MAGNESITE DEPOSITS AT RUM JUNGLE, N.T., AUSTRALIA - GENESIS AND ASSOCIATION WITH URANIUM AND POLYMETALLIC SULFIDES

(VOLUME II)

by

YVONNE BONE, B.Sc. (HONS.) Department of Geology and Geophysics The University of Adelaide

This thesis is submitted as fulfilment of the requirements for the degree of Doctor of Philosophy in Geology at the University of Adelaide.

August, 1985.

VOLUME II

APPENDICES:		Page
Appendix 1:	Pace and compass survey of outcrop	
	areas	- A 1
Appendix 2:	Fluid inclusion data	A 47
Appendix 3:	Geochemical data -	A 75
	Introduction	A 75
	Minerals:-	
	apatite	A 77
9	chlorite	A 78
	dolomite	A 81
	illite	A 85
	limonite	A 86
	magnesite	A 88
	magnetite	A101
	marcasite	A102
2	pyrite	A103
	pyrite → limonite	A113
	pyrrhotite	A117
	quartz	A119
	sericite	A125
	talc	A129
	tourmaline	A130
	villamaninite	A137
Appendix 4:	Exploration programme	A140
Appendix 5:	Reprint of the paper	
\$	"Interpretation of magnesites at	
	Rum Jungle, N.T., using	
	fluid inclusions."	

Plus figures (in flap) as listed in VOLUME I

APPENDIX 1

PACE AND COMPASS SURVEY OF OUTCROP AREAS

(FIGS. 16-22)

OBSERVED DATA

CELIA DOLOMITE AREA A

									the second se	
OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE & VIS.ESTIM.	ORIENTATION OF BEDDING %	TALC QUARTZ &	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
1	1 2	F 25 C 10 M 25 VC40	115/45S	2 4	white/ red 1/1	dom. columnar, few rosettes	fine bedding minor discord	40 ant	35 5	good bedding
2	3 4	F 20 C 30 M 30 VC20	78/75S	1 2	w/r 3/1	", rare rosettes	H	40	35 5	within some areas of magnesite recrystallisation- larger magnesite
3	1.0 1.5	F 20 C 30 M 30 VC20	-	2 2	w/r 5/1	89		25	25 -	quartz very common (algal) in very small areas
4	1.5 2.0	F 40 C 35 M 20 VC 5	-	3 1	w/r 5/1	17	10	25	25	no definite bedding, chicken-wire texture

OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING १	TALC QUART Z %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
5	3 4	F 40 C 25 M 30 VC 5	53/64S	3 3	white, minor red & green	11	н.	20	20	saccharoidal
6	2 4	F 10 C 20 M 30 VC40	80/68S	2 10	w/r 3/1	u	sugges- tion of re-xl as CO ₃	50	40 10	algal quartz structures common
7	1.0 1.5	F 25 C 20 M 35 VC10	60/54S	1 10	w/r 5/1	88	" espe- cially s algal co	20 in pres	15 5	**
8	-5cms 10 "	F 20 C 20 M 30 VC30	-	1 10	red in centre	н	very coarse	40	20 20	chicken wire texture stromalites algae
9	5cms 15 "	F 15 C 30 M 35 VC20	62/80S	1 15	w/r 3/1	н	10	40	20 20	algae very pytgmatic
10	2 3	F 10 C 30 M 40 VC20	100/76S	1 10	white, green & red	recryst. to car bonate	algal qz. re-x	40 Kl	20 20	slight stylolite development, strong algal- rhomb. type association

OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING १	TALC QUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
11	10cms 15 "	F 35 C 30 M 25 VC10	-	1 5	11	as for 2	as for	1 30	20 10	slightly stylolytic
12	0.25 1.0	F 40 C 20 M 30 VC10	25/55w	1 2	white		H	30	30 _	strongly stylolitic, appears to be along algal laminations
13	5cms 10 "	- С 10 м 10 VC80	-	_ 5	white	all rhombs	-	-	-	
14	20cms 50 "	F 25 C25 M 25 VC25	92/30s	2 5	u	as for 2	as for	1 50	35 15	3 very coarse discordant veins
15	2 5	F 30 C 30 M 30 VC10	80/64S	1 5	white, minor red	n	11	40	30 ?10	well laminated, minor stylolites
16	20cms 40 "	F 40 C 20 M 30 VC10	120/48s	1 2	w/r 5/1	11		30	20 ?10	seems to be fold- 95/55W stylolites, well laminated
17	1.0 1.5	F 40 C 20 M 30 VC10	75/78S	5 5	w/r 5/1		"	30	20 ?10	quartz algal cores have talc rims, stylolites, re-xl. qz. veins
18	5cms 10 "	F 30 C 20 M 30 VC20	-	1 2			11	40	30 ?10	-

OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING १	TALC QUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
19	2cms 5 "	F 5 C 10 M 10 VC75	75/64S	_ 5	w/r 10/1	appears to be re-xl		70	25 ?55	well banded algae
20	1 2	F 25 C 30 M 25 VC20	80/405	2 8	white	no rosettes	veins dom. co cordant	50 n	40 ?10	algae laminae very well developed, ?folding, finer laminae in finer grain size material
21	1 1	F 20 C 20 M 30 VC30	68/55S	1 10	w/r 3/1	99	п	50	25 25	algae common, now mainly cleavage rhombs
22	1cm 10 "	F - C 40 M - VC60	-	2 5	w/r 10/1	н	all rex. coarsely	100	- 100	17
23	1cm 10 "	F 25 C 25 M 25 VC25	-	1 2	w/r 3/1	large rosettes	as for	1 50	40 10	stylolites with chlorite
24	2cms 5 "	F 15 C 20 M 15 VC50		1 2	w/r 10/1	no rosettes mainly rhombs	**	70	25 45	algae associated with coarse rhombs

ou'icrop Number	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING &	TALC QUARTZ &	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.	
1	8 6	F 20 C 30 M 30 VC20	-	1 1	white	normal to bed- ding,	paralle to bed- ding	L 50	50 -	no stroms. 1	0
2	2 1	F 10 C 20 M 20 VC50	_	3 1		rosettes common, columnar (veins)	to ran- dom to cross cutting	70	70 -	no stroms, stylolites 2	:5
3	4 3	F 20 C 30 M 20 VC30	°-	3 1	white & buff	17	•	60	55 5	no stroms, stylolites common l	0
4	1.5 1.0	F 10 C 40 M 20 VC30	Ħ	3 1		97		70	50 20	no stroms, stylolites common, carbonat rhombs 4	е 0
5	3.5 2.5	F 10 C 30 M 20 VC40	-	4 1		"	17	70	60 10	no stroms, stylolites common, mainly veins 4	0
6	1.5 0.5	F 10 C 40 M 20 VC30	-	2 2	00	H		70	50 20	strat. stroms., stylolites common, cleavage rhombs 3	: 15

OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING %	TALC QUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
7	1.5 0.5	F 20 C 30 M 20 VC30	H.	2	white	u		60	60	no stroms., stylolites common, cleavage rhombs 30
8	8 5	F 20 C 30 M 20 VC30	Test	2 2	88	98	00	60	60 	strat. stroms., stylolites common, cleavage rhombs 15
9	1.5 1.0	F 10 C 30 M 10 VC50	75/75S good	2 4	80	99 	88	80	70 10	strat. stroms., stylolites common, marked cleavage rhombs 30
10	4	F 10 C 40 M 20 VC30	=	1		88	н	70	70	no stroms., stylolites 30
11	1.5 1.0	F 10 C 40 M20 VC30	47/67W ? in situ	1 2	98	11	89	70	70	strat. stroms. 20
12	5 3	F 20 C 30 M 20 VC30	74/58W	3	white & buff	••	89	60	35 25	strat. stroms., very coarse cleavage rhombs 20

							A Data and A second sec	the second se	and the second of the second sec	
OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING १	TALC QUARTZ १	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
13	2 1	F 10 C 30 M 20 VC40	horiz.	2 4	.0	n	u	70	50 20	strat. stroms., cleavage rhombs, strongly veined 30
14	8 6	F 20 C 30 M 20 VC30	63/68SE	2 4	u	11		60	40 20	strat. stroms., cleavage rhombs. up to 10cms 20
15	3 2	F 20 C 20 M 20 VC40	-	3 2	u	ш	u	60	50 10	strat. stroms., minor stylolites 10
16	2 1	F 10 C 30 M 20 VC40	55/62SE	3 2	u	n		70	50 20	strat. stroms., almost horizontal in places, stron- gly veined 15
17	8 5	F 20 C 30 M 20 VC30	57/66S	4 5	85	11	**	60	40 20	domal & strat. strom, talc rich in places, minor stylolites 10
18	6 5	F 20 C 30 M 20 VC30	32/44E	3 6	89	u	n	60	50 10	strat. stroms. 10
19	50cms 30 "	F 20 C 40 M 10 VC30	62/67S good	2 8	11	31	n	70	30 40	strat. stroms, cleavage rhombs, adjacent to drill- hole 20

15

OUTICROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING %	TALC QUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
20	1.5 1.0	F 30 C 40 M 10 VC20	82/60S good	20	17	н	77	60	20 40	strat. stroms., laminated cleavage rhombs, strong silification 5
21	3 2	F 20 C 40 M 10 VC30	<u>,</u>	2	u			70	60 10	good domal stroms, strongly veined, stylolites 30
22	3.5 2.5	F 20 C 30 M 20 VC30	53/495	2 2	97	11		60	60 _	domal & strat. stroms., cleavage rhombs 30
23	4 2	F 30 C 30 M 10 VC30	76/50SW	2 15	19	11	19	60	30 30	Conophyton & strat.stroms, marked rhombs, orientation changes from SW to SE 30
24	2 1	F 20 C 30 M 20 VC30	59/59S good	2 10	white	11	н	60	40 20	good strat. stroms. 10
25	5 3	F 30 C 20 M 10 VC40	dips SW	2 20	11	98	10	60	50 10	complex algal structures, dewatering structures,very large rosettes & cleavage rhombs. 35

OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING १	TALC QUARTZ &	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGIH (-XLS. MMS.) JF
26	2.0 1.5	F 30 C 30 M 10 VC30	57/42S good	2 10		II	H	60	40 20	<u>Conophyton</u> & strat.stroms.	10
27	2 1	F 20 C 30 M 20 VC30	45/66S good	2 10	I			60	30 30	<u>Conophyton</u> & strat.stroms. stylolites cleavage rhombs	30
28	4.0 2.5	F 20 C 30 M 20 VC30	53/66S	4 10	white & green	"		60	40 20	ex. <u>Conophyton</u> strat. stroms., stylolites	& 10
29	6 4	F 30 C 30 M 20 VC20	42/58S good	2 20	"	11	11	50	30 20	ex. <u>Conophyton</u> strat. stroms., stylolites	& 10
30	4.0 2.5	F 30 C 30 M 20 VC20	54/56S	2 20	white	H	17	50	30 20	11 11	10
31	4 3	F 30 C 30 M 20 VC20	58/66S good	2 20	10 20	17	IT	50	30 20		10
32	4.0 2.5	F 20 C 30 M 20 VC30	65/76S good	10	'n	н	Ш	60	50 10		10
33	2 1	F 30 C 30 M 10 VC30	40/695	- 10	green- ish whit	" :e	н	60	35 25	"""	s10

OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING %	TALC QUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
34	4 3	F 20 C 30 M 20 VC30	60/64S good	2 8	" with red zone	" S	н	60	50 10	•• •• 10
35	4 2	F 20 C 40 M 10 VC30	60/74S	3 5	green- ish whit	e	99	70	60 10	strat. stroms., stylolites, red veining 10
36	50cms 20 "	F 10 C 30 M 20 VC40	-	2 2	**	99	н	70	70	strat. stroms., red veining, cross-cutting gz. veins 10/90 stylolites 10
37	3 2	F 30 C 30 M 10 VC30	46/76S	2 5	н	н	88	60	40 20	Conophyton & strat.stroms. stylolites 20
38	4 3	F 20 C 30 M 20 VC30	25/65S	2 5	99	11	17	60	50 10	strat. stroms & ex <u>Conophyton</u> , cleavage rhombs,
39	3 2	F 10 C 30 M 20 VC40		1 2	white	ń.	H	70	70	stylolites 30 strat. stroms & <u>Conophyton</u> 30
40	7 4	F 25 C 30 M 15 VC30	70/64S	4 10	u	99	n	60	50 10	strat. stroms & <u>Conophyton</u> strongly veined, stylolites

35

and the second second second										
OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING १	TALC QUARTZ १	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
41	4 2	F 30 C 30 M 10 VC30	80/66S good	3 15	н	"	n,	60	60	" 20
42	3 2	F 25 C 20 M 15 VC40	-	5 5	n	"	**	60	60 -	strat. stroms, very strongly veined 40
43	4 2	F 15 C 30 M 15 VC40	-	3 3		"	W	70	70	" 40
44	2 1	F 15 C 30 M 15 VC40	-	2 2	II	17		70	60 10	minor strat. stroms, very strongly veined 40
45	6 4	F 20 C 30 M 20 VC30	-	2 2	"	W	**	60	50 10	minor strat. stroms and <u>Cono-</u> phyton,very stron- gly veined 20
46	6 4	F 20 C 30 M 10 VC40	60/62S good	3 5		**	и	70	60 10	strat. stroms & Conophyton, very strongly veined 30
47	4 3	F 20 C 30 M 20 VC30	65/78S	3 5	88	"	н	60	40 20	"" plus stylolites 20

All

OUTICROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING %	TALC QUARTZ &	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGIH OF -XLS. MMS.
48	2 1	F 5 C 30 M 15 VC50		2 2	17	99	u	80	20 60	minor strat. stroms, coarse cleavage rhombs 20
49	3 2	F 10 C 30 M 20 VC40	55/60S	1 3	н	11	99	70	40 30	" " 10
50	2 1	F 10 C 40 M 20 VC30	-	22	88	19	**	70	30 40	minor strat. stroms, cleavage rhombs 20
51	4	F 20 C 30 M 20 VC30	65/67S	2 4	89	н	н	60	40 20	" 10
52	6 3	F 20 C 30 M 20 VC30	60/62S	2 5	green- ish whit	" e	11	60	50 10	strat. stroms. 30
53	3	F 20 C 30 M 20 VC30	48/80S	2 5	u		17	60	50 10	strat. stroms. 20
54	2.0 1.5	F 10 C 40 M 10 VC40		1 1	88	17	**	80	40 40	cleavage rhombs, strongly veined 30
55	30cms 20 "	F 10 C 40 M 20 VC30	-	2 2	white & buff	II	12	70	40 30	cleavage rhombs 10
56	1.0	F 10 C 40 M 20 VC30	66/658	3 5		78	82	70	30 40	"& red veins 20

				the set of a set of the set of th	the second s		the second se			
OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING १	TALC QUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
57	2 1	F 10 C 20 M 10 VC40	-	3	white	H	H	80	20 60	" " strongly veined 10
58	2 1	F 20 C 30 M 20 VC30	-	3 2	н		**	60	30 30	no stroms. cleav- age rhombs 10
59	6 4	F 20 C 40 M 30 VC30	72/755	23	'n	I	13 ()	50	50 -	strat. stroms, stylolites common in med. matrix, ?dessication cracks 5
60	1.5 0.5	F 30 C 15 M 50 VC 5		1 2		11	n	20	15 5	exceptionally fine, ?dessi- cation cracks, stylolites, strat. stroms. 5
61	3 2	F 20 C 10 M 30 VC20	70/74S	5 5		"	H.	60	50 10	domal & strat. stroms, stylolites 5
62	2.5 2.0	F 30 C 30 M 30 VC10	50/595	5 8	"	H	Π	40	30 10	domal & strat. stroms.stylolites, cleavage rhombs, ?dessication cracks 5
63	2 1	F 10 C 20 M 10 VC60	-	1 1	н	"	99	80	40 40	coarsely recryst. 20

CELIA DOLOMITE AREA B

OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING %	TALC QUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
64	2.0 1.5	F 20 C 30 M 20 VC30	-	5	н	н	н	60	50 10	stylolites common 10
65	3.0 1.5	F 10 C 30 M 20 VC40		5 -	12	11	n	70	40 30	domal stroms., stylolites common cleavage rhombs 20
66	7 5	F 20 C 30 M 20 VC30	_	3 2	н	99	88	60	30 30	domal stroms., stylolites common 10
67	6 4	F 10 C 30 M 10 VC50		2 2	19		**	80	30 50	domal stroms., stylolites common, cleavage rhombs 30
68	1.5 0.5	F 20 C 35 M 20 VC25	43/50s	2 4	white	98	п	60	50 10	strat. stroms.,stylolites cleavage rhombs, in med. matrix 10
69	6.0 2.5	F 20 C 30 M 20 VC30	ан ¹	5	II	11		60	30 30	domal stroms., stylolites, cleavage rhombs 20

OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING %	TALC QUARTZ &	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
70	5 3	F 20 C 30 M 20 VC30	53/55W	5 -	H	an.	17	60	30 30	domal stroms., stylolites, very coarse cleavage rhombs & qz. crystals 20
71	1.0 0.5	F 20 C 40 M 30 VC10	134/88W	4	17	17		50	50 _	cleavage rhombs stylolites 10
72	3.0 1.5	F 20 C 40 M 30 VC10	48/72S	3 3		II	π	50	20 30	?dessication cracks, strat. stroms. & Conoph- yton, stylolites, cleavage rhombs10
73	32	F 20 C 30 M 30 VC20	45/80S 45/63W	5 3	17 ₁₂	ðu.	"	40	30 10	strat. stroms., well bedded, sty- lolites, cleavage rhombs, complex folding 25
74	3 2	F 30 C 20 M 30 VC20	55/72S	5 3	11	11	n	40	30 10	strat. stroms., well bedded, sty- lolites, cleavage rhombs, greenish

25

OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING %	TALC QUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
75	2.0 1.5	F 20 C 30 M 30 VC20	57/59S	4 3	11	n	17	50	40 10	strat. stroms., well bedded, sty- lolites 20
76	4	F 20 C 30 M 30 VC20	64/53S	5 2	11	88	W	40	35 5	well bedded, sty- lolites, cleavage rhombs 10
77	2.5 2.0	F 20 C 30 M 20 VC30		3	17	00	TF	60	60 -	cleavage rhombs, stylolites 20
78	3 2	F 20 C 30 M 20 VC30	100/82S	5 3	н	ņ	11	60	50 10	strat. stroms., cleavage rhombs, stylolites 20
79	4 3	F 20 C 30 M 20 VC30	-	10 3	11	**	39	60	50 10	strat. stroms., cleavage rhombs, stylolites 10
80	2.0 1.5	F 20 C 40 M 20 VC20	55/58S	4 2	83	99	н	60	40 20	no stroms., cleavage rhombs, stylolites 10
81	5 3	F 20 C 30 M 30 VC20	74/64S	3 2	green- ish whit	" te	88	50	40 10	strat. stroms., rhomb. type at base, stylolites, cleavage rhombs 25

										and the second se
OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING %	TALC QUARTZ &	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT &	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
82	5 4	F 20 C 30 M 30 VC20	60/56S	5 2	u	W	"	50	40 10	" " 10
83	5 3	F 20 C 30 M 30 VC20		3		н	**	50	50 _	strat. stroms., cleavage rhombs 25
84	5 4	F 30 C 30 M 20 VC20	80/73S	10 8		"	"	50	40 10	<u>Conophyton</u> & strat stroms., stylo- lites, cleavage rhombs 10
85	2.0 1.5	F 20 C 30 M 30 VC20	45/35 S	8 2	Ŧ	U	11	50	40 10	strat. stroms., slight red vein- ing, ?dessication cracks, rhombs, stylolites 25
86	5 4	F 30 C 30 M 20 VC20	70/48s	10 4		н. 		50	45 5	" " 20
87	2 1	F 30 C 20 M 30 VC20	? dipsW.	5 5	**	n		40	40	" " 10
88	5 3	F 30 C 30 M 20 VC20	58/90	12 3	н	99	H	50	45 5	strat. stroms., slight red vein- ing, rhombs, sty- lolites 15

OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING %	TALC QUARTZ १	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
89	5 3	F 30 C 30 M 20 VC20	67/80S	10 2	17	17	п	50	50 _	domal & strat. stroms., slight red veining, rhombs, stylolites
90	5	F 30 C 30	50/610	0	11					10
50	4	M 20 VC20	20/ 012	2			**	50	50	" " 10
91	3.5 3.0	F 20 C 30 M 20 VC30	55/558	2 2	white	17	11	60	20 40	strat. stroms., very rhomb type rich
92	50cms 30 "	F 30 C 30 M 20 C 20	90/70N	2	88	17	**	50	20 30	17 17
93	50cms 30 "	F 10 C 40 M - VC40	-	_	88		n	90	10 80	complex open folds
94	1.0 0.5	F 20 C 30 M 10 VC40	70/60w	_ 4		88	**	70	30 40	complex open folds
95	30cms 10 "	F 30 C 20 M 20 VC30	70/63W	_		н	**	50	10 40	189 / DB
96	50cms 25 "	F 20 C 30 M 20 VC30	75/70W	_	18		14	60	10 40	" ",?axis

OUTICROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING %	TALC QUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
1	1.5 1.0	F 20 C 20 M 20 VC40	-	2 2	10	columnar rosettes random	concor- dant to discord	60	60 -	-
2	2 1	F 30 C 10 M 30 VC30	80/605	1 5	п	common around quartz	paralle to bed- ding	1 40	40 -	thin, well defined quartz algal lami- nae, rosettes very common
3	1.5 1.0	F 10 C 30 M 20 VC40	-	2 5	n	dom. random, rosettes, veins columnar	random rex.	70	70 _	common quartz blebs(lcm ³), pink talc
4	2.5 2.0	F 5 C 50 M 15 VC30	-	_ 2		", some rosettes	11	80	80	-
5	7 5	F 20 C 30 M 30 VC20	95/56S	2 3	white & buff	"	н	50	50 -	good quartz stroms ?folding
6	50cms 20 "	F 15 C 25 M 20 VC40	-	-2	white	", minor rosettes		65	65 -	almost completely re-xl
7	8 6	F 35 C 25 M 25 VC15	125/72S (varies)	2 5	white & buff	rex. concord. to 2 sets discord.	H	40	40 _	much variety, good <u>Conophyton</u> with veins parallel to algae, tepees

OUTCROP NUMBER	HEJGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING १	TALC QUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT &	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
8	3.0	F 20 C 30 M 40 VC10	70/635	5 8	u		", l set discord.	40	40	algae almost ptyg- matically folded
9	2 1	F 25 C 25 M 25 VC25	-	5 5		17	99	50	50 -	small, numerous blebs of talc
10	1.0 0.25	F 20 C 25 M 20 VC35	72/74S	5 1	white	88	", minor discord.	60	30 10	", stratiform stroms.
11	1.0 0.5	F 40 C 30 M 10 VC20	62/51S good	3 12	H	п	99	50	30 20	", stratiform stroms. excep- tionally well laminated with bands algae
12	5 2	F 25 C 25 M 25 VC25	70/62S good	2 10	98	11	89	50	40 10	minor stylolites in fine grained
13	2.0 1.5	F 25 C 25 M 25 VC25	_	2 3	green- ish white	17	39	50	50 -	talc rims on quartz
14	30cms 20 "	F 40 C 20 M 20 VC20	-	2 2	white	dom. columnar minor rosettes	", strongly veined	40	40	fine grained for this area
15	2 1	F 20 C 20 M 20 VC40	-	2 5	green- ish whit	" e		60	60	talc rims on quartz

TYPES DISTINCT BLADED REMARKS ORIENTATION TALC OUTCROP HEIGHT GRAIN FORMS /RHOMB. - MAX. LENGTH OF OF NUMBER AV.MAX. SIZE 😵 OF BEDDING QUARTZ COLOUR TEXTURE VEINS PRESENT % FORM & -XLS. MMS. METRES VIS.ESTIM. 8 8 50 18 50 16 1.0 F 25 C 25 2 11 11 -M 25 VC25 2 0.5 ---11 ŧŧ dom. 60 17 1.0 F 20 C 20 2 60 8 random 0.5 M 20 VC40 -11 50 50 exceptionally 18 F 25 C 20 73/60S 3 rosettes ... 8 well laminated, M 25 VC30 10 5 boop common especially in fine grained 50 ", large cross-11 ... 11 50 19 F 25 C 20 68/60S 5 4 15 cutting quartz 2 M 25 VC30 good _ veins, stroms. н 11 50 50 white 11 20 1.0 F 25 C 20 55/58S 2 10 M 25 VC30 0.5 80/76S 5 11 50 50 green talc plus 21 4 F 25 C 20 greenstylolites as well 10 ish M 25 VC30 2 _ as blebby pink white talc ",little 40 ", well lami-22 F 35 C 20 58/65S 11 11 2 40 4 veining 10 nated 3 M 25 VC20 _ 40 23 F 35 C 20 65/55S 5 н 11 11 40 11 11 3.0 1.5 M 25 VC20 10 dood

CELIA DOLOMITE AREA C

OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING %	TALC QUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
24	1.0 0.5	F 15 C 20 M 25 VC40		2 5	white	0	", strongl veined	60 -У	60 —	-
25	4 3	F 5 C 20 M 15 VC60	76/72S	1 3	10	97	11	80	80	dominantly very coarsely recry- stallised
26	5 3	F 20 C 25 M 20 VC35	63/625 good	2 5	green- ish whit	" e	17	60	60	80 83
27	3 2	F 25 C 25 M 25 VC25	72/62S	5 5	10		88	50	40 10	2 rhomb type beds
28	7 5	F 40 C 25 M 20 VC15	50/56S	2 10	99	89	19	40	40	well laminated
29	1.5 1.0	F 10 C 20 M 20 VC50	-	2 2	white	dom. concord. rosettes rare		70	70 _	dom. coarsely recryst. concord & x-cutting veins
30	5 3	F 15 C 25 M 25 VC35	68/64S	2 2	white & buff	U .	**	60	50 10	dom. random & con- cord. bladed veins minor rhombs, strat. stroms

OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING १	TALC QUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
31	2 1	F 20 C 30 M 20 VC30	70/67S good	2 5	n	n	", no x- cutting	- 60	50 10	small tepees, strat. stroms., finely laminated 40
32	1.5 0.5	F 20 C 30 M 30 VC20	70/625	1 2	••	10	11	50	30 20	strat. stroms., green & pink talc 20
33	50cms 20 "	F 20 C 25 M 30 VC25	58/56S good	2 10		u	"	50	50 -	strat. stroms. 30
34	2 1	F 20 C 25 M 20 VC35	62/67S good	5 5	11	18	", x-cut common	t 60	50 10	talc blebs common (0.5 cms) 30
35	2 1	F 20 C 30 M 20 VC30	78/78S good	5 8	11	", also rimming rhombs		60	45 15	strat. stroms., rhombs all around nuclei 20
36	2 1	F 20 C 30 M 20 VC30	58/73S	3 10		n Se	11	60	45 15	" " 20
37	3.0 1.5	F 20 C 30 M 20 VC30	53/73s good	3 10	IF	11		60	40 20	classic <u>Conophy-</u> <u>ton</u> beds (0.5m) rhomb lenses 20
38	1.5 0.5	F 10 C 20 M 10 VC60	73/71S	2 5				80	60 20	strat. stroms. 30

OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING %	TALC QUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGIH OF -XLS. MMS.
39	1.5	F 20 C 30 M 20 VC30	48/70s good	1 10	H	88	98	60	50 10	", quartz algal "boudins" 10
40	2 1	F 20 C 25 M 30 VC25	-	4 10	17	10		50	40 10	- 20
41	3.5 2.0	F 20 C 30 M 20 VC30	60/68S	10		II	н	60	50 10	strat. stroms. & poorly developed Conophyton 15
42	7 3	F 10 C 30 M 20 VC40	73/65S good	2 15	white	н 	н	70	60 10	quartz disrupted by movement para- llel to veining, (plunge 16/23°SE) strat. stroms., domal stroms 20
43	1.0 0.5	F 10 C 40 M 10 VC40	-	2 10	н	л	17	80	70 10	probably block off outcrop 42 30
44	1.5 0.5	F 10 C 40 M 10 VC40	80/625	2 5	10	**	88	80	70 10	strat. stroms., discrete 30
45	2 1	F 20 C 25 M 20 VC35	80/59S good	2 10	н 	99	и	60	50 10	strat. stroms., where quartz ex- terior surface to algal blebs, have bladed-type casts 30

OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING १	TALC QUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
46	3.0 1.5	F 10 C 40 M 20 VC30	70/60S good	2 8	"		89	70	45 25	thick (3m t.t.) beds of rhomb &/or bladed type magne- site 20
47	4 2	F 20 C 30 M 20 VC30	60/80S good	2 5	11	11		60	50 10	strat. stroms & Conophyton, bladed veins x-cutting carbonates & also parallel to stroms., ?dessica- tion 30
48	5 2	F 10 C 30 M 20 VC40	60/60S good	3 8	white & red		17	70	60 10	red colour asso- ciated with late veins, rhombs at base 15
49	3 1	F 20 C 30 M 20 VC30	72/63S	2 5	white	"		60	35 25	overall much finer grained 20
50	3 1	F 10 C 30 M 20 VC40	72/605	2 5		"	88	70	40 30	- 45
51	4.0 1.5	F 10 C 30 M 20 VC40	68/58S	3 8	white, red	n	"	70	50 20	strat. stroms & x-cutting 15
- 52	2 1	F 10 C 30 M 20 VC40	63/42S	5	88	11	11	70	40 30	" " 15

OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING क्ष	TALC QUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH -XLS. MMS.	OF
53	1.0 0.5	F 25 C 40 M 5 VC30	76/76S	10 10		IT	89	70	50 20	", thick vein random quartz-	of talc 10
54	3 2	F 15 C 30 M 15 VC40	67/56S good	10 5	white	88	н	70	50 20	stylolites & tepees	10
55	2.0 1.5	F 10 C 30 M 20 VC40	83/71S good	5 5	88	лн	Ħ	70	50 20	", plus tepees	15
56	4 2	F 10 C 30 M 20 VC40	83/57S	5 5	white, min. red	88	99	70	50 20	strat. stroms.	15
57	2 1	F 20 C 40 M 10 VC30	72/46S	10 5	39	88	TÊ	70	40 30	09 00	8
58	2 1	F 10 C 40 M 20 VC30	53/665	5 5	DV	18	н	70	50 20	" (minor)	10
59	2 1	F 10 C 30 M 10 VC50		2 5	88	н	17	80	60 20		10
60	2 1	F 10 C 40 M 20 VC30	54/64S	5 5	н	11	86	70	50 20	90 99	10
61	2 1	F 10 C 30 M 10 VC50	83/735	2 5	11	H	",strongly veined	80	50 20	", plus stylolites	15
62	4 2	F 10 C 30 M 20 VC40	-	2 5	white & buff	89	88	70	50 20	", plus boudins	25

OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING %	TALC QUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGIH OF -XLS. MMS.
63	1.5 1.0	F 20 C 30 M 10 VC40	63/66S good	2 12	41	"	n	70	60 10	", l section all recryst. veins 20
64	8 4	F 20 C 30 M 20 VC30	40/485	4 10	"	"	W	60	50 10	", <u>Conophyton</u> variable orienta- tion,x-cutting qz. vein 47/87W 25
65	5 2	F 15 C 30 M 15 VC40	42/475	5 5	u	IF	**	70	50 20	50/78w 30
66A	4 2	F 15 C 40 M 15 VC30	58/58S	5 2		"	W	70	40 30	poor strat.stroms, rhomb rich 15
66B	5 3	F 10 C 30 M 10 VC50	80/555	2 2	99	88	"	80	70 10	", dom. veined 15
66C	5 3	F 15 C 30 M 5 VC50	65/60S	2 5		11	"	80	75 5	strom. strat., " parallel to bed- ding, qz. & talc blebs 35
66D	5 3	F 20 C 20 M 20 VC40	-	2 5	H	H	"	60	50 10	strat. stroms, good area of <u>Conophyton</u> in fine material 40
67	3 2	F 20 C 30 M 20 VC30		2 5	"	99		60	55 5	strat. stroms

OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING १	TALC QUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
68	1.5 0.5	F 10 C 20 M 30 VC40	- ⁻	1 2	white	н		60	60 -	rosettes very common (av. 2cms) within medium matrix 20
69	7 4	F 10 C 25 M 30 VC35	50/658	2 3	19	**	U	60	60	strat. stroms., stylolitic on N. (with chlorite) 20
70	0.5	F 10 C 20 M 30 VC40	-	1 1	**	II	17	60	60	almost all bladed type veins in medium matrix 20
71	2.0 1.5	F 10 C 40 M 10 VC40	-	1 1	99		94	80	50 30	" " 10
72	= 8 5	F 20 C 30 M 20 VC30	72/64S	2 5	white & buff	u	88	60	60 -	strat. stroms to <u>Conophyton</u> , stylo- lites common 15
73	6 4	F 20 C 30 M 20 VC30	80/685	2 5	98	H	п	60	60 -	", plus areas of cleavage rhombs 15
74	8 4	F 20 C 30 M 20 VC30	47/64S	5 5	79	п	99	60	60 -	strat. stroms., some stroms have gone to talc (5cms), stylolites

15

									and the second se		the second se
UC IUV	ICROP MBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING	TALC QUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
	75	4 2	F 20 C 30 M 20 VC30	57/48S	2 5	19	н		60	60 -	strat. stroms and stylolites 10
	76	2 1	F 20 C 30 M 20 VC30	58/67S good	5 5	white	"	n	60	60 _	" " 20
	77	2.0 1.5	F 10 C 30 M 20 VC40	87/66S	3 5	n			70	70 -	strat. stroms., dom. veined & rosettes in medium matrix 25
	78	2 1	F 20 C 30 M 20 VC30	60/65S good	5 5	H	88	12	60	60 -	strat. stroms and stylolites 20
	79	4 2	F 20 C 30 M 20 VC30	73/65S good	5 5	11.	"	"	60	55 5	strat. stroms., fold direction 88° green talc (shows movement) asso- ciated with pink talc., stylolites 25
	80	4 2	F 20 C 30 M 10 VC40	60/74S good	5 8	white	U	"	70	50 20	strat. stroms. (dom.), 3 rhomb. beds 20
	81	6 2	F 20 C 30 M 10 VC40	see map	2 15	w/r 1/1	"	H	70	30 40	strong silicifica- tion and contor- tion, gz. veins 37/86W, strat. stroms., 20

A29

OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING %	TALC QUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
82	6 2	F 20 C 40 M 10 VC30	72/72S	5 10	white & buff	1f	11	70	30 40	strat. stroms., thick rhomb. beds 15
83	7 4	F 20 C 25 M 20 VC35	83/78S	5 5	10	88	88	60	30 30	strat. stroms., talc inside quartz stroms. 15
84	4	F 10 C 50 M 20 VC20	53/69S good	2 3	н	99	H	70	20 50	", dom. rhomb. beds 10
85	50cms 20 "	F 10 C 60 M 10 VC20	55/658	5 1	99	97	88	80	- 80	strat. stroms., rhomb beds -
86	2 1	F 10 C 60 M 10 VC20	62/46S	1 3	w/r 1/1	98	H.	80	20 60	strat. stroms. " 10
87	2 1	F 20 C 30 M 20 VC30	not in situ	2 1	w/r 1/2	н	Ħ	60	40 20	strat. stroms. 30
88	2.0 1.5	F 20 C 30 M 20 VC30	not in situ	1 3	w/r 1/1	99	н	60	30 30	strat. stroms. 25
89	2 1	F 20 C 50 M 10 VC20	?dips to W.	- 3	w/r 1/1	11		70	20 50	strat.stroms., dom.rhombs 10
90	1.0	F 20 C 30 M 20 VC30	?not in situ	5	w/r 1/1	н	н	60	30 30	domal & strat. stroms. 15

OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING %	TALC QUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH (-XLS. MMS.	OF
91	6 5	F 30 C 20 M 20 VC30	-	2 5	dom. white r.& buff	п	18	50	50 -	well developed block jointing 88/6E	10
92	8 6	F 20 C 30 M 20 VC30	83/64S	2 5	11	"	11	60	30 30	extensive quar veining with g tourmaline, va ous directions side have rhom strat. stroms.	tz reen ri- , E bs, 20
93	8 6	F 20 C 40 M 20 VC30	80/665	2 5	w/r 2/1		"	70	40 30	similar to 92	15
94	8 4	F 20 C 30 M 20 VC30	53/755	2 5	88		"	60	40 20	99 99	10
95	8 3	F 20 C 40 M 10 VC30	75/84S good	2 8	w/r 1/1	"	H	70	30 40		10
96	6 3	F 20 C 30 M 20 VC30	48/74S	2 5	w/r 5/1	19	u	60	50 10	strat. stroms. quartz veins (37/74E - but variable)	, 15
97	7 3	F 20 C 30 M 20 VC30	2 — 2	2 5	11			60	40 20	-	30
98	6	F 20 C 30 M 20 VC30		2	18	17	н	50	40 10	stylolites	20

OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING %	TALC QUARTZ १	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGIH OF -XLS. MMS.
99	5 3	F 20 C 30 M 40 VC10	-	1 2	white, min.red	11	n	40	20 20	sparse rhomb & bladed crystals in med. matrix qz. blebs (40x20cms) stylolites strat. stroms. 15
100	4	F 20 C 30 M 20 VC30		3 2	37	88	19	60	35 25	stylolites, strat. stroms. 10
101	2.5 2.0	F 20 C 40 M 20 VC20	20 00 1	3 2	99	88	18	60	50 10	fine "mud", strat. stroms. 10
102	3 2	F 20 C 40 M 20 VC20		3 2	w/r 2/1	99		60	20 40	mainly rhomb.beds, strat. stroms. 5
103	3 2	F 30 C 40 M 10 VC20	-	3 15	11	11	11	60	20 40	strat. stroms. -very contorted 10
104	40cms 20 "	F 20 C 25 M 50 VC 5	-	3	white	u	"	70	30 _	bladed veins in med. matrix, green & pink talc, no algae 5
105	40cms 20 ."	F 20 C 20 M 30 VC30	-	2	н	n	89	-50	50 -	" " 15
106	50cms 20 "	F 10 C 40 M 20 VC30	73/72S	1 5	11	н	88	70	20 50	2 rhomb beds, strat. stroms. 20

OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING &	TALC QUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
107	20cms 10 "	F 20 C 20 M 20 VC40	-	-	w/r 1/1	u	"	60	?	cleavage rhombs. in med. matrix, no algae -
108	1.0 0.5	F 10 C 50 M 20 VC20	100/505	- 8			U	70	- 70	strat. stroms., mainly rhombs, quartz veins 68/68W -
109	40cms 30 "	F 30 C 25 M 40 VC 5	72/805	4	white	"	"	30	70	strat. stroms. 5
110	80 " 50 "	F 20 C 30 M 30 VC20	70/79s	2		"	н	50	40 10	strat. stroms. 5
111	5 4	F 20 C 30 M 20 VC30	85/68S good	- 2	white & buff	"	Ħ	60	60 -	strat. stroms. 10
112	2 1	F 20 C 30 M 20 VC30	-	-	н	п	н	60	50 10	strat. stroms. 10
113	1.5 1.0	F 20 C 40 M 20 VC20	-	2	88	н	"	60	45 15	2 rhomb beds, 1 quartz vein, no algae 5
114	1.0 0.25	F 10 C 50 M 20 VC20	50/62S	1 2	white & red	н	"	70	45 25	4 rhomb beds, dis- tinct red lenses, strat. stroms. 10

OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING %	TALC QUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGIH OF -XLS. MMS.
115	5 4	F 20 C 20 M 30 VC30	68/885 good	2 2		88	ų	50	40 10	well veined, minor rhombs at top, strat. stroms. 25
116	2 1	F 20 C 30 M 20 VC30	-	-	89	n	88	60	40 20	well veined, minor rhomb beds(4) car- bonate vein 15
117	4 3	F 20 C 30 M 20 VC30	?160/48W	- 1	н		**	60	20 40	minor strat. stroms, mainly rhombs 10
118	1.5 1.0	F 20 C 30 M 20 VC30	60/80W	$\frac{1}{-}$	00	DŲ	81	60	60 -	minor strat. stroms. 10
119	1.5 1.0	F 20 C 30 M 20 VC30	83/70W	2	88	ŭ	11	60	30 30	red veins clear- cut, minor strat. stroms. 10
120	2.0 1.5	F 20 C 30 M 20 VC30		2	11	89	11	60	30 30	red veins clear- cut (late stage bladed), minor strat. stroms. 10
121	2.5 0.5	F 20 C 30 M 30 VC20	110/43N	1 3	w/r 2/1	11	н	50	30 20	large carbonate blebs-W side, shows folding, strat. stroms. 10
the second se										
---	-----------------------------	-------------------------------	--------------------------------	---------------------	------------------	---------	----------------------	--------------------------------	-----------------------------	--
OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING १	TALC QUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGIH OF -XLS. MMS.
122	1.0 0.5	F 30 C 20 M 30 VC20	55/80W	1 2	white	**	17	40	30 10	strat. stroms. 10
123	2 1	F 20 C 30 M 30 VC20	100/50N	1 4	white min.red	н	17	50	30 20	strat. stroms. 10
124	1.0 0.5	F 20 C 30 M 30 VC20	63/72w	1 2	•	IT		50	30 20	strat. stroms., rhomb-bladed beds in medium matrix 5
125	1.5 1.0	F 20 C 40 M 20 VC20	-	-3	85	'n	"	60	20 40	well folded beds of algae & rhombs 130/56W- symmetri- cal 5
126	4 3	F 10 C 50 M 20 VC20	48/67w good	-3		11	11	70	20 50	good rhomb. beds, strat. stroms. 10
127	2.5 2.0	F 10 C 50 M 20 VC20	43/80w good	-3	88	ан 	п	70	10 60	discrete rhomb crystals 5
128	1.5 1.0	F 5 C 50 M 15 VC30	-	-	11	11	n	80	- 80	plus carbonate veins - some show- ing red zoning -
129	1.0 0.5	F 20 C 30 M 20 VC30		-3				60	15 45	folded beds as at 125 5

CELIA DOLOMITE AREA C

CELIA DOLOMITE AREA C

OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING %	TALC QUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
130	1.0 0.5	F 10 C 40 M 10 VC40	33/77W good	- 4	H	н.		80	20 60	well laminated rhomb beds (lcm) 5
				CELI	A DOLOMIT	E AREA D				
1	2.5 1.5	F 25 C 30 M 15 VC30	-	8 4	w/r 2/1	normal to bed- ding, rosettes	paralle to bed- ding to random,	1 60 to	60 -	domal & strat. stroms. (minor), cross cutting bladed 10
2	2.5 2.0	F 25 C 30 M 15 VC30	-	8 1	white, minor r.	columnar (veining)	cutting	60	60	no stroms., some red veining, minor stylolites & rhombs 25
3	4 3	F 25 C 20 M 15 VC40	58/30S	8 1	11	н		60	60	no stroms. except talc relicts, greenish in part 30
4	2.0 1.5	F 25 C 20 M 15 VC40	-	10	н(88	н	60	60	", plus stylolites 15
5	6 5	F 25 C 30 M 15 VC30	-	10 1	11	н	н	60	55 5	no stroms. except talc relicts, rhomb on NW corner

OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING %	TALC QUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
6	2 1	F 20 C 50 M 10 VC20		5 1	white	99	11	70	20 50	no stroms. except talc relicts, mainly rhombs 20
7	8 5	F 20 C 40 M 20 VC20	45/46S	5 4		11	н	60	50 10	strat. stroms. on E. side 35
8	2.0 1.5	F 20 C 30 M 10 VC40	-	5 -	n	IT		70	50 20	no stroms except as talc relicts, stylolites, coarse rhombs 45
9	3 2	F 20 C 20 M 10 VC50	-	5 1	"	"	"	70	70	no stroms. except as talc relicts stylolites 45
10	3 2	F 20 C 30 M 20 VC30	-	3	н	89	II	60	60	", plus coarse rhombs 45
11	50cms 20 "	F 20 C 30 M 20 VC30	(177)	2 1		u	n	60	55 5	no stroms., stylo- lites 20
12	1.0 0.5	F 20 C 30 M 20 VC30	-	5		79	**	60	55 5	" " 15
13	1.0 0.5	F 30 C 20 M 20 VC30	70/675	3 3	"		**	50	40 10	strat. stroms. & Conophyton, stylo- lites powdery sur- face (?2nd magne- site) 20

CELIA DOLOMITE AREA D

OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING क्ष	TALC QUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
14	4 2	F 20 C 30 M 10 VC40	58/62S	5 5	white		H	70	60 10	strat. stroms. & Conophyton (well developed) 60
15	1.5 1.0	F 20 C 30 M 20 VC30	20/575	8 3	99	88	н	60	60	strat. stroms, stylolites 10
16	2 1	F 30 C 40 M 10 VC20	35/478	5 15	**	19	н	60	20 40	strat. stroms., stylolites, rhombs 5
17	1.5	F 20 C 20 M 10 VC50	-	2	88	99	н	70	70	no stroms., rhombs 20
18	1.5 1.0	F 20 C 30 M 20 VC30	58/615	3 8	88	н		60	60 -	strat. stroms. well developed, small <u>Conophyton</u> , stylolites on S.E. 10
19	4 2	F 30 C 25 M 20 VC25	58/325	5 15	99	88	п	50	50 -	и 20
20	2 1	F 30 C 25 M 20 VC25	60/555 good	10 5	н	II	88	50	50	well developed strat. stroms., small <u>Conophyton</u> 10
21	2 1	F 30 C 25 M 20 VC25	42/645 good	8 8	89	H	11	50	40 10	и и 10

OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING १	TALC QUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
22	1.5 1.0	F 20 C 20 M 20 VC40		2	white minor re	ा ed	п	60	40 20	no stroms., clea- vage rhombs, strongly veined 60
23	8 6	F 30 C 30 M 20 VC20	85/77S	3 3	H	u	n	50	40 10	strat. stroms., good domal stroms in fine matrix, cleavage rhombs, stylolites (gree- nish) 20
24	5 3	F 20 C 30 M 20 VC30	75/68S	3 3		"	n	60	50 10	strat. stroms., good domal stroms. in fine matrix, stylolites (gree- nish) 20
				CELI	A DOLOMIT	E AREA E				
1	5 -	F 20 C 30 M 10 VC40	80/58S	- 5	white	normal to bed- ding, rosettes	parallel to bed- ding to random	L 70	50 20	3 rhomb type beds, no quartz assoc. poor cross-cutting veins
2	3	F 10 C 30 M 20 VC40	67/39S	- 5	**	columnar (veins)	cutting	75	60 15	quartz as blebs
3	4	F 20 C 30 M 20 VC30	62/62S	- 5	**		11	60	45 15	algal structures

CELIA DOLOMITE AREA D

Name and Address of the Address of t	the second s									
OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING %	TALC QUARTZ 욱	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
1	7	F 20 C 20 M 30 VC30	40/90	52	w/r 3/1	normal to bed- ding, rosettes common, columnar (veining)	paralle to bed- ding to random cross- cutting	el 50 to	50	red colouration not related to any particular grain size, no obvious stroms., styloli- tes with chlorite, talc common in W end
2	2	F 20 C 20 M 30 VC30		- 5	н	19	90	50	50 -	as above, qz. cores in coarsest bladed magnesite
3	1	F 10 C 35 M 20 VC35	-	-	w/r 3/7	11	н	50	50 _	as above
				COOMAL	IE DOLOMI	ITE AREA B				
1	7 5	F 20 C 30 M 20 VC30	25/62W	3 15	grey- white		11	60	50 10	strat. stroms. & good <u>Conophyton</u> rosettes rare 10
2	2.5 2.0	F 20 C 40 M 20 VC20		5 8	89	n		60	40 20	strat. stroms & good <u>Conophyton</u> talc reddish-pink 5

OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING १	TALC OUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
3	10 8	F 20 C 30 M 30 VC20	48/59W	5 10	"& red		99	50	40 10	strat. stroms., cleavage rhombs 15
4	2.0 0.5	F 10 C 40 M 20 VC30	-	3 2	88	17	н	70	70	minor strat. stroms. in creek bed 15
5	1	F 20 C 30 M 20 VC30	113/805W good	2 3	H		Η	60	45 15	quite carbona- ceous, ?in situ, good strat. stroms & <u>Conophyton</u> 20
6	5 4	F 30 C 40 M 10 VC20	140/58SW	3 12	"	"	"	60	40 20	" " 20
7	6 4	F 30 C 30 M 20 VC20	?54/84W	3 8	11	97	"	50	30 20	carbonaceous, sty- lolites, chicken- wire texture, strat. stroms., <u>Conophyton</u> , shale- like "clasts" 5
8	4 2	F 20 C 30 M 30 VC20	-	5 5	H	**	"	50	40 10	as above plus quartz shows banding 10
9	5.0 3.5	F 20 C 30 M 20 VC30	160/57w	3 8		"		60	30 30	chicken wire tex- ture, random mul- tiple stylolites

COOMALIE DOLOMITE AREA B

the second se											
OUTCROP NUMBER	IIEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING १	TALC QUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB FORM %	REMARKS - MAX. LENGTH -XLS. MMS.	I OF
10	1.5 1.0	F 20 C 30 M 20 VC30	8	3 1	17	I	"	60	30 30	no algae, rho distinctly gr chicken wire ture	mbs ey, tex- 20
11	8 6	F 20 C 40 M 20 VC20	-	3 2	89	99	11	60	30 30	11 11	5
12	10 7	F 20 C 30 M 20 VC30		10 3	10	17	0	60	30 30	distinct grey rhombs, shale blebs, stylol	e like ites 10
13	10 7	F 20 C 30 M 20 VC30	160/60W	2 3	**	99	Ħ	60	30 30	as above	10
14	9 6	F 10 C 30 M 20 VC40	æ	2 2	"more red	18	**	70	50 20	shale like bl very coarse rhombs, style	ebs, olites 30
15	4 3	F 10 C 40 M 20 VC30	-	2 2	n S	IF.	н	70	50 20	as above	10
16	2 1	F 5 C 20 M 5 VC70	-	1 1	98	н	88	90	70 20	W	30
17	3 2	F 5 C 20 M 5 VC70		1 1	п	88	10	90	70 20	99	30

OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING १	TALC QUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
	4	F 20 C 30	_	3	"			60	40	" 10
	3	M 20 VC30		4					20	·C -
19	2.5 2.0	F 20 C 30 M 20 VC30	155/38w	3 5	11	88	"	60	50 10	" plus strat. stroms. 10
20	2.0 1.5	F 20 C 30 M 30 VC20	173/58w	3 10	n	"	10	50	30 20	" 5
21	3.5 2.0	F 20 C 30 M 20 VC30	180/62W	2 5	**	n		60	50 10	" plus very good chicken wire texture 10
22	7 4	F 20 C 30 M 20 VC30	-	5 1	"v.red	H,	u	60	40 20	colourful talc, shaley blebs, rhombs 30
23	1.0 0.5	F 20 C 30 M 20 VC30		2	111			60	60 -	no algae
				COOMA	LIE DOLOM	ITE AREA C	_			
1	2.5 1.5	F 20 C 30 M 30 VC20	70/90	3 5	grey- white		II	50	30 20	strat. stroms. & <u>Conophyton</u> , rhombs chicken wire tex- ture 15

COOMALIE DOLOMITE AREA B

COOMALIE DOLOMITE AREA C

OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING १	TALC QUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
2	63	F 20 C 30 M 30 VC20	60/90	3 8	98	99	89	50	30 20	carbonaceous rhombs, <u>Conophyton</u> & strat. stroms., green talc, quartz crystals 20
3	2.0 1.5	F 20 C 30 M 30 VC20	not in situ	2 5	88	89	п	50	4 0 10	as above 10
4	2 1	F 20 C 20 M 40 VC20	70/60W	2 3	"	11	11	40	40 -	domal stroms., ?dessication cracks chicken wire texture & grey (dark) veins
										10
5	6	F 20 C 30 M 30 VC20	80/74E	2 5	n	n	**	50	30 20	as above 5
6	2.0	F 30 C 30 M 20 VC20	-	5 5	99	11	89	50	40 10	" 5
7	5	F 20 C 30 M 30 VC20	70/84E	2 5	H .	18	н	50	30 20	quartz crystals have grey cores 5
8	4 3	F 20 C 30 M 30 VC20	-	2 5	11	99	н	50	30 20	" " 5

				a second s	and the second se			and the second se	and the second se	
OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING १	TALC QUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENT %	BLADED /RHOMB. FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
1	1.0 0.3	F 20 C 20 M 30 VC30		_ 10	grey	99	99	50	50 -	contorted strat. stroms., rosettes very coarse, car- bonaceous 40
2	50cms 25 "	F 20 C 30 M 20 VC30	20/65S	- 8	00		H	60	60	as above 30
3	50cms 25 "	F 20 C 20 M 20 VC40	-	3 5	17	"	11	60	60 -	" plus cleavage rhombs 30
4	1.5 1.0	F 20 C 30 M 10 VC40	?140/705	3 5	н		n	70	70	as above plus grey talc 35
5	2 1	F 10 C 30 M 10 VC50	-	2 5		ų	77	80	80 -	as above plus large recryst. area 200
6	50cms 30 "	F 20 C 30 M 30 VC20	40/68S	4 4	H	u		50	50	" " 30
				COOMA	LIE DOLOM	ITE AREA E				
1	2 1	F 20 C 30 M 10 VC40		3 10 、	greyish white	n	M	70	70 _	<pre>qz. rex. to v. large crystals, v. coarse ?rhombs or cleavage rhombs, grey zoning, con- torted strat.</pre>

COOMALIE DOLOMITE AREA D

A45

100

stroms.

