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Probabilistic Analysis of Unreinforced Brick Masonry Walls
Subjected to Horizontal Bending

Jaroslav Vaculik!
and Michael C. Griffith?

ABSTRACT

Unreinforced masonry walls subjected to out-of-plane horizontal bending can fail by two alternate
modes: stepped failure along the brick-mortar bond, or line failure cutting directly through the bricks.
Because of random variations in material properties throughout a panel and the tendency for failure
to occur across the weaker elements, vertical cracks will generally exhibit a combination of the two
modes. This paper develops a pair of analytical methodologies which treat this phenomenon using a
stochastic approach. The first part deals with calculating the ultimate moment capacity by allowing
for the weakening effect associated with the mixed (stepped and line) mode of failure. This effect is
quantified in terms of strength reduction factors for mean and characteristic (0.05 quantile) values of
strength, which may be applied toward generic ultimate strength design. The second part deals with
estimating the relative probability of each failure mode and the probability distribution for the relative
proportions of each failure mode along a crack. This is of particular relevance to seismic performance,
as the two failure modes lead to significantly different post-cracking behaviour.

Keywords: unreinforced masonry; walls; horizontal bending; out-of-plane; probabilistic; weak
link

INTRODUCTION

The mechanical material properties of unreinforced masonry (URM) exhibit a high degree
of variability compared to other structural materials such as steel or concrete. Sources of this
variability include variations in the manufacturing process, quality of on-site workmanship,
environmental conditions during manufacture and construction, as well as random variations
in the materials themselves (Lawrence and Lu 1991). Nonetheless, probabilistic and reliability-
based limit states design procedures for URM structures are considered less advanced than for
other materials (Stewart and Lawrence 2002; Schueremans and Gemert 2006).

The flexural tensile bond strength of masonry (f,,:) is a key determinant of the ultimate
out-of-plane load-carrying capacity of URM wall panels, and the fact that its variability has
a significant influence on wall strength has long been recognised (Baker and Franken 1976).
In conventional ultimate limit state design procedures for URM walls in bending, direct un-
certainties arising from variability in the material strength properties are addressed by using
their characteristic (lower 5th percentile) values, which is further followed by application of a
strength reduction factor (inverse of a partial safety factor) to account for other uncertainties in
the strength computation procedure. For example, the Australian Masonry Standard AS 3700
(Standards Australia 2011) prescribes a strength reduction factor of 0.6 for ultimate strength
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design of walls in bending. However, the origin of such factors in masonry design codes can often
be traced back to conversion from working stress design to equivalent limit state design rather
than any rigorous reliability-based code-calibration, which means that the resulting safety levels
are not precisely known (Stewart and Lawrence 2002). In order to overcome this and validate
whether such factors are appropriate for design requires the development of procedures for esti-
mating the probability of failure using a rational theoretical framework which incorporates the
fundamental mechanics of out-of-plane URM wall response.

Over the years, numerous analytical studies have been undertaken to gain insight into the
influence of random variability in mechanical properties on the out-of-plane behaviour of wall
panels. The majority of these studies have tackled the problem through Monte Carlo simulation
in which material properties are randomly assigned throughout the panel and the overall wall
strength is then computed using a structural mechanics model. Early such works used elastic
plate solutions and elastic finite element modelling (FEM) to quantify initial cracking loads of
two-way spanning walls (Lawrence and Cao 1988; Lu and Lawrence 1991) as well as the ultimate
(peak) strength in both vertically and horizontally spanning one-way walls (Lawrence 1991).
In later work, Stewart and Lawrence (2002) described a generalised conceptual framework for
studying the stochastic reliability of URM walls in flexure and also compared several alternate
hypotheses in relation to load sharing between individual elements and their contribution to
the overall panel strength. With ongoing advances in computational efficiency and modelling
techniques for URM, recent works have employed nonlinear FEM to study the effects of mate-
rial variability on the ultimate strength of vertically, horizontally and two-way spanning walls
(Li et al. 2014; Li et al. 2016b; Li et al. 2016a). The outcomes of these studies have demon-
strated favourable comparisons to experimental behaviour both in terms of wall capacities and
failure mechanisms; however, due to the large computational effort and user expertise required
to run such analyses, they are unsuitable for common use by designers. This creates the need
for simplified ‘design’ techniques for estimating wall strength, which recognise the fundamen-
tal mechanics involved in out-of-plane flexural response whilst adequately accounting for the
stochastic influence of the material properties.

The present paper will focus on development of such methodology for brick URM walls sub-
jected to horizontal bending. Pure horizontal bending corresponds to an out-of-plane flexural
moment whose axis is oriented vertically, and can be generated by applying a lateral load to a
wall supported along its vertical edges using the arrangement shown in Figure 1. In full ma-
sonry panels within overall buildings, boundary conditions to generate pure horizontal bending
are not very common; however, the internal stress condition is approached in common two-way
spanning wall arrangements such as those shown in Figure 2 where horizontal bending causes
the formation of vertical crack lines in localised regions.

