the recorded 

data were prepared and arranged to be used for inverse modelling purposes. Next, an ANN 

was designed and trained to play the role of the inverse heat transfer model. The results 

showed that ANNs are applicable to solve heat flux estimation classes of IHTPs. 

8.2 Introduction 

Direct and inverse problems are the two main classes of thermal modelling problems. In 

inverse problems, the temperature distribution is known and one of the following factors is 

missing: geometry, boundary conditions (i.e. heat flux), thermophysical parameters or initial 

conditions. On the other hand, direct problems deal with temperature estimation when all the 

aforementioned factors are known [1-5]. In general, inverse heat transfer problems (IHTPs) 

are considered ill-posed problems [6]. Two major approaches have been considered in heat 

flux estimation problems: whole domain and sequential approaches. The sequential approach 

should be used to solve a heat flux estimation problem in real time. Alternatively, the whole 

domain approach estimates heat flux for the entire operation time and requires temperature 

data for the duration of the operations. Tikhonov regularization  is a prominent algorithm 

which was widely been used in whole domain heat flux estimations [5]. This study focuses on 

sequential heat flux estimation. 

Optimisation-based methods and inverse modelling have been mainly used to estimate 

sequential heat fluxes. In inverse modelling, depending on the sequence of measured 

temperatures, a so called ‘inverse’ model is developed to estimate heat flux directly. 

Examples include linear filters (models). The development of inverse models using heat 
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equations is challenging. Radiation, which adds non-linearity to the system [7], further 

complicates this problem. On the other hand, in optimisation-based methods, the heat flux is 

guessed as input to the direct model of the system. Then, depending on the measured 

temperature of the system, the estimated heat flux is tuned [5]. The direct models are well 

posed; therefore, the same inverse modelling challenges do not apply to optimisation-based 

heat function estimation.  Briefly, in inverse modelling, a model is identified to estimate heat 

flux in real time, whereas in the optimisation-based approach, using an optimisation method, 

heat flux values are estimated at each instant. 

Many studies on irradiative thermal systems, which are characterized by the dominant heat 

transfer mode of radiation, confirm their complexity and importance in diverse engineering 

applications. A range of optimisation-based algorithms (e.g. conjugate gradient [8], 

Levenberg–Marquardt [9] and genetic algorithm [10]) have been used in real-time heat flux 

estimations of irradiative thermal systems, whereas inverse modelling solutions are less 

addressed in the literature owing to their complexity [5, 11-15]. 

In recent years, artificial intelligence (AI) techniques have been used to solve both direct [16] 

and inverse [17] IHTPs. AI techniques do not use thermal equations in their algorithms. AI 

has triggered innovations in inverse models for real-time heat flux estimation in thermal 

systems [18], including complex irradiative models [4]. Two advantages of AI inverse 

models make them superior to optimisation-based heat flux estimation methods. AI inverse 

models do not require prior knowledge of the thermophysical properties and numerical 

solutions of direct models of the system.  

 Mirsepahi et al. employed an ANN as an inverse model to estimate input power of (Heat 

flux) an irradiative furnace [2].  In their subsequent study, some different AIs were compared 

to find the best AI [4] and then several ANNs were compared in terms of accuracy and 

computational time [3]. All aforementioned   studies have solely focused on single-input, 

single-output problems with promising results. To date, multiple-input / multiple-output 

(MIMO) applications have not been considered.  However, real-world industrial applications 

of heat flux control areas suggest that a majority of industrial problems, especially in terms of 

inverse radiative solutions, are normally highly non-linear and multivariable with a MIMO 

nature. 

This study determines the applicability of AI to address TITO heat flux estimation problems, 

especially those involving radiation. To this end, an experimental setup was constructed to 
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define the TITO heat flux estimation problem in an irradiative furnace/dryer. Then, an ANN 

was developed to serve as the inverse model. Details are described below. 

8.3 TITO inverse modelling problem 

For a system of two heat sources and two temperature sensors with input powers q1 and q2 

and measured temperatures of T1 and T2, respectively, an inverse model for heat flux (input 

power) estimation is defined as follows: 

ሺݍො1 ቀ݇ െ ఛ೏భ
ఛೞ
ቁ , ෝݍ 2 ቀ݇ െ ఛ೏మ

ఛೞ
ቁሻ ൌ 	ூሾܨ ଵܶሺ݇ሻ, ଵܶሺ݇ ൅ 1ሻ,… , ଵܶሺ݇ ൅ ,ଵሻݎ ଶܶሺ݇ሻ, ଶܶሺ݇ ൅ 1ሻ,… , ଶܶሺ݇ ൅  ଶሻሿ,    (8-1)ݎ

In Equation 8-1 τd1 and τd	2	are the dead times for lamp 1 and 2 respectively when τs	is the 

sampling time. The time needed for heat sources to influence the temperature is called delay. 

  are the orders of the inverse model, the number of temperature samples used in the	ଶݎ ଵ andݎ

real time heat flux estimation. Variables with the hat symbol are estimated values. Obviously, 

real-time estimation includes a reasonable estimation delay ሺൌ ௗݐ ൅ .ூݎ  ௦ሻ. The problem isݐ

how to identify FI. 

8.4 Experimental setup 

The irradiative dryer/furnace had enough capacity for two radiation heat sources (halogen 

lamps) and several temperature sensors (T type thermocouples). Both the lamps and 

thermocouples are arranged non-symmetrically to ensure that more complicated 

modelling/control problems can be employed to check different methodologies. 