COOMALIE DOLOMITE AREA E

OUTCROP NUMBER	HEIGHT AV.MAX. METRES	GRAIN SIZE % VIS.ESTIM.	ORIENTATION OF BEDDING %	TALC QUARTZ %	COLOUR	TEXTURE	TYPES OF VEINS	DISTINCT FORMS PRESENI %	BLADED /RHOMB FORM %	REMARKS - MAX. LENGTH OF -XLS. MMS.
2	3.0 1.5	F 10 C 30 M 10 VC50	-	2 2	ju.	19	11	80	80	as above, cross- cutting veins dom- inant 100
3	6.0 4.5	F 20 C 20 M 20 VC40	-	2 2	10	"		60	60	as above, plus carbonaceous mate- rial conc. along veins 100
				COOMA	LIE DOLOM	ITE AREA F				
1	80 cms 40 "	F 10 C 30 M 20 VC40	-	-3	white	н	88	70	70 -	minor re-xl qz., no stroms. 30

SAMPLE	FIRST	FINAL	SALINITY	T _H	CO2 TH	DAUGHTER	REMARKS
NO MINERAL	MELTING °C	MELTING °C	WI % CaC EQUIV.	1 ₂ °Ċ	⁶ С п	MINERAL DATA	
AREA:	RUM JUNGLE	COMPLEX (PREFIX A.)		1		
A02 (A)	-72.0	-54.4	?	D.C.260	30.5	-	
QUARTZ	-	-11.7	15	327.2	√	-	
	26 0	-13.5	16	319.5	-	-	
	-20.0	-11.0	15	2/8.4	_	_	
	-	-58.0	?	-	29.0	_	
	-3.5	-0.6	0	155.6	-	-	
	-2.8	-0.6	0	155.3	_	_	
	_	-0.2	0	155.1	29.0	-	
	-	-58.3	?	S -	29.7	—	
). (3	-55.4	?	-	29.3	-	
		-15.5	18	281.4	_	-	
	-	-14 7	17	D.C.300.0	-	_	
(B)	~-50 0	-29.6	25	1/3 7	_	-	
(0)		-11.5	15	274.8	_	_	
	-	-58.9	?	D.C.306	1	-	
	-	-8.9	12	257.1	-	_	
	-	-9.3	13	256.8	÷.	_	
	-24.8	-11.3	15	D.C.254.9	-	_	
	-58.7	0.0	0	356.1	31.5	-	Good Nos
	-54.2	-	-	~323	31.5	-	
4 - 1	-21.4	-10.7	14	305.4			Hydrate
(C)	~-15.0	-3.4	-	142.7	-	-	Good Nos
	-23.0	-8.1	_	192.2	-	-	n
	-55.1	-7.6	10	253.7	-	-	
		-	-	231.4	-	-	
	-54.4	-7.8	10	-	_	_	
	_	0.0	10	156.6	_	_	
	-	-2.3	-	152.7	_	-	Hydrate
	× _	_	-	245.5	_	-	nyarace
	-	-	-	251.9	-	-	
200	45 0	20.4	22	270 6		*	
AUS OLIAPT7	-45.0	-20.4	22	2/9.0	26 1		
QUANT	-56.0	-27.1	24	323 8	20.4	- v	
	-	-15.9	18	>390	30.5	_	
	-31.1	-14.2	17	355.7	-	-	
	-25.0	-7.0	10	191.6	-	>515	
	-	-15.4	18	>395	-	-	

SAMPLE NO MINERAL	FIRST MELTING °C	FINAL MELTING °C	SALINITY WI % CaCl ₂ EQUIV.	T _H ℃	CO _{2 TH}	DAUGHTER MINERAL DATA	REMARKS
AREA: BE	ESTONS FOF (PREF	MATION MIX B)					
B09 (A) QUARTZ	-	-31.0 -31.0	26 26	96.3 98.4	_	_	
(TOURM)	-55.0	?	_	105.3	-	-	
	_	-30.7	26	101.8	-	- √	
	-55.0	-31.3	26	99.8	-	_	
	_			126.5			Hydrate melted but no return
	-50.0	~-30.0		-			OL V.P.
(C)	-	-12.0	35	133.6	-		Hydrate M.P 3.5
	\sim	-		83.3		10-01	
	-	-12.0	33	154.9	-	-	Hydrate M.P 6.4
	$\sim - 1$	-25.3	23	90.0	-	-	
	-46.8	-24.3	23	125.0	-	Haem. D.M	
	_	_	-	177.9	_		
	-	_	25. 1	192.3	-	-	
AREA: CE	LIA DOLOMI (PREFI	ITE IX C)					
C09 (A)	-50.0	-13.1	16	172.6	_	_	Bladed
MAGNESITE		-13.0	16	167.0	-	_	
		-12.0		165.0	_	_	
	-	-	-	167.5	-	-	
			-	165.4	_	-	
C09 (B)	$-45(CO_2)$	-15.4	18?	100.0	29.9	_	
		-14.7	17?		28.9	-	
	=	- 21 0	26	204 7	30.3	-	
	0.00	-20.9	20	142.7	-	_	
			-	135.7	-	_	
		-	-	149.2	-	-	
			_	154.6 363 6	_	_	
	~-50.0	-36.3	27	113.8	-	_	
	~-17.4	-3.8	2	180.2	-	-	

SAMPLE NO MINERAL	FIRST MELTING °C	FINAL MELTING °C	SALINITY WT % CaCl ₂ EQUIV.	°C ℃	°C2 _C ™H	DAUGHTER MINERAL DATA	REMARKS
		12.4	16	140.4			
C09 (C)	-	-13.4	16	149.4	-		
	-	-10.0	19	144.0	-		
	-	-10.0	21	170 6	_	_	
	-	_		1/9.0	_	_	
	_	_	_	163 7	_		
	-	_3.8	2	151 1		_	
	_	-12 4	16	150 2	_	-	
	~45.0	-15.3	18	150.2	-	-	
Cll (A)	_	× _	-	187.0	-	-	
QUARTZ	~-40	-22.3	22	215.0	_	-	
	-	~-23.0	22	-		-	
	-	-	-	216.6	-	-	Did not freeze
	-	-	300	214.7	_	1	11
	-	-	-	190.8	_	-	Hydrate
	-	-24.7	35	225.3	-	_	M.P.
							-12.6°C
(B)	-	-		228.6	-	-	did not freeze
	I →	-	_	235.3	_	-	
	-	H		214.0	_	-	
	-50.0	-28.7	25	?183	_	-	
	-55.0	-27.7	_	190.7	-	_	?
							Hydrate
	-50.0	-15.2	18		-	-	Lonly
	-49.0	-15.7	18	220.4	-	-	Final
	-47.6	-16.7	19	213.5	-	-	Good Nos
C13 (A)	_	-	_	~145.0	-	-	Poor
QUARTZ	-	-	_:	~100.0	-	-	sample did not
ZONED CRYSTAL	~-56.0	?-25.3	-	~145.0	-	, -	TIGG76
	-	-	-	131.7	-	_	O.K
A = CORE	~-55.0	-8.6	12	~143.0	_	-	
THEN	-	-	-	143.4	_	-	
WORKING	-	-		124.5	_	-	
TO RIM	-	-		131.1	-	_	
AT (G)	-	_	-	125.6	-	_	
(B)	-	-	-	122.0		_	
(2)	_	_	_	119.8	_	_	
	~43.0	~15.0	_	127.7	_	_	
	10.0		_	101 1	_	_	
		-	-	132.8	-	_	
(C)	_		_	170-4	_	_	None
	-	-	_	110.0	_	_	froze
		_	-	114.0	_	_	LLOZG
		-	-	135.6	_	_	
				100 A	_	_	
	-	-	-	130.4	_	-	

SAMPLE NO MINERAL	FIRST MELTING °C	FINAL MELTING °C	SALINITY WT % CaCl ₂ EQUIV.	™ °C	CO2 TH	DAUGHTER MINERAL DATA	REMARKS
(D)	-	-	-	93.4	_	-	
	-	-	-	99.8	-	100	
	- 50 0		_	112.0	-	-	
	~	-21.9	22	-	-		
			.=.	12/.5		-	
(E)	~	-38.4	27	92.2	-	_	
		-2 5	-	90.3	-	_	
	_	-3.5	30	~145	-		Hydrate
	_	-4.0	35	~146.8	-	_	30
	-18.0	-21.0	(22)	2 170 F		v 6	
	10.0	-12.1	34	1/3.5	-	_	
		_	-	129.8	_	-	
			-	C.0C1	-	_	Many with D.M.'s
		-52.9	30	139.8	_	_	up co 0
	\rightarrow	-47.6	29	131.8	-	_	
	-64.1	-21.6	33	92.2	_	_	Hvdrate
	-7.0	+2.3	38	131.8	-	_	11
		+3.0	38	136.5	_	_	
		-		121.1	-	-	
	_	-	-	143.4	_	-	
	_	-	-	145.8	_	_	
	-	-	-	214.4	-	-	
	_	-		247.7	_	_	
	-	(—)	-	254.5	-	-	
(F)	-65.0	-9.3	13	158.6	_	-	
	_	-	-	119.1	-	-	
	-	-24.4	33	144.7		-	Hydrate
	-	-	-	100.0	-	-	did not
	_	-38.7	28	100.0			
		-21.9	33	122.0	_	_	Hvdrate
		-21.9	22	124.1		_	
	_	-	-	141.5	_	-	
	-	-21.9	22	-	-	-	
	-	-	-	106.5	-	-	Did not
(G)	~-50.0	-19.9	21	112.5	_	_	A11
	~-50.0	-10.3	14	121.4		_	froze
	~-50.0	-24.6	24	100.6	-	-	No
	~-50.0	-12.3	16	112.5	_	_	D.M. 's
	_	-	-	143.9	-	_	~**** U
	-	-	_	134.1	-	_	
	~-50.0	-18.3	21	<110	_	-	
	~-50.0	-19.9	21	110.7		_	
	~-50.0	-19 9	21	110 2	_		

SAMPLE NO MINERAL	FIRST MELTING °C	FINAL MELTING °C	SALINITY WI % CaCl EQUIV.	2	r _H °C	CO2 TH	DAUGHTER MINERAL DATA	REMARKS
					107.0			
C22		17 5	-		127.9	-	-	In I
QZ	-58.0	-17.5	20		245.0	-	-	LLAIN
	-58.0	-18.0	21		242.3	_	_	
	-58.0	-17.5	17		240.0	-	_	
	-58.0	-15.5	18		129.5	_	_	
	-58.0	-14.0	17		142.0	-	-	
	-	-	-		126.7	_	-	
	-58.0	CLATH -3.2	(35)		-	30.7	_	Decrep.
	-58.0	-17.5	20 -		128.1	-	-	Bubble
	-58-0	-14.5	17		246.0	-	_	2210 0
	-	+6.5/	?		129.0	-	-	
	_	+7.0√	?		129.5	-	_	
	-	-22.5	22		-	-	_	
	-	-	-	CO_2	Into V	-	-	
				2	359.6			
	-	-		co ₂	Into L 288.8	-	-	Rapidly Shrank
	-	_	-		-	30.7		
	-	-	-		-	29.8		
	-	-	-		- 3:	x 31.0		
C27	-	-			168.5	-	-	Rhamb
MAGNESITE	-	-	-		166.1	-	√	
	-	-	-		169.8	-	-	
	-	-	-		189.7	-	-	
	-	-	-		136.8	-	-	
	-	-	-		191./	-	_	
	-	-	-		145.0		_	
	-	-			145.0	-	-	
C28		-	-		131.0		-	"Mixed"
MAGNESITE	-	-	-		110.0	-	-	
	-	-	-		152.8	-	-	
	-		-		151.8	-	-	
		-	-		142.3		-	50 St.
	-	-	-		170.4	-	-	
	× -	-	-		199.6	-	-	
	-	-	-		182.3		_	
	-		_		201.4	1	-	
C32	-	-42.9	28		153.5	_	-	"Mixed"
MAGNESITE	-	-28.7	25		172.7	-	Not Diss. at 300°C	•
	-	-	-		213.5	-	Diss.	Did not freeze
	-		-		210.3	-	Diss.	"
	-	-	-		172.4	-	Diss.	11
	-38.0	-31.5	26	_	157-5	_		
		-	-	_	210.5	_		н

A52								
SAMPLE NO MINERAL	FIRST MELTING °C	FINAL MELTING °C	SALINITY WI % CaCl EQUIV.	L ₂	T _H °C	°C2C [™] H	DAUGHTER MINERAL DATA	REMARKS
C32 (CONT	.) –		-	-	199.9			11
	-	=	_	-	-	- Di	ss. at	11
	-	-	—	-	171.0	-	-	н
	-	-	-		130.9	-Not	Diss.	11
	-	-	_		151 0	at	: 365°C	11
					TJT •0	- DI	320.2°	2 d.m.
	-	_	-	_	150.9	-Not	Diss.	W
	-	_	_	-	147.4	_ at	. 305 C	18
	_	_	-	-	205.1	_	_	88
C33		-21 7	26		110 0			
OUARTZ	_	-31.6	26		118.2	-	\rightarrow	
QUINCE 2	_	-32.3	26		110.8	_	_	
	_	-29.3	20		122.0		-	
	-	-29.7	35		T20.2	_	-	Undrato
								diss.
								-4.8°C
	-	-25.2	36		137.4	-	_	"-3.3°C
	_	-22.5	34		123.4			"-7.2°C
	-	-20.6	33		122.7	-	-	98
	-	-21.1	33		123.5	_	_	-17.3°C
			00		123 .5		_	-18.7°C
	-	-29.3	32		123.7		-	
	-	-36.4	27		121.1	_		-19.3°C
								-19.3°C
	-	-36.4	27		121.1		-	
237	-	-72.0	—		326.0	27.6	_	
QUARTZ	-	-70.7	-		?471.5	28.6	_	
	-	-60.9			340.3	32.0	-	
	-	-32.7	26		126.5		Not Diss.	
	_	-30.0	26		126.3	_	at 340	
	-	-	-		143.1	_	-	Did not
								freeze
	-	-	-		158.7	-	-	18
C43 (A)	-65.0	-37.0	28		126.9	_	-	Grain
UARTZ	-60.0	-45.5	29		122.3	-	-	within
	-65 0	A1 E	20		144 6			talc
	-65.0	-41.0 -/2 1	28		121.1	-	-	
	0.00	т. с <i>ъ</i> –	20		122 0	_		Did ant
			_		142.0		-	freeze
	-70.0	-34.9	27		128.3	_		TTGGZG
(B)	-		_		116.0	-	Diss.	07.
							88.6°C	adi. to
	-3.8	-2.0	3		145.6	-	2	talc
	-	-	-		133.1	-	-	

SAMPLE NO MINERAL	FIRST MELTING °C	FINAL MELTING °C	SALINITY WT % CaCl ₂ EQUIV.	™ °C	°C22™H	DAUGHTER MINERAL DATA	REMARKS
(B)	_	-0.2	0	169.3	_		-
(CONT.)	-26.0 -62.1	-0.2	(28)	165.3	-	√Diss. 82.7°C	
	-64.0	-42.9	(28)	119.4	-	√Diss. 60.0°C	
	-	-	-	120.0	-	-	
(C)	-	-	-	118.0	_	-	Qz 1cm
	-	_	-	116.9	-	√Diss. 86.8	talc - few
	-	_	-	115.2	-	-	talc
	-62.0	-42.0	28	83.9	-	-	needles
	-	-	-	142.7	-	-	
	-	-	-	98.0	-	_	
	-	0.3	0	215.3	-	_	CUL
	-	0.4	U	- 172 5	_	-	xLOSS
	-	_	_	1/3.5	_	_	bound-
	-	-	-	190.1		_	aries.
(D)	-62	-	-	114.7	- E	√77°C	Qz
	-	-	-	116.6		_	H/2m
		_		100./	_	_	tala
	-	_		121.5	_	_	LAIC
	_	→	-	129.3		_	
	_	_		134.8	_	_	
	_	-49.6	30	122.3	_	-	
	-	-		119.3	_	_	
	-	-	-	111.1	-	-	
C48	_	-	-	137.7	-	-	some
MAFIC SCHIST - QUARTZ	-64.0	-30.0 -36.0	26 28	108.7 123.3	-	-	F.I.'S with CO ₂
	-53.8	-30.7	26	127.0	-	Did not dissolve by 200°C	rich Phases.
	-65.7	-30.7	26	132.5	-	_	
	-54.7	-29.8	25	130.8		-	
	-56.5	2 ;	-	164.2	-	-	
	-64.0	~18.0	-	2000 1000	-	-	
	-23.6		23	120.0	-	-	
	-19.6	-5.4	6	167.5	-	-	
	-23.6	-7.3	10	184.4 232.5	-	_	

SAMPLE No MINERAL	FIRST MELTING °C	FINAL MELTING °C	SALINITY WI % CaCl ₂ EQUIV.	T _H °C	CO2 TH	DAUGHTER MINERAL DATA	REMARKS
C52 TOURM/QZ	-	-		~123.9	28.2	-	V. phase expand- ed to fill F.I. on cooling for many F.I.'S
C54 QUARTZ	-46.0	-27.8	24	173.3 136.2	-	-	Did not
	?-26.5	-4.4	5	167.1	-	Not Diss.	treeze
	-31.4 -17.0 -	-3.7 -4.4 -5.8	3 5 6 21	161.6 207.0 197.6	-	-	
	-39.2	-16.7	19	?342.5	-	-	1 Homog. only - doubt-
	?32.5	-14.5	17	?292.1	31.3	-	11
C56 MAGNESITE	-			190.9 198.6 129.1 184.0 168.5 187.7		- - -	Bladed
	-	-	-	157.6	-	-	Decrep. 193.0
C58 MAGNESITE	-	Ē		115.3 242.0	_	-	Rhamb. Did not
		-23.7 -45.4	 23 - 28 -	105.3 137.5 102.4 102.3		-	freeze "
	-25.7	-				_	Bubble dissa- ppeared at -50°C & did not re- appear

SAMPLE No	FIRST MELTING	FINAL MELTING	SALINITY WI & CaCl ₂	™ °C	°C2, ™ C	DAUGHTER MINERAL	REMARKS
MINERAL	ч <u>с</u>	ч С	EQUIV.			DATA	
C63	-	-	_	185.1	_	_	"Mixed"
MAGNESITE	-	-	-	191.0	-	_	
	-	-	-	190.7	-	-	
	-	-26.0	-	135.0		Hvdrate	
						-34.9°C	
						Hvdrate	
						MP - 15.8	°C
	-	-	-	170.9	-	-	
		-		171.4	-	_	
		-	_	180.6	-	_	
		-	-	191.0	-	_	
	-	-	-	151.3	-	-	
	-	-		193.8	_	_	
	-58.4	-15.8	18	151.6	-	_	
	-59.2	?-29.3	-	142.7	_	_	
	-59.2	-22.4	22	132.9	-	-	
	-	-	-	153.7	-	-	
C64		-	-	149.0	_	-	Rhamb
MAGNESITE	-	_	-	162.5	-	-	
	-	_		165.1	-	-	
	-	-	-	172.0	-	-	
	-	-	-	140.0	-	-	
	-	-	-	118.0	-	263.3	
		-	-	142.1	-	132.9	
		-	-	136.3	-	-	
		-	-	139.6	-	260°C &	
	100					293.3°C	
	-	_	-	141.9	-	-	
	3 33	-	-	149.4	-	-	
		-	-	139.6	-	— ×	
	-70.0	-54.9	?	153.9	-	-	
	-	-	-	197.5	-	240.8°C	
C71	_	-	-	169.7	-	1	Rhamb
MAGNESITE	-	-	-	177.8	-	_	
	-	-	-	153.0			
	-	-	-	169.4	-	1	
	-	_	-	155.0	-	-	
	-	-	-	153.0	-	-	
	_	-	-	168.3	-	-	
	-	-	-	176.7	-	-	
	-	-	-	168.6	-	√	
	-	-	-	174.0	-	√	
	. —	-	-	155.5	-	_	
	-		-	192.0	-	-	
	-	-	-	175.3	-	-	
	-	-	-	155.9	-	_	

SAMPLE NO MINERAL	FIRST MELTING °C	FINAL MELTING °C	SALINITY WI % CaCl ₂ EQUIV.	°C	°C2⊂ ^T H	DAUGHTER MINERAL DATA	REMARKS
C80	~-70.0	-39.7	(28)	110.0	_	170.7	Pseudo-
MEGA-QZ	~-70.0	-50.0	(30)	110.0	_	181.6°C "	(i.e.
(IN CO 3	~-74.0	-43.9	(29)	106.9		175.4°C "	of
IS Cl3	-	-	-	119.3	_	-	neomor-
	-33.0	-12.0	10	151.1	_	-	phic
	-47.4	-9.1	13	105.8		-	Adj. to
	-45.2	-9.5	(13)	104.5	-	Did not diss. by 200°C	CO ₃ grain
	-	-5.4	6	106.2	-		
	-43.7	-8.5	12	102.9	-	-	
	-43.5	-3.4	5	103.0	_	_	
	-45.2	-4.9	6	106.8	-		
	-	-4.9	б	106.2	-	-	" trace
AREA: CR	ATER FORM (PRI	MATION EFIX D) -58.9	-	249.5	21.5	-	Assoc
Q4 (A)				(11100 V.)			bands of Tourm. ±
		-	-	180.0	-		Pyrite hydrate -21.7 melts -18
	-	-59.0		289.4	√√25.4		-
	-64-4	-58.9		(1nto V.) 300.4	24.0		_
	0 1 3 1	(CO ₂ PHASE -13.3	:)	(into V.)	2100		
	-		-	180.1	_		-
	-	-53.7	-	290.4 (into	√√31.5 V.)	3* ~220	l D.M. melts
	-54.0 (Bubble	~-10.0 reappears -	-39.3)	-		-	220° Dec rep 259.8
		-	-	153.0	-		-
		-	_	201.2			-

SAMPLE NO MINERAL	FIRST MELTING °C	FINAL MELTING °C	SALINITY WT % CaCl ₂ EQUIV.	2°C	CO2 TH	DAUGHTER MINERAL DATA	REMARKS
(B)	-	-56.7		358.2	-		
				(into V.)			
	-	-56.7		301.2	30.2	1	2
		(CO_2)		(into V.)			Bubbles
		L pnase					at -13.2
		-12.0		225 5	20. 2		2
	-	-12 5 J		323.3	28.2		2 Bubbles
	-48.5	-12.0	_	132.8	-	_	DUDDIES
	-	-58.6	_	376.0	24.5	-	
		17.8		(into V.)			
	10 7	-59.4	<u> </u>		28.4	-	
		-23.5	-	272.1(L)	29.5	-	
	.=	-57.4	-	277.5(L)	29.5	-	
	-	-12.5 /	-	-	24.5	-	Decrep.
	-6/.4	-12.0	-	-	23.0	-	Decrep. 304.3
	_	-25.0	_	135.8	20 1	_	
	-	-33.0	-	158_1	20.1	_	-
	_		_	127.8		_	
	-		-	156.0	-	-	
D09 (A)	-65.0	-38.5	-	D.C. 420	-?	-	OZ
QUARTZ	3 1	-	-	177.1	-	-	ĩ0% +
	-		_	240.0	-?	1	Tourm.
	-63.0	-50.3	-	D.C.215.8	-	-	808
	-	-	-	D.C.425.0	-?		+ FE
	-63.0	-34.4	-	377.0	-?	-	oxides
	_	2-20 4	-	D.C.454.9	-:		108
		2-30 •4		~400	-:		F.I. act- ually showing CO_2 yet look like CO_2
				ירוכ	2		~
(B)		_	_	313.1	-?	_	
	-	_	_	273_9	 -?	-	→ [.
	5=0	-	-	373.3	-?		÷Ľ
	-		-	462.0	-?	-	÷V
	-	-	-	~313	-?	_	
	-	-	-	147.5	-	-	÷۲
		-	_	154.2	-	-	÷۲
	V		-	280.7	-?	-	÷۲
	-	-	-	280.0	-?	-	÷۲

SAMPLE NO MINERAL	FIRST MELTING °C	FINAL MELTING °C	SALINITY WT % CaCl EQUIV.	2°C	CO2 TH	DAUGHTER MINERAL DATA	REMARKS
D10 (A)	- - -	- - 36.0 - -	-	187.7 217.3 264.0 225.3 208.9 239.4	-? -? -? -?		
(B)			-	268.1 ~230 272 ~465	-? -? -	_ _ √Diss 150	Didn't freeze " Good read-
	-	-		360.3	-	√ п	ings "
(C) Dll (A) QUARTZ	62.0 65.0 65.0 65.0 65.0 65.0			477.4 419.4 468.7 236.5 253.0 - 212.4 237.0 239.7 264.4 220.8 237.8 398.7 400.2 95.1 144.0 100.1 131.8	<pre>√- √- 32.2 31.4 - 14.7 - - - - - - - - - - - - - - - - - - -</pre>	- - - - - - - - - - - - - - - - - - -	и • и • ↓ ↓ ↓
	- - - ?-29.1	- - - ?-19.6	-	420.0 D.C.420.5 334.2 D.C.420 236.4	30.0 32.0 30.0 30.5	√ √ 5√ ?	Diss 271
(B)	~-73.0	- - - 43.5 -63.9	-	389 288.3 330.0 D.C.360.6 ~315 -	31.1 32.3 32.0 32.6 ? 25.1	-	Then no ie all CO ₂
		_	-	385 2	2		('CH4?'

SAMPLE NO MINERAL	FIRST MELTING °C	FINAL MELTING °C	SALINITY WT % CaCl EQUIV.	−2 °C	°C2, ™ ℃	DAUGHTER MINERAL DATA	REMARKS
(B)	~-73.0	~-20.0		D.C.312	-4.6*	Clathratl	
(CONT.)	-70.0	~-19.0		-	- 20	-	
	-		_	D.C.324	~30	2√	Diss 260
	-	-		154.9	-	-	
(C)	-	-26.4	24	111.8	-	-	
	→	-58.9	_	D.C.236.6	7.5	-	
	-40.0	-25.7	-	- D C 276 6	17.0	_	
	-57.1	-12.0	_	D.C.267.5	15.8	-	
		-9.6		-	-	<u>~</u>	
	-	-		129.6	-	-	
	-	-	-	D.C.315.6	?	-	
	-	→	-	240.8	?	-	
	_	_	_	D.C.292.9	¥ _/	_	
	_	_	-	D.C.200.3	1	-	
	-	_	_	136.2	-	-	
	-49.0	-24.8	23	127.3	-	-	
	-	-	-	354.2	1	-	+3 D.C.'s
	-	-		-	-0.6	_	
	_	_	_	_	21.0	_	
	-	_ =	_	-	27.8	-	
	-	-	-	-	32.0	-	
D12 (A)	-	-	_	125.3	-	-	With
QZ	-	-54.0	-	_	30.7	-	bands
	-66.9	-56.0	-	117.9	-	-	of
	-66.0	-56.0	-	141.3	-	2	1 Diss ~120
	-68.0	-54.0	-	-	_	_	-
	-	-6.7	-	119.5	-	2 Diss at 14.9°C	Larger D.M. -39 + Hvdrate
	-	-	-	- '	22.2	-	4
	-	-	-	-	25.1	-	
	-	_	-	_	28.5	-	
	-	-	-	-	26.9	_	
D12 (B)	-	-	-	143.9	_	4	
	-	_	_	140.9	_		
OUT	-	-25.8	-	148.0	-		
		-	-	115.0	-	+	
	-	-25.0	-	116.9	-	√	
	-	-53.7	-	100 7	?	-	
	_	-54 0	_	122 · /	24 R	-	
	-	J U	-	-	19.9	-	
		-	-		21.2	_	
	-	-	-	-	33.2	/ -	

÷.

