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Probabilistic Analysis of Unreinforced Brick Masonry Walls
Subjected to Horizontal Bending

Jaroslav Vaculik1

and Michael C. Griffith2

ABSTRACT1

Unreinforced masonry walls subjected to out-of-plane horizontal bending can fail by two alternate2

modes: stepped failure along the brick-mortar bond, or line failure cutting directly through the bricks.3

Because of random variations in material properties throughout a panel and the tendency for failure4

to occur across the weaker elements, vertical cracks will generally exhibit a combination of the two5

modes. This paper develops a pair of analytical methodologies which treat this phenomenon using a6

stochastic approach. The first part deals with calculating the ultimate moment capacity by allowing7

for the weakening effect associated with the mixed (stepped and line) mode of failure. This effect is8

quantified in terms of strength reduction factors for mean and characteristic (0.05 quantile) values of9

strength, which may be applied toward generic ultimate strength design. The second part deals with10

estimating the relative probability of each failure mode and the probability distribution for the relative11

proportions of each failure mode along a crack. This is of particular relevance to seismic performance,12

as the two failure modes lead to significantly different post-cracking behaviour.13

Keywords: unreinforced masonry; walls; horizontal bending; out-of-plane; probabilistic; weak14

link15

INTRODUCTION16

The mechanical material properties of unreinforced masonry (URM) exhibit a high degree17

of variability compared to other structural materials such as steel or concrete. Sources of this18

variability include variations in the manufacturing process, quality of on-site workmanship,19

environmental conditions during manufacture and construction, as well as random variations20

in the materials themselves (Lawrence and Lu 1991). Nonetheless, probabilistic and reliability-21

based limit states design procedures for URM structures are considered less advanced than for22

other materials (Stewart and Lawrence 2002; Schueremans and Gemert 2006).23

The flexural tensile bond strength of masonry (fmt) is a key determinant of the ultimate24

out-of-plane load-carrying capacity of URM wall panels, and the fact that its variability has25

a significant influence on wall strength has long been recognised (Baker and Franken 1976).26

In conventional ultimate limit state design procedures for URM walls in bending, direct un-27

certainties arising from variability in the material strength properties are addressed by using28

their characteristic (lower 5th percentile) values, which is further followed by application of a29

strength reduction factor (inverse of a partial safety factor) to account for other uncertainties in30

the strength computation procedure. For example, the Australian Masonry Standard AS 370031

(Standards Australia 2011) prescribes a strength reduction factor of 0.6 for ultimate strength32
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design of walls in bending. However, the origin of such factors in masonry design codes can often33

be traced back to conversion from working stress design to equivalent limit state design rather34

than any rigorous reliability-based code-calibration, which means that the resulting safety levels35

are not precisely known (Stewart and Lawrence 2002). In order to overcome this and validate36

whether such factors are appropriate for design requires the development of procedures for esti-37

mating the probability of failure using a rational theoretical framework which incorporates the38

fundamental mechanics of out-of-plane URM wall response.39

Over the years, numerous analytical studies have been undertaken to gain insight into the40

influence of random variability in mechanical properties on the out-of-plane behaviour of wall41

panels. The majority of these studies have tackled the problem through Monte Carlo simulation42

in which material properties are randomly assigned throughout the panel and the overall wall43

strength is then computed using a structural mechanics model. Early such works used elastic44

plate solutions and elastic finite element modelling (FEM) to quantify initial cracking loads of45

two-way spanning walls (Lawrence and Cao 1988; Lu and Lawrence 1991) as well as the ultimate46

(peak) strength in both vertically and horizontally spanning one-way walls (Lawrence 1991).47

In later work, Stewart and Lawrence (2002) described a generalised conceptual framework for48

studying the stochastic reliability of URM walls in flexure and also compared several alternate49

hypotheses in relation to load sharing between individual elements and their contribution to50

the overall panel strength. With ongoing advances in computational efficiency and modelling51

techniques for URM, recent works have employed nonlinear FEM to study the effects of mate-52

rial variability on the ultimate strength of vertically, horizontally and two-way spanning walls53

(Li et al. 2014; Li et al. 2016b; Li et al. 2016a). The outcomes of these studies have demon-54

strated favourable comparisons to experimental behaviour both in terms of wall capacities and55

failure mechanisms; however, due to the large computational effort and user expertise required56

to run such analyses, they are unsuitable for common use by designers. This creates the need57

for simplified ‘design’ techniques for estimating wall strength, which recognise the fundamen-58

tal mechanics involved in out-of-plane flexural response whilst adequately accounting for the59

stochastic influence of the material properties.60

The present paper will focus on development of such methodology for brick URM walls sub-61

jected to horizontal bending. Pure horizontal bending corresponds to an out-of-plane flexural62

moment whose axis is oriented vertically, and can be generated by applying a lateral load to a63

wall supported along its vertical edges using the arrangement shown in Figure 1. In full ma-64

sonry panels within overall buildings, boundary conditions to generate pure horizontal bending65

are not very common; however, the internal stress condition is approached in common two-way66