 

 

                                     (a)                                                                                            (b) 

Figure 8-1: The experimental setup (a) The arrangement of lamps and thermocouples in the studied 

dryer/furnace (b) Two halogen lamps with their clamps 
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In this study (Figure 8-1.a), the system included two radiative heat sources (lamps) and two 

temperature sensors.  The lamps were hung above the top surfaces in two different chambers. 

The chambers were connected through a hole (the large red coloured point) on the divider 

surface. The thermocouples were at the bottom and on the left surface of the two chambers 

(two small red coloured points). The lamps and thermocouples were non-symmetrically 

arranged to provide a more complex modelling challenge. Owing to this lack of symmetry, 

the effects from either lamp on the temperature sensors were unique. The resulting TITO 

control problem is strongly coupled, strongly interactive and highly non-linear. 

The dryer body was constructed using insulation boards (20 milimeter thick) and a steel 

frame (Figure 8-1.b).  An amplifier was employed to increase the output voltages of the 

thermocouples and to direct this signal to a digital input-output card connected to the 

computer. The control command was sent to the power amplifier unit from the MATLAB 

program. The power controller (power amplifier) varied the input voltages to the lamps 

depending on the magnitude of the signal received from the computer (Figure 8-2). 

In the MATLAB environment, the real time windows target (RTWT), which is a prototyping 

toolbox, was employed to connect the furnace/dryer to the computer to facilitate data 

gathering. RTWT employs a single computer as both host and target PC (Figure 8-2).  

 

 
 

Figure 8-2: Connected signals in the experimental setup 
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8.5 Solutions to a real problem using Artificial Intelligence 

The problem is the heat flux estimation of an infrared dryer (Figure 8-1) using the measured 

temperatures of two points at two shown surfaces. To identify FI in Equation 8-1, the delay 

time, orders, sampling time and dead times should be found first. Then, the appropriate AI 

should be trained and checked. The accomplishment of the aforementioned tasks is reported 

in the following subsections. 

8.5.1 Identifying the inverse model, FI 

The orders r1 and r2 (Equation 8-1) are 5 and 3, respectively. The delays τd1 and τd2  are 1 

and 0.8 seconds, respectively, and the sampling time τs, is 2 seconds. An ANN network with 

three layers of neurons was designed to be trained using the prepared data. Input and output 

layers have 8 (Equation 8-5) and 2 (two lamps input power) neurons respectively with linear 

activation functions having a slope of one. The hidden layer has 17 neurons. The number of 

neurons were determined by trial and error , the initial guess was 17 (= 2 × 8 + 1) [19]. The 

training method is Levenberg-Marquardt batch error back propagation. The ANN has been 

trained in 78 epochs (iterations) and the performance function is the mean of squared errors 

(MSE).  Among the available series data, 30% was used for training and the rest for 

validation (to avoid overfitting) on a random basis. 

 

8.5.1.1 Data preparation  

The experimental data for the transient mode are stored in a matrix with four columns:  

A=�
q11 q21 ⋯ T11 T21

⋮ ⋮ ⋮ ⋮ ⋮
q1n q2n ⋯ T1n T2n

�,                                                                                             (8-2) 

Where n is the number of collected data points, A is the matrix of raw recorded/sensed data 

and q1i and q2i (first and second columns) are input powers for the first and second lamps, 

respectively. T1i and T2i (third and fourth columns) are the recorded temperatures for the first 

and second thermocouples, respectively. 

As mentioned before, the delay or dead time of the system were determined to be 1and 0.8 

seconds for the first and second thermocouples, respectively. The sampling time (2 seconds 
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in this study) and the orders are 5 and 3 for the first and second sensed temperatures, 

respectively . The method of finding aforementioned variables can be found in [2]:  

B=�
q1(1) q2(1) T1(d) T2(D)

⋮ ⋮ ⋮ ⋮
q1(n-D+1) q2(n-D+1) T1(n-D+d) T2(n)

�,                                                                                   (8-3) 

where B is a matrix of data with consideration of dead time; d= 𝜏𝑑1
𝜏𝑠

 and D=𝜏𝑑2
𝜏𝑠

 and D>d. 

For an inverse model with the order of R for the first thermocouple and r for the second, 

where R>r, the data should be arranged in a matrix as shown below: 

C=

⎣
⎢
⎢
⎢
⎡ T1(d+1) … T1(d+R)

⋮ ⋮ ⋮
T1(n-R+1) … T1(n)

T2(d+1) … T2(d+r)
⋮ ⋮ ⋮

T2(n-r-R+1) … T2(n-R)

�����������������������������
Input

q1(1)
⋮

q1(n-d-r-R+1)

q2(1)
⋮

q2(n-d-r-R+1)

���������������
Output

⎦
⎥
⎥
⎥
⎤

,                                                 (8-4) 

The predicted/estimated variables are shown with a hat. After applying two dead times and 

orders, a set of 1000 pieces of recorded data were prepared as shown in (Equation 8-5): 

PD =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ T1(6) T1(7)

T1(7)
⋮
⋮

T1(8)
⋮
⋮

T1(995) T1(996)

T1(8) T1(9) T1(10)
T1(9)

⋮
⋮

T1(10)
⋮
⋮

T1(11)
⋮
⋮

T1(997) T1(998) T1(999)

T2(5) T2(6)
T2(6)

⋮
⋮

T2(7)
⋮
⋮

T2(994) T2(995)

T2(7)
T2(8)

⋮
⋮

T2(996)

�����������������������������������������
Input

q11 q21
q22

⋮
⋮

q22
⋮
⋮

q1(990) q2(990)

�����������
Output

⎦
⎥
⎥
⎥
⎥
⎥
⎤

                         (8-5) 

 

8.6 Experimental results  

After training the recorded data, the ANN model was designed to study heat flux estimation 

problem. To validate the proposed model, four different temperature functions in both points 

(i.e. different from those used ones in the training part) were chosen. Their resultant 

temperature functions were prepared in the same manner as the training data and applied to 

the ANN. The resultant input heat/power functions were then calculated by the ANN. Next, 

the estimated input heat/power functions were compared with the real input heat/power 

functions set for the furnace/dryer (Figures 8-3 & 8-4). 