A60							
SAMPLE No MINERAL	FIRST MELTING °C	FINAL MELTING °C	SALINITY WT % CaCl ₂ EQUIV.	°C	°C22™H	DAUGHTER MINERAL DATA	REMARKS
AREA: CO	OMALIE DO	LOMITE					
	(PRE)	FIX E)					
E18	-	-		230.2	-	610	Rhomb
MAGNESITE	-	-		201.4	-		
	-			186.6	-		
	-	=		160.8	_		
504		26.0	24				
EZ4 MACNESTTE	-	-20.0	(25)	175.4	_	Oubic	Bladed
MAGNESTIE	-	-28.0	(25)	154.7	- (liss at	Didded
	-	-28.3	(25)	179.0	_	264.8°C Cubic	
P 25				101 0			Dladad
EZO MAGNESTTE	_	_	-	196.3	_	-	Braded
	-	-	-	187.7	_	1	
	-	-	-	-	-	-	Decrep
	_			149.5	_		520
		_	-	158.0	_	_	
	-	-	1000	187.9			
	_		-	259.6	-	- ,	
	-	-		198.4	-	1	-
	_	-	-	-	_		Decrep
							320°
E28A	-			171.6	-		Bladed
MAGNESITE	_	- 27 2	24	194.3	_	-	
	_	-27.5	24	174.2	_		
		_		197.2		~260	
	_	_		158.4	-		
	-	_		200.9		~260	
	-	_		181.6	-	-	
	_	-		170.3	_		
	-	_		209.7	-	_	
	_	_		190.7	/	752 227	
	-	_		167.5			
	-	-		213.4	-		
	-	-36.4	27	171.8	-		
	-			163.7	-		
	-	-		183.5	-	252	
	_	-		188.1	-		
				100 0	-	290	
	_	_		131 1	_	200	
	-	200		168.3			
	-	-		>380	_		
	-	-		203.8	-		
	-48	-14.7	?	152.0	-	-	?
				>200			Hydrate
				2380	_		

SAMPLE NO MINERAL	FIRST MELTING °C	FINAL MELTING °C	SALINITY WT % CaCl ₂ EQUIV.	°C ℃	CO2 TH	DAUGHTER MINERAL DATA	REMARKS
E34 MAGNESITE	- -31.5 -45.0	-30.8 -21.6 -31.4	26 22 26	136.9 138.2 147.4 164.0			Rhomb
	-	-5.8	6	115.9	_		
E40 QUARTZ	-57.0 -41.0 -40.0 -48.0	-28.8 -31.0 -27.9 -27.6	25 26 24 24	98.9 104.3 107.4 107.8			Hydrate
2	-47.0 - - -40.0 -69.0 -60.0	-20.5 -33.7 -44.0 -25.4 -53.0 -53.3	(22) 27 (28) 23 ? ?	189.1 121.2 96.7 122.6 111.1 111.4	- - - -	 162.4 	-6.3°C
E90 QUARTZ	-	?-42.0 ?-2.0	-	?104.1 121.1		- Not diss at 282°	
	-31.5 - - -	-22.5 -12.0 -47.3 -42.3 -14.3	22 16 29 28 - 17	 235.2 >282 188.8 101.4			
AREA: MO	UNI FITCH (PR	DEPOSIT EFIX MF)				
MF2 MAGNESITE	_ 	-38.2 -37.9 -18.6	27 27 21	294.5 167.3 -	-	- - -	V:L 1:3 "mixed" froze
	-53.5	-20.0	22 	195.2 140.2 126.3	- - -		"-70
	-05-0	-32.2 (-56.9 & -54.5) -	20	149.9	Hydrate -	-	Disapp- eared
MF3 QUARTZ	-73.0 -55.0 -54.5 -	-58.3 -40.1 -40.1 -43.5 -24.4	? 28 28 28 23	140.3 139.7 101.0 101.0 139.7 125.2	? - - - -	- √ - -	

SAMPLE NO MINERAL	FIRST MELTING °C	FINAL MELTING °C	SALINITY WI % CaCl ₂ EQUIV.	°C	CO2 TH	DAUGHTER MINERAL DATA	REMARKS
MF3 (CONT.)	172	-2.3	2	149.1	-	æ	Hydrate M.P. +5.7
	-35.7	V Phase at +13.5	?36	141.9	-	-	1.5 . 7
		V. Phase		142.9	-	_	
	-			122.0	-	-	Did not
	-16 6	-20-0	2	133 /	_		TTCC2C
	-40.0	-20.0	2	107 5	_	_	
	_	-24.4	23	120 0	_	_	
	_		22	120.0	_	_	
	-42.4	-25.0	23	115.0	_	-	
MF4	-	+2.0	-	125.1	-	-	
QUARTZ		-2.5	2	115.5	-	-	Bubble
							popped -20.9
		-4.7	4	116.0	-	-	" -7.3
	-	_	-	130.1	_	-	
	-	-4.7	4		-	-	" -7.3
	-	+14.5	?	125.2	-	-	
	-	-0.5	0	125.2	_	_	" -1.3
		-2.0	2	126-2	_	_	
	-57.5	+1.5	2	125.2		-	
	-	-1-3	1	125.2	_	_	
	-	-1.0	ĩ	135.4		_	
	-49.6	-3.0	3	125.1	_	-	" -11.1
		5.0	-	119.9	-	_	" -4.7
		-1.8	1	126 0	_	_	1.07
	_	-2.8	2	120.0	_	_	" -10.0
	-54 5	-2.0	2	110 0	_	_	T0 *0
	- 54 + 5	-2.5	2	125 5	_	_	"-A 2
	-	-2.J	÷ 2	125.5	_	_	7.44
	_	±0 0	•	125.5	_	_	
		-2.9	°	143.5	_	_	
	-	-2.0	2				
MF5		-21.6	22	128.1	_	-	
QUARIZ		0	22	125 0	-	_	
	_	-22.0	1	160 1	_	_	
	_	-1.9	T	107.4	_	_	
	-	2 6	-	100.2	_	_	
	-	-2.0	2	123.1	_	_	
	-51.4	-24.2	23	115.2	_	-	
MF7 MAGNESITE	-	-21.9	22	112.3	-	<u>~</u>	Rhomb Bubble "shra-
	_	_	_	121_9		-	nk"
	_	_	-	101 5	_	-	
	_	_	_	101.5		_	
	_	_	_	101.5	_	-	
	_	-	_	101.0			
	_	_	-	104.1	_	_	
	_		-	8° / 6	-	-	

SAMPLE FIRST FINAL SALINITY IN CONTROL CONT.) NO MELITING MELITING WIT & CaCl 2 °C EQUIV. MINERAL ECT MELITING WIT & CaCl 2 °C EQUIV. MET (CONT.) -80.2 -41.2 28 103.1 -62.7 -51.9 ? 103.8 -62.7 -51.9 ? 104.0 -62.7 -54.2 ? 104.0 MRGNESITE 133.9 - / H Rhomb Decrep at 280 (B) 124.9 - /H H = Haam-atile 124.9 - /H H = Haam-atile 124.9 - /H Rhomb Decrep at 280 (C) 124.9 - /H H = - 110.1 110.1 110.5 - //H H = - 110.0 110.0 110.0 								A63
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SAMPLE NO MINERAL	FIRST MELTING °C	FINAL MELTING °C	SALINITY WI % CaCl ₂ EQUIV.	°C	°C2 ^{−T} H °C	DAUGHTER MINERAL DATA	REMARKS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MF7 (CONT.)	-59.7	-15.3 /	~ 18 [~]	110.5	-	-	Hydrate -35.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-80.2	-41.2	28	103.1	100 m	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-62.7	-51.9	?	103.8	-	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-62.7	-54.2	?	104.0	-	-	
(B) $ 138.5$ $ /H$ $H =$ Haematite - $ 124.9$ $ /H$ Rhomb (C) $ 98.2$ $ /H$ - $ 121.6$ $ - 110.1$ $ - 100.9$ $ /H 110.1$ $ - 110.0$ $ - 110.9$ $ /H 110.9$ $ /H 110.9$ $ /H 112.8$ $ - 112.8$ $ - 112.8$ $ - 112.8$ $ - 112.8$ $ - 116.9$ $ - 128.4$ $ - 128.4$ $ - 128.4$ $ - 128.4$ $ - 128.4$ $ - 116.6$ $ /H 113.2$ $ - 113.8$ $ - 113.8$ $ - 113.8$ $ - 113.8$ $ - 113.8$ $ - 113.8$ $ - 113.8$ $ - -$	MF8 (A) MAGNESITE	-	-	-	133.9	^_ ·	√ Н	Rhomb Decrep at 280
(C) 123.3 - /H H = Haematile	(B)	_	—	-	138.5	-	√н	
(C)		_	1-1	-	123.3	-	√H	H = Haem-
(C) 124.9 - Henry Rhords (C) 121.6 121.6 110.1 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 111.5 112.8 112.8 118.0 118.0 118.0		-	_	-	124.9	-	√н	alle
(C) $ -$		_	-	-	124.9	-	, 11	Rhamb
(D) = 121.6 110.1 110.1 110.0 110.9 111.5 111.5	(C)	_	_	_	98.2	_	√н	
$(D) = 110.1 110.0 110.0 1100.9 - \sqrt{H} 111.5 - \sqrt{H}$ $(D) = 112.8 112.8 112.8 118.0 118.0 118.0 128.4 128.4 128.3 128.4 128.3 128.3 128.3 124.8 124.8 124.8 116.6 - \sqrt{H} 116.6 - \sqrt{H} 116.6 $	(-)	_	-	-	121.6	-		
(D) = 110.0 110.0, 110.0, 111.5		-	_	-	110.1	_ ·*	-	
(D) = 100.9 = /H $(D) = 132.9 = //H$ $ 130.5 = ////H$ $ 112.8 =$ $ 118.0 =$ $ 116.9 =$ $ 128.4 =$ $ 128.3 =$ $ 128.3 =$ $ 124.8 =$ $ 116.6 = /H$ $ 116.6 = /H$ $ 114.4 = /H$ $ 113.2 =$ $113.2 =$ $ 113.8 =$ $ 113.8 =$ $ 113.8 =$ $ 113.8 =$ $ 113.8 =$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$		-	-	-	110.0	-	-	
$(D) = 111.5 - \sqrt[7]{H}$ $(D) = 132.9 - \sqrt[7]{H}$ $ 130.5 - \sqrt[7]{H}$ $ 112.8 112.8 118.0 118.0 118.0 118.0 118.0 118.0 118.0 1128.4 1128.4 128.3 128.3 128.3 128.3 128.3 124.8 124.8 124.8 116.6 - \sqrt[7]{H}$ $ 116.6 - \sqrt[7]{H}$ $ 116.6 - \sqrt[7]{H}$ $ 114.4 - \sqrt{H}$ $ 110.0 113.8 113.8 113.8 112.8 - \sqrt{H}$ $ 105.5 - \sqrt{H}$ $ 107.8 - \sqrt{H}$		-	-	-	100.9	-	√H	
(D) $ 132.9$ $ \sqrt{H}$ $ 130.5$ $ \sqrt{///H}$ - $ 112.8$ $ - 118.0$ $ - 120.0$ $ - 128.4$ $ - 128.3$ $ - 128.3$ $ - 124.8$ $ - 116.6 \sqrt{H} 116.6 \sqrt{H} 110.0$ $ - 110.0$ $ - 113.2$ $ - 109.9$ $ - 113.8$ $ - -$		-	-	-	111.5	-	√√H	
$(D) = 130.5 - \sqrt{///H} 112.8 118.0 118.0 118.0 116.9 128.4 128.3 128.3 128.3 124.8 124.8 116.6 - \sqrt{H} 116.6 - \sqrt{H} 116.6 - \sqrt{H} 110.0 110.0 110.0 110.0 113.8 113.8 113.8 112.8 - \sqrt{H} 112.8 - \sqrt{H}$	(D)	-	-	-	132.9	-	√н	
(D) = 112.8 118.0 116.9 120.0 128.4 128.3 128.3 124.8 124.8 124.8 116.6 - /H 116.6 - /H 116.6 - /H 116.6 /H 110.0 110.0 109.9 113.8 113.8 113.8 113.8 113.8 113.8 113.8 113.8 113.8 113.8 113.8 113.8 113.8 113.8		_	-	-	130.5	-	√ √ √ H	
(D) = 118.0 116.9 120.0 128.4 128.3 128.3 124.8 124.8 116.6 116.6 116.6 110.0 109.9		-	-	-	112.8	-	-	
(D) = 116.9 =		_	-	-	118.0	-	-	
(D) = 120.0 128.4 128.3 128.3 124.8 124.8 116.6 116.6 116.6 110.0 110.0		-	_	-	116.9	-	-	
$(D) = 128.4 128.3 124.8 124.8 116.6 - \sqrt{H} 114.4 - \sqrt{H} 114.4 - \sqrt{H} 110.0 110.0 109.9 109.9 109.9 113.8 113.8 112.8 - \sqrt{H} 112.8 - \sqrt{H} 105.5 - \sqrt{H} 105.5 - \sqrt{H} 107.8 - \sqrt{H} 107.8 - \sqrt{H} 111.2 \sqrt{H}$		-	-	-	120.0	-		
$(D) = 128.3 124.8 116.6 - \sqrt{H} 114.4 - \sqrt{H} 110.0 109.9 109.9 109.9 113.8 113.8 112.8 - \sqrt{H} 112.8 - \sqrt{H} 105.5 - \sqrt{H} 105.5 - \sqrt{H} 107.8 - \sqrt{H} 107.8 - \sqrt{H} 111.2 \sqrt{H}$		-	_	-	120.4	-	_	
(D) $ 113.2$ $ -$ - $ 113.2$ $ - 113.2$ $ - 113.8$ $ - 113.8$ $ - 113.8$ $ - 113.8$ $ - 113.8$ $ - 113.8$ $ - 112.8$ $ /H 105.5$ $ /H 107.8$ $ /H$		_	-	-	120.5	_	_	
(D) $ 116.6$ $ /H$ - $ 114.4$ $ /H 110.0$ $ - 109.9$ $ - 113.2$ $ - 113.8$ $ - 112.8$ $ /H 105.5$ $ /H 107.8$ $ /H$		_	_	-	116 6	_	_ /11	
(D) $ 113.2$ $ -$ - $ 113.2$ $ - 113.8$ $ - 113.8$ $ - 112.8$ $ /H 105.5$ $ /H 107.8$ $ /H$			-	_	114 4	_	¥П _/Ц	
(D) $ 113.0$ $ -$ - $ 109.9$ $ - 113.2$ $ - 113.8$ $ - 112.8$ $ /H 105.5$ $ /H 107.8$ $ /H$		_			114.4	_	у П	
(D) $ 113.2$ $ -$ - $ 113.8$ $ - 112.8 \sqrt{H} 105.5 \sqrt{H} 107.8 \sqrt{H} 111.2 \sqrt{H}$			_	_	109.9	_	-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(ח)	_	_	_	112 0	_	_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		_	-	-	113.8	-	_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		_		_	112.8		√ч	
- $ 107.8$ $ /H 111.2$ $ /H$		_		_	105.5	-	√H	
111.2 - √H				_	107.8	_	√ਸ	
		-	-	_	111.2	- 1	√H	

A64							
SAMPLE NO MINERAL	FIRST MELTING °C	FINAL MELTING °C	SALINITY WI % CaCl ₂ EQUIV.	°C ℃	CO2 TH	DAUGHTER MINERAL DATA	REMARKS
AREA: D	SONS DEPOS	SIT FIX DY)				
DYl (A)	-37.0	+0.3	0	136.0	_	-	Rhamb.
MAGNESITE	- 2	+8.2	?	142.6	-	-	
	·	+0.5	?	140.2	-	-	
	-	-8.0	12	121.4	-		
	-	-3.3	3	143.8	-	-	
	~-36.0	-3.2	3	137.7	_	-	
(B)		-	-	132.4	-	-	
	-	-8.2	12	132.4	-	-	
	-	_	-	144.7	-	_	
		-3.5	3	153.6		-	
	-	-2.8	2	153.5	-	_	
	_	-2.7	2	154.3	-	-	
(C)	-	-	-	126.8	_	_	(Assoc
	-	_	-	268.3	-		with
	-	-	_	262.6	-	-	Py)
DY 3	-55-0	-25-0	_	147.8	-	-	These
07	-55.0	-25.7	-	148.0	_	_	M.P.'S
22	-	-29.5	_	119.9	_		may be
		-30-0		141.9	-	_	a
	_		_	132.8	_	_	
	_	-29-5		148.0	_	_	too low
	_	-38.0	-	-	_	_	due to
	-	-38-0	_		_	-	diffi-
	_	-23-2		135.8	_	_	culty
	-66-6	-39.0		105.0	_	_	with
	-69.5	-44 1		110.9	_	_	hydr-
	-69.0	-43.2		95.5	-	_	ates
	-	-	-	119.2	_	-	Hydrate MP
	60.0	22.0		107 0			-26.7
	-09.0	-32.0		124 0		-	
	-/0.0	-44.1	_	110 2	_	v -/	
		-26.7	_	772 0	_	1	
		-20.7	_	235.0	_	-/	
		-20.0	_	223.0	_	Ÿ	
DY 4	-	-2.0	-	134.0	-	-	Most
QZ.	-	-2.0		134.0	-	-	M.P.
	-42.0	+0.2	-	148.0	-	-	could
	_	+0.2	_	148.0	-		be
	-	-1.0	-	157.2	-	-	Hyd-
	-	+3.6	-	135.0	-	-	rates
	-	+20.0 √	_	142.2	-	-	• •
	-	_	-	135.5	-	_	Sali-
	-	0.0	-	163.8	-	-	nity
		+30.01		139.5			would
	-	+5.5	-	245.5	-	-	be high
	-	+0.2	-	157.9	-	-	i.e.
	-42.8	+6.4	-	137.8	-	-	>30

A6	5
----	---

SAMPLE NO MINERAL	FIRST MELTING °C	FINAL MELTING °C	SALINITY WI % CaCl ₂ EQUIV.	°C °C	CO2 TH	DAUGHTER MINERAL DATA	REMARKS
			v.	160.6			
DY4 (A)	2-20.0	-22.9	-	102.9	-	-	
	-48.2	-	-	146.7		_	
	-48.2	_	-	132.2	-	-	
	-	-	-	122.3	-	-	
	-34.0	-26.3	-	145.5		-	Hydrate
	-45.4	-26.3	-	126.3	-	-	" N D
	-46./	-28.5	-	100.0	-	-	м.Р. -7.0
	-		-	108.0		-	2 10 7
	-	-24.7	-	178.9	-	-	2-12.7
(B)	_	-26 4	-	163.3	_	-	
	-40 0	-25.9	_	138.5	_	_	
	40.0	-25.9	_	142.6	_	-	
	-	-26.0	-	140.5	-	-	Hydrate M.P. -17.1
	-35.0	-	-	152.1	-	-	
	-	-	-	147.5	-	-	QZ
	-	-	-	151.0	-	-	Intra-
	-	-	-	205.5	-	-	angular
		-	-	230.4	-	-	QZ Cranina
(\mathbf{C})	_	-	_	230.5	_	_	Grains with
	11.4	-2.6	_	161.0	_	D.M.	carbon-
	-	-4.7		156.4	-	_	aceous
	-13.2	-5.0	-	149.3	-	-	"shale"
	-	-24.8	-	137.8	-	-	+ Py-
	-	-25.5	-	141.2	-		rite
	-	-27.9	-	135.0	-	-	for (A)
	-	-1.7	-	105.0	-	-	& (D).
	-45.3	-27.9		135.0	-	_	(B) &
	-0.0	-17.5	_	165.9	_	MC	
	_	-2.5		167.3	_	-	appears
	_	-2.2	-	166.5	-	_	more
	I		-	133.0	-	-	like
	-	-	-	136.7	-	-	vein
	_		-	143.6	-	-	QZ.QZ
	-	-	-	196.1	-	-	shows
	-	-	-	211.0	-	-	growth
		-	-	216.5	-	-	zoning,
	-		_	219./	-	-	With
	-	-	-	250.5	-	-	of
							F.L.S
							llel to zones
(D)	-23.0	-5.3	-	170.2	×.	5 - 0	?
				170 0			нуorate
	-	-26.0	-	165.0	2	-	

ä

A66							
SAMPLE NO	FIRST	FINAL MELTING	SALINITY WT % CaCl ₂	°C	CO2 TH	DAUGHTER MINERAL	REMARKS
MINERAL	°C	°C	EQUIV.			DATA	
(D)	-57.8	?-29.5	_	198.7	-	_	Hydrate
(CONT.)	-48.0	-7.4	-	163.0	-		-23.0
		-	-	100.0	-		
	-59.4	:-3/.3	_	116.0	-	_	
	_	_	_	110.5	_	_	
	_	_	-	~240.0	-		
	_	_	-00	~285.0	-	1	
AREA: WH	ITES DEPON (PREFIX W	SIT O)					
WOL (A)	-	_	-	178.7	_	-	Bladed
MAGNESITE	~-45.0	-10.2	14	171.6	-	_	
	~-45.0	-10.6	14	173.5	-	_	
	-		-	174.9	-	-	
	-	-	-	175.0	-=		
	-	-	-	167.2	-	_	
		_	-	167.0	-	_	
	-	_	_	168 9	_	_	
	_		-	175.2	_	_	
	-	-	_	166.9	_	_	
	_	-	-	169.4	-	-	
(B)	_	-4.6	4	197.3	-		
	-	-5.0	6	169.9	-	-	
	-			153.9	-		
	_	-	_	178.6	-		
	-45 5	-5.2	6	140.3	-	_	
(C)	-43.5	-7.9	10	189 8	_	_	
(0)	_	-6.3	8	137.2	_		
	_	-3.0	3	139.0		_	
	-	-4.6	4	143.0	-	-	
	-	-5.6	6	144.0	-		
	-	-4.6	4	154.8	-	-	
	_	—	-	188.2		_	
	-	-		150.7	-	-	
	-	_	-	152.6		-	
	-		_	103.2	_	_	
	_	-		155.8		_	
	_	<u>-</u>	-	195.7	-	-	
WO2	~-7.0	-3.0	3	156.0	_	-	"mixed"
MAGNESITE	-	-1.0	1	178.5	-	-	
	-	-2.6	2	142.6	-		Assoc
	-	-4.0	4	142.0	-	-	with
	-26.0	-2.5	2	146.4	-		Quartz
	-	-3.5	3	142.0	_	-	
	-	-23.1	23	156.8	_	-	

SAMPLE NO MINERAL	FIRST MELTING °C	FINAL MELTING °C	SALINITY WI % CaCl ₂ EQUIV.	™ °C	°C2 ™ ℃	DAUGHTER MINERAL DATA	REMARKS
WO2 (CONT.)	_ ?-47.5	-23.1 +3.8 √	23 36?	143.1 117.4	-	-	Hydrate ?
	-	-0.1	0	147.5	-	-	
	-	-	-	148.9	-	-	
	-	-1.1	1	150.4	-	-	
WO3	_	-65.8	?	328.5		-	
QUARTZ	- TH -	+4.5√ -4.0?	36?	>360.0	-	_	Hydrate
MAGNESITE	-	-	-	125.0	-	_	
CARB. SHA	LE -	-	-	115.4	-	√	
& PYRITE)	-	-	-	125.4	-		
	-	-	-	125.2	-	-	Hydrate
	-	-	38?	112.5	-	-	at -55 M.P. +11.0
		_	-	233.8	_	<u> </u>	
			-	-	Hydrate M.P0.	5	Decrep ~275

AREA:	BROWNS DEPOSIT	
	(PREFIX BR))

BRl	<u>,</u>	-7.0	-1.5	1	149.1	-	_	Bladed
MAGN	VESITE	-7.4	-1.8	1	? 280	-	-	
		_	-1.9	1	359.9	-	-	
		_	-1.2	1	175.6	-		
		-23.0	-6.4	8	188.9	-	-	
		23.0			20000			
BR2	(A)	-		-	288.8	-	-	Bladed
		-	-11.8	15	251.1	-	-	
		-		_	170.5	-	-	
		-		-	277.2	-	-	
		-26.7	-8.1	12	214.0	-	_	
			-2.8	1	135.5	_	-	
	(B)	-	-5.8	6	185.2	-	_	
		-	-6.2	8	173.8	_		
			-5.6	6	220.0	-	-	
÷		_	-	-	175.0	_	-	
				_	214.6	_	_	
		_	-	-	285.9	-	_	
		_	-	_	347.4	-	_	
		-34.0	-5-0	6	344.4	_	-	
		-	-	_	199.2	-	_	
		-		-	271.4	_	√ -	Decrep
								before
								D.M.
								dis-
								solved
		-	-4.0	4	138.3	-	-	201104

SAMPLE	FIRST	FINAL	SALINITY	T _H	CO ₂ T _H	DAUGHTER	REMARKS
NO MINERAL	MELTING °C	MELTING °C	WT % CaCl ₂ EQUIV.	°Ċ	°C "	MINERAL DATA	
(C)	_	-7.1	10	139.5	_	vite	
	-	_		182.4	-		
	_	-6.0	8	168.0	-	4873	
	_	-3.4	2	145.0 148.0]		
BR4	_	_	_	369.9	_		Rhomb
MAGNESITE	-49.0	-17.6	20	104.8	—	6883	
	-51.5	-6.9	8	137.5	-	_	
	-50.0	-18.2	(21)	115.2	_	√Diss at 270°C	
	-			123.9	-	0403	
	-	-	_	113.1	-	-	
	-63.0	-34.9	27	136.9	-	angga k	Lge x- tal has
	-63.0	-29-2	25	139.1	_	_	1F-20.9
	-	_	-	130.2	-		
	-	_		125.0	-	√	
		-		123.3	_	\checkmark	
	-60.0	-30.0	26	-	-	a parte	No v. phase
		-	-	114.4	-	_	L.
		-	-	124.7	-	-	
	-70.0	-31.5	(26)	>400	-	-	CO ₂ - vapour phase
	—	-6.6	8	139.0	-	-	E
	-70.0	-30.0	(26)	>400	-	-	CO ₂ - vapour
	-60 0	_1 5	A	100			phase
			4	121	_	_	
	-	_	_	120.7	-	_	
	-	_	_	115	_	_	
		-	-	112.4	_	-	
	$\sim - 1$	-		125	-	-	
	5 1	100	-	124.6	-	-	
BR5	-	_	-	132.0	-	-	Rhomb
CONTOT I D	-	-	-	11/ 6	_	_	(ASSOC
	-		-	146 2	_	_	Carb
	-37.2	-1.31	1	L only	-	_	Shale
	-45.8	-9.3	13	138.3	-	-	V at
	-45.9	-7.3	10	133.5	_	_	-32 "

