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Abstract. Quantum memories for light lie at the heart of long-distance provably-secure
communication. Demand for a functioning quantum memory, with high efficiency and coherence
times approaching a millisecond, is therefore at a premium. Here we report on work towards
this goal, with the development of a 87Rb magneto-optical trap with a peak optical depth of
1000 for the D2 F = 2 → F ′ = 3 transition using spatial and temporal dark spots. With this
purpose-built cold atomic ensemble we implemented the gradient echo memory (GEM) scheme
on the D1 line. Our data shows a memory efficiency of 80 ± 2% and coherence times up to
195 µs.

1. Introduction

Quantum repeaters are needed to extend the distance of quantum key distribution past its
current limit of hundreds of kilometres. A key component of a quantum repeater is a quantum
memory. A quantum memory for this application needs to have an efficiency approaching unity
without adding noise to the state, and storage times from milliseconds to seconds. Ideally it
would also have a high bandwidth and be able to store many pieces of information simultaneously.
Many different techniques are currently being developed and much experimental progress has
been made over the past few years, with: efficiencies approaching 90% [1]; storage times of over
seconds [2, 3]; bandwidths of gigahertz [4, 5]; and over 1000 pieces of information stored at
one time [6]. These results were, however, achieved using different memory schemes in different
storage media. The challenge now is to reproduce these results with one memory.

Here we will focus on the gradient echo memory (GEM) scheme, which shows great promise
due to the high efficiencies achieved in both warm atomic vapours [1] and solid state systems
[7]. GEM has also been used to demonstrate temporal compression and stretching of pulses, as
well as a capacity to arbitrarily resequence stored information [8] and the interference of initially
time-separated pulses [9, 10]. However, the maximum coherence time for GEM to date is 50 µs
[11], limited by atomic diffusion in warm vapors.
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Motivated by other work demonstrating both high efficiencies [12] and long storage times [3]
in cold atomic systems, we introduce a cold atom realisation of GEM. To achieve this we first
had to develop an ultra-high optical depth (OD) atomic source to allow for high efficiency recall.

2. Developing the Cold Atomic Source
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Figure 1. (a) Energy level diagram for all fields present: C - coupling; P - probe; LO -
local oscillator; I - Imaging; T - trapping; R - repump. Also shown are one- and two-photon
detunings for probe and coupling fields (∆ and δ respectively). (b) Experimental set-up, with:
87Rb - atomic ensemble; BS - 50:50 beam-splitter; L - lens; D - photo-diode detector; I1(2) -
imaging beam 1(2); CCD - charged-coupled device camera; PH - pin-hole; GC - GEM coils; P1
and P2 - positions for inserting mirrors for axial (z) imaging with I2. MOT coil configuration
not shown, neither is vertical (y) MOT beam. (c)(i) Side-on and (ii) front-on images of the
optimised atomic ensemble. Colour bars show OD scales, σ values show the standard deviation
of Gaussian fits to ensemble.

The work-horse for cold atom experiments is the magneto-optical trap (MOT), and we used
a rubidium-87 MOT as our storage medium. For quantum memory applications we aimed to
produce a MOT with low atomic temperatures and a very large OD. To create as high an OD as
possible we optimised both the static loading of the MOT through geometry, a spatial dark spot
and optical de-pumping, followed by a compression phase using a temporal dark spot. After
describing the application of these techniques, we present a characterisation of the system using
near-resonance absorption imaging.

We used a basic three-beam retro-reflection configuration, with the frequencies of all lasers
involved illustrated in Fig. 1(a). The trapping and cooling laser had a total power of 400 mW
after spatial filtering and was red-detuned by 30 MHz from the D2 F = 2 → F ′ = 3 transition
for the loading of the MOT. The repumping field was on resonance with the D2 F = 1 → F ′ = 2
transition.

The optimal shape for a cold atomic ensemble for use as a quantum memory is a cylinder
along the direction of the memory beams to allow for maximum absorption of the probe. To
create this shape while still allowing easy access for the memory beams we used four elongated
coils in a quadrupole configuration to create a 2D MOT in the z direction (memory axis) and
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positioned the horizontal MOT beams at 45◦ to the long axis of the MOT. An extra set of
axial coils in the z direction created 3D confinement. The shape of the MOT could then be
determined by the currents in the 2D and axial coils, as well as the relative intensities of the
trapping fields.

For the loading phase, the cylindrically symmetric magnetic field gradient produced by the
2D MOT coils was 16 G/cm, and for the axial coils was 2 G/cm. The 87Rb atoms were produced
from a natural-mixture Rb dispenser inside a 100×50×50 mm3 single-sided, anti-reflection coated
cell. This cell was attached to a vacuum system consisting of a 70 L/s ion pump supplemented
by a passive titanium sublimation pump; with the dispenser running in the cell we measure a
background pressure at the ion pump of 1.5× 10−9 kPa.

The density in the trapped atomic state (F = 2) was limited by reabsorption of fluorescence
photons within the MOT (leading to an effective outwards radiation pressure [13]). By placing a
dark spot of approximately 7.5 mm in diameter in the repump, atoms at the centre of the MOT
were quickly pumped into the lower ground state (F = 1) and became immune to this unwanted
effect, allowing for a higher density of atoms in the centre of the trap, as first demonstrated in
[14].

We could collect over 1010 atoms in this configuration. However, we found that the static
MOT parameters that optimise atom number did not optimise density in the compression and
cooling phase of the MOT, and we typically worked with a sample of 4× 109 atoms.