By employing Equation 8-6 , estimated inputs obtained from the optimisation method 

resulted in a mean absolute error of 6.045 W over the four chosen benchmarks. 
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𝐸𝑚𝑒𝑎𝑛 = ∑ |𝑄�(𝑖)−𝑄(𝑖)|𝑁
𝑖=1

𝑁
                             (8-6) 

In Equation 8-6, 𝐸𝑚𝑒𝑎𝑛 is mean of absolute error , N  is the number of data points after the 

data preparation process and Q is the amount of heat input. The accuracy of the estimation is 

considered to be acceptable with a temperature sensing error of ±1°C. Figures 8-3 and 8-4 

and Table 8-1 show the accuracy of the proposed ANN model. 

Here is a summary of advantages of the proposed method : 

 

• The solution procedures for optimization based methods are iterative.  The possibility 

of error is tremendously high for such methods and they are usually time-consuming 

[11, 12, 20, 21],  but in the proposed method this constraint does not exist. In ANN 

the only iterative part is in training which is containing simple mathematical relations, 

therefore proposed method is much faster than optimization based methods. 

• In almost all optimization based methods, detailed and accurate physical properties 

are needed. The unavailability of such properties makes the solution so difficult 

(impossible in many cases) and require simplified unrealistic assumptions [11, 13, 20-

31].  The introduced method does not need physical properties as it is only based on 

input and output data. 

• In many optimization based methods, the direct problem must be solved first. 

Therefore, the resulting solution will be subject to serious computing errors and time-

consuming calculations[13, 21, 32, 33]. Conversely, in introduced method, there is no 

need to solve the direct problem. 
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(a) 

 

      (b) 

Figure 8- 3: The accuracy of proposed AI (inverse) model ( the first two sets of checking data) 
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(a) 

 

 

(b) 

 

Figure 8- 4: The accuracy of proposed AI (inverse) model (the second two sets of checking data) 
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Table 8- 1: Errors associated with the model for four different functions 

 Error Series1 Error Series 2 Error Series 3 Error Series 4 

 Lamp1 Lamp2 Lamp1 Lamp2 Lamp1 Lamp2 Lamp1 Lamp2 

Emean (W) 3.0 3.5 4.0 5.0 4.5 4.8 11.20 12.36 

Emax (W) 16.0 17.0 28.0 29.0 22.0 21.8 26.42 27.46 

 

8.7 Conclusions 

MIMO problems are more applicable for industrial purposes. When using an irradiative batch 

dryer, a new TITO problem in real-time heat flux estimation problems is defined. For this 

purpose, heat was applied through two halogen lamps hung from the top surface of the dryer 

and temperature functions were measured by the two thermocouples. After processing the 

recorded data, an ANN was designed and trained to directly check the applicability of AI 

techniques to estimate heat fluxes (input powers). This model is capable of receiving the 

temperature function histories of the points used to estimate the input heat/power functions 

applied to the system. It is confirmed that the energy input functions estimated by the 

proposed ANN matched the real heat/power functions applied during the experiment. 

To validate an accurate ANN model for power/heat source estimation, only one series of 

temperature distribution functions and input heat/power data are required.  Neither 

knowledge of dimensions nor thermos-physical properties are required. An additional 

advantage is that the training part of the ANN design process only consists of a limited 

number of basic mathematical calculations apart from any recursive computation. It can be 

concluded that heat transfer modelling using AIs is very quick when compared with classical 

optimisation-based methods. 
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Chapter9:Conclusion 
 

The major contribution of this thesis is that it introduces new methodological solutions for 

solving sequential (real-time) heat flux estimation problems. These solutions use measured 

temperatures where the radiation provides the governing mode for thermal energy transport. 

In the methodologies proposed, with the assistance of  intelligent techniques (ITs), inverse 

models are developed to directly solve sequential (real-time) heat flux estimation problems. 

To this end, a simple laboratory drying furnace was constructed that was capable of 

employing both SISO and MIMO studies. 

In Chapter 4, an ANN was employed to model SISO, and promising results were achieved. In 

Chapter 5, several ITs, including ANNs, GA-ANNs and ANFIS, were compared to find the 

best intelligent methodology in terms of accuracy and time consumption. ANNs were found 

to be the most appropriate method. In Chapter 6, several ANNs were compared to find the 

one that best reflected the inverse model of the employed irradiative furnace. In Chapter 7, a 

comparison study was conducted between optimisation-based methods and ITs, with the 

results showing that ITs are faster and more accurate than classical optimisation-based 

methods. In Chapter 8, an ANN was employed as an inverse model of a TITO problem in the 

studied furnace. 