spanning wall arrangements such as those shown in Figure 2 where horizontal bending causes67

the formation of vertical crack lines in localised regions.68

This paper will consider specifically single-leaf brickwork utilising a regular stretcher bond69

pattern (refer Figure 1). In this type of masonry, vertical cracks can form by two distinct70

modes [Figure 3 (a) and (b)]: stepped failure where the crack follows a toothed pattern along71

the brick-mortar bond of bed joints and perpend joints, or line failure where the crack cuts72

across brick units and perpend joints in a straight line. The tendency for either mode to73

be favoured depends on the relative material strengths of the brick units and the masonry74

bond. Vertical cracks rarely exhibit either of these failure modes exclusively; instead they tend75

to develop a combination of the two as a result of local variation in the material properties76

throughout the panel (Figure 3c). This has been experimentally demonstrated through tests on77

both small-sized specimens and full-scale walls (Lawrence 1995; Willis et al. 2004; Griffith et al.78

2007; Griffith and Vaculik 2007). And although advances have been made in development of79

simple mechanics-based expressions for calculating the ultimate moment capacity with respect80

to each failure mode for the purpose of design (Willis et al. 2004), these methods ignore the81

fact that these modes can occur simultaneously. This gives rise to several issues which will now82

be described in the context of the aims of this paper.83

Firstly, the conventional approach for calculating the design strength of URM in horizontal84

bending involves separately calculating the moment capacities for the stepped and line failure85

2 for ASCE J Eng Mech



M o m e n t  a x i s

P

P / 2 P / 2

A A

S e c t i o n  A - A

S u p p o r t s  
( B e l o w )

L o a d i n g  
L i n e s

P e a k  m o m e n t  
z o n e

FIG. 1: Typical wallette beam test setup in which the specimen is subjected to pure horizontal
bending [identical to arrangement used by Willis et al. (2004)]. The brick masonry shown is
built with half-overlap stretcher bond.
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FIG. 2: Examples of horizontal bending regions in two-way spanning walls shown using idealised
cracking patterns. Horizontal bending regions are characterised by formation of vertical cracks
(highlighted). For clarity, all vertical cracks are shown as stepped.
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FIG. 3: Different possible failure modes in horizontal bending: (a) Pure stepped failure; (b)
Pure line failure; (c) Typical example of mixed failure.

modes using characteristic values of material properties and adopting the lower value (e.g. AS86

3700). However, because crack formation is governed by weak link effects, it can be easily shown87

that the characteristic strength of the mixed (stepped and line) failure mode will always be lower88

than for either mode considered separately [e.g. using equation (21) provided later in this paper].89

Thus by ignoring these stochastic effects, the conventional design approach has the potential to90

be unconservative. The first analytical method proposed in this paper deals with quantifying91

the weakening influence on the ultimate strength arising from weak link effects. Unlike most92

previous analytical research into the influence of stochastic effects on URM bending strength93

which has utilised Monte Carlo simulation, the present paper tackles the problem through94

formulation of mechanics-based governing equations suitable toward design. It is the intent95

that these equations can be subsequently incorporated into a generalised virtual work approach96

(e.g. Lawrence and Marshall 2000; Baker et al. 2005; Vaculik et al. 2014), analogous to yield97

line analysis, in order to predict the ultimate out-of-plane strength of two-way spanning walls.98

Secondly, the mode of failure generated at the cracking stage has a major effect on the99

residual (post-cracking) behaviour of the crack which influences the wall’s out-of-plane seismic100

performance. This follows from the fact that interlocking units along a stepped crack are able to101

maintain some residual strength via frictional mechanics and also contribute toward hysteretic102

damping under cyclic loading (Griffith et al. 2007). By contrast, line failure is brittle and has103

no residual moment capacity. A further detrimental effect can occur in two-way spanning walls104

(e.g. Figure 2c) where excessive line cracking along the supported vertical edges can cause the105

mechanism to revert from two-way bending to one-way vertical bending, as observed in tests by106

Griffith et al. (2007). Such effects are particularly important in URM structures, where alternate107

modes of brittle failure caused by variation of material properties and wall configurations can108

lead to significantly different post-cracking behaviour and therefore affect seismic performance109

(e.g. Foraboschi and Vanin 2013). The contrasting post-cracking behaviour of stepped and110

line cracks highlights the need to develop an analytical technique for predicting their relative111

proportions along a crack, which is undertaken in the second half of this paper. It is anticipated112

that the developed methodology could be incorporated as part of a limit analysis out-of-plane113

wall assessment procedure that ignores the bond strength (e.g. Orduña and Lourenço 2005;114

Foraboschi 2014; Vaculik et al. 2014; Lagomarsino 2015; Casapulla and Portioli 2015).115

THEORETICAL MODEL116

The basis of the model is to formulate the probability distributions of the individual (stepped117

4 for ASCE J Eng Mech



M o m e n t  a x i s

s b

t u
h u

t j

l u

FIG. 4: Torsion about the centroid of a bed joint.