SAMPLE NO MINERAL	FIRST MELTING °C	FINAL MELTING °C	SALINITY WI % CaCl ₂ EQUIV.	°C ℃	CO2 TH	DAUGHTER MINERAL DATA	REMARKS
AREA: WOO	DCUTTERS	PROSPECT	······				
	(PRE)				
WCl - M MAGNESITE	-54.0	-10.7	14	128.4	-	-	Tm = -11°C
	-50.0	-19.6	(21)	130.0	-	√-	"mixed"
	-50.0	-18.1	21	109.6	-	-	
	-60.0	-12.0	16	132.5		_	Undrato
	-52.0	-11.0	(34)	129.7	-	_	-11°C
	-50.0	-25.4	23	131.1	-	_	
	- 40.0	-	-	148.0	-	-	
	_	_	-	150.0	-	_	
	-	_	-	130.0	_	_	
	-	-	-	158.4	-	-	
	-		-	173.6	-	-	Decro
	-50.0	-11.5	15	129.9	-	-	at -65 bubble reapp- eared
	_	_	-	209.4	-	-	al =32
	-	-	_	166.1	-	-	
	-	-	-	155.7	-	-	
	-	-	-	184.2	-	-	
•	- -50.0	-4.3	- 5	197.5 161.7	-	-	Froze
		- 1	C	224.0			at -50
	-	-5.1	6	324.8	-	_	V:L 1:2
	-		_	297.7	_	_	V:L 1:3
	-45	-6.8	8	180.9	-	-	V:L 1:7
	-			356.8	-	_	V:L 1:2
	-		-	360.3		-	11
	-	-	-	237.1	-		V:L 1:5
WC2 (A)		-29.6	25	168.8	-	-	Bladed
MAGNESITE	-	-29.8	25	168.0	-	-	
	-	-30.0	26	164.3	-	-	
		-	-	198./	_	-	
	_	_	-	178.8	_	-	
	_			216.5	_	_	
(B)	_	_	-	235.2	-	-	
	-	-	-	181.4	-	-	
	-	-	-	188.0	-	-	
	-	-	-	189.1	-	-	
	-	·, -	-	168.0	-	-	
	-	-	-	192.0	-	-	
	-	-	_	100./	-	-	
	-	-	-	192.5	_	-	
	-		-	192.1	-		
	-	-	-	191.6			
	-	-	-	195.3	-	-	

SAMPLE NO MINERAL	FIRST MELTING °C	FINAL MELTING °C	SALINITY WT % CaCl ₂ FOUTV.	™ °C	CO2 TH	DAUGHTER MINERAL DATA	REMARKS
			Lgoitt				
(C)	~-60.0	-38-1	27	172.0	_	_	
			-	209.0	-	-	
		-	-	163.1	-	_	
		-		166.1	-	_	
	~-60.0	-25.8	23	125.0		-	
WC5	_	_	-	138.9	-	-	
QZ	-	-24.6		123.4	-	-	
(grains	_	-23.2	-	132.4		-	Hydrate
within	-64.7	-28.0	32	141.0	\rightarrow	-	MP -33
mag.)		-	_	113.3	-	-	
	-49.2	-23.0	23	141.7	-	7	
	-55.5/	-23.8	23	141.7		-	
	-60.1	-38.5/	27	115.7	-	_	1
	-65.7	-33.9	27?	131.5	-	_	Hydrate
	-49.2	-23.8	27	145.9	—	_	
	-	-40.2	-	-	-	_	-
	-46.8	-23.2	23	132.4	-	-	
	-49.0	-24.8	23		-		
WC6	-	-	-	154.4	=	-	Mixed
MAGNESITE	_	-	-	162.2	-	_	
	-38.0	-	_	157.1	-	- 1	
		-	-	184.9		-	
	-40.0	-21.2	22	135.6	-	-	
	-	-21.0	22	153.9		-	
	-	-21.0	22	154.4		-	
	-39.2	-		155.4			
	_	-	-	178.8	-	_	
	_	-21.9	22	157.1	-	_	
	-40.6	-20.4	22	-	-	-	
	-	-22.5	22	162.2		_	
	-39.6	-22.1	22	163.1	-	-	
	-	-21.0	22	170.7		-	
	_	-21.0	22	-	-	-	
	_	-21.0	22	-	-		
	-	_	_	170.7	-	-	
	-	-	-	152.9	-		
	-	-		157.8	-		
	-		-	159.9			
	-	-21.5	22	157.8	-	-	
WC7		-	-	177.5	-		Bladed
MAGNESITE	-	-	-	178.1	-		
	_	-27.8	24	172.1		-	
	-	-28.0	(25)	180.7	-	√	
		-28.0	25	172.7		-	
	-	-27.8	24	180.2			
	_	-	_	184.1	-	-	
	-	-33.7	27	173.8	-		
	_	_	_	173.1	-	-	
	-	-31.0	26	178.8	-	_	
	-	_	-	188.1	-	-	
	-	-	_	174.9	-		
	_	-	-	168.7	-		
SAMPLE NO MINERAL	FIRST MELTING °C	FINAL MELTING °C	SALINITY WF % CaCl ₂ EQUIV.	™ °C	°C2, ™H	DAUGHTER MINERAL DATA	REMARKS
-------------------------	------------------------	------------------------	--	-------------------------	---------	-----------------------------	------------------
w77	_	_	-	173.5	_	_	
(CONT.)		-	-	165.9	_	-	
(00111)	_	_	_	166.6	_	_	
	-	-	-	170.9	-	-	
WC8	-65.0	-35.4	27	147.0	-	-	
QZ	-	-	-	170.0	-	-	
	-	-	-	147.0	-	-	
	-	-	-	172.0	-	-	or Hyd?
	_		_	180.9	_		
	=	24 0	-	101.0		_	
	-57.0	-24.9	23	123.1	_	_	Hydrate
	-45.0	-22.8	34	150.1	-	_	-17.9
	43.0	22.0	34	100.1			(M_{P})
	-48.9	-25.5//	23	139.0	_	_	Hvdrate
	-44.8	-24.9	36	146.0	-	-	-12.4
		-24.6	23	149.0	_	-	Hydrate
	-69.0	-24.6	36	163.1	-	-	-12.4
	-42.0	-23.0	-	147.0	-	_	Hydrate
	?-39.0	-22.0	37	186.0	-	-	-7.0
	-48.7	-19.6	36	163.0	-	-	Hydrate -12.0
	-54.7	-18.3	36	131.5	-	-	Hydrate
							1200
WC10	-65.1	-28.1	25	127.0	-		Rhomb
MAGNESITE	-62.4	-33.0	27	158.0	-	-	
	-	-26.0	24	128.0	-	_	
	-64.6	-23.1	(23)	-	_		
	-66 9	-29.0	(25)	-	-	2-	
	-00.9	-25.5	(23)	117.2	-	12-	Daw
		23.5	(23)	11/12		1.	sonite?
	-	-33.0	27	-	-	-	
	-57.4	-26.3	24	143.4	-	-	
	-57.4	-23.7	(23)	158.0	-	?-	
	-57.4	-23.0	(23)		-	?-	
	-57.4	-23.0	(23)	137.1	-	2-	
WC11 (A)	-55-0	-26.3	24	134.3	-	_	Rhamb
MAGNESITE	-55.0	-26.2	24	152.5	-	_	
	~55.0	-25.0	23	142.1	-	-	
	-50.0	-26.0	24	144.7	-	-	
	-55.0	-26.9	24	135.1		_	
	-50.0	-26.0	24	157.4	-	-	
	-50.0	-27.4	24	162.7	-	-	
	-	()	-	211.3	-		
	-	-		173.8	-	- 1	
	-	-	-	171.4	-	-	
	-	-3.8	2	126.5		-	
	-	-2/./	24	143.2 1 <i>1</i> = 1	_	_	
	-	-24.7	23	143.8	_	_	

A72

SAMPLE No MINERAL	FIRST MELTING °C	FINAL MELTING °C	SALINITY WT % CaCl ₂ EQUIV.	°C ℃	CO2 TH	DAUGHTER MINERAL DATA	REMARKS
(B)	_	-28.1	25	173 5	_		
· - ·	-	-28.0	25	175.2	_	_	
	-	-26.0	24	137.0	_		
	~-60.0	-24.9	23	156.9	_	1000 million (1000 million (10	
	-	-	-	120.5	-		
	~-60.0	-28.1	25	138.5	-		
(C)	~-60.0	-28.7	25	207.7	_	-	
	~-60.0	-28.2	25	152.0	-	-	
	~-50.0	-22.8	22	150.7	_	-	
	~-50.0	-28.2	25	128.5	_		

AREA: MOUNT MINZA DEPOSIT (PREFIX WM ...)

WM1 A	~-65.0	-30.0	26	128.0	_	-	Rhomb
MAGNESITE				147.1	-	-	
		-		137.2	_	-	
	—	-		118.7	_	-	
				168.0	_	-	
	-			129.8	_		
	~25.0	-7.7	(10)	130.0		√√-red	
	~-65.0	-5.7	6	-		_	L phase
							only
(B)	-	-2.5	1	129.0	_	_	<u>1</u>
	~-50.0	-32.9	26	121.0	_	-	
	-		_	140.8	-	_	
	_		—	125.2	_	_	
	-		—	115.8	-	-	
	_	-	_	136.5	-	_	
	~-50 0	-29.0	25	126.0	-	_	
(C)	~-50.0	-21.3	22	121.4	_	-	
	-		-	145.8	-	-	
	_	-	-	145.6	-	_	
	-		-	145.6	-	-	
	-	-	_	145.6	-	_	
	~-56.0	-35.5	(35)	122.0	-	_	Hvdrate
							-3.8
							Melt
							-2.9
	~-52.0	-32.5	26	122.0		-	

AREA: B	ALCANOONA, (PREE	S. AUS. FIX BALC)				
BALC (A) MAGNESIT	-40.0 E	-30.0 or-12	-	332		_	Bladed
	white	-	-	286	-	_	
	_	-		322.7	-	_	

SAMPLE NO MINERAL	FIRST MELTING °C	FINAL MELTING °C	SALINITY WI & CaCl ₂ EQUIV.	T _H ℃	°C2 [™] H	DAUGHTER MINERAL DATA	REMARKS
(B)	- - - -	-26.2 - - - -	_ 24 _ _ _ _	285 385.7 390.0 _		- - 320 246	
AREA: KH	ARIDUNGA, (PREF	NEPAL IX N)					
N1 (A) MAGNESITE	-52.8 - - - - - - - - - - - - - - - - - - -	-22.6 -33.7 - -	22 (27) - - -	- 346.2 220.3 223.3	32.3 32.8 - -		Bladed
	(-33.7(L) - -	-11.7	?_ _ _		29 4 23 2 23 6 25 8	- - -	
		-	-	230.6 236.7 224.4 227.7		- - -	
(B)	-64.5 -	-23.0 -	23	263.0 263.5 210.0 271.9 241.0	- - - 24.0		2 V.P.
	-60.0	-55.3	?	278.6	24.2	-	11.8 2 V phases at
(C)	-		- - -	259.5 261.9 -	- - -	-	Decrep
	-50.0		?	349.4 264.6	_	-	295.9 ?hyd. -16
	- - -	-17.8 -18.9 - -	20 21 - -	292.1 239.5 292.1 348.5 265.2		- - - -	
N2 (A) MAGNESITE		-21.7 -24.0	22 23	- 257.4	-	-	Hydrate

M.P. +5.0

A74							
SAMPLE No MINERAL	FIRST MELTING °C	FINAL MELTING °C	SALINITY WF % CaCl EQUIV.	2°C	∞ ₂ T _H	DAUGHTER MINERAL DATA	REMARKS
N2 (A)	-	-22.7	22	260.9		_	
(CONT.)	-	-21.7	22	-		-	
(B)	-	-21.7	22	253.0	~		
	~-30.0	-20 -1	22	301.5	-	_	Wydrato
							M.P.
	-	-20.0	22	301.9	-	-	0.0
N3 (A)	-	_	-	348.2	-	_	
MAGNESITE	-	_	-	348.5	-	-	
	_	_	-	368.6	30.8*	-	*
	_	_	_	336 3	(L to V)	_	
	_	_	-	341_4	_	_	
	_	-		-	_	_	Decrep
,							289.0
{	$-45.0(CO_2$ -29.4(L)	-12.2	(<u>-</u>)	319.9	√√31.5	<u></u>	Clath
				373 43	(L to V)		Orden
		-	—	347.0	-	-	
	-			340.7√	_		
	-43.0	-34.7 √	27	336.0	v -	-	
(B)	(~ II ~	eeze at ~-	-30°C)		_	-	?Clath
							at +9.6
		-	-	-	-		+7. 8
							Decrep.
	24.2	10.0					306.6
	-34.3	~_10.0	-		-	-	+10 0
	-	-	(34)	265.0			?Clath
			(01)	10010			M.P.
							-14.3
	-	_	-	316.5	-	-	
	_	\Box_{i}	-	319.5	-	5	
N8 (A)	_	-14.6	17	250 0	_		
MAAGNESITE	- 2	-	-	114.7	_		
ASSOC	-	-9.7 //	13	261.1	-	-	
WITH	-	-8.6	12	261.1	-		
SULPHIDES	-	-15.0	18	278.4			
	-20.0	-10.9	14	250.0	-		
	-	-10.0	14	27/.2		-	
(B)	-43.0	-20.1:	_	279.0	_	-	
ADJ TO	_	-14.5	10	-	_		
po	-	_	-	245.6		1	
	-	-	-	240.0	-	-	
	-	-13.7	16	247.0	_	-	
	-22.0	-9.8	13	298.0	-	-	
	-	-11.3	12	245.0	-	-	
	-	-13.4	16	230-0	_	_	
	_	-		242.6	_	-	
	-	-16.0	19	250.6	_	-	
				(into V)			
			-	245.0	-	_	

Geochemical Data

This appendix consists of two parts. The first part contains electron microprobe analyses performed by the author. The second part is a compilation of relevant analyses performed by other workers. These latter analyses are presented for comparison purposes.

A.1 Electron Microprobe Analyses

The electron microprobe analyses were performed on the JEOL 733 Superprobe, in the Electron Optical Centre at the University of Adelaide. The machine is equipped with three wavelength - dispersive spectrometers (WDS) utilizing LiF, PET, STE and TAP crystals and a KEVEX 7000 series energy - dispersive Si (Li) spectrometer (EDS). It is controlled by a PDP-11/34 mini-computer. The operating programs are written in FORTRAN IV. Standard procedures were used for full matrix (ZAF) corrections.

Polished blocks or polished thin sections were prepared from selected samples. These were carbon coated and then analysed using a surface electron beam of 1 um diameter, and accelerating voltages of 15 kV (for the carbonate program DY1 : S18A:DAT) and 25 kV (for the sulfide program DY1 : MS19 : DAT). The probe current was maintained as near as possible to 20 nA.

Primary standards used were a range of pure elements and simple compounds. Detection limits were calculated for each mineral, and are presented for both the 95% and the 99% confidence level. It is the 95% confidence level figure that has been employed in the analyses presented. Calculations were made according to the equation:

detection limit = variance^{unk}· x concentration^{unk} x ZAFstd. x 2(3) c.p.s.std. ZAFunk

If the value recorded on the computer printout was less than the detection limit the value has been presented as "N.D." i.e. not detected. However, the recorded figures were tallied to give the totals, and so many totals appear to be higher than the sum of the concentrations in the elements detected.

Detection limits were not available for the analyses presented in the second part.

The carbonate programme determined F and Cl as oxides, and so they have been presented as such.

APATITE

Detection limits as for magnetite.

Formation	Coomali	e Dolomite		Balcanoona	a, S.A.
Sample No.	E28(a)	E28(b)	E28(c)	BALC.	
Element/Oxide					
FeO	0.13	0.14	0.26	0.44	
СuO ́	N.D.	0.19	N.D.	-	
PbO	0.53	0.48	1.38	-	
ZnO	N.D.	0.11	N.D.	-	
Mn0 ₂	N.D.	N.D.	N.D.	N.D.	
SiO ₂	0.06	0.21	N.D.	0.17	
A1203	0.09	N.D.	N.D.	0.08	
MgO	6.15	10.06	21.12	N.D.	
CaO	51.03	39.91	33.54	55.65	
Na ₂ 0	0.11	0.03	N.D.	0.01	
P205	34.41	33.77	24.22	- (+)	
TOTAL	92.53	95.83	80.56	-	

CHLORITE

Formation)	Coomalie Dolomite/							
Celia		Coomalie	Dolomite	White	S	Ba	lcanoona,	S. Aust.	
Dolomite		Formation							
Sample No	. C49	E19(a)	El9(b)	RJ 13	BALC(a)	BALC(b)	BALC(c)	BALC(d)	
Element/0	xide								
FeO	18.02	1.39	1.68	11.67	2.181	1.75	1.88	2.06	
so ₂	N.D.	-	-	N.D.	N.D.	-	-	-	
0c0	N.D.	_	-	N.D.	N.D.	-	-	-	
NÍO	N.D.	-	-	N.D.	N.D.	_	-	-	
PbO	N.D.	-	-	N.D.	N.D.	-	-	-	
ZnO	N.D.	-	-	N.D.	N.D.	-	-	-	
U0 ₂	N.D.	-	-	N.D.	N.D.	-	-	-	
Mn0 2	N.D.	0.05	N.D.	0.33	N.D.	N.D.	N.D.	N.D.	
Si0 ₂	40.00	31.36	29.90	27.06	30.36	29.28	29.24	29.37	
TiO ₂	0.10	-	-	N.D.	N.D.	-		-	
A1203	17.02	20.25	19.99	21.32	21.80	21.59	21.78	21.57	
MgO	13.82	34.09	32.89	23.73	31.06	32.99	32.91	32.50	
CaO	0.01	0.04	N.D.	N.D.	N.D.	N.D.	0.01	0.01	
Na_0	0.02	0.03	0.09	0.08	0.07	0.05	0.01	0.05	
K20	0.02	0.05	0.02	N.D.	0.01	0.02	N.D.	N.D.	
F20	0.13	-	-	0.21	0.48			-	
Cl ₂ 0	N.D.	-	-	N.D.	N.D.	-	-	-	
P205	N.D.	-	-	N.D.	N.D.	-		-	
TOTAL	89.33	87.26	84.58	84.60	86.12	86.77	85.84	85.56	

B.H.P. SURFACE SAMPLES - CHLORITE

(CHLORITE within MAGNESITE)

Electron microprobe analyses - wt%. 5 3 4 Sample No. 2 1 Element as Oxide 34.03 23.94 29.43 31.13 SiO₂ 33.41 17.15 17.44 A1203 14.76 22.64 14.90 4.02 2.27 1.07 0.31 Fe0 0.34 N.D. -. -MnO -33.88 22.53 31.32 34.49 33.69 MgO 0.59 N.D. N.D. CaO N.D. N.D. 0.41 Na₂0 84.72 81.92 71.18 83.76 82.17 TOTAL

Data kindly supplied by C.F. Blain, of B.H.P.

(CHLORITE within MAGNESITE)

Electron microprobe analyses - wt%.

Sample No.	6	7	8	9	10
Element as					
Oxide					
SiO ₂	28.41	28.77	26.83	30.83	30.87
A1203	22.35	20.71	14.09	18.15	19.52
Fe0	0.44	1.13	4.73	3.58	1.62
Mn0	-	-	-	-	-
MgO	33.70	33.68	28.09	33.11	33.63
CaO	N.D.	-	 2	-	-
Na ₂ 0		-	-	-	-
TOTAL	84.91	84.29	73.91	85.66	85.64

DOLOMITE

Electron Microprobe Detection Limits.

Program file name

DY1 : S18A : DAT

Element/Oxide

Detection limit

wt. %

95% confidence level 99%

Fe0	.04	.07
so ₂	.02	.02
CoO	.05	.08
NiO	.06	.09
Pb0	.11	.17
ZnO	.10	.15
U0 ₂	.06	.09
Mn0 ₂	.05	.07
Si0 ₂	.01	.01
Ti0 ₂	.07	.10
A1203	.01	.01
MgO	.01	.01
CaO	.01	.02
Na ₂ 0	.01	.02
к ₂ 0	.01	.02
F ₂ 0	.11	.16
Cl ₂ 0	.03	.04
P2 ⁰ 5	.01	.01

DOLOMITE

Formation

	Celia			Whit	es Formai	tion	
	Dolomi	te					
Sample No.	C34	GO3(a)	GO3(b)	G07	MF2(a)	MF2(b)	MF2(c)
Element/Oxic	le						
Fe0	N.D.	5.42	9.02	0.32	0.86	0.14	1.95
so ₂	-	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
CaO	÷-	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
NiO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
PbO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
ZnO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
U0 ₂	-	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Mn02	N.D.	2.45	3.97	0.12	0.15	0.18	0.29
SiO ₂	0.02	0.01	3.08	0.12	N.D.	N.D.	N.D.
TiO ₂	-	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
A1203	0.04	0.02	1.95	0.07	0.01	0.01	0.01
MgO	24.19	16.36	13.49	21.37	21.03	20.47	19.23
CaO	34.34	29.00	24.84	29.51	29.91	30.16	28.68
Na ₂ 0	N.D.	0.01	N.D.	N.D.	N.D.	N.D.	0.01
K ₂ 0	-	0.06	0.03	0.01	N.D.	N.D.	N.D.
F ₂ 0	~	0.12	0.12	0.19	N.D.	N.D.	N.D.
C1 ₂ 0	N.D.	0.07	N.D.	0.03	N.D.	N.D.	N.D.
P205	$\sim - 1$	0.04	0.03	0.05	0.02	0.04	0.04
TOTAL	58.79	53.62	56.65	51.79	52.15	51.07	50.37

BUREAU MINERAL RESOURCES DRILLING PROGRAM

DOLOMITE

X.R.F. analyses - wt% (elements as ppm)

Formation	Celia Dolomite/Coomalie Dolomite						
Sample	42	9	21	22	24		
Element/Oxide							
SiO ₂	28.59	15.14	17.96	19.67	22.24		
TiO ₂	0.21	0.11	0.01	0.19	0.25		
Al ₂ 03	4.83	2.13	0.15	3.11	4.11		
Fe ₂ 03	0.59	0.27	0.08	0.28	0.46		
Fe0	1.69	1.49	0.94	0.82	1.33		
MnO	0.03	0.36	0.10	0.10	0.10		
MgO	18.04	16.44	17.10	16.00	16.95		
CaO	16.58	24.04	24.23	21.93	24.21		
Na ₂ 0	0.02	0.02	0.01	0.03	0.06		
к ₂ 0	0.03	0.62	0.03	1.55	1.76		
P205	0.15	0.07	0.11	0.07	0.08		
H ₂ 0 ⁺	3.24	0.40	0.30	1.10	2.31		
H ₂ 0 ⁻	0.10	0.10	0.10	0.10	0.10		
C0 ₂	25.80	37.73	38.73	35.04	25.12		
Rest	0.16	0.05	0.02	0.11	0.20		
TOTAL	99.96	98.87	99.77	100.00	99.18		
Ва	31	63	3	79	128		
Sr	32	46	89	37	65		
U	2	1	1	1	1		
Со	5	6	2	3	10		
Ni	13	3	2	8	22		
В	32	44	48	42	28		
F	640	140	100	480	980		

Data kindly supplied by G. Ewers, B.M.R.

BUREAU MINERAL RESOURCES DRILLING PROGRAM

DOLOMITE

X.R.F. analyses - wt% (elements as ppm)

Formation	Coomalie Dolomite						
Sample	26	34	35	36	37	42	
Element/Oxide							
SiO2	0.01	16.46	25.97	23.30	29.94	28.59	
Ti0 ₂	0.01	0.02	0.20	0.24	0.34	0.21	
A1203	0.09	0.32	4.00	4.71	6.10	4.83	
Fe ₂ 03	0.01	0.09	0.30	1.38	2.42	0.59	
FeO	0.23	0.67	0.63	0.86	1.45	1.69	
MnO	0.05	0.11	0.08	0.26	0.13	0.03	
MgO	24.16	17.57	15.01	7.27	7.10	18.04	
CaU	27.17	25.86	19.99	28.15	23.35	16.58	
Na ₂ 0	0.02	0.02	0.02	0.05	0.04	0.02	
К20	0.01	0.05	1.15	2.04	2.65	0.03	
P205	0.01	0.15	0.15	0.10	0.10	0.15	
H20 ⁺	0.10	0.10	0.75	0.86	0.87	3.24	
H ₂ 0	0.10	0.10	0.10	0.10	0.10	0.10	
co ₂	47.18	36.67	30.89	28.79	24.27	25.80	
Rest	0.02	0.02	0.10	0.15	0.32	0.16	
TOTAL	98.95	98.01	99.24	98.16	99.08	99.96	
Ва	3	4	18	316	1427	31	
Sr	74	46	59	53	59	32	
U	1	1	1	1	1	2	
Со	2	2	2	8	9	5	
Ni	2	2	5	17	18	13	
В	26	40	335	43	45	32	
F	100	100	160	480	760	640	

Data kindly supplied by G. Ewers, B.M.R.

ILLITE

Detection limits as for sericite.

Crater Formation

		1
Sample No.	D02(a)	D02(b)
Element/Oxide		
Fe0	0.42	0.22
SO2	N.D.	N.D.
Co0	N.D.	N.D.
NiO	N.D.	N.D.
PbO	N.D.	N.D.
ZnO	N.D.	N.D.
U0 ₂	N.D.	N.D.
Mn02	N.D.	N.D.
Si0 ₂	62.76	68.45
Ti0 ₂	N.D.	N.D.
A1203	19.38	14.88
MgO	0.32	N.D.
CaO	N.D.	N.D.
Na ₂ 0	0.25	0.16
K ₂ 0	14.13	12.56
F ₂ 0	N.D.	N.D.
C1 ₂ 0	N.D.	N.D.
P ₂ 0 ₅	N.D.	N.D.