9.1 Inverse modelling of ANNs: SISO study 

For the aforementioned irradiative batch dryer/furnace, an ANN was designed, successfully 

trained and utilised to reveal the capability of ANNs as an alternative method to classical 

methods for heat flux estimation problems in real-time mode (chapter 4). This ANN model 

was trained using experimental data. Heat was applied using a halogen lamp that was hung 

from the top surface of the dryer, and the temperature was measured using a thermocouple 

that was placed on the bottom surface. All data were recorded, processed and employed to 

construct an inverse ANN model of the system. This model received temperature history of a 

point and estimates of the input heat into the system. This provided promising results, and it 

was demonstrated that the heat function estimated by the designed neural network was 

consistent with the real input heat applied during the experiment. 

From a practical perspective, the only requirement for constructing a highly accurate neural 

network model for a heat estimation problem is a series of temperature-input heat data for a 

few minutes of operation. The dimensions and thermophysical properties are not needed. 

Representing another significant advantage, the estimation stage for the trained neural 

networks only included a small number of simple calculations, excluding any recursive 
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computation; this indicates that this method is faster than the classical techniques of 

numerical heat transfer for similar problems. In short, an accurate method for the inverse heat 

transfer problem was proposed and successfully tested using experimental data. 

This chapter introduces a new vision for evaluating ANNs as the alternative methodology for 

solving IHTPs. To this end, further studies were conducted to find the best possible 

intelligent methodologies. 

9.2 ANNs, GA-ANNs and the ANFIS approach of IHTPs: SISO study 

In chapter 5, a variety of new approaches were developed, and the results were compared for 

solving sequential (real-time) heat flux estimation problems where radiation is the dominant 

mode of thermal energy transport. The ANNs, two hybrid methods of GA-ANNs and an 

ANFIS were designed. A comparison of the results showed that the most accurate method is 

the ANFIS because it has more parameters than the ANNs. Consequently, applying the 

ANFIS solution is too time-consuming. For the studied ANNs, the hybrid method of GA-

ANN using the LM optimisation algorithm during back propagation (BP) is optimal in terms 

of accuracy and the network’s performance. 

Without GA-ANN optimisation, the neural net’s parameters must be discovered through trial 

and error. The use of the GA allows the designer to determine the optimal parameters for the 

net, thus producing a more accurate solution and a simplified network structure (providing, 

for instance, fewer hidden layers). This simplification resulted in a faster response for the 

network. 

In general, as the number of parameters increases, so does the training time. The training 

times for the ANFIS method exceeded those for the ANN structure. This may be due to the 

standard ANFIS structure, which is not very flexible. 

When using GA-ANN, the training phase requires a slightly longer time frame, but this trade-

off is acceptable because an optimal structure is defined. Further, following training to 

produce an improved network, the solution time required to determine the inverse is 

significantly reduced because the key parameters are optimised and the resulting structure is 

much simpler. 

For the BP phase of the MLPs, the LM method provided a more accurate solution than the 

Momentum Algorithms solution. This observation is reasonable because the LM method uses 
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a quadratic method to update the weights and thus would be expected to outperform linear 

methods. 

The comparison study  in the chapter 5 proves  that ITs are superior alternatives to classical 

the methods and introduces ANNs (optimised by GA) as the best ITs for their aforementioned 

application. 

9.3 Different approach by ANNs to inverse modelling of the studied 

furnace: SISO study 

Chapter 6 focused on comparing commonly employed ANNs in engineering applications to 

identify the most efficient ANN for inverse modelling of an irradiating furnace/dryer in terms 

of accuracy and computing time. To this end, several ANNs were designed, trained and 

employed to estimate the heat emitted during the irradiative batch drying process with the aid 

of NeuroSolution®. 

This study involves designing and training different ANNs to play the role of the inverse heat 

transfer model. The reasons for exploiting these ANNs were derived from various studies in 

which they were employed for engineering modelling purposes. The results showed that the 

MLP with the LM in the BP was the best ANN among the methods evaluated for solving 

inverse heat estimation problems arising from the irradiative batch drying processes. An 

important advantage of the ANN method over classical inverse heat transfer modelling 

approaches was that detailed knowledge of the geometrical and thermal properties of the 

system (such as wall conductivity and emissivity) was not required. Such properties are 

difficult to measure and may undergo significant changes during the temperature transient 

mode. 

In Chapter 6, a GA was employed to determine the key parameters of the applied ANNs. 

These parameters are usually identified heuristically or through a trial-and-error brute-force 

process. The results demonstrated that the key parameters may be estimated more accurately 

and rapidly by a GA. Further, the performance of the networks was improved and the number 

of required hidden layers was discovered using a non-trial-and-error method, which also 

eliminated time-consuming re-testing procedures and produced more accurate results. 

The main purpose of Chapter 6 was to prove that MLP is the best ANN for solving IHTPs. 

This was achieved by conducting a comparison study and displaying the results in figures and 

tables. 
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9.4 Comparison between intelligent methodologies and classical methods: 

SISO study 

Chapter 7 compared two major approaches to sequential (real-time) heat flux estimation 

problems using measured temperatures: (i) development of inverse heat transfer models that 

directly estimate heat flux; and (ii) use of a combination of a direct heat transfer model 

(which estimates temperature using heat flux information) and an optimisation algorithm. The 

first method was called the ‘inverse approach’ in this study, and the second optimisation-

based method was called ‘classical’. Chapter 7 presented a rational comparison between these 

two approaches for an irradiative thermal system—both using AI techniques—for the first 

time. The results showed that inverse models are superior because of their higher accuracy 

and shorter estimation delay time. An ANN was designed and trained to check the 

applicability of AI techniques indirectly estimating the heat flux. Subsequently, a direct heat 

transfer model was developed by an ANN linked to optimisation algorithms to check the 

capabilities of optimisation-based methods, and the efficacy of these two methods was 

compared. 