and line) failure modes by treating the key material properties as random variables. Then by118

applying the weak link concept, the strength distribution of the mixed mode of failure as well119

as the relative likelihood of either failure mode can be determined.120

Moment Capacities for Basic Failure Modes121

The upcoming analytical expressions are applicable specifically to single-leaf stretcher bond122

masonry which is illustrated in Figure 4. Although alternate masonry bond patterns could also123

be considered within the generalised stochastic framework proposed in this paper, refinement124

of the fundamental moment capacity expressions would be necessary to suit such patterns.125

Stepped Failure: Over a single masonry course, the ultimate moment capacity with respect126

to stepped failure (Figure 3a) is calculated as127

mu step = kbe τum t
3
u, (1)128

which represents the torsional strength of a rectangular bed joint with thickness tu and overlap129

sb (Figure 4). In half overlap stretcher bond masonry, sb is calculated as130

sb = (lu − tj) /2, (2)131

where lu is the length of the brick unit, and tj is the mortar joint thickness. The expression132

assumes that the joint fails once the maximum shear stress along the section as determined by133

elastic theory (Timoshenko and Goodier 1934) reaches the shear stress capacity of the bond,134

τum. Due to the well-established experimental observation that perpend joints crack early in the135

response (Base and Baker 1973; Lawrence 1995) any flexural contribution from perpend joints136

is omitted. Parameter kbe is a dimensionless coefficient relating the maximum shear stress in137

a rectangular section to the applied torsion and is equal to 0.208 for square overlap (sb = tu).138

Equation (1) incorporates a slight refinement to an expression originally proposed by Willis139

et al. (2004) in order to make it applicable to any overlap aspect ratio (sb/tu) as controlled140

through kbe. Values of kbe for bond patterns with generic values of overlap are provided in141

Vaculik (2012).142

To estimate τum within equation (1), Willis et al. (2004) proposed the expression143

τum = rfmt + µσv, (3)144
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where fmt is the flexural tensile strength of the masonry and σv is the vertical stress acting145

normal to the bed joint, whose respective coefficients were empirically calibrated as r = 1.6 and146

µ = 0.9 using small brickwork wallette tests.147

It is worth noting that equations (1) and (3) represent uniaxial horizontal bending and ignore148

any vertical bending on the section (i.e. biaxial bending) which would generate an eccentricity149

of the acting normal stress. This is due to several reasons: The main practical application of150

these moment capacity expressions is within a virtual work approach for estimating the strength151

of two-way walls (Figure 2), and in such methods the actual internal moment demands along152

cracks are not explicitly calculated, nor is it easy to calculate them. Additionally, in zones where153

vertical cracks are generated, internal moment from vertical bending is generally expected to154

be small in comparison to horizontal bending. Furthermore, the influence of a non-uniform155

vertical stress distribution on the bed joint torsional capacity is expected to be relatively minor156

in mortared masonry [due to dominance of the cohesion term in equation (3)] in comparison157

to dry-joint masonry where friction provides the entirety of the resistance and therefore such158

effects become much more important (Casapulla and Portioli 2015).159

Line Failure: Over a single course, the moment capacity with respect to line failure is cal-160

culated using the following expression by Willis et al. (2004):161

mu line =
1

2
(fut − νu σv)

hut
2
u

6
, (4)162

where fut is the lateral modulus of rupture of the brick unit, νu is the Poisson’s ratio of the163

brick units (typically taken as 0.2), hu is the height of the brick unit, and other variables as164

defined previously. The capacity given by equation (4) is based entirely on the tensile strength165

of the brick unit, and similarly to equation (1) it ignores any contribution from the perpend166

joint. The expression also allows for the weakening influence on the flexural strength of the167

unit arising from vertical axial load and Poisson’s effect.168

The accuracy of equations (1)–(4) was originally validated by Willis et al. (2004) using flex-169

ural tests on brick masonry wallettes (equivalent to that shown in Figure 1) by counting the170

number of failed bed joints and bricks in each test specimen and summing their moment con-171

tributions toward the overall crack. These calculations produced favourable correlation with172

measured moment capacities; however, this validation process required a posteriori knowledge173

of the relative proportions of each failure mode. Nonetheless, the fact that the expressions174

were validated this way provides a sound basis for the development of the analysis techniques175

proposed in this paper which are applicable a priori.176

General Assumptions177

The following general assumptions are made:178

1. Local crack formation is assumed to be governed by the weak link concept applied over a179

single course of bricks. A basic module over two courses is illustrated in Figure 5, where180

it is seen that stepped failure occurs when two bed joints fail in torsion, or line failure181

occurs when a single brick fails in flexure. The moment capacity of the mixed failure182

mode over a single course is taken as the lesser of equations (1) and (4), that is:183

mumix = min(mu step,mu line) . (5)184

185

2. Material properties fmt and fut are treated as randomly distributed variables. It is186

assumed that these can be adequately represented by any of the normal, lognormal187

and Weibull distributions, as substantiated in various works (Baker and Franken 1976;188

Lawrence 1985; Heffler et al. 2008; Vaculik 2012). The typical range of variability of these189

properties expressed as the coefficient of variation (CoV) (standard deviation divided by190