TOTAL

Formation

97.46 96.39

LIMONITE

Electron Microprobe	Detection Limits.	
Program file name	DY1 : S18A : DAT	
Element/Oxide	Detection limit	
	wt. %	
ELEMENT	95% confidence level	99%
Fe0	.04	.06
SO2	.02	.03
CoO	.05	.07
NiO	.06	.08
PbO	.13	.19
ZnO	.09	.13
U0 ₂ -	.08	.13
Mn0 ₂	.04	.06
Si0 ₂	.01	.01
Ti0 ₂	.05	.07
A1203	.01	.01
MgO	.01	.02
CaO	.02	.03
Na ₂ 0	.02	.03
K ₂ 0	.02	.02
F ₂ 0	.05	.07
Cl ₂ 0	.03	.05
P205	.01	.02

LIMONITE

Crater Formation

Formation	
Sample No.	D03
Element/Oxide	
FeO	72.12
so ₂	N.D.
CoO	0.21
NiO	N.D.
Pb0	N.D.
ZnO	N.D.
u0 ₂	N.D.
Mn02	N.D.
Si02	1.75
Ti0 ₂	N.D.
A1203	N.D.
MgO	0.02
CaO	N.D.
Na ₂ 0	0.02
К20	0.01
F ₂ 0	N.D.
Cl ₂ 0	N.D.
P205	0.04

TOTAL

74.31

MAGNESITE

Electron Microprobe Dete	ection Limits.	
Program file name	DY1 : S18A : DAT	
Element/Oxide	Detection limit	
	wt. %	
OXIDE	95% confidence level	99%
FeO	.05	.07
S02	.02	.02
00	.05	.08
NiO	.06	.09
РЪО	.10	.15
ZnO	.10	.15
U0 ₂	.12	.18
Mn0 ₂	.05	.07
Si0 ₂	.01	.01
TiO2	.06	.09
A1203	.01	.01
MgO	.01	.01
CaO	.02	.04
Na ₂ 0	.01	.01
К20	.01	.02
F ₂ 0	.07	.11
Cl ₂ 0	.03	.05
P205	.01	.01

Formation

Celia Dolomite / Coomalie Dolomite

0.71 -	0.76	0.45	0.57	0.77
0.71 -	0.76	0.45	0.57	0 77
	_			0.22
		-	N.D.	-
-	-	-	N.D.	-
-	-	-	N.D.	
N.D.	N.D.	2.05	0.11	N.D.
N.D.	0.20	N.D.	N.D.	0.10
- '	-	-	-	-
N.D.	N.D.	N.D.	N.D.	N.D.
0.06	0.09	N.D.	0.01	0.09
-	-	-	N.D.	-
N.D.	0.19	N.D.	N.D.	N.D.
48.02	47.82	48.27	40.54	47.63
0.06	0.06	0.06	0.38	0.73
N.D.	N.D.	N.D.	N.D.	N.D.
-	-	-	N.D.	N.D.
-	-	-	N.D.	1
-	-	-	N.D.	1
0.05	N.D.	0.02	0.06	0.02
49.04	49.32	51.03	41.76	49.12
0.05	N.D.	0.10		0.19
0.09	0.06	N.D.		N.D.
N.D.	0.14	N.D.		N.D.
	- N.D. N.D. O.06 - N.D. 48.02 O.06 N.D. - - 0.05 49.04 0.05 0.09 N.D.			N.D. N.D. N.D. 2.05 0.11 N.D. 0.20 N.D. N.D. N.D. 0.20 N.D. N.D. N.D. N.D. N.D. N.D. 0.06 0.09 N.D. 0.01 N.D. N.D. 0.19 N.D. N.D. 48.02 47.82 48.27 40.54 0.06 0.06 0.06 0.38 N.D. N.D. N.D. N.D. N.D. N.D. N.D. 0.05 N.D. 0.02 0.06 N.D. 0.10 0.09 0.06 N.D. N.D. 0.14 N.D.

MAGNESITE

Formation

Coomalie Dolomite / Whites Formation

Sample No.	BR4	BR5	MF80/06	MF80/06
Element/Oxide				
FeO	7.19	5.34	3.99	5.65
SO ₂	N.D.	N.D.	0.22	N.D.
CoO	N.D.	N.D.	N.D.	N.D.
NIO	N.D.	N.D.	N.D.	N.D.
PbO	N.D.	N.D.	N.D.	N.D.
ZnO	N.D.	N.D.	N.D.	N.D.
U0 ₂	N.D.	N.D.	N.D.	0.12
Mn0 ₂	0.52	0.41	0.34	0.28
Si0 ₂	N.D.	0.02	0.03	N.D.
TiO ₂	N.D.	0.07	0.07	N.D.
Al ₂ 03	0.03	N.D.	0.01	0.01
MgO	37.68	37.19	40.83	40.55
CaO	0.20	0.15	N.D.	N.D.
Na ₂ 0	N.D.	0.01	N.D.	N.D.
К20	N.D.	0.01	N.D.	N.D.
F ₂ U	N.D.	N.D.	N.D.	N.D.
Cl ₂ 0	N.D.	N.D.	0.03	N.D.
P205	0.01	0.02	0.02	0.01
TOTAL	45.81	43.32	45.47	46.69

MAGNESITE

Kharidunga, Nepal Location

Sample No. N1(a) N1(b) N1(c) N1(d) N2(a) N3(a)

Element/Oxide

Fe0	0.58	0.82	0.93	0.74	0.59	0.23
S02	N.D	N.D.	N.D.	N.D.	N.D.	N.D.
CoO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
NiO	N.D.	N.D.	N.D.	N.D.	N.D.	-
PbO	0.11	N.D.	N.D.	N.D.	N.D.	N.D.
ZnO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
U0 ₂	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Mn02	N.D.	N.D.	0.05	N.D.	N.D.	N.D.
SiO ₂	0.01	0.02	0.03	0.02	0.05	0.01
TiO ₂	N.D.	N.D.	N.D.	0.07	N.D.	N.D.
A1203	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
MgO	45.09	44.20	43.19	42.79	44.60	40.08
CaO	0.03	0.14	0.18	0.14	N.D.	0.05
Na ₂ 0	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
К ₂ 0	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
F_0	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
C1 ₂ 0	N.D.	N.D.	N.D.	0.08	N.D.	0.03
P205	0.03	0.03	0.10	0.02	0.01	0.01
TOTAL	45,94	45,42	44.62	44.05	45.38	40.53

MAGNESITE

Location	Kharid	unga, N	Nepal			
Sample No.	N3(b)	N3(c)	N7(a)	N7(b)	N8(a)	N8(b)

Element/Oxide

FeO	0.33	0.85	4.42	1.64	1.78	0.80
so ₂	N.D.	N.D.	N.D.	N.D.	0.02	N.D.
CoO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
NiO	-	-	N.D.	N.D.	N.D.	N.D.
PbO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
ZnO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
U0_2	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Mn0 ₂	N.D.	N.D.	0.05	N.D.	N.D.	N.D.
Si0 ₂	0.02	0.02	0.05	0.03	0.03	0.03
TiO ₂	N.D.	N.D.	N.D.	0.06	N.D.	N.D.
Al ₂ 03	N.D.	N.D.	0.02	N.D.	N.D.	N.D.
MgO	48.17	42.41	39.36	40.02	39.77	41.78
CaO	0.04	0.41	0.06	0.17	0.06	0.07
Na ₂ 0	N.D.	N.D.	N.D.	0.01	0.02	N.D.
к ₂ 0	N.D.	0.02	0.01	N.D.	0.01	0.01
F20	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Cl ₂ 0	N.D.	N.D.	N.D.	N.D.	0.04	0.05
P2 ⁰ 5	0.01	N.D.	0.02	0.01	N.D.	0.01
TOTAL	48.69	43.75	44.12	42.16	41.79	42.89

MAGNESITE

X.R.F. analyses - wt.%

FORMATION	I		Coomal	ie Dolon	nite /	Celia Do	lomite		
DRILLHOLE	NO.	. 2A	3	4a	4b	5	8	12	16a
Element/0	xide	9							
Al ₂ 03		0.34	0.32	0.17	0.97	0.55	1.44	0.33	0.14
SiO ₂		1.00	12.0	4.05	7.88	4.37	2.15	5.18	3.82
CaO		0.73	0.33	0.26	0.23	0.35	0.90	0.53	0.40
MgO	- 4	46.0	41.3	45.6	43.8	44.5	44.8	43.9	46.1
Fe ₂ 03		1.28	0.80	0.87	1.26	0.86	1.26	0.43	0.36
С		13.64	11.99	13.14	11.82	13.44	13.00	13.18	13.21
H ₂ 0 ⁺¹¹⁰		0.33	0.37	0.46	1.16	0.35	0.92	0.45	0.43
TiO ₂		0.02	0.01	0.01	0.04	0.03	0.05	0.01	0.01
H ₂₀ -110		0.39	0.42	0.39	0.45	0.53	0.40	0.30	0.44
к ₂ 0			0.01		0.01	0.03	0.02	0.01	0.01
NiO ₂		0.01		0.01					
P205		0.02					0.09		
S			0.05		0.20			0.01	0.01
Sr0									

BaO, BeO, Cr_2O_3 , CuO, K_2O , NiO, Rb_2O , S, SrO_2 , V_2O_5 , ZnO, ZrO_2 all less than 0.01% in all specimens unless indicated.

 Na_20 , P_20_5 are less than 0.02% in all specimens unless indicated.

B.H.P. Percussion Drilling Program

Billine recession billing rogram												
			N	AGNESITE	-							
X.R.F. ana	alyses -	wt.%										
FORMATION		Celia	Dolomi	te								
				2								
DRILLHOLE	NO. 16b	16c	16d	16e	17a	17b	18a	18b				
Element/Ox	ide											
A12 ⁰ 3	0.14	0.09	0.15	0.18	0.29	0.15	0.51	0.42				
Si0 ₂	3.64	2.69	5.76	3.35	6.02	4.24	5.00	7.02				
CaO	0.86	0.57	0.60	0.68	0.25	0.63	0.74	0.43				
MgO	46.0	46.5	45.5	46.0	45.0	45.3	44.3	44.8				
Fe ₂ 03	0.42	0.38	0.37	0.41	0.65	0.70	0.71	0.68				
С	13.19	13.47	12.70	13.30	12.71	13.21	12.92	12.48				
H ₂₀ +110	0.46	0.35	0.66	0.35	0.61	0.14	0.35	0.67				
TiO ₂	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01				
H ₂₀ -110	0.54	0.36	0.44	0.46	0.38	0.57	0.45	0.40				
к ₂ 0	0.01											
NiO2												
P205	0.04	0.02	0.06	0.05	0.04	0.03	0.20	0.08				
S	0.01						0.02	0.01				
~ ~												

Sr0₂

MAGNESITE

X.R.F. analyses - wt.%

FORMATION		Celia	Dolomia	te				
DRILLHOLE	NO. 20	21	22a	22b	22c	23a	23b	24a
Element/Ox	ide							
A1203	0.56	0.89	0.80	0.73	0.49	1.10	1.28	0.29
SiO ₂	5.33	10.5	11.40	8.40	4.05	11.6	4.30	7.48
CaO	0.41	0.17	0.35	0.34	0.30	0.39	0.29	0.44
MgO	45.4	42.5	43.5	44.9	46.3	41.7	43.2	43.3
Fe203	0.59	0.71	0.31	0.32	0.34	0.41	0.45	0.45
C	12.83	12.12	11.16	11.70	12.78	11.59	10.61	12.67
H ₂ 0 ⁺¹¹⁰	0.57	0.63	1.56	1.35	0.67	1.20	1.82	0.43
TiO ₂	0.02	0.03	0.02	0.02	0.01	0.04	0.04	0.01
H ₂ 0 ⁻¹¹⁰	0.50	0.43	0.49	0.37	0.45	0.25	0.47	0.46
K ₂ 0		0.01	0.02	0.02	0.02	0.01	0.02	0.01
NiO2			0.01				0.01	
P205	0.09		0.08	0.05				0.03
S		0.01	0.02	0.02	0.01	0.02	0.02	0.01

 $\mathrm{Sr0}_2$

B.H.P. Percussion Drilling Program

MAGNESITE

X.R.F. analyses - wt.%

FORMATION		Celia	Dolomi				
DRILLHOLE	NO, 24b	24c	24d	25a	25b	26a	26b
Element/Ox	ide						
A1203	0.57	0.42	0.17	1.56	0.18	0.74	0.46
SiO ₂	7.85	5.94	12.9	12.7	13.6	7.01	10.3
CaO	0.42	0.71	0.28	4.4	10.4	0.42	0.57
MgO	44.4	44.4	43.5	36.2	31.6	44.8	44.3
Fe ₂ 03	0.40	0.43	0.43	1.87	1.08	0.53	0.43
С	12.25	12.83	11.33	11.11	11.56	12.20	11.56
H ₂₀ +110	0.82	0.52	0.97	0.99	0.08	1.09	1.00
TiO ₂	0.02	0.01	0.01	0.34	0.01	0.02	0.01
H ₂ 0 ⁻¹¹⁰	0.47	0.34	0.39	0.28	0.32	0.46	0.57
K ₂ 0	0.01	0.01	0.01	0.01		0.01	0.01
NiO2	0.01						
P2 ⁰ 5	0.04	0.04		0.08			
S		0.01	0.01	0.01	0.02	0.01	0.01
Sr02					0.01		

X.R.F. anlyses - wt.%.

A1203 Si02 Fe₂03 CaO MgO TOTAL Sample No. 0.34 39.5 55.44 5.00 0.70 9.9 CM1 51.36 0.19 42.2 2 0.65 6.7 1.60 49.55 45.2 1.15 0.35 0.25 2.6 3 43.8 51.59 0.44 1.00 4 0.35 6.0 45.2 50.64 0.10 4.2 0.55 0.29 5 45.1 49.12 0.22 0.50 2.9 6 0.40 46.4 49.50 0.40 0.50 0.20 2.0 7 44.5 49.05 0.41 0.40 0.20 3.5 8 55.49 0.34 40.7 0.10 14.0 0.35 9 42.7 53.98 0.30 0.43 10.0 0.55 10 41.3 54.53 12.0 0.30 0.38 11 0.55 41.6 55.22 0.37 12 0.85 12.1 0.30 43.4 52.63 0.38 0.20 8.3 0.35 13 0.39 44.8 51.79 0.35 0.25 6.0 14 44.4 50.60 0.50 0.65 4.7 0.35 15 45.1 51.19 0.40 0.24 5.1 16 0.35 51.24 44.3 0.30 0.39 17 0.45 5.8 0.55 0.32 45.2 50.42 0.25 4.1 18 52.85 43.5 0.20 0.35 19 0.50 8.3 43.9 53.12 0.60 0.62 20 0.10 7.9 45.8 51.17 0.70 0.37 0.20 4.1 21 0.45 45.1 50.45 0.25 4.0 0.65 22 42.6 49.15 0.45 23 0.10 5.4 0.60 44.2 49.63 0.23 24 0.10 4.1 1.00 0.13 45.5 48.98 0.95 0.10 2.3 25 0.40 44.8 51.15 2.2 1.10 26 3.65 52.14 0.19 43.7 0.85 27 0.10 7.3 45.5 50.31 1.10 0.31 0.70 2.7 28 45.2 48.98 0.33 0.25 1.7 1.50 29

MAGNESITE

X.R.F. analyses - wt% (elements as ppm)

Formation			Coomalie	Dolomit	е			
Sample	2	5	27	32	33	44	62	69
Element/0>	kide							
SiO ₂	0.93	1.50	1.41	16.33	1.02	2.92	1.66	0.15
TiO ₂	0.02	0.02	0.01	0.01	0.03	0.03	0.01	0.02
A1203	0.26	0.39	0.07	0.36	0.54	U.55	0.01	0.37
Fe ₂₀₃	0.01	0.10	0.01	0.09	0.14	0.15	0.01	0.24
FeO	0.51	1.49	0.71	1.10	1.84	0.47	0.55	0.84
MnO	0.03	0.06	0.04	0.09	0.08	0.27	0.04	0.07
MgO	48.02	45.97	44.95	35.09	43.20	46.95	47.32	47.42
CaO	0.21	1.05	2.42	5.51	3.19	0.42	0.42	0.26
Na ₂ 0	0.06	0.04	0.02	0.02	0.03	0.04	0.05	0.03
K ₂ 0	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01
P205	0.01	0.01	0.02	0.01	0.09	0.02	0.20	0.02
H ₂ 0 ⁺	0.28	0.30	0.10	0.10	0.26	0.80	0.23	0.34
H ₂ 0 ⁻	0.10	0.10	0.10	0.10	0.10	0.10	0.16	0.15
C0 ₂	50.14	49.69	49.88	41.24	48.39	47.08	49.51	50.43
Rest	0.05	0.01	0.01	0.01	0.03	0.07	0.05	0.01
TOTAL	100.52	100.64	99.53	99.86	98.84	99.77	100.20	100.35
Ва	3	5	3	3	3	3	3	3
Sr	2	9	9	30	19	2	5	4
U	3	1	1	1	1	1	1	1
Со	2	3	2	2	2	8	1	2
Ni	6	2	2	5	6	13	5	7
В	260	45	60	38	51	34	72	33
F	170	100	100	100	110	420	300	100

Data kindly supplied by G. Ewers, B.M.R.

VAVDOS MAGNESITE DEPOSITS, NORTHERN GREECE (DABITZIAS, 1980)

A

		Magnesite					Dolomite				
Wt %	(1)	(2)	(3)	(4)	(5)	(1)	(2)	(3)			
SiO ₂	2.84	1.12	0.37	1.15	0.52	0.21	3.57	0.06			
- Al ₂ 03	0.19	0.00	0.00	0.28	0.08	0.03	0.14	0.01			
TiO ₂	0.00	0.00	0.00	0.03	0.00	0.00	0.17	0.00			
Cr ₂ 0 ₃	0.00	0.00	0.00	0.00	0.00	0.00	0.11	0.00			
FeO	0.12	0.00	0.00	0.16	0.02	0.12	0.00	0.00			
MgO	45.84	46.01	46.08	44.78	46.90	21.30	23.25	22.83			
MnO	00.00	0.07	0.32	0.32	0.18	0.00	0.03	0.00			
CaO	0.16	0.86	1.27	2.51	0.03	30.01	26.01	29.24			
Na ₂ 0	0.42	0.81	0.50	0.40	0.51	0.50	0.42	0.61			
- K ₂ 0	0.05	0.00	0.00	0.00	0.02	0.00	0.00	0.00			
- دن ₂	50.23	51.04	51.49	51.14	51.33	46.87	45.81	47.86			

Electron Microprobe Analyses wt.%.

TOTAL 99.85 99.91 100.03 100.77 99.59 99.04 99.51 100.61

Analyses as wt. fractions

	l	2	3	4	5	
Mg	0.2827	0.2850	0.2856	0.2917	0.2726	
Ca	0.0028	0.0025	0.0015	0.0015	0.0008	
Fe	0.0050	0.0020	0.0145	0.0002	0.0159	
Mn	0.0000	0.0001	0.0008	0.0000	0.0009	
MgO	0.4738	0.4749	0.4736	0.4838	0.4521	
CaO	0.0039	0.0035	0.0020	0.0021	0.0011	
Fe0	0.0072	0.0029	0.0187	0.0003	0.0204	
MnO	0.0000	0.0002	0.0011	0.0000	0.0012	
Total	1.0022	1.0014	1.0066	1.0040	0.9954	

 Magnesite from Mundallio Creek, South Australia; 2, magnesite from Copley, South Australia; 3, magnesite from Balcanoona Station, South Australia (the Fe/Mg ratio varies over the sample and can be double the figure quoted); 4, magnesite from Young, New South Wales (ultramafic)
a typical magnesite from Main Creek, Savage River (metasomatic).

MAGNETITE

Detection limits as for limonite

Formation Beestons Formati							
Sample No.	B07(a)	B07(b)	B07(c)	B07(d)			
Element/Oxide							
FeO	87.48	87.89	89.55	88.74			
SO2	N.D.	N.D.	N.D.	N.D.			
CoO	0.12	0.05	0.11	0.09			
NiO	N.D.	N.D.	N.D.	N.D.			
Pb0	N.D.	N.D.	N.D.	N.D.			
ZnO	N.D.	N.D.	N.D.	N.D.			
u0 ₂	N.D.	N.D.	0.13	N.D.			
- ^{Mn0} 2	N.D.	N.D.	N.D.	N.D.			
Si0 ₂	0.29	0.02	0.07	0.13			
Ti0 ₂	N.D.	0.05	0.11	N.D.			
A1203	0.07	0.1	0.06	0.06			
MgO	N.D.	N.D.	N.D.	0.02			
CaO	N.D.	N.D.	N.D.	N.D.			
Na ₂ 0	N.D.	N.D.	N.D.	N.D.			
K ₂ 0	N.D.	N.D.	N.D.	N.D.			
F ₂ 0	N.D.	N.D.	N.D.	N.D.			
C1 ₂ 0	N.D.	N.D.	N.D.	N.D.			
P205	0.01	0.01	N.D.	0.03			
TOTAL	88.11	88.17	90.08	89.18			

MARCASITE

detection limits as for pyrite

Formation	Coomalie	Dolomite	/ Whites	Formation	
Sample No.	WO-Cpl(a)	WO-Cpl(b)	WO-Cpl(c)	WO-Cpl(d)	BR4
Element	>				
Fe	46.05	46.19	43.00	46.32	45.55
S	51.55	51.79	44.96	48.40	52.58
Со	0.07	0.08	0.08	0.03	0.05
Ni	0.03	0.02	0.02	0.07	0.03
Cu	1.50	0.72	7.21	0.04	N.D.
Pb	0.27	0.48	0.36	0.28	0.30
Zn	N.D.	N.D.	N.D.	N.D.	N.D.
\vee	N.D.	N.D.	N.D.	N.D.	N.D.
U	0.08	0.12	0.08	0.09	N.D.
Cr	N.D.	0.01	N.D.	N.D.	N.D.
Se	N.D.	N.D.	N.D.	0.07	N.D.
As	N.D.	N.D.	N.D.	N.D.	0.29
Sb	N.D.	N.D.	N.D.	N.D.	N.D.
Sn	N.D.	N.D.	N.D.	0.05	N.D.
8i	N.D.	0.14	N.D.	N.D.	N.D.
Ag	N.D.	N.D.	N.D.	0.04	N.D.
Au	N.D.	N.D.	N.D.	N.D.	N.D.
Mn	0.01	N.D.	0.01	0.01	N.D.
TOTAL	99.65	99.58	95.82	95.54	98.89

PYRITE

Electron Microprobe Detection Limits.

Program file name	DY1 : MS19 : DAT	
Element	Detection limit	
	wt. %	
ELEMENT	95% confidence level	99%
Fe	.01	.02
S	.01	.02
Со	.01	.02
Ni	.01	.02
Cu	.02	.02
Pb	.10	.20
Zn	.02	.03
V	.01	.01
U	.06	.09
Cr	.01	.02
Se	.05	.07
As	.14	.20
Sb	.04	.05
Sn	.03	.04
Bi	.10	.15
Ag	.04	.06
Au	.06	.09
Mn	.01	.02

A104

PYRITE

Formation	Crater F	formation	Coomalie Lolomite				
Sample No.	D10(a)	D10(b)	D10(c)	D10(d)	E28(a)	E28(b)	
Element							
Fe	44.13	42.83	45.37	42.48	46.98	45.97	
S	54.21	53.14	53.55	52.89	47.42	44.87	
Со	0.05	0.05	0.07	0.07	0.06	0.07	
Ni	N.D.	0.06	0.02	0.04	0.02	0.03	
Cu	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Pb	0.23	0.22	0.16	0.14	0.15	0.17	
Zn	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
V	N.D.	N.D.	N.D.	0.01	0.01	N.D.	
	0.09	N.D.	N.D.	0.15	0.06	0.07	
· Cr	N.D.	N.D.	N.D.	N.D.	N.D.	0.01	
50	N.D.	0.06	N.D.	N.D.	N.D.	0.05	
As	6.32	1.66	0.29	0.90	N.D.	0.03	
Sh	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
50	N.D.	N.D.	0.02	N.D.	0.03	0.05	
	0.13	N.D.	N.D.	N.D.	N.D.	0.11	
	N.D.	N.D.	0.06	N.D.	N.D.	N.D.	
Ay	ND	N.D.	N.D.	N.D.	0.06	0.08	
AU	0.02	ND	0.01	N.D.	N.D.	N.D.	
Mn	0.02	Hie De	0.01				
TOTAL	105.19	98.16	99.62	96.81	94.81	91.63	

PYRITE

A105

Formation Whites Formation

Sample	G04	G108(a)	G108(b)	G108(c)	G108(d)	G950W-	G950W-	G950W-
No.						650S(a)	650S(b)	650S(c)
Element								
Fe	46.14	47.10	47.06	47.20	47.36	46.75	46.95	46.85
S	52.75	54.72	55.25	55.10	55.20	46.73	46.62	52.72
Со	0.27	0.08	0.08	0.08	0.08	0.05	0.05	0.03
Ni	0.43	0.35	0.33	0.24	0.15	0.02	N.D.	0.07
Cu	0.02	0.02	N.D.	N.D.	N.D.	N.D.	N.D.	0.03
Pb	0.19	0.27	0.15	0.15	0.17	0.35	0.38	0.11
Zn	N.D.	N.D.	N.D.	0.02	N.D.	N.D.	N.D.	N.D.
V	0.02	0.01	0.01	0.01	0.01	N.D.	N.D.	0.01
U	N.D.	N.D.	N.D.	N.D.	0.07	0.11	N.D.	N.D.
Cr	N.D.	N.D.	0.01	0.01	0.02	N.D.	0.01	N.D.
Se	N.D.	N.D.	N.D.	0.07	0.11	N.D.	0.06	N.D.
As	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	0.22
Sb	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Sn	N.D.	N.D.	N.D.	N.D.	0.01	N.D.	N.D.	N.D.
Bi	N.D.	N.D.	N.D.	N.D.	N.D.	0.21	0.13	N.D.
Ag	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Au	N.D.	N.D.	N.D.	N.D.	N.D.	ND.	0.09	N.D.
Mn	N.D.	0.50	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
TOTAL	99.91	103.15	103.80	103.01	103.17	94.27	94.29	100.10