The results demonstrate that the power estimated using the AI technique closely follows the 

actual heat response applied during the experiment. The optimisation-based algorithms 

consume more computing time and result in higher errors than those using AI. 

Chapter 7, the most significant section of this thesis, compared classical methods and the 

intelligent technique, which were developed through the models, to find the best 

methodology in terms of accuracy and computing time. The results confirmed that intelligent 

methodologies are more reliable. 

9.5 ANN inverse modelling: TITO study 

As noted earlier in this study, inverse models are routinely used to develop a controller to 

generate the input power profile that produces a desired temperature distribution. Further, 

real-world industrial applications of heat flux control areas suggest that the majority of 

industrial problems (especially those relating to inverse radiative solutions) are usually non-

linear and multivariable with a MIMO nature. Consequently, Chapter 8 focuses on the 

applicability of AI to address MIMO heat flux estimation problems (particularly those 

involving radiation). To achieve this, the structure of the previous experimental set-up 

employed to solve SISO problems was modified, and a new TITO problem in real-time heat 
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flux estimation problems is defined. An ANN was designed and trained to directly check the 

applicability of AI techniques in estimating heat fluxes. This model was capable of receiving 

the temperature function histories of the points used to estimate the input heat/power 

functions applied to the system. The energy input functions estimated by the proposed ANN 

matched the real heat/power functions applied during the experiment. 

Thus, Chapter 8 showed that ITs can be employed to develop controllers to generate an input 

power profile that produces the desired temperature distribution. 

9.6 Future work 

This study revealed that ITs can be employed to develop inverse heat transfer models as 

appropriate alternatives to classical methods. However, some identified problems need to be 

solved in future studies: 

1. As mentioned earlier, inverse models are routinely used to develop controllers to 

generate the input power profile that produces the desired temperature distribution. 

The black-box nature of the ANN solution is often cited as a weakness because some 

control problems require human expertise or linguistic knowledge. The ANFIS can 

address this deficiency; accordingly, a new comparison of various ITs should be 

conducted for TITO problems in future studies. 

2. One of the most important applications of IHTPs is to control the temperature in 

inaccessible areas in order to check the capability of the proposed method; the 

associated controller can be designed for both SISO and TITO studies. 

3. The necessity of checking the applicability of ITs in solving IHTPs raised 

complications in mathematical modelling (especially where radiation was the 

dominant mode of heat transfer). Therefore, a review study could play an important 

role in identifying more opportunities to investigate heat transfer areas in the 

application of intelligent methodologies. 
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Table A-1: Summary of all Networks to find the best ANN with the first series of testing data  
 

 
Training Cross Validation Testing 

Model Name MSE r MAE MSE r MAE MSE r MAE 
MLP-1-O-M (Multilayer Perceptron) 0.023 0.966 0.117 0.022 0.975 0.128 0.022 0.974 0.117 

LR-0-B-M (Linear Regression) 0.165 0.644 0.347 0.186 0.559 0.337 0.214 0.642 0.393 
LR-0-B-L (Linear Regression) 0.164 0.647 0.347 0.185 0.563 0.337 0.213 0.644 0.393 

MLP-1-B-L (Multilayer Perceptron) 0.006 0.990 0.056 0.008 0.989 0.065 0.006 0.992 0.058 
PNN-0-N-N (Probabilistic Neural 

Network) 0.052 0.907 0.161 0.208 0.728 0.297 0.148 0.810 0.215 
RBF-1-B-L (Radial Basis Function) 0.061 0.896 0.213 0.040 0.929 0.176 0.051 0.926 0.204 

GFF-1-B-L (Generalized 
Feedforward) 0.005 0.990 0.057 0.008 0.989 0.069 0.007 0.992 0.066 

MLPPCA-1-B-L (MLP with PCA) 0.005 0.994 0.058 0.004 0.990 0.048 0.006 0.993 0.057 
SVM-0-N-N (Classification SVM) 0.190 0.910 0.378 0.425 0.719 0.577 0.441 0.802 0.587 

MLP-2-B-L (Multilayer Perceptron) 0.003 0.994 0.046 0.005 0.994 0.057 0.004 0.995 0.053 
MLP-1-B-M (Multilayer Perceptron) 0.008 0.987 0.065 0.010 0.984 0.078 0.009 0.986 0.075 
MLP-2-O-M (Multilayer Perceptron) 0.022 0.970 0.112 0.029 0.962 0.133 0.034 0.961 0.143 
MLP-2-B-M (Multilayer Perceptron) 0.109 0.792 0.238 0.191 0.708 0.291 0.155 0.787 0.263 

MLPPCA-1-O-M (MLP with PCA) 0.255 0.738 0.270 0.023 0.975 0.134 0.021 0.979 0.121 
MLPPCA-1-B-M (MLP with PCA) 0.138 0.728 0.270 0.214 0.650 0.307 0.186 0.737 0.289 

GFF-1-O-M (Generalized 
Feedforward) 0.045 0.923 0.163 0.020 0.974 0.112 0.018 0.976 0.100 

GFF-1-B-M (Generalized 
Feedforward) 0.054 0.907 0.172 0.103 0.844 0.223 0.087 0.879 0.199 

RBF-1-O-M (Radial Basis Function) 0.185 0.705 0.306 0.119 0.764 0.197 0.099 0.828 0.200 
RBF-1-B-M (Radial Basis Function) 0.176 0.716 0.346 0.228 0.553 0.346 0.232 0.687 0.395 