6 for ASCE J Eng Mech
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FIG. 5: Basic masonry module consisting of two courses of bricks.

the mean) is between 0.15 and 0.5, as demonstrated in the aforementioned references as191

well as in-situ testing (McNeilly et al. 1996).192

3. All other parameters in the governing equations (1)–(4) including brick unit and mortar193

joint dimensions, axial stress, and Poisson’s ratio are treated as constants.194

ULTIMATE STRENGTH CAPACITY195

This section describes the procedure for computing the ultimate strength of the mixed196

failure mode allowing for the weak link effect. Further to the assumptions stated previously,197

it will be assumed that the peak moment capacities of the stepped and line failure modes are198

reached simultaneously. This allows the total moment capacity to be taken as the direct sum199

of the individual mode contributions. As mentioned previously, work by Willis et al. (2004)200

demonstrated that calculations made on this basis produced good correlation with experimental201

results. Because the characteristic strength is of particular interest towards design, fmt and202

fut will be represented using either of the lognormal and Weibull two-parameter distributions203

which adopt only positive values and thus provide more representative behaviour at the lower204

end tail (compared to the normal distribution).205

Non-dimensional formulation of the governing equations206

For convenience, let us consider the strength in horizontal bending in terms of the non-207

dimensionalised orthogonal strength ratio, η, as this convention is often adopted in the literature208

(e.g. Sinha 1978; Seward 1982) including Eurocode 6 (Comité Européen de Normalisation 2005):209

η = M̄h/M̄v, (6)

where M̄h and M̄v are the moment capacities for horizontal and vertical bending, respectively,210

in terms of the moment per unit length of the crack [N.B. The definition of the orthogonal211

strength ratio in the literature is sometimes interchanged between equation (6) and its inverse].212

It is also useful to define the non-dimensional quantities213

Fut ≡ f̂ut/f̂mt, (7)

and Σv ≡ σv/f̂mt, (8)214
215

where f̂mt and f̂ut are mean values of the respective properties.216

Recognising that in the absence of vertical compressive stress, the mean vertical bending217

moment capacity per unit length of crack is218

M̄v = f̂mt
t2u
6
, (9)
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and converting the moment over a single course (m) to a moment per unit length (M̄h) using219

M̄h = m/(hu+tj), the orthogonal strength ratios for stepped failure and line failure are obtained220

by substituting equations (1), (3), (4), (8), and (9) into (6), which gives221

ηstep = kstep r
fmt

f̂mt︸ ︷︷ ︸
=ηstep,rand

+ kstep µΣv︸ ︷︷ ︸
=ηstep,const

, (10)222

and223

ηline = kline
fut

f̂mt︸ ︷︷ ︸
=ηline,rand

− kline νu Σv︸ ︷︷ ︸
=ηline,const

. (11)224

All information in equations (10) and (11) that relates to unit geometry is contained within225

the constants226

kstep =
6 kbe tu
hu + tj

, (12)

and kline =
hu

2 (hu + tj)
. (13)227

228

PDFs and CDFs229

The moment capacities of the individual failure modes [equations (10) and (11)] each con-230

tain a random component proportional to the material strength (fmt or fut), plus a constant231

component due to vertical stress. Each random component must have the same type of under-232

lying distribution and CoV as the related material property. For a generic parameter X, let233

us use E〈X〉 to denote its expected value (mean), and C〈X〉 to denote its CoV. The random234

component of capacity in stepped failure, ηstep,rand, is distributed such that:235

E〈ηstep,rand〉 = kstep r, (14)236

C〈ηstep,rand〉 = C〈fmt〉 . (15)237
238

Similarly, for line failure:239

E〈ηline,rand〉 = kline Fut, (16)240

C〈ηline,rand〉 = C〈fut〉 . (17)241
242

From this, the probability density functions (PDFs) and cumulative distribution functions243

(CDFs) of ηstep and ηline can be formulated. For stepped failure, the PDF at the value η = x is244

pηstep(x) = pηstep,rand(x− ηstep,const) , (18)245

and the CDF is246

Pηstep(x) = Pηstep,rand(x− ηstep,const) . (19)247

The same can be rewritten for line failure.248

Since the weak link hypothesis [equation (5)] defines ηmix as the lesser of pairs of random249

variables drawn from ηstep and ηline, according to joint probability theory the PDF and CDF250

of the mixed failure mode are, respectively251

pηmix(x) = pηstep(x) [1− Pηline(x)] + pηline(x)
[
1− Pηstep(x)

]
, (20)252

and253

Pηmix(x) = Pηstep(x) + Pηline(x)− Pηstep(x)Pηline(x) . (21)254

255
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FIG. 6: Example of predicted probability distribution functions (PDF top, CDF bottom) for the
strength (η) of the stepped, line and mixed failure modes. The example considers 230×110×76
mm units and 10 mm thick mortar joints, with Fut = 6 and Σv = 0.1. Material properties fmt
and fut are modelled by Weibull distribution with CoV = 0.3. The functions demonstrate that
the strength of the mixed failure mode is lesser than either of the fundamental modes considered
individually.