In this second stage of the ensemble preparation we used a temporal dark spot to transiently
increase the density of the sample by simultaneously increasing the trapping laser and repump
detunings and increasing the magnetic field gradient [15, 16, 17]. Detuning the trapping laser
created some of the conditions for polarisation-gradient cooling (PGC) [18], which could be used
to achieve much colder and denser ensembles than in a standard MOT. We smoothly ramped
the frequency of the trapping beam from 30 to 70 MHz below resonance, and the repump beam
to 8 MHz below resonance, over a period of 20 ms. The 2D magnetic field gradient in the x and
y directions was ramped up to 40 G/cm as the trapping and repump lasers are detuned. We
did not ramp the axial field.

Finally, we optically pumped the atoms into the desired ground state (F = 1, see Fig. 1(a))
by simply turning off the repump 50 µs before the trapping beam.

Absorption imaging was used to optimise and characterise the MOT. The set-up and
frequency of the imaging beams are shown in Fig. 1. We performed imaging both across (I1)
and along (I2) the z axis (in which case two mirrors are temporarily placed at locations P1 and
P2).

As the absorption of light by atoms away from resonance will follow a Lorentzian decay, to be
able to have a precise value for OD it was important to have a well calibrated line centre. This
is especially important as one goes further off resonance as the relation between on-resonance
OD and off-resonance OD depends on the one-photon detuning (∆) as follows:

ODres =
∆2 + γ2/4

γ2/4
ln(It/Io), (1)

where It is the transmitted imaging beam intensity passing through the MOT off resonance, Io
is the intensity measured without the MOT present, γ is the excited state decay rate. For Rb
γ is approximately 6 MHz. To measure ∆ accurately we lowered the atom number in our trap
until the OD did not saturate on resonance and plotted out the resonance curve as a function
of detuning to accurately locate the line centre.

An image of the optimised MOT is shown in Fig. 1(c). For this image we used a 4.98 s load
time followed by 20 ms of ramping fields. All fields were then turned off and an image of the
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MOT was taken 500 µs later, with a comparison image being taken 150 ms later to obtain as
precise a measure of Io as possible while ensuring no atoms were still present. As the imaging
beam was on the closed D2 F = 2 → F ′ = 3 transition, it was necessary to pump atoms back
into the F = 2 state before these images were taken. This was achieved with a 200 µs pulse of
on-resonance repump light immediately before the image. The front-on image was taken 60 MHz
detuned, and the side-on image was taken 20 MHz detuned from resonance. The temperature
of the MOT was approximately 200 µK.

3. Gradient Echo Memory Using Cold Atoms
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Figure 2. (a) High efficiency demodulated and squared heterodyne data: (i) input pulse (blue),
and (ii) echo (red) at 80± 2% total efficiency. Points correspond to digitally demodulated data,
averaged over 10 (17) traces for input (echo) and squared, error from standard deviation. Lines
correspond to Gaussian fit. Dashed line indicates magnetic field switching at t = 0. (b) Memory
efficiency vs storage time for storage (i) 500 µs (blue, solid) and (ii) 3 ms after MOT fields off
(green, dashed).

The details of the GEM scheme are covered in depth in previous papers [1, 8, 19, 20, 21].
Here we used the three-level implementation [19], with a weak probe field and a strong coupling
field, and switching magnetic field gradients produced via two solenoids, one placed either side of
the MOT. This set-up and the frequencies of the fields are shown in Fig. 1(b). In the three-level
implementation the effective OD is reduced by the detuning of the laser, and by the Zeeman
broadening of the transition, with the final effective OD being nearly 1000-fold reduced from
the on-resonance OD. This is why a high OD ensemble is critical for high efficiencies in GEM.

For the highest efficiency memory we used a 480 ms load time, and implemented the memory
protocol 500 µs after the MOT fields had been turned off. We found a Gaussian pulse with a
full-width-half-maximum of 10 µs to be optimal for storage. For this pulse length, a one-photon
detuning of -250 MHz and approximately 350 µW in the coupling field (corresponding to a Rabi
frequency of 2 MHz), we were able to demonstrate storage with 80 ± 2% total efficiency. This
was measured using heterodyne detection and is shown in Fig. 2(a). As heterodyne detection is
mode sensitive, care was taken to optimise the visibility for the input pulse, so that any change
in the mode during storage would lead to a reduction in the measured efficiency. The coherence
time for this set-up was determined to be 117 µs by storing the pulses for longer periods of time
(Fig. 2(b)). By implementing the memory protocol 3 ms after the MOT had been turned off,
this was increased to 195 µs.
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Further improvements to the efficiency of GEM using a cold atomic ensemble could be
achieved by increasing the MOT OD further, for instance by optical pumping all atoms into
the correct mF ground state. Currently the main decoherence mechanisms are not fully
understood, but potentially could include inhomogeneous background magnetic fields generated
via eddy currents, as well as atomic diffusion. Improving the switching electronics and physically
redesigning the coil configuration could help to improve the former, while cooling the ensemble
further could improve the latter.

For more information on GEM using cold atoms, see Ref. [22].

4. Conclusion

Here we have presented the development of a cold atomic ensemble with a peak OD of 1000 on
the D2 F = 2 → F ′ = 3 transition, and demonstrated a memory efficiency of 80 ± 2% using
GEM, the highest to date using cold atoms. The primary limit on this efficiency is still the OD,
which could be improved by optically pumping all the atoms into the correct mF state. The
decoherence of the system was found to be exponential, with a time constant of 117-195 µs.
This is a factor of 2-4 greater than in warm vapour GEM experiments. To improve upon this,
further investigations would be required to determine the limiting factors. Even without further
improvement, however, our memory provides an excellent high-OD platform for numerous other
proof-of-principle experiments.
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