PYRITE

Formation	Whites Formation							
Sample No.	G950W-	G950W-	G950W-	G950W-	G950W-	G950W-	G950W-	G950W-
	650S(d)	650S(e)	650S(f)	740S(a)	740S(b)	740S(c)	820S(a)	820S(b)
Element								
Fe	46.23	46.09	46.48	44.03	45.15	44.98	44.82	45.82
S	53.34	53.00	53.27	53,44	53.78	53.64	50.32	52.73
Со	0.39	0.16	0.08	1.48	0.05	0.06	0.07	0.06
Ni	N.D.	N.D.	0.03	0.04	0.02	0.02	0.03	0.22
Cu	N.D.	N.D.	N.D.	N.D.	0.02	N.D.	0.11	N.D.
Ръ	0.30	0.19	0.11	0.27	0.12	0.17	0.22	0.23
Zn	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
٧	0.01	0.01	N.D.	0.02	N.D.	N.D.	0.01	0.02
U	N.D.	N.D.	0.07	0.06	N.D.	N.D.	N.D.	0.09
Cr	0.01	N.D.						
Se	N.D.	0.06	N.D.	N.D.	N.D.	N.D.	0.07	N.D.
As	0.23	1.13	N.D.	N.D.	N.D.	N.D.	3.69	1.07
Sb	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Sn	N.D.	0.02	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
8i	N.D.	N.D.	N.D.	N.D.	0.10	N.D.	N.D.	0.13
Ag	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Au	N.D.	0.07	0.06	N.D.	0.07	N.D.	N.D.	N.D.
Mn	N.D.	N.D.	N.D.	N.D.	0.01	N.D.	N.D.	N.D.
TOTAL	100.62	100.79	100.22	100.45	99.41	98.90	99.43	100.45
PYRITE

ion

Formation	Whites Formation									
Sample No.	G1050W-	G1050W-	G1050W-	G1050W-	G1050W-	G1050W-	G1050W-			
	690S(a)	690S(b)	6905(c)	770S(a)	770S(b)	770S(c)	770S(d)			
Element					2					
Fe	46.64	46.39	46.27	46.26	46.94	46.92	45.96			
S	50.82	50.77	53.03	55.95	55.17	55.15	53.66			
Со	0.05	0.05	0.03	0.05	0.04	0.05	0.12			
Ni	0.06	0.13	0.06	0.04	0.08	0.03	0.17			
Cu	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.			
Pb	0.25	0.20	0.23	0.21	0.28	0.12	0.19			
Zn	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	0.02			
٧	0.01	0.01	N.D.	0.01	N.D.	N.D.	N.D.			
U	0.11	N.D.	0.08	0.07	0.07	0.07	N.D.			
Cr	N.D.	N.D.	N.D.	N.D.	0.01	N.D.	N.D.			
Se	0.10	N.D.	0.08	N.D.	N.D.	N.D.	N.D.			
As	0.15	N.D.	N.D.	7.24	N.D.	N.D.	N.D.			
Sb	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.			
Sn	N.D.	N.D.	0.04	N.D.	N.D.	N.D.	N.D.			
Ві	N.D.	N.D.	N.D.	N.D.	N.D.	0.10	N.D.			
Ag	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.			
Au	N.D.	0.08	N.D.	N.D.	N.D.	N.D.	N.D.			
Mn	N.D.	0.01	N.D.	N.D.	N.D.	N.D.	N.D.			
TOTAL	98.25	97.86	99.88	109.89	102.65	102.47	100.36			

PYRITE

Formation	Coomalie Dolomite		/ Whites Formation					
Sample No.	WO-	WO-	W0-	WO-	WO-	WO-	WO-	WO-
2	Py3(a)	Py3(b)	Cpl(a)	Cpl(b)	Cpl(c)	Cp(d)	Cp(e)	Cpl(f)
Element								
Fe	47.29	44.82	44.78	44.89	46.60	45.41	46.21	45.79
S	54.81	50.90	52.17	52.44	53.09	49.97	51.32	48.28
Со	0.09	0.05	0.09	0.06	0.07	0.10	0.02	0.10
Ni	0.10	0.07	0.02	0.02	0.02	N.D.	0.03	0.04
Сц	0.03	N.D.	3.44	0.24	1.56	2.47	0.43	0.39
Pb	0.11	0.17	1.09	4.60	0.19	0.25	0.29	0.19
Zn	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
٧	0.01	0.01	0.01	0.01	0.01	N.D.	N.D.	N.D.
U	0.10	N.D.	0.11	0.07	N.D.	N.D.	0.08	0.09
Cr	N.D.	N.D.	N.D.	0.01	N.D.	N.D.	0.01	0.02
Se	N.D.	0.08	N.D.	N.D.	N.D.	N.D.	0.06	N.D.
As	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Sb	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Sn	N.D.	0.05	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Bi	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Ag	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Au	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	0.08	N.D.
Mn	N.D.	N.D.	N.D.	N.D.	N.D.	0.01	N.D.	N.D.
TOTAL	102.66	96.22	102.39	102.95	102.16	98.37	98.58	94.93

PYRITE

/

Coomalie Dolomite

Whites Formation

Formation	Coomalie Dolomite		/ Wh:					
Sample No.	WO-	WO-	WO-	WO-	WO-KF	WO-KF	IN-KF	IN-KF
	Pyl	RJl3(a)	RJ13(b)	RJ13(c)	92W(a)	92W(b)	91(a)	91(b)
Element								
Fe	46.92	46.40	46.06	45.59	46.48	46.67	45.13	45.93
S	54.02	51.21	50.84	51.88	49.08	49.94	54.21	54.66
Со	0.06	0.03	0.07	0.04	0.04	0.05	0.06	0.05
Ni	0.10	N.D.	0.01	N.D.	N.D.	0.45	N.D.	0.01
Cu	N.D.	N.D.	0.02	0.02	N.D.	N.D.	N.D.	N.D.
Рb	0.26	0.13	0.30	N.D.	0.13	0.15	0.37	0.23
Zn	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
٧	0.01	0.01	0.01	0.02	0.01	N.D.	0.01	0.01
U	N.D.	N.D.	0.06	0.09	N.D.	N.D.	N.D.	N.D.
Cr	N.D.	N.D.	N.D.	0.01	0.02	N.D.	N.D.	N.D.
Se	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
As	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Sb	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Sn	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Bi	N.D.	N.D.	N.D.	N.D.	N.D.	0.06	N.D.	0.16
Ag	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Au	N.D.	N.D.	N.D.	N.D.	N.D.	0.07	N.D.	N.D.
Mn	0.32	0.01	N.D.	N.D.	0.01	N.D.	0.01	N.D.
TOTAL	101.90	97.99	97.48	97.75	95.95	97.45	99.86	101.25

PYRITE

Formation	Co	omalie Do	lomite	/	Whites	Formatio	n	
Sample No.	DY4(a) DY4(b)	DY7(a)	DY7(b)	DY7(c)	DY7(d)	DY7(e)	DY7(f)
Element								
Fe	47.12	46.65	47.11	46.37	46.24	46.04	45.83	46.11
S	54.26	54.01	48.90	51.74	50.76	53.24	53.42	53.41
Со	0.05	0.06	0.07	0.07	0.06	0.05	0.04	0.06
Ni	N.D.	0.12	0.02	0.02	0.03	N.D.	N.D.	0.03
Си	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Pb	0.18	0.13	0.37	0.24	0.18	0.20	0.26	0.13
Zn	0.02	N.D.	N.D.	N.D.	0.02	N.D.	N.D.	N.D.
V	N.D.	0.01	0.01	N.D.	0.02	0.01	0.01	N.D.
U	N.D.	0.09	0.07	0.06	N.D.	0.08	0.10	N.D.
Cr	N.D.	0.01	0.01	N.D.	0.01	N.D.	N.D.	N.D.
Se	N.D.	N.D.	0.06	N.D.	0.05	N.D.	N.D.	0.08
As	0.74	1.56	N.D.	0.76	0.80	0.45	0.35	0.63
SD	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Sn	0.04	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Bi	0.07	0.06	N.D.	N.D.	0.01	0.12	0.11	0.09
Ag	N.D.	N.D.	-	-	-	N.D.	N.D.	N.D.
Au	0.06	N.D.	-	-	-	N.D.	0.10	N.D.
Mn	N.D.	N.D.	-	-	-	N.D.	N.D.	N.D.
TOTAL	102.59	102.86	97.45	99.41	98.27	100.23]	.00.26	LOO.60

PYRITE

Whites Formation Coomalie Dolomite Formation / DY8(a) DY8(b) BR4(a) BR4(b) BR4(c) BR5 MF80/ MF80/ Sample No. 06(a) 06(b) Element 43.88 44.65 46.22 Fe 45.51 46.40 45.84 47.57 45.86 S 51.52 49.83 54.23 54.44 53.21 51.63 50.92 50.69 0.09 0.19 0.08 0.67 0.05 Со 0.04 0.04 0.06 Ni 0.04 0.05 0.07 0.05 0.02 0.03 0.79 N.D. N.D. 0.15 Cu N.D. 0.02 0.05 N.D. 0.02 0.42 Pb 0.26 0.20 0.15 0.12 0.16 0.13 0.24 0.11 Zn N.D. N.D. 0.44 N.D. 0.02 N.D. N.D. N.D. V 0.01 0.01 0.01 N.D. N.D. 0.01 N.D. N.D. 0.09 U N.D. 0.07 0.09 N.D. N.D. N.D. 0.06 N.D. N.D. N.D. N.D. 0.01 N.D. N.D. N.D. Cr Se N.D. 0.05 N.D. 0.06 N.D. N.D. N.D. N.D. N.D. As N.D. N.D. 0.74 0.87 0.79 0.52 0.27 N.D. N.D. N.D. N.D. N.D. N.D. N.D. Sb N.D. N.D. Sn N.D. N.D. 0.03 N.D. N.D. N.D. N.D. 0.15 Bi N.D. N.D. 0.04 0.01 0.07 N.D. 0.07 N.D. 0.05 N.D. N.D. N.D. N.D. N.D. N.D. Ag Au 0.08 N.D. N.D. 0.06 N.D. N.D. 0.06 N.D. N.D. Mn N.D. N.D. N.D. N.D. 0.02 0.01 N.D. TOTAL 97.53 96.81 101.73 103.32 100.41 96.40 98.22 97.56

PYRITE

Formation	Balcanoona	, S.A.		Kha	ridunga	, Nepal
Sample No.	BALC.(a)	BALC.(b)	BALC.(c)	NL	N8(a)	N8(b)
Element						
Fe	46.94	46.94	47.57	44.80	44.90	44.69
S	53.03	53.91	55.62	52.61	53.32	50.95
Со	0.11	0.09	0.07	0.03	0.30	0.42
NI	0.17	0.04	0.05	0.02	N.D.	N.D.
Cu	N.D.	N.D.	N.D.	0.02	N.D.	N.D.
Pb	N.D.	N.D.	0.15	0.28	0.19	N.D.
Zn	N.D.	N.D.	N.D.	N.D.	N.D.	-
V	0.06	0.01	N.D.	N.D.	0.02	0.02
U	N.D.	N.D.	0.07	N.D.	N.D.	N.D.
Cr	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Se	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
As	N.D.	N.D.	N.D.	1.48	1.06	0.85
Sb	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Sn	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Bi		N.D.	N.D.	N.D.	N.D.	N.D.
Ag	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Au	N.D.	N.D.	N.D.	0.06	N.D.	0.06
Mn	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
TOTAL	100.52	101.25	103.68	99.47	99.90	97.23

LIMONITE

Electron Microprobe Detection Limits.

Program file name	DY1 : MS19 : DAT	
Element	Detection limit	
	wt. %	
ELEMENT	95% confidence level	99%
Fe	.01	.01
S	.02	•04
Co	.01	.02
Ni	.01	.02
Cu	.01	.02
Pb	.13	.19
Zn	.01	.02
٧	.01	.01
U	.04	.07
Cr	.01	.01
Se	.04	.06
As	.16	•24
Sb	.01	.01
Sn	.02	.04
Bi	.08	.12
 Aa	.03	.04
. тэр Ац 1	.05	.08
Mo	.0]	.02
1 81	• • • •	

PYRITE → LIMONITE

(also detection limits as for pyrite, where appropriate)

Formation		Coomalie		Dolomite		
Sample No.	E28(a) -	→ E28(b)	→ E28(c)	→ E28(d)	→ E28(e)	← E28(f)
Element						
Fe	46.98	50.86	51.94	54.74	11.54	45.97
S	47.42	0.12	0.13	0.09	N.D.	44.87
Со	0.06	0.09	0.12	0.14	0.04	0.07
Ni	0.02	0.03	0.03	0.04	0.02	0.03
Cu	N.D.	N.D.	0.01	N.D.	0.01	N.D.
Pb	0.15	N.D.	N.D.	N.D.	N.D.	0.17
Zn	N.D.	N.D.	N.D.	0.01	0.01	N.D.
٧	0.01	0.01	0.01	N.D.	N.D.	N.D.
U	0.06	0.06	0.07	0.11	N.D.	0.07
Cr	N.D.	N.D.	N.D.	N.D.	0.01	0.01
Se	N.D.	N.D.	0.05	0.07	0.05	0.05
As	N.D.	0.19	N.D.	N.D.	N.D.	N.D.
Sb	N.D.	N.D.	N.D.	N.D.	0.02	N.D.
Sn	0.03	N.D.	N.D.	0.02	N.D.	0.05
Bi	N.D.	N.D.	N.D.	N.D.	N.D.	0.11
Ag	N.D.	N.D.	N.D.	N.D.	N.D.	0.07
Au	0.06	N.D.	N.D.	N.D.	N.D.	0.08
Mn	N.D.	0.01	N.D.	N.D.	0.02	N.D.
TOTAL	94.81	51.44	52.50	55.44	11.79	91.63

PYRITE → LIMONITE

(also detection limits as for pyrite, where appropriate)

Formation		Whit	es	Formation				
Sample No.	G04(a)	→GO4(b)	G108	(a)→G108(b) → G108(c)	G950W-	G950W-	G950W-
						650S(a)) → 650S(b)	←650S(c)
Element								
Fe	46.16	51.12	47.10	49.96	50.64	47.31	46.85	43.56
S	52.75	1.36	54.72	0.14	1.59	0.04	52.72	N.D.
Со	0.27	0.34	0.08	0.10	0.09	0.11	0.03	0.08
Ni	0.43	0.36	0.35	5 0.04	0.06	0.08	0.07	0.03
Cu	0.02	0.01	0.02	2 N.D.	N.D.	0.05	0.03	0.03
Ръ	0.19	N.D.	0.27	7 N.D.	N.D.	N.D.	0.11	N.D.
Zn	N.D.	0.02	N.D.	N.D.	0.02	0.03	N.D.	N.D.
۷	0.02	0.01	0.01	0.01	0.01	N.D.	0.01	0.03
U	N.D.	N.D.	N.D.	N.D.	0.05	N.D.	N.D.	0.06
Cr	N.D.	N.D.	N.D.	0.02	N.D.	N.D.	N.D.	N.D.
Se	N.D.	N.D.	N.D.	. N.D.	N.D.	N.D.	N.D.	0.04
As	N.D.	N.D.	N.D	N.D.	N.D.	N.D.	0.22	0.28
Sb	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	0.04
Sn	N.D.	0.03	N.D.	N.D.	N.D.	0.03	N.D.	N.D.
Bi	N.D.	N.D.	N.D	N.D.	N.D.	N.D.	N.D.	N.D.
Ag	N.D.	N.D.	N.D	N.D.	N.D.	N.D.	N.D.	N.D.
Au	N.D.	0.06	N.D.	. N.D.	N.D.	N.D.	N.D.	N.D.
Mn -	N.D.	0.07	0.5	0 N.D.	N.D.	0.02	N.D.	0.01
TOTAL	99.91	53.54	103.1	5 50.61	52.50	47.84	100.10	44.16

PYRITE → LIMONITE

(also detection limits as for pyrite, where appropriate)

Formation Whites Formation / Balcanoona, S. AUST.

Sample No. G950W- G950W- G950W- G950W- BALC(a)-BALC(b) \Rightarrow BALC(c)-BALC(d) 650S(d) 650S(e) 650S(f) 650S(g)

Element

Fe	46.75	52.62	51.95	46.23	46.94	46.94	47.51	52.17
S	46.73	0.04	0.02	53.34	53.03	53.91	55.62	0.07
Со	0.05	0.08	0.09	0.39	0.11	0.09	0.07	0.35
Ni	0.02	N.D.	0.05	N.D.	0.17	0.04	0.05	0.03
Cu	N.D.	0.01	0.08	N.D.	N.D.	N.D.	0.08	N.D.
Pb	0.35	N.D.	N.D.	0.30	N.D.	N.D.	0.15	N.D.
En	N.D.	N.D.	0.03	N.D.	N.D.	N.D.	N.D.	0.13
V	N.D.	N.D.	0.01	0.01	0.06	0.01	N.D.	1.53
U	0.11	0.04	N.D.	N.D.	N.D.	N.D.	0.08	N.D.
Cr	N.D.	0.01	N.D.	0.01	N.D.	N.D.	N.D.	N.D.
Se	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
As	N.D.	0.59	0.45	0.23	N.D.	N.D.	N.D.	N.D.
Sb	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Sn	N.D.	N.D.	N.D.	N.D.	N.D.	N.Đ.	N.D.	N.D.
Bi	0.21	N.D.	N.D.	N.D.	0.08	N.D.	N.D.	N.D
Ag	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Au	N.D	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	0.06
Mn	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
TOTAL	94.27	53.58	52.81	100.62	100.52	101.25	103.68	53.07

PYRRHOTITE

DY1 : MS19 : DAT Program file name Detection limit Element wt. % 95% confidence level 99% ELEMENT .02 .02 Fe .02 S .01 .02 .01 Со .02 .01 Ni .03 .02 Cu .14 .09 Pb .02 .02 Zn .01 .01 ۷ .06 .10 U .02 .01 Cr.07 .05 Se .18 .12 As .05 .03 Sb .03 .05 Sn .10 .15 Bi .06 .04 Ag .09 .06 Au .02 .01 Mn

PYRRHOTITE

Formation	Kharidunga, Nepal									
Sample No.	N7(a)	N7(b)	N7(c)	N8(a)	N8(b)	N8(c)				
Element										
Fe	58.84	59.06	59.74	56.71	59.28	60.21				
S	37.40	37.19	36.44	35.76	36.67	35.99				
Со	0.07	0.06	0.07	0.04	0.06	0.08				
Ni	N.D.	0.01	N.D.	0.01	0.01	N.D.				
Cu	N.D.	N.D.	N.D.	N.D.	0.03	N.D.				
Pb	0.22	0.14	0.33	0.14	N.D.	0.21				
Zn	0.02	N.D.	N.D.	0.02	N.D.	N.D.				
٧	N.D.	0.01	0.01	0.01	0.01	0.01				
U	0.16	N.D.	N.D.	0.07	0.07	0.07				
Cr	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.				
Se	N.D.	N.D.	N.D.	N.D.	N.D.	0.09				
As	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.				
Sb	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.				
Sn	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.				
Bi	N.D.	N.D.	0.16	N.D.	N.D.	N.D.				
Ag	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.				
Au	N.D.	N.D.	N.D.	N.D.	0.09	N.D.				
Mn	0.03	N.D.	N.D.	0.01	0.01	N.D.				
TOTAL	96.80	96,54	96.80	92.94	96.29	96.70				

QUARTZ

Electron Microprobe Detection Limits.

Program file name	DY1 : S18A : DAT	
Element as oxide	Detection limit	
	wt. %	
OXIDE	95% confidence level	99%
Fe0	.05	.07
S02	.02	.03
CoO	.05	.08
NiO	.06	.09
PbO	.12	.18
ZnO	.10	.15
U0 ₂	.08	.12
Mn0 ₂	.05	.07
Si0 ₂	.01	.01
Ti0 ₂	.06	.10
A1203	.01	.01
MgO	.01	.01
CaO	.01	.02
Na ₂ 0	.01	.01
K ₂ 0	.01	.02
F ₂ 0	.10	.15
C1 ₂ 0	.03	.05
P205	.01	.02

QUARTZ

Easo	4.	-2	~	and the local
ETTINA	1	- 1	11	F 1
1 02110		_	~	

Beestons Formation

Sample No.	B06	B07(a)	B07(b)	B07(c)	B09(a)	B09(b)
Element/Oxide						
FeO	0.09	N.D.	0.44	0.22	0.42	N.D.
so ₂	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Co0	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
NIO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
PbO	N.D.	0.15	N.D.	0.12	N.D.	N.D.
ZhO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
U0 ₂	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Mn02	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Si0 ₂	97.8	98 .98	98.44	98.28	92.37	98.58
TiO ₂	N.D.	N.D.	N.D.	N.D.	0.09	N.D.
A1203	0.02	N.D.	0.01	N.D.	1.40	N.D.
MgO	N.D.	N.D.	N.D.	N.D.	0.28	N.D.
CaO	0.01	0.02	N.D.	0.01	0.01	N.D.
Na ₂ 0	N.D.	N.D.	N.D.	N.D.	0.08	N.D.
K20	0.01	N.D.	N.D.	N.D.	N.D.	N.D.
F ₂ 0	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
C1 ₂ 0	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
P ₂ 0 ₅	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
TOTAL	98.03	99.25	99.12	98.85	94.67	98.66

QUARTZ

Formation

Celia Dolomite

Sample No.	Cl	7 C43	C45(a) C45(b) C48(a	() C48(b)
Element/Oxi	.de					
FeO	N.I	D. N.D.	0.34	0.09	0.16	0.39
s0 ₂	N.I	D. N.D.	N.D.	N.D.	N.D.	N.D.
CoO	N.I	D. N.D.	N.D.	N.D.	N.D.	N.D.
NiO	N.(D. N.D.	N.D.	N.D.	N.D.	N.D.
РЪО	N.I	D. N.D.	N.D.	N.D.	N.D.	N.D.
ZnO	N.I	D. N.D.	N.D.	N.D.	N.D.	N.D.
U0 ₂	N.I	D. N.D.	N.D.	N.D.	N.D.	N.D.
Mn0 ₂	N.I	D. N.D.	N.D.	N.D.	N.D.	N.D.
Si0 ₂	99.	26 101.21	100.29	100.13	100.54	97.74
Ti02	N.	D. N.D.	N.D.	N.D.	N.D.	N.D.
A1203	0.	01 0.10	0.05	0.01	0.01	0.87
MgO	N.	D. 0.02	2 0.08	N.D.	N.D.	2.02
CaO	N.	D. N.D.	N.D.	0.01	N.D.	N.D.
Na ₂ 0	N.	D. N.D.	N.D.	N.D.	N.D.	0.01
K ₂ 0	0.	03 N.D.	N.D.	N.D.	N.D.	N.D.
- F ₂ 0	N.	D. N.D.	N.D.	0.12	N.D.	N.D.
C1 ₂ 0	N.	D. N.D.	N.D.	N.D.	N.D.	N.D.
P ₂ 0 ₅	N.	D. N.D.	N.D.	N.D.	N.D.	N.D.
TOTAL -	99.	54 101.38	3 100.99	100.46	100.82	101.13

QUARTZ

Formation	Celia Dolomite			Crater Formation				
Sample No.	C49(a)	C49(b)	C49(c)	D02	D03(a)	D03(b)	D03(c)	
Element/Oxide								
FeO	0.12	0.20	0.11	0.33	N.D.	0.05	N.D.	
S0 ₂	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
CoO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
NiO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
PbO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
ZnO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
U0,	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Mn0 ₂	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Si0 ₂	100.68	95.73	99.50	93.44	100.22	100.65	100.03	
TiO ₂	N.D.	N.D.	N.D.	0.19	N.D.	N.D.	0.07	
Al ₂ 0 ₃	0.01	N.D.	0.03	3.82	N.D.	N.D.	N.D.	
MgO	0.02	1.65	N.D.	0.25	N.D.	N.D.	N.D.	
CaO	0.01	N.D.	N.D.	0.05	N.D.	N.D.	0.01	
Na ₂ 0	N.D.	0.01	N.D.	0.03	N.D.	N.D.	N.D.	
K ₂ 0	N.D.	0.05	0.01	1.46	N.D.	0.01	N.D.	
F ₂ 0	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
	0.04	N.D.	N.D.	N.D.	N.D.	N.D.	0.08	
2 P_05	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
2 7								
TOTAL	100.91	98.85	99.80	99.60	100.37	100.81	100.30	

QUARTZ

Formation

Whites Formation

Sample No.	G03	GO4(a)	GO4(b)	G07	G950W-
×.					740S
Element/Oxide					
FeO	0.17	1.11	0,29	N.D.	0.53
50 ₂	N.D.	N.D.	N.D.	N.D.	0.12
CoO	N.D.	N.D.	N.D.	N.D.	N.D.
NiO	N.D.	N.D.	N.D.	N.D.	N.D.
Pb0	N.D.	N.D.	N.D.	N.D.	N.D.
ZnO	N.D.	N.D.	N.D.	N.D.	N.D.
^{U0} 2	N.D.	N.D.	N.D.	N.D.	0.14
Mn02	N.D.	0.10	N.D.	N.D.	N.D.
SiO ₂	101.16	87.58	96.99	100.44	89.83
Ti0 ₂	N.D.	0.21	N.D.	0.07	N.D.
A1203	0.16	6.82	1.94	0.14	2.54
MgO	0.01	0.92	0.15	0.20	0.98
CaO	0.11	0.06	0.07	0.10	1.07
Na ₂ 0	0.01	0.03	0.02	N.D.	0.02
к ₂ 0	0.06	2.38	0.67	N.D.	0.91
F ₂ 0	N.D.	N.D.	N.D.	N.D.	N.D.
C1 ₂ 0	N.D.	N.D.	N.D.	N.D.	N.D.
P2 ⁰ 5	N.D.	N.D.	N.D.	N.D.	N.D.
TOTAL	101.89	99.93	100.30	101.05	96.23

QUARTZ

100					1		_		
Ŀ.	n	TI	Th:	a	Ε.	1	O	r	٦
	~	100		-46	~		-	۰.	