The model described is suited for implementation using computer software where the PDFs256

and CDFs of the probability distributions of interest can be programmed-in as functions. Figure257

6 portrays an example which considers standard Australian clay brick units with dimensions258

230× 110× 76 mm (lu× tu×hu) and 10 mm thick mortar joints (tj), and furthermore assumes259

that νu = 0.2, r = 1.6 and µ = 0.9 (Willis et al. 2004). In this example, the ratio of brick260

strength to bond strength is Fut = 6 and the ratio of axial stress to bond strength is Σv = 0.1.261

The Weibull distribution is used to represent fmt and fut at CoV = 0.3. The plots demonstrate262

the reduction in strength caused by weak link effects for both mean and characteristic values.263

Mean and characteristic values of strength264

The mean values of ηstep and ηline can be obtained directly by assigning mean values of the265

respective tensile strengths fmt and fut into equations (10) and (11), which gives266

E〈ηstep〉 = kstep (r + µΣv) , (22)
and E〈ηline〉 = kline (Fut − νu Σv) . (23)267

268

The mean value of ηmix however has to be computed numerically, since its PDF and CDF as269

given by equations (20) and (21) will not generally follow any common distribution. This can270

be done by numerically integrating the first moment of the PDF.271

Characteristic values of ηstep, ηline and ηmix are also easily obtained numerically by solving272

for the η value at which the CDF equals 0.05.273

Strength reduction factors274

A convenient way to quantify the weakening effect is in terms of a strength reduction factor275

(φ), defined as the ratio of the strength of the mixed failure mode to the lesser of strengths for276

9 for ASCE J Eng Mech



the individual modes; i.e. for mean strength:277

φmean =
E〈ηmix〉

min(E〈ηstep〉 ,E〈ηline〉)
. (24)278

and for characteristic strength:279

φchar =
Char〈ηmix〉

min(Char〈ηstep〉 ,Char〈ηline〉)
, (25)280

For example, in the scenario shown in Figure 6, the mean-strength reduction factor is φmean =281

2.34/2.64 = 0.89, and the characteristic-strength reduction factor is φchar = 1.19/1.31 = 0.91.282

Therefore in limit state design, which uses characteristic properties, weak link effects would gen-283

erate a 9% reduction in strength compared to the conventionally calculated value, e.g. according284

to AS 3700 (Standards Australia 2011).285

To examine conditions under which the strength reduction becomes most severe, φmean and286

φchar were computed for standard Australian clay brick masonry in terms of Fut versus Σv287

as plotted in Figure 7. Material strengths fmt and fut were represented using the Weibull288

distribution, and their CoV of was taken as 0.3 which is considered typical.289

A notable feature of Figure 7 is the presence of distinct regions in the Fut-Σv space where290

the reduction in strength is most pronounced. These occur where the strengths of the indi-291

vidual failure modes are similar in magnitude, thus causing the mixed failure mode to become292

dominant. The graphs also demonstrate that the most adverse strength reduction occurs at293

zero axial stress (Σv = 0) at Fut ≈ 6.5. This critical value of Fut can be calculated as294

critical Fut = r
kstep

kline
. (26)295

It is worth noting that Fut = 6.5 is well within the typical range observed in practice; hence,296

these effects should not be ignored.297

The greatest possible strength reduction that can occur at a given level of material strength298

variability (as CoV) is plotted in Figure 8. It is seen that the reduction is sensitive to the type299

of distribution chosen to represent the material properties, and that the Weibull distribution is300

associated with a greater reduction in strength than the lognormal distribution. The difference301

between the two distributions is greatest in relation to the characteristic strength. This trend302

can be explained by the fact that the Weibull distribution has a fatter lower end tail than the303

lognormal distribution.304

The plot in Figure 8 also demonstrates that considerable strength reduction can develop305

at typical levels of material strength variability. For instance, at CoV = 0.3, which is deemed306

typical on the basis of in-situ tests by McNeilly et al. (1996), there is a 17% reduction in307

strength. At CoV = 0.5, which is the largest level of variability observed in that study, a 28%308

reduction occurs. Nonetheless, allowance for this level of reduction appears to be adequately309

provided by the capacity reduction factor φ = 0.6 prescribed by AS 3700 for bending design.310

EXPECTED LIKELIHOOD OF EACH FAILURE MODE311

For the purpose of estimating the relative probabilities of each failure mode, it will be312

assumed that fmt and fut follow the normal distribution, which allows for some useful simplifi-313

cations of the governing formulae. Allowance is also made to treat Poisson’s ratio of the brick314

unit (νu) as a normally distributed random variable.315

Probability of Each Failure Mode in a Single Course316

Let us consider the probability of stepped failure, denoted as Pstep, which occurs when317

mu step < mu line. Using equations (1)–(4) this can be written as318

rfmt + µσv < Gh (fut − νu σv) , (27)319
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FIG. 7: Isolines of strength reduction factors for clay brick masonry with 230 × 110 × 76 mm
units and 10 mm thick mortar joints. Material properties fmt and fut are modelled by Weibull
distribution with CoV = 0.3. The plots demonstrate distinct regions in the Fut-Σv space where
the weak link effect is most pronounced, which coincides with zones where the strength of the
individual modes are comparable in magnitude.
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given by equation (26).