MLP-1-H-L 0.006 0.992 0.060 0.004 0.994 0.052 0.004 0.994 0.054 

 
Training Cross 

Val. Testing 

Number of Rows 477 105 118 
MSE 0.006 0.004 0.004 

Correlation (r) 0.992 0.994 0.994 
Min Absolute Error 0.000 0.002 0.001 
Max Absolute Error 0.227 0.126 0.199 

Mean Absolute Error (MAE) 0.060 0.052 0.054 
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Table A-2: Summary of all Networks to find the best ANN with the second series of testing data  
 

 
Training Cross Validation Testing 

Model Name MSE r MAE MSE r MAE MSE r MAE 
MLP-1-O-M (Multilayer Perceptron) 0.014 0.977 0.095 0.023 0.977 0.123 0.017 0.984 0.101 

LR-0-B-M (Linear Regression) 0.168 0.640 0.351 0.167 0.577 0.318 0.216 0.586 0.386 
LR-0-B-L (Linear Regression) 0.167 0.642 0.350 0.167 0.581 0.319 0.213 0.608 0.383 

MLP-1-B-L (Multilayer Perceptron) 0.004 0.993 0.049 0.005 0.992 0.059 0.005 0.994 0.054 
PNN-0-N-N (Probabilistic Neural 

Network) 0.054 0.904 0.164 0.161 0.778 0.259 0.177 0.733 0.241 
RBF-1-B-L (Radial Basis Function) 0.040 0.936 0.165 0.029 0.954 0.130 0.032 0.944 0.153 

GFF-1-B-L (Generalized 
Feedforward) 0.004 0.994 0.049 0.004 0.993 0.049 0.005 0.993 0.052 

MLPPCA-1-B-L (MLP with PCA) 0.021 0.969 0.121 0.019 0.959 0.107 0.016 0.969 0.092 
SVM-0-N-N (Classification SVM) 0.186 0.910 0.368 0.351 0.743 0.514 0.344 0.815 0.511 

MLP-2-B-L (Multilayer Perceptron) 0.006 0.993 0.064 0.004 0.992 0.044 0.006 0.992 0.051 
MLP-1-B-M (Multilayer Perceptron) 0.012 0.979 0.083 0.012 0.981 0.091 0.013 0.988 0.094 
MLP-2-O-M (Multilayer Perceptron) 0.037 0.961 0.144 0.015 0.977 0.093 0.026 0.969 0.120 
MLP-2-B-M (Multilayer Perceptron) 0.082 0.852 0.207 0.134 0.798 0.250 0.153 0.773 0.260 

MLPPCA-1-O-M (MLP with PCA) 0.015 0.973 0.093 0.021 0.975 0.118 0.022 0.989 0.113 
MLPPCA-1-B-M (MLP with PCA) 0.128 0.747 0.257 0.187 0.701 0.290 0.161 0.752 0.259 

GFF-1-O-M (Generalized 
Feedforward) 0.025 0.958 0.122 0.022 0.964 0.122 0.018 0.980 0.097 

GFF-1-B-M (Generalized 
Feedforward) 0.043 0.925 0.158 0.092 0.875 0.228 0.100 0.874 0.200 

RBF-1-O-M (Radial Basis Function) 0.202 0.702 0.333 0.087 0.793 0.174 0.114 0.760 0.213 
RBF-1-B-M (Radial Basis Function) 0.183 0.679 0.357 0.201 0.576 0.304 0.233 0.540 0.368 

MLP-1-H-L 0.005 0.993 0.053 0.004 0.994 0.057 0.004 0.995 0.054 

 
Training Cross 

Val. Testing 

Number of Rows 480 101 94 
MSE 0.005 0.004 0.004 

Correlation (r) 0.993 0.994 0.995 
Min Absolute Error 0.001 0.001 0.000 
Max Absolute Error 0.225 0.125 0.169 

Mean Absolute Error (MAE) 0.053 0.057 0.054 
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Table A-3. Summary of all Networks to find the best ANN with the third series of testing data  
 

 
 Training Cross Validation Testing 

Model Name MSE r MAE MSE r MAE MSE r MAE 
MLP-1-O-M (Multilayer Perceptron) 0.012 0.980 0.088 0.024 0.976 0.124 0.013 0.983 0.088 

LR-0-B-M (Linear Regression) 0.168 0.640 0.351 0.167 0.577 0.318 0.149 0.604 0.313 
LR-0-B-L (Linear Regression) 0.167 0.642 0.350 0.167 0.581 0.319 0.147 0.620 0.310 

MLP-1-B-L (Multilayer Perceptron) 0.007 0.990 0.062 0.007 0.987 0.059 0.004 0.992 0.048 
PNN-0-N-N (Probabilistic Neural 

Network) 0.054 0.904 0.164 0.161 0.778 0.259 0.077 0.848 0.164 
RBF-1-B-L (Radial Basis Function) 0.041 0.934 0.168 0.029 0.954 0.129 0.029 0.943 0.132 

GFF-1-B-L (Generalized 
Feedforward) 0.004 0.994 0.049 0.004 0.992 0.052 0.003 0.993 0.045 

MLPPCA-1-B-L (MLP with PCA) 0.042 0.946 0.165 0.023 0.946 0.122 0.022 0.952 0.116 
SVM-0-N-N (Classification SVM) 0.186 0.910 0.368 0.351 0.743 0.514 0.243 0.866 0.431 