Coomalie Dolomite / Whites Formation

Sample No.	WO-	WO-KF	WO-KF	WO-KF	IN-KF		
	RJ13	92W(a)	92W(b)	92B	91	DY7	BR5
Element/Oxide							
Fe0	0.48	0.13	N.D.	0.15	0.32	-	-
so ₂	0.02	N.D.	N.D.	N.D.	0.02	0.02	N.D.
Co0	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
NIO	N.D.	N.D.	N.D.	N.D.	N.D.	-	N.D.
Pb0	N.D.	0.12	N.D.	N.D.	N.D.	N.D.	N.D.
ZhO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
U0 ₂	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
MnO	N.D.	N.D.	N.D.	N.D.	N.D.	-	-
SiO ₂	100.57	99.42	98.50	100.12	99.21	95.35	99.22
TiO ₂	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Al ₂ 0 ₃	N.D.	0.49	0.36	N.D.	N.D.	N.D.	0.01
MgO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
CaO	N.D.	0.02	N.D.	0.01	N.D.	N.D.	N.D.
Na ₂ 0	N.D.	N.D.	N.D.	N.D.	N.D.	0.01	N.D.
- K ₂ 0	N.D.	N.D.	0.02	N.D.	N.D.	0.01	N.D.
F ₂ 0	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
C1 ₂ 0	N.D.	N.D.	N.D.	0.05	N.D.	N.D.	N.D.
P ₂ 0 ₅	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
TOTAL	101.26	100.29	99.05	100.49	99.70	95.57	99.32

Electron	Microprobe	Detection	Limits.
----------	------------	-----------	---------

Program file name	DY1 : S18A : DAT	
Element as oxide	Detection limit	
	wt. %	
ELEMENT .	95% confidence level	99%
FeO	.04	.07
so ₂	.02	.03
CoO	.05	.08
NiO	.06	.09
Pb0	.10	.15
ZnO	.10	.15
U0 ₂	.08	.11
Mn0 ₂	.05	.07
Si0 ₂	.01	.01
Ti0 ₂	.06	.09
A1203	.01	.01
MgO	.01	.01
CaO	.01	.02
Na ₂ 0	.01	.01
К ₂ 0	.01	.02
F ₂ 0	.09	.13
C1 ₂ 0	.07	.10
P ₂ 0 ₅	.01	.02

Formation	n Beestons Formation							
Sample No.	B06(a)	B06(b)	B06(c)	B06(d)	B06(e)	B07(a)	B07(b)	B07(c)
Element/Oxide								
Fe0	4.22	3.58	3.20	3.79	3.04	3.89	3.73	5.17
50 ₂	N.D.	0.03	N.D.	N.D.	0.04	N.D.	N.D.	0.02
CoO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
NiO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
РЬ0	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
ZnO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
U0 ₂	N.D.	0.13	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
MnO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Si0 ₂	40.43	38.19	41.76	42.90	43.96	45.42	44.72	44.25
Ti0 ₂	0.62	0.49	0.58	0.56	0.63	0.41	0.46	0.58
A1203	28.31	27.22	30.81	29.50	31.27	31.26	31.07	30.24
MgO	1.10	5.46	1.14	1.28	1.03	1.20	1.02	1.09
CaO	N.D.	0.05	N.D.	0.01	0.06	0.01	0.01	0.01
Na ₂ 0	0.24	0.19	0.24	0.22	0.92	0,25	0.26	0.26
К ₂ 0	9.05	8.72	9.83	9.18	9.76	9.71	9.44	9.25
F ₂ 0	N.D.	0.29	0.28	0.26	N.D.	0.11	0.33	0.27
Cl ₂ 0	N.D.	N.D.	N.D.	N.D.	0.48	N.D.	N.D.	N.D.
P2 ⁰ 5	N.D.	0.07	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
TOTAL	84.13	84.48	87.88	87.85	91.35	92.36	91.10	91.27

Formation	Cel	lia Dolomit	e	Whites Formation
Sample No.	C17(a)	Cl7(b)	C49	G04
Flement/Oxide				
Fe0	3.84	3.54	3.96	7.79
SO	0.02	N.D.	N.D.	0.02
Co0	N.D.	N.D.	N.D.	N.D.
NiO	N.D.	N.D.	N.D.	N.D.
PbO	N.D.	N.D.	N.D.	N.D.
ZnO	N.D.	N.D.	N.D.	N.D.
UO2	N.D.	N.D.	N.D.	N.D.
MnO	N.D.	N.D.	N.D.	0.34
SiO ₂	47.39	42.02	43.18	38.83
TiO ₂	N.D.	0.08	0.42	0.48
Al ₂ 03	31.41	30.29	31.10	27.08
MgO	0.82	1.27	6.96	5.99
CaO	0.01	0.01	0.01	0.04
Na ₂ 0	0.18	0.19	0.16	0.11
K ₂ 0	10.33	9.72	5.77	6.68
- F ₂ 0	0.18	0.17	0.09	0.18
- Cl ₂ 0	N.D.	N.D.	N.D.	N.D.
P ₂ 0 ₅	N.D.	N.D.	0.01	N.D.
TOTAL	94.37	87.48	91.89	87.64

Formation	Coomalie Do	lomite /	Whites Format:	ion	
Sample No.	WO-RJ7	WO-RJ10	WO-RJ30(a)	WO-RJ30(b)	BR4
ETGINE UC/OXIDE					
FeO	-	6.86	0.41	0.43	2.16
SO2	0.11	1.97	0.03	0.04	0.11
CoO	N.D.	N.D.	N.D.	N.D.	N.D.
NiO	N.D.	N.D.	N.D.	N.D.	N.D.
PbO	0.95	N.D.	N.D.	N.D.	N.D.
ZnO	N.D.	N.D.	N.D.	N.D.	N.D.
U0 ₂	N.D.	N.D.	N.D.	N.D.	N.D.
MnO	-	N.D.	N.D.	N.D.	N.D.
Si0 ₂	43.96	44.05	48.15	47.90	46.07
Ti0 ₂	1.01	0.29	0.72	0.60	0.38
A1203	31.52	21.60	30.85	31.32	28.31
MgO	1.65	2.47	2.06	1.75	6.02
CaO	0.01	0.01	0.02	N.D.	0.02
Na ₂ 0	0.17	0.08	0.13	0.18	0.14
K ₂ 0	9.28	6.28	9.58	9.76	9.02
F ₂ 0	0.16	0.09	0.10	N.D.	0.11
Cl ₂ 0	N.D.	N.D.	N.D.	N.D.	N.D.
P205	N.D.	N.D.	N.D.	N. D.	N.D.
TOTAL	89.12	83.80	92.21	92.09	92.39

Detection limits as for sericite

Formation	Whites		Kharidunga,	Nepal		
Sample No.	G04	Nl(a)	N1(b)	Nl(c)	Nl(d)	Nl(e)
Element/Oxide						
FeO	5.22	0.18	0.24	0.20	0.22	0.19
S0 ₂	N.D.	0.05	0.04	N.D.	N.D.	N.D.
CoO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
NiO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
PbO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Zn0 -	N.D.	N.D.	0.11	N.D.	N.D.	N.D.
.U0 ₂	0,08	N.D.	N.D.	N.D.	N.D.	N.D.
Mn0 ₂	0.16	N.D.	N.D.	N.D.	N.D.	N.D.
SiO ₂	82.17	58 .7 0	56,20	57.27	66.01	58.46
TiO ₂	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
A1 ₂ 0 ₃	4.61	0.18	0.17	4.20	0.22	0.24
MgO	4.12	27.45	26.73	27.96	31.96	29.34
Ca0	0.02	0.03	0.03	0.02	0.01	N.D.
Na ₂ 0	0.01	0.05	0.05	0.01	0.02	0.03
K ₂ 0	0.01	0.02	0.01	N.D.	N.D.	0.01
F ₂ 0	0.18	0.41	0.38	0.64	0.64	0.68
C1 ₂ 0	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
P ₂ 0 ₅	N.D.	N.D.	0.03	N.D.	N.D.	N.D.
TOTAL	96.60	87.26	84.12	90.44	99.21	89.08

TALC

TOURMALINE

Electron Microprobe Det	ection Limits.	
Program file name	DY1 : S18A : DAT	
Element as oxide	Detection limit	
11	wt. %	
ELEMENT	95% confidence level	99%
FeO	.04	.07
S0 ₂	.02	.03
0:0	.05	.08
NiO	.06	.09
Pb0	.11	.17
ZnO	.10	.15
U0 ₂	.08	.12
Mn0 ₂	.05	.07
SiO2	.01	.01
TiO2	.06	.09
A1203	.01	.01
MgO	.01	.01
CaO	.03	.05
Na ₂ 0	.02	.03
K ₂ 0	.01	.02
F ₂ 0	.10	.15
Cl ₂ 0	.03	.05
P205	.01	.02

TOURMALINE

Beestons Formation Formation

Sample No. B09(a) $B09(c) \rightarrow B09(d) \rightarrow B09(e) \leftrightarrow B09(f) \leftarrow B09(g) \leftarrow B09(h)$

Element/Oxide

Fe0	5.85	6.83	6.90	6.73	6.80	6.47	6.71
SO2	N.D.	N.D.	0.02	0.02	N.D.	0.03	N.D.
CoO	N.D.	0.05	N.D.	N.D.	N.D.	N.D.	N.D.
NiO	N.D.						
PbO	N.D.						
ZnO	N.D.						
U0 ₂	N.D.						
MnO	N.D.						
Si0 ₂	36.60	34.52	35.05	34.62	33.81	33.44	34.60
Ti0 ₂	0.60	0.45	0.55	0.45	0.44	0.48	0.48
A1203	31.74	31.49	31.10	32.05	31.70	31.03	31.13
MgO	7.23	6.38	6.43	6.34	6.07	6.09	5.87
CaO	0.43	0.42	0.45	0.46	0.40	0.41	0.43
Na ₂ 0	2.05	1.99	2.00	1.96	1.87	1.90	1.79
K20	0.01	0.04	0.05	0.04	0.03	0.02	0.02
F_0	0.39	0.17	0.11	0.10	0.16	N.D.	0.16
Cl ₂ 0	N.D.	0.04	N.D.	N.D.	N.D.	N.D.	0.03
P205	N.D.						
TOTAL	84.94	82.45	82.74	82.88	81.41	80.07	81.43

TOURMALINE

Bees	tons	Fo	rmation	Celia Dolomite
B06(a)	B06(b)	B09(b)	C52(a)→C52(b)→C52(c)→
	Bees	Beestons BO6(a) BO6(Beestons Fo BO6(a) BO6(b)	Beestons Formation BO6(a) BO6(b) BO9(b)

Fe0	7.32	7.37	4.49	5.48	2.69	2.62
SO2	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
000	0.06	N.D.	N.D.	N.D.	N.D.	N.D.
NiO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Pb0	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
ZnO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
^{U0} 2	N.D.	N.D.	N.D.	N.D.	N.D.	0.08
MnO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Si0 ₂	36.61	36.93	53.57	33.52	37.15	36.36
TiO ₂	0.52	8.32	0.28	0.36	0.22	0.18
A1203	29.89	26.40	23.77	28.21	32.37	32.01
MgO	7.93	1.09	4.46	8.77	9.08	9.14
CaO	1.08	0.03	0.30	0.34	0.53	0.71
Na ₂ 0	1.96	0.17	1.23	1.96	22.5	2.19
K ₂ 0	0.03	8.28	0.02	N.D.	0.02	0.02
F_0	0.62	N.D.	N.D.	0.28	N.D.	N.D.
C1 ₂ 0	N.D.	0.06	N.D.	0.05	N.D.	0.04
P205	N.D.	0.03	N.D.	0.02	N.D.	N.D.
TOTAL	86.13	88.87	88.28	79.08	84.51	83.46

TOURMALINE

Formation

Celia Dolomite

Sample No.
$$\rightarrow$$
 C52(d) \rightarrow C52(e) \leftrightarrow C52(f) \leftarrow C52(g) \leftarrow C52(h) \leftarrow C52(i) \leftarrow C52(j)

Element/Oxide

Fe0	2.83	3.02	2.64	3.45	3.21	3.20	3.06
so ₂	N.D.	N.D.	1.14	N.D.	N.D.	N.D.	N.D.
CoO	N.D.						
NiO	N.D.						
PbO	N.D.						
ZnO	N.D.	N.D.	0.24	N.D.	N.D.	N.D.	N.D.
UO ₂	N.D.						
Mn0	N.D.						
SiO ₂	36.93	37.77	30.78	36.51	37.22	37.05	37.06
TiO ₂	0.37	0.61	0.64	0.89	0.74	0.68	0.50
A1203	31.59	31.85	21.28	29.91	31.01	31.06	31.67
MgO	9.19	9.25	7.69	9.54	9.32	9.30	9.18
CaO	0.77	0.87	4.23	1.24	0.94	1.03	0.81
Na ₂ 0	2.21	2.26	8,90	2.17	2.16	2.19	2.20
K ₂ 0	0.03	0.03	0.86	0.04	0.03	0.02	0.03
F ₂ 0	0.12	0.22	0.43	0.13	0.23	0.22	0.25
C1 ₂ 0	N.D.	N.D.	2.20	0.09	N.D.	N.D.	N.D.
P205	N.D.	N.D.	0.97	N.D.	N.D.	N.D.	N.D.
TOTAL	84.09	85.96	82.06	84.03	84.99	84.96	84.81

TOURMALINE

Formation		Celia (Dolomite				
Sample No.	C52(k)	C52(1)	D03	D09(a) ← DO9(b)←DO9(c)	D09(d)
Element/Oxid	de						
FeO	3.11	2.92	2.23	0.28	0.32	0.94	0.62
S02	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
CoO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
NiO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
PbO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	0.12
ZnO	N.D.	N.D.	N.D	N.D.	N.D.	N.D.	N.D.
U0 ₂	N.D.	N.D.	N.D.	N.D.	0.08	N.D.	0.09
MnO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Si0 ₂	36.88	36.94	38.23	38.19	37.52	37.65	37.68
TiO ₂	0.51	0.48	0.26	N.D.	0.07	0.13	0.11
A1203	31.33	31.62	33.81	34.98	34.59	34.61	32.64
MgO	9.09	9.09	8.59	9.37	9.50	8.67	10.92
CaO	0.79	0.78	0.25	0.08	0.05	0.13	0.14
Na ₂ 0	2.23	2.21	2.66	2.20	2.24	2.83	2.52
K ₂ 0	0.03	0.04	0.05	0.02	0.03	0.03	N.D.
F ₂ 0	0.26	0.17	0.18	0.04	0.15	N.D.	N.D.
Cl ₂ 0	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	0.05
P205	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
TOTAL	84.35	84.29	86.47	85.30	84.64	85.07	84.91

```
Formation
```

Crater Formation

Element/Oxide

FeO	1.46	1.14	2.32	0.67	2.21	5.46
SO2	N.D.	N.D.	N.D.	N.D.	0.13	N.D.
CoO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
NiO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
PbO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
ZnO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
U0 ₂	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Mn0	N.D.	N.D.	N.D.	N.D.	N.D.	0.05
SiO ₂	38.21	38.40	37.56	38.60	38.17	33.83
TiO ₂	0.17	0.06	0.28	0.26	0.33	0.40
A1203	32.20	32.96	32.26	33.84	32.50	29.20
MgO	10.02	9.87	9.70	9.61	9.72	8.23
CaO	0.10	0.05	0.37	0.29	0.62	0.40
Na ₂ 0	2.13	2.12	2.73	2.77	2.33	2.23
к ₂ 0	N.D.	N.D.	0.02	0.02	0.02	0.02
- F ₂ 0	0.16	0.13	0.28	0.26	0.22	0.17
C1 ₂ 0	N.D.	N.D.	N.D.	0.03	N.D.	N.D.
P205	N.D.	N.D.	0.01	N.D.	N.D.	N.D.
TOTAL	84.53	84.79	85.65	86.47	86.39	80.15

TOURMALINE

						С	oomalie	Dolomite/
Formation	Crate	r Format	ion				Whites	Formation
Sample No.	D09(k)	D09(1)	D09(m)	D09(n)	DO9(o)	D09(p)	WO-KF	
							92B	
Element/Oxi	de							
FeO	U.75	0.46	0.75	7.99	8.19	31.59	0.36	
50 ₂	N.D.	0.02	N.D.	N.D.	N.D.	0.06	N.D.	
CoO	N.D.	N.D.	N.D.	0.06	N.D.	N.D.	N.D.	
NiO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
PbO	.N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
ZnO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
U0 ₂	N.D.	N.D.	N.D.	0.08	N.D.	N.D.	N.D.	
MnO	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Si0 ₂	35.99	37.03	37.51	33.54	32.84	23.36	36.64	
TiO ₂	N.D.	N.D.	0.14	0.12	0.10	0.28	0.32	
A1203	33.78	34.28	34.14	32.37	32.56	21.15	32.08	
MgO	9.51	9.42	9.47	8.20	8.28	7.56	10.76	
CaO	0.10	0.03	0.11	0.14	0.15	0.27	2.11	
Na ₂ 0	1.53	1.35	1.46	2.71	2.76	1.94	1.35	
K ₂ 0	N.D.	0.02	0.02	N.D.	0.02	N.D.	0.02	
F ₂ 0	N.D.	N.D.	N.D.	N.D.	0.10	N.D.	0.56	×
C1 ₂ 0	N.D.	N.D.	0.03	0.05	N.D.	0.03	N.D.	
P205	N.D.	N.D.	N.D.	N.D.	N.D.	0.04	N.D.	
TOTAL	81.83	82.72	83.76	85.31	85.07	86.50	84.23	

PYRITE

Villamaninite - Bravoite Series.

Program file name	DY1 : MS19 : DAT	
Element	Detection limit	
	wt. %	
ELEMENT	95% confidence level	99%
Fe	.01	.02
S	.03	.05
Co	.01	.02
Ni	.01	.02
Cu	.02	.03
Pb	.10	.15
Zn	.02	.03
V	.01	.01
U	.06	,09
Cr	.01	.02
Se	.05	.07
As	.17	.26
Sb	.06	.09
Sn	.04	.05
Bi	.10	.17
Ag	.04	.06
Au	.07	.10
Mn	.01	.02

VILLAMANINITE - BRAVOITE SERIES (+ FUKUCHILITE) PLUS SIEGENITE

Formation	Coomalie Dolomite / Whites Formation						
Sample No.	MF80/06	MF80/06	MF80/06	MF80/06	MF80/06	MF80/06	
	(a)	(b)	(c)	(d)	(e)	(f)	
Element							
Fe	13.16	12.03	37.50	26.51	33.96	42.22	
S	37.46	35.77	44.55	34.16	46.23	50.17	
Со	13.29	15.69	1.90	2.84	3.69	3.42	
Ni	14.91	18.42	0.14	3.27	0.31	0.59	
Cu	14.91	10.80	15.70	30.76	0.83	0.80	
Pb	0.61	0.25	0.25	0.14	0.25	0.42	
Zn	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
٧	N.D.	N.D.	N.D.	0.01	N.D.	N.D.	
U	0.09	N.D.	0.09	0.10	N.D.	0.07	
Cr	N.D.	N.D.	0.01	0.01	0.01	N.D.	
Se	N.D.	N.D.	N.D.	0.05	N.D.	N.D.	
As	N.D.	N.D.	N.D.	N.D.	N.D.	0.22	
Sb	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Sn	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Bi	0.47	N.D.	0.12	N.D.	0.10	N.D.	
Ag	N.D.	N.D.	N.D.	N.D.	N.D.	0.04	
Au	0.04	0.04	N.D.	0.09	0.11	N.D.	
Mn	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
TOTAL	94.96	93.08	100.34	98.06	90.50	97.98	

VILLAMANINITE - BRAVOITE SERIES (+ FUKUCHILITE) PLUS SIEGENITE

Formation	Coomalie	Dolomite	/ Whites	Formation
Sample No.	MF2	MF2	WO-PY1	WO-
	(a)	(b)		RJ7
Element/Oxide				
Fe	36.38	35.06	0.14	0.48
S	52.13	52.67	40.51	36.41
Со	9.38	7.57	34.57	24.84
Ni	1.07	4.09	21.01	24.52
Cu	N.D.	0.05	1.72	0.42
Pb	0.25	0.21	0.64	11.66
Zn	N.D.	N.D.	0.02	0.02
V	0.01	0.01	0.01	N.D.
U	0.07	N.D.	N.D.	N.D.
Cr	0.01	N.D.	N.D.	N.D.
Se	0.22	0.14	0.05	N.D.
As	0.95	0.47	N.D.	N.D.
Sb	N.D.	N.D.	N.D.	N.D.
Sn	N.D.	N.D.	N.D.	N.D.
Bi	N.D.	0.13	N.D.	0.14
Ag	N.D.	N.D.	0.04	N.D.
Au	N.D.	N.D.	N.D.	0.07
Mn	N.D.	N.D.	0.31	N.D.
TOTAL	100.57	100.42	99.09	98.60

APPENDIX 4

EXPLORATION PROGRAMME

4.1 Pace and Compass Survey

Rum Jungle, N.T. E.L. 1349 M300

Data Acquisition

1. Pace and compass surveys

The standard pace and compass 3 point method was used to map the outcrop areas. Periodic checks were made in order to maintain a 1 metre pace, vegetation and terrain making this difficult at times. The outcrops were plotted directly on to graph paper and sequentially numbered (Figs 16-22).

The following parameters were predominantly observed visually, by clambering over, under and around each outcrop when possible.

2. Grain size

A visual estimate of the percentage of grains of size 0.5mm, 0.5-2mm, 2-5mm and 5mm was made, and appropriately allocated as fine (F), medium (M), coarse (C) and very coarse (V.C.). The maximum grain size was measured to the nearest 5mm.

3. Bedding

A measurement was taken where it was confidently felt that the layering seen represented primary bedding. Where stratiform stromatolites

(now silicified) were present some good readings were obtained, and a note made of their likely accuracy (G). Cross-cutting relationships and complex and or domal stromatolites complicated interpretation in many instances.

4. Orientation of grains

The orientation of the grains in reference to bedding if possible or otherwise to veining was noted.

5. Types of veins

The concordant or discordant nature of the veins in relation to "bedding" was noted. Where possible age relationships were noted.

6. Height

Height of individual outcrops was a visual estimate only, using self as scale. Both the maximum and the average were estimated in this manner.

7. Colour

Visual only.

8. Distinct Morphology present

A visual estimate of the percentage of bladed or rhomb type morphology present was made. For large outcrops, this consisted of assessing discrete areas and then averaging (this also applied to 2, 6, 7, 9 and 10).

9. Type of morphology

Taking the obtained morphology figure, this was then split into a bladed component and a rhomb component. It is likely that the rhomb figure contains a secondary recrystallised magnesite component.

10. Talc/quartz

A visual estimate of the percentage of talc and/or quartz present was made. This figure consists of that visible to the naked eye, i.e. does not include the intra-grain and grain-boundary material readily seen in thin section.

Comments

It must be emphasised that the majority of the data was acquired by visual estimate only. This is a subjective method and consequently should be treated as such, although all reasonable care was taken to ensure that the figures recorded were accurate.

4.2 Geochemical Soil Survey Drilling Programme

Rum Jungle, N.T. E.L. 1349 M300

<u>Aim</u>:- The aim of the drilling programme was to sample the weathered material immediately above unweathered bedrock, and to analyses this material for Cu, Pb, Zn, Co, Ni and Mo. A radiometric survey of the drilled holes was the secondary aim.

<u>Type</u>:- rotary - Edson truck-mounted rig using a 3" 3 blade tungsten carbide bit.
Location: - Rum Jungle, N.T. E.L. 1349. Surveyed grid, holes indicated on accompanying map. (Fig. /C7).

Time:- November 19th - December 13th inclusive (1979).

Hole Statistics:- number 251 metreage : total 1864 average 7.4 range 0.5 - 24.4

Sampling:- Unless stated otherwise on the log sheet all samples were taken from the bottom of the hole. Drilling was stopped when fresh bedrock chips were encountered in the weathered return. All samples were taken in duplicate and placed in separate envelopes; (i) for retention in Darwin and (ii) to be sent to Australian Laboratory Services, held for analyses. These latter samples were dried, pulverised and sieved to -80 mesh.

The envelopes were numbered:-

(i) the complete grid co-ordinates plus sample number prefixed by M300.(ii) sample number prefixed by M300.

Every 10th hole a duplicate was included (consecutive sample numbers) in the batch to be sent for analyses. A large sample was prepared of No. 116 (2,000E - 5505) and inserted into the batch for analyses - as every 25th sample, as a replicate. Such numbers were recorded on the log sheets.

Contamination of samples is considered to have occurred for most holes - from rig, surface, boots, down-hole etc.

Comments

Mechanical breakdowns, access difficulties and bad weather slowed

A143

progress, so that the programme was not completed. River gravels (related to Coomalie (k) and silicified and/or ferruginised bands encountered within the Coomalie Dolomite were frequently impenetrable, or at best severely slowed down the drilling rate. It was apparent within a few days that the programme would not be completed within the allotted time, so it was decided to drill so that there was good coverage of the contact between the Coomalie Dolomite and the (?) unconformably overlying Masson Formation. Strategic grid lines were also drilled to cover the entire Coomalie Dolomite sequence, plus the top of the underlying Crater Formation.

4.2.1 Radiometric Survey

Rum Jungle, N.T. E.L. 1349 M300

Aim :- To probe each drill hole upon completion.

Equipment:- (i) Austral Mini Borchole Logger (multi-channel) (ii) Austral S.G.l.a scintillometer

<u>Comments</u>:- The equipment was located on the passenger seat of the Moke, thus enabling it to be positioned immediately over the hole, via an outrigger pulley. Readings were charted both down and up-hole, but correlation was not good. Frequent problems eventuated with the chart recorder, culminating in its eventual complete failure, whereupon readings were taken from the visual output and recorded. Finally the Logger failed totally.

At this stage, the hand held scintillometer was substituted - holding it directly over the hole and also over the individual cuttings heaps and recording the maximum reading. The scintillometer gave constantly low readings, but checking it with radio-active material (pitchblende)

A144

indicated that it was functioning. Lack of time precluded checking this latter instrument against holes probed with the Mini Logger.

4.3 Radiometric Survey

Conclusions Rum Jungle, N.T. E.L. 1349 M300.

From the limited data available, five anomalous areas (>95% percentile) can be delineated, with one other area that could be interesting. Three of the anomalous areas straddle the Coomalie-Masson contact.

1. Grid lines 600W - 1000W.

The highest reading, 600 c.p.s., was obtained at hole 600W - 900S. It was unfortunate that the Mini Logger broke down so that there are no down-hole readings (except 2) for lines 1000 and 1200W. Hole 1200W - 200S was notable inasmuch as a fluctuating surface reading (approximately 5m E of hole) of up to 1,000 c.p.s. was obtained, using the hand-held scintillometer, although the hole itself and the cuttings gave normal background readings.

No drilling could be done on line 400W further S than 650. 700 and 750S straddled the quarry powder magazine, and 800S was up a steep inaccessable ridge. However, lines 600W (last 2 pegs missing - see field notes) and 800W - 1400W could be extended further S, especially as the B.M.R. traverse 3A bisects this area. (see Radiometric Survey - Contour Plan).

2. Grid line OOE (OON-350S).

This anomaly is probably a thorium one, and related to the Crater

A146

Formation. This line is sited within the drainage pattern of the Crater Formation ridge to the N. It also has Coomalie Ck as its southern extent.

3. Grid lines 200E - 00E - 200W.

This linear anomaly abutts the quarry workings, and so the immediately south positions cannot be drilled, but it may be worth picking them up further S if possible.

4. Grid line 800E.

This anomaly has a small high, but a broader lower order areal extent. Suggest that a request be made to the B.M.R. for the data for their traverse that cuts our line 600E, for this and the previous anomaly. The B.M.R. also drilled (and cored for geochem) 10 holes on this traverse.

5. Grid line 1600E.

This is a one hole only (750S) anomaly.

6. Grid lines 1800 and 2000E.

The southern section of these lines could just possibly represent the outer extent of an anomaly lying further S.

It may be worth further investigating the southern portions of the lease that were not incorporated in the present grid. Indeed, it is strongly recommended that further drilling south of anomaly one be undertaken, and that a single-channel scintillometer be used for probing the noles. Also suggest that water samples be taken (where available, and if rotary drilling employed) and forwarded to Angela Giblin (C.S.I.R.O., North Ryde) for future work. Would also recommend a request be made to the B.M.R. for a copy of <u>all</u> their data from their 1979 programme. There were 4 or 5 traverses, similar to 3A, across the lease. A soil and rock sampling team were also encountered (in August, 1979), under the leadership of Peter Scott, on the lease, plus further geochem. was to be done by Greg Ewers. Bone, Y. (1983). Interpretation of magnesites at Rum Jungle, N.T., using fluid inclusions. *Journal of the Geological Society Of Australia*, 30(3/4), 375-381.

NOTE: This publication is included in the print copy of the thesis held in the University of Adelaide Library.