where320

Gh =
kline

kstep
=

hu
12 tu kbe

. (28)321

Inequality (27) contains the randomly distributed variables fmt, fut and νu. By assuming that322

each is normally distributed, the inequality can be reduced to 0 < u, where u is a normally323

distributed dummy variable which has the mean324

E〈u〉 = GhFut − r − Σv (GhE〈νu〉+ µ) , (29)325

and variance326

S〈u〉2 = (GhFutC〈fut〉)2
+ (rC〈fmt〉)2

+ (ΣvGhE〈νu〉C〈νu〉)2
. (30)327

From this, the basic probability that a single course undergoes stepped failure (Pstep) is deter-328

mined by computing the probability that u > 0, such that329

Pstep = 1− Pline = Pr(u > 0) = ΦN

(
S〈u〉
E〈u〉

)
, (31)330

where ΦN (· · ·) is the CDF of the standard normal distribution.331

The solution of equation (31) is illustrated for standard Australian clay brick units and332

CoV = 0.3 in Figure 9, by plotting contour lines of the probability of stepped failure versus333

Fut and Σv. The figure demonstrates that stepped failure becomes more likely as the brick-to-334

bond strength ratio (Fut) increases, and less likely at higher levels of axial stress (Σv). This335

latter trend arises due to a combination of axial stress having both a strengthening influence on336

stepped failure due to internal friction and a weakening influence on line failure due to Poisson’s337

effect.338

The influence of higher variability (CoV) in the material properties (fmt, fut and νu) on339

the plot in Figure 9 would be to increase the spread of the contour lines relative to the median340

12 for ASCE J Eng Mech



0 0.2 0.4 0.6 0.8 1

'v 2 <v= bfmt

0

2

4

6

8

10

12

F
u
t
2

b f ut=
b f mt

0.05
0.1

0.2

0.3

0.4

0.5

0.6
0.70.8 Pstep

FIG. 9: Isolines of the probability of stepped failure (Pstep = 1− Pline) for clay brick masonry
with 230× 110× 76 mm units and 10 mm thick mortar joints. Material properties fmt and fut
are modelled by normal distribution with CoV = 0.3.

contour line, whereby the median contour line corresponds to Pstep = 0.5 and represents equal341

probability of stepped and line failure. In other words, masonry with highly variable material342

properties will tend to develop closer amounts of stepped and line failure. The median contour343

line is unaffected by the CoV and can be determined from equation (29) by setting E〈u〉 = 0.344

Relative Proportions of Each Failure Mode345

An example of a potential practical application of the developed methodology would be in346

predicting the residual moment capacity of a vertical crack, where it is necessary to be able to347

estimate the relative proportion of each failure mode. Let us denote the proportion of stepped348

failure as Rstep, the total number of courses as n, and the number of courses undergoing stepped349

failure as k. If we assume that all masonry courses are independent in terms of their material350

properties, then k will follow the binomial distribution and have the CDF:351

Pr(X ≤ k) =

k∑
i=0

n!

i!(n− i)!
Pstep

i (1− Pstep)
n−i

, (32)

from which the proportion of stepped failure is determined as Rstep = k/n.352

Over any number of courses (n), the expected value of Rstep is equivalent to Pstep. However,353

the characteristic (0.05 quantile) value of Rstep, which may be of interest in design, becomes354

dependent on n as plotted in Figure 10. It is seen that Char〈Rstep〉 decreases with reducing n,355

and conversely, it asymptotically approaches Pstep as n increases. This is because over a large356

number of courses it is less likely that Rstep will deviate significantly from Pstep, whereas over357

fewer courses it becomes more likely.358

COMPARISON WITH EXPERIMENT359

13 for ASCE J Eng Mech



0 0.2 0.4 0.6 0.8 1

Pstep

0

0.2

0.4

0.6

0.8

1

C
h
a
r(

R
st

ep
)

n=50

n=20

n=10

n=5 n=2
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number of courses Char〈Rstep〉 approaches Pstep, but if the number of courses is small then
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Tests on Small-Sized Wallettes360

Accuracy of the analytical methods was examined using results of bending tests on small-361

sized wallettes undertaken by Willis (2004) (also reported in Willis et al. 2004). It is important362

to note that these tests were part of the data set that Willis used to calibrate the empirical363

parameters r and µ in equation (3), and as such, one would expect the correlation between364

the measured and predicted moment capacity to already be good. However, since the main365

focus of the present comparisons is the stochastic nature of response, which was not previously366

addressed by Willis, the use of this data set is still valuable.367

This experimental study involved four-point-bending tests on wallettes 6 courses tall and368