MLP-2-B-L (Multilayer Perceptron) 0.006 0.993 0.063 0.004 0.991 0.049 0.005 0.992 0.055 
MLP-1-B-M (Multilayer Perceptron) 0.007 0.988 0.064 0.009 0.985 0.075 0.004 0.992 0.049 
MLP-2-O-M (Multilayer Perceptron) 0.026 0.970 0.123 0.018 0.974 0.100 0.006 0.986 0.064 
MLP-2-B-M (Multilayer Perceptron) 0.090 0.837 0.215 0.146 0.776 0.256 0.099 0.797 0.188 

MLPPCA-1-O-M (MLP with PCA) 0.610 0.353 0.570 0.224 0.577 0.408 0.274 0.528 0.424 
MLPPCA-1-B-M (MLP with PCA) 0.128 0.745 0.258 0.194 0.697 0.300 0.097 0.796 0.199 

GFF-1-O-M (Generalized 
Feedforward) 0.021 0.976 0.115 0.020 0.971 0.120 0.006 0.985 0.072 

GFF-1-B-M (Generalized 
Feedforward) 0.079 0.853 0.204 0.130 0.804 0.246 0.086 0.826 0.180 

RBF-1-O-M (Radial Basis Function) 0.199 0.693 0.328 0.101 0.772 0.176 0.076 0.787 0.177 
RBF-1-B-M (Radial Basis Function) 0.172 0.688 0.335 0.197 0.603 0.293 0.133 0.666 0.254 

MLP-1-H-L 0.004 0.994 0.047 0.004 0.993 0.052 0.002 0.995 0.035 

 
Training Cross 

Val. Testing 

# of Rows 480 101 94 
MSE 0.004 0.004 0.002 

Correlation (r) 0.994 0.993 0.995 
Min Absolute Error 1E-04 2E-04 6E-04 
Max Absolute Error 0.189 0.263 0.134 

Mean Absolute Error 
(MAE) 0.047 0.052 0.035 
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Table A-4 Summary of all Networks to find the best ANN with the fourth series of testing data  
 

 
Training Cross Validation Testing 

Model Name MSE r MAE MSE r MAE MSE r MAE 
MLP-1-O-M (Multilayer Perceptron) 0.014 0.978 0.093 0.024 0.975 0.127 0.012 0.984 0.089 

LR-0-B-M (Linear Regression) 0.207 0.563 0.399 0.165 0.483 0.340 0.240 0.458 0.433 
LR-0-B-L (Linear Regression) 0.167 0.642 0.350 0.167 0.581 0.319 0.184 0.636 0.370 

MLP-1-B-L (Multilayer Perceptron) 0.004 0.993 0.051 0.004 0.992 0.047 0.004 0.995 0.044 
PNN-0-N-N (Probabilistic Neural 

Network) 0.054 0.904 0.164 0.161 0.778 0.259 0.074 0.872 0.199 
RBF-1-B-L (Radial Basis Function) 0.100 0.807 0.253 0.084 0.850 0.221 0.136 0.722 0.296 

GFF-1-B-L (Generalized Feedforward) 0.004 0.994 0.051 0.003 0.992 0.047 0.002 0.997 0.034 
MLPPCA-1-B-L (MLP with PCA) 0.004 0.993 0.052 0.004 0.991 0.053 0.003 0.997 0.038 
SVM-0-N-N (Classification SVM) 0.186 0.910 0.368 0.351 0.743 0.514 0.166 0.861 0.324 

MLP-2-B-L (Multilayer Perceptron) 0.004 0.993 0.048 0.005 0.992 0.057 0.004 0.995 0.048 
MLP-1-B-M (Multilayer Perceptron) 0.007 0.988 0.062 0.009 0.986 0.076 0.003 0.996 0.047 
MLP-2-O-M (Multilayer Perceptron) 0.018 0.979 0.106 0.018 0.976 0.103 0.017 0.996 0.121 
MLP-2-B-M (Multilayer Perceptron) 0.057 0.900 0.175 0.108 0.850 0.235 0.068 0.895 0.198 

MLPPCA-1-O-M (MLP with PCA) 0.305 0.689 0.309 0.023 0.968 0.123 0.583 0.607 0.483 
MLPPCA-1-B-M (MLP with PCA) 0.131 0.738 0.259 0.187 0.694 0.285 0.126 0.786 0.278 

GFF-1-O-M (Generalized 
Feedforward) 0.031 0.945 0.144 0.024 0.956 0.116 0.044 0.930 0.185 

GFF-1-B-M (Generalized 
Feedforward) 0.068 0.879 0.191 0.111 0.825 0.224 0.075 0.891 0.213 

RBF-1-O-M (Radial Basis Function) 0.212 0.683 0.337 0.089 0.792 0.164 0.332 0.626 0.452 
RBF-1-B-M (Radial Basis Function) 0.184 0.675 0.345 0.171 0.660 0.300 0.191 0.659 0.362 

MLP-1-H-L 0.003 0.995 0.043 0.005 0.995 0.059 0.002 0.997 0.032 

 
Training Cross Val. Testing 

Number of Rows 480 101 94 
MSE 0.003 0.005 0.002 

Correlation (r) 0.995 0.995 0.997 
Min Absolute Error 0.000 0.000 0.000 
Max Absolute Error 0.163 0.170 0.173 

Mean Absolute Error (MAE) 0.043 0.059 0.032 
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Before training ANNs, the input and output data columns are often normalised to remove the 

effect of magnitude difference between variables [32]. A common way of normalization 

employed in this research is to map the data from their real range into the range of [−1, 1]. 