This paper will consider specifically single-leaf brickwork utilising a regular stretcher bond
pattern (refer Figure 1). In this type of masonry, vertical cracks can form by two distinct
modes [Figure 3 (a) and (b)]: stepped failure where the crack follows a toothed pattern along
the brick-mortar bond of bed joints and perpend joints, or line failure where the crack cuts
across brick units and perpend joints in a straight line. The tendency for either mode to
be favoured depends on the relative material strengths of the brick units and the masonry
bond. Vertical cracks rarely exhibit either of these failure modes exclusively; instead they tend
to develop a combination of the two as a result of local variation in the material properties
throughout the panel (Figure 3c). This has been experimentally demonstrated through tests on
both small-sized specimens and full-scale walls (Lawrence 1995; Willis et al. 2004; Griffith et al.
2007; Griffith and Vaculik 2007). And although advances have been made in development of
simple mechanics-based expressions for calculating the ultimate moment capacity with respect
to each failure mode for the purpose of design (Willis et al. 2004), these methods ignore the
fact that these modes can occur simultaneously. This gives rise to several issues which will now
be described in the context of the aims of this paper.

Firstly, the conventional approach for calculating the design strength of URM in horizontal
bending involves separately calculating the moment capacities for the stepped and line failure
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FIG. 1: Typical wallette beam test setup in which the specimen is subjected to pure horizontal
bending [identical to arrangement used by Willis et al. (2004)]. The brick masonry shown is
built with half-overlap stretcher bond.
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FIG. 2: Examples of horizontal bending regions in two-way spanning walls shown using idealised
cracking patterns. Horizontal bending regions are characterised by formation of vertical cracks
(highlighted). For clarity, all vertical cracks are shown as stepped.
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FIG. 3: Different possible failure modes in horizontal bending: (a) Pure stepped failure; (b)
Pure line failure; (c) Typical example of mixed failure.

modes using characteristic values of material properties and adopting the lower value (e.g. AS
3700). However, because crack formation is governed by weak link effects, it can be easily shown
that the characteristic strength of the mixed (stepped and line) failure mode will always be lower
than for either mode considered separately [e.g. using equation (21) provided later in this paper].
Thus by ignoring these stochastic effects, the conventional design approach has the potential to
be unconservative. The first analytical method proposed in this paper deals with quantifying
the weakening influence on the ultimate strength arising from weak link effects. Unlike most
previous analytical research into the influence of stochastic effects on URM bending strength
which has utilised Monte Carlo simulation, the present paper tackles the problem through
formulation of mechanics-based governing equations suitable toward design. It is the intent
that these equations can be subsequently incorporated into a generalised virtual work approach
(e.g. Lawrence and Marshall 2000; Baker et al. 2005; Vaculik et al. 2014), analogous to yield
line analysis, in order to predict the ultimate out-of-plane strength of two-way spanning walls.
Secondly, the mode of failure generated at the cracking stage has a major effect on the
residual (post-cracking) behaviour of the crack which influences the wall’s out-of-plane seismic
performance. This follows from the fact that interlocking units along a stepped crack are able to
maintain some residual strength via frictional mechanics and also contribute toward hysteretic
damping under cyclic loading (Griffith et al. 2007). By contrast, line failure is brittle and has
no residual moment capacity. A further detrimental effect can occur in two-way spanning walls
(e.g. Figure 2¢) where excessive line cracking along the supported vertical edges can cause the
mechanism to revert from two-way bending to one-way vertical bending, as observed in tests by
Griffith et al. (2007). Such effects are particularly important in URM structures, where alternate
modes of brittle failure caused by variation of material properties and wall configurations can
lead to significantly different post-cracking behaviour and therefore affect seismic performance
(e.g. Foraboschi and Vanin 2013). The contrasting post-cracking behaviour of stepped and
line cracks highlights the need to develop an analytical technique for predicting their relative
proportions along a crack, which is undertaken in the second half of this paper. It is anticipated
that the developed methodology could be incorporated as part of a limit analysis out-of-plane
wall assessment procedure that ignores the bond strength (e.g. Ordunia and Lourenco 2005;
Foraboschi 2014; Vaculik et al. 2014; Lagomarsino 2015; Casapulla and Portioli 2015).

THEORETICAL MODEL
The basis of the model is to formulate the probability distributions of the individual (stepped
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FIG. 4: Torsion about the centroid of a bed joint.

and line) failure modes by treating the key material properties as random variables. Then by
applying the weak link concept, the strength distribution of the mixed mode of failure as well
as the relative likelihood of either failure mode can be determined.

Moment Capacities for Basic Failure Modes

The upcoming analytical expressions are applicable specifically to single-leaf stretcher bond
masonry which is illustrated in Figure 4. Although alternate masonry bond patterns could also
be considered within the generalised stochastic framework proposed in this paper, refinement
of the fundamental moment capacity expressions would be