3.5 bricks long (approx. 440 mm by 840 mm) using the arrangement shown in Figure 1. The369

wallettes were constructed using 230×114×65 mm clay brick units and 10 mm mortar joints. It370

is worth noting that the constant peak moment zone was applied across a length of a single half-371

overlap bed joint (sb as shown in Figure 4) to facilitate failure within this zone. Five sets of tests372

were performed: In the first four, the walls were oriented vertically and subjected to different373

levels of precompression levels, including 0, 0.075, 0.15, and 0.25 MPa. The fifth set involved374

walls oriented horizontally with no precompression. Each set included five repetitions, giving a375

total of 25 individual tests. Material properties fmt and fut were quantified separately through376

material tests on the individual batches of mortar and brick units used in the construction of377

the wallettes—fmt was quantified using bond the wrench test as prescribed by AS 3700, and fut378

was determined from four-point-bending tests on beam specimens comprising three bricks glued379

together end-to-end. From these tests, mean values and CoVs of the properties were quantified380

for use in the present analysis (Table 1).381

Figure 11 compares the measured strength to predictions made using two alternate ap-382

proaches: firstly with the ‘conventional’ approach as the direct minimum of the mean values383

for stepped and line failure (Figure 11a), and secondly with the developed stochastic approach384

where the mean strength was computed as the first moment of the PDF defined by equation385

(20) (Figure 11b). Additional detail of these analyses is presented in Table 1, including material386
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FIG. 11: Comparison of predicted and experimentally measured ultimate strength in small-
sized (six course) wallettes. Predicted values were calculated using mean values and CoVs of
material properties measured experimentally.
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using solid circles. Predicted values were calculated using mean values and CoVs of material
properties measured experimentally.

properties, analysis results, and experimental results for each specimen. The average ratio of387

the predicted to experimental strength is 0.88 for the conventional method and 0.80 for the388

stochastic method. That the conventional method gives slightly closer correlation with the test389

results is not surprising given that this data set was used by Willis to calibrate the coefficients in390

equation (3). It is also possible that by not allowing for the stochastic effects, these coefficients391

may have been slightly underestimated in Willis’ calibration process.392

For the same data set, the proportion of stepped failure observed experimentally is compared393

to the value predicted using equation (31) in Figure 12. The plot demonstrates fairly large394

scatter in the individual experimental values of Rstep, which is not unexpected given the small395

number of courses in each wallette (n = 5). By considering the mean values at each level396

of precompression (solid circles in Figure 12), it can be seen that both the experimental and397

predicted values exhibit a trend where Rstep reduces with increasing precompression (with the398

exception of the ‘H’ specimens). On average, the proposed method underpredicts Rstep in the399

test specimens by a difference of 0.25 indicating that it is slightly conservative.400

The fact that the proposed methodology underestimates the strength of the wallettes (Figure401

11b) while underpredicting the proportion of stepped failure (Figure 12) suggests that Willis’402

expression [equation (4)] may be slightly underestimating the basic strength in line failure, pos-403

sibly because it ignores any flexural contribution from the perpend joints. It is worth noting404

that the line failure moment capacity expression presently prescribed in AS 3700 includes both405

a brick flexure component (fut-proportional) plus a perpend flexure component equal to the full406

elastic moment capacity of the perpend section (fmt Z); however as evidenced experimentally,407

a full contribution from perpends is not justifiable due to early cracking (Base and Baker 1973;408

Lawrence 1995). It is nonetheless conceivable that a partial contribution from perpends may409

still be active at the point that the brick units reach their peak flexural strength, which is sup-410

ported by the present results. Modification of the proposed stochastic methodology to include411

a fmt-proportional perpend contribution into equation (4) would be relatively straightforward.412
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However, due to uncertainty as to the extent of the perpend contribution, undertaking such an413

exercise is beyond the scope of this paper.414

Tests on Full-Scale Walls415

The accuracy of the proposed method for predicting the expected likelihood of the alternate416

failure modes was evaluated using out-of-plane cyclic loading tests on full-scale walls reported417

in Griffith et al. (2007). This data set included eight walls constructed using 230 × 110 × 76418

mm cored clay brick units and 10 mm thick mortar joints. All walls were nominally 2.5 m tall419

(29 courses of bricks) and either 4.0 m (6×) or 2.5 m (2×) long; six of the eight walls had a420

window opening; and four of the walls were subjected to vertical precompression of either 0.05421

or 0.10 MPa. Each wall had short return walls at its lateral edges which were restrained so as to422

create full moment fixity at the vertical edges of the main wall face (idealised support conditions423

depicted in Figure 2c). The walls were tested under cyclic face loading applied using airbags424

positioned on both faces of the wall. Upon loading, the walls underwent two-way bending which425

caused vertical cracks along the lateral edges. Further detail of these experimental arrangements426

is provided in Griffith et al. (2007).427

The expected proportion of stepped failure was computed using equation (31). Material428

properties used as input in the analyses were quantified through tests on small-sized specimens429

using the same techniques as in the tests by Willis, described previously. The experimental430

value of Rstep was determined by examining the crack patterns at the conclusion of the tests431

and counting the number of failed brick units and bed joints along the vertical edges of the432

walls. Note that in three of the walls, an asymmetrically positioned opening meant that the433

vertical crack was only partially developed along the edge closer to the opening, and these cases434

are ignored. A detailed summary of these analyses is presented in Table 2. Comparison of the435

predictions with experiment is shown in Figure 13. The method has favourable accuracy with436

the average error in Rstep being equal to +0.01 (taken as the difference between the calculated437
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and observed values). The precision of the predictions is also favourable, with nine of the 13438

cases falling within the ±0.1 band. The fact that these results show less scatter than results439

for the small-sized wallettes is consistent with an averaging effect due to a greater number of440

brick courses.441

CONCLUDING REMARKS442

This paper has described a pair of methodologies for the analysis of unreinforced brick ma-443

sonry walls in horizontal bending which account for weak link effects involved in the crack for-444

mation process. The methods employ a probabilistic treatment of simplified design expressions445

for moment capacities of the stepped and line failure modes where the mechanical properties446

are represented as random variables.447

The first method considers the ultimate bending strength of the mixed (combined stepped448

and line) failure mode, whose probability distribution functions are formulated by taking the449

strength as the lesser of the stepped and line failure modes. The strength reduction that occurs450

due to weak link effects was quantified for both the mean and characteristic values of ultimate451

strength, the latter being relevant toward design. These predictions indicate that for typical452

levels of material strength variability (CoV = 0.3) there can be up to a 17% reduction in453

strength compared to conventional design methodology; whilst at the upper end of variability454

levels observed in practice (CoV = 0.5) this reduction could be as high as 28%. It is emphasised455

that in its present state, the model described represents only a single ‘element’ comprising the456

two alternate failure modes (brick and bed joint) connected in series. Further work is planned457

to quantify expected strength reductions in full cracks consisting of multiple such elements458

connected in parallel, and to investigate the effect of load redistribution under different levels of459

element ductility. The resulting methodology has numerous possible applications: The moment460

capacity of the mixed failure mode may be directly incorporated into a generalised virtual work461

approach for estimating the ultimate out-of-plane strength of various types of out-of-plane462

failure mechanisms (Lawrence and Marshall 2000; Baker et al. 2005; Vaculik et al. 2014). The463

outcomes can furthermore be used to provide a rational basis for the development of a partial464

safety factor design procedure for ultimate out-of-plane strength design.465

The purpose of the second method described in this paper is to estimate the expected466

likelihood of stepped failure versus line failure along vertical cracks. The proposed method467

shows good agreement with experimental tests on both small wallettes and full-sized walls.468

The usefulness of being able to predict the relative likelihood of the failure modes stems from469

their contrasting post-cracking behaviour—stepped cracks can maintain some residual frictional470

capacity, whereas line cracks are brittle and unable to carry any residual load (in typical non-471

arching wall configurations). Since previous experimental research (Willis et al. 2004) has472

demonstrated that the residual horizontal bending moment capacity of a vertical crack is effec-473

tively proportional to the amount of stepped failure along the crack, a direct implementation474

of the developed method is to use the predicted proportion of stepped failure [computed via475

equation (32)] as a strength reduction factor applied to the frictional post-cracking moment476

capacity (Vaculik et al. 2014). This residual moment capacity can then be implemented into a477

virtual work limit analysis approach for computing the overall residual strength of out-of-plane478

walls (i.e. in absence of any bond). A further potential application of the proposed method479

is the provide the basis for development of an analytical tool for checking whether vertical480

edge separation in two-way spanning walls is expected to occur following crack formation. The481

implication of these considerations is particularly important toward the out-of-plane seismic482

performance of wall panels.483
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APPENDIX I. NOTATION566

The following symbols are used in this paper.567

Variables and Operators:
C〈X〉 = coefficient of variation of X;

Char〈X〉 = characteristic value of X;
E〈X〉 = mean value of X;
fmt = flexural tensile strength of the bond;
fut = tensile modulus of rupture of the brick unit;
Fut = ratio of mean fut to mean fmt;
Gh = geometric constant;
hu = height of brick unit;
kbe = elastic torsion constant for rectangular section;
kline = geometric constant for line failure;
kstep = geometric constant for stepped failure;
lu = length of brick unit;
mu = ultimate moment per course of the masonry;
M̄ = moment per unit length of the crack;
n = total number of courses;

pX(x) = PDF of variable X at value x;
Pline = probability of line failure;
Pstep = probability of stepped failure;
PX(x) = CDF of variable X at value x;

r = bond shear strength coefficient for fmt;
Rstep = proportion of stepped failure along a crack;

568
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sb = bed joint overlap;
S〈X〉 = standard deviation of X;

tj = thickness of mortar joint;
tu = thickness of brick unit;
X̂ = mean value of X;
η = orthogonal strength ratio;
µ = bond shear strength coefficient for σv;
νu = Poisson’s ratio of brick unit;
σv = vertical axial stress;
Σv = ratio of σv to mean fmt;
τum = ultimate shear capacity of the bond; and
φ = strength reduction factor.

Subscripts:
char = characteristic strength;
const = constant component;
line = line failure;

mean = mean strength;
mix = mixed failure (stepped and line);
rand = random component; and
step = stepped failure.
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