The input(s) to an ANN, trained by the normalised data, should be normalised, and the 

output(s) should be de-normalised (de-mapped) into the real range. The normalization and 

de-normalization stages can be embedded into the final presentation of the ANN to remove 

the need for normalization/de-normalization of input(s)/output(s). 

After normalization, the first stage in training an ANN is to define an error function that well 

represents the discrepancy between the ANN output and the real system. A popular error 

function, and the one used in this research, is mean of squared errors, which is presented as 

Equation B-1 or B-2: 

E=(yANN-ysystem)
2
                                                                                                       (B-1) 

𝐸 = ∑ (𝑦𝐴𝑁𝑁 − 𝑦𝑠𝑦𝑠𝑡𝑒𝑚)2𝑛𝑑
𝑖=1  (B-2) 

where y represents the output(s) of the system or the ANN, and nd is the number of training 

data sets. Equation B-1 is used when a single set of input–output data is utilised for error 

calculation, i.e. single-pattern training. If the error is calculated using all of the training data 

(nd sets), i.e. bath training, Equation B-2 is employed, which is the case in this research. 

𝑦𝐴𝑁𝑁 and consequently the error functions are influenced by the weights and biases. Thus, E 

is presented as 𝐸(𝜃), whereas θ is a vector of all ANN parameters. Training is the process of 

tuning 𝜃 components so as to minimise (optimise) 𝐸(𝜃). An approach for tackling this 

optimisation problem is to approximate the error function using the Taylor series up to the 

second-order derivatives: 

E(θ+∆θ)≅E(θ)+ ∂E(θ)
∂θ

(∆θ)+ 1
2

∂2E(θ)
∂θ2 (∆θ)2                                                                           (B-3) 

The goal is to find ∆𝜃 so that the error converges towards its minimum value. Since 𝜃 is a 

vector rather than a scalar, the derivatives are in the following form: 

∂E(θ)
∂θ

=g= �
∂E(θ)

∂θ1
,⋯,

∂E(θ)
∂θnp

�
T
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∂2E(θ)
∂θ2 =H=

⎣
⎢
⎢
⎢
⎢
⎡ ∂

2E(θ)
∂θ1

2
∂2E(θ)
∂θ1∂θ2

⋯
∂2E(θ)
∂θ1∂θnp-1

∂2E(θ)
∂θ1∂θnp

⋮ ⋮ ⋱ ⋮ ⋮
∂2E(θ)
∂θnnp∂θ1

∂2E(θ)
∂θnnp∂θ2

⋯
∂2E(θ)

∂θnnp∂θnp-1

∂2E(θ)
∂θnp

2
⎦
⎥
⎥
⎥
⎥
⎤

 

 

where np is the number of parameters. A solution to this optimisation problem is presented in 

(B-4), namely the Newton direction [33]: 

∆𝜃 = −𝐻−1𝑔𝑔                                                                                                             (B-4) 

However, Equation B-4 is applicable only if H is invertible. Levenberg and Marquardt[33] 

presented an alternative to improve and generalise (B-4): 

∆𝜃 = −𝜂(𝐻 + 𝜆𝐼)−1𝑔𝑔 (B-5) 

where I is the unit matrix with size np, and λ is the smallest number that can make the matrix 

within the parenthesis invertible; η is calculated through a linear search. Algorithms for 

finding η and λ have been detailed in[33, 34]. As a prerequisite to calculating 𝐻and𝑔𝑔, E and 

its derivatives are analytically presented as functions of 𝜃, namely error back-propagation. 

However, as a drawback of all derivative-based optimisation algorithms including 

Levenberg–Marquardt, the algorithm may be trapped in a local minimum. That is, training 

results in ANN parameters that do not lead to the minimum error function. If training is 

restarted from the same initial values of parameters, the algorithm moves in to the same trap 

again. As a result, an initialization algorithm is essential for assigning the appropriate initial 

values to the ANN parameters at the beginning or after each unsuccessful training. Such an 

algorithm should have two features: (i) The assigned initial values must not be very far from 

the best values of parameters, to reduce both computational effort and the chance of being 

trapped in local minima; this demands the use of training data. (ii) Randomness should be 

included to make sure that the initial conditions leading to the local minima are not repeated. 

Nguyen and Widrow presented such an algorithm in 1990, which is still widely used [17]. 
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Experimental data for the transient are stored as a two-column matrix containing the input 

power (Q) and temperature (T).  

A =�
𝑄1 𝑇1
⋮ ⋮

𝑄𝑛 𝑇𝑛

� (C-1) 

where n is the number of collected data values and A is the matrix of raw recorded data. It 

was found experimentally that the delay or dead time of the system is 1.4 s. The sampling 

time (0.2s in the current job) and order (5 in this research) should be guessed [35](0.2s and 5, 

respectively, in this research). 

B is the matrix of raw data and prepared data: 

B= �
𝑄1 𝑄2 ⋯ 𝑄𝑛−𝑑
⋮ ⋮ ⋮ ⋮

𝑇𝑑+1 𝑇𝑑+2 ⋯ 𝑇𝑛

� (C-2) 

where B is the matrix of data after considering dead time, and d= 𝜏𝑑
𝜏𝑠

 

For an inverse model of order r, the data should be arranged as 

C=

⎣
⎢
⎢
⎢
⎡ Td+1 … Td+r

⋮ ⋮ ⋮
Tn-r+1 … Tn

�����������
Input

Q1
⋮

Qn−d−r+1

�������
Output

⎦
⎥
⎥
⎥
⎤

 (C-3) 

where C is the matrix of the prepared data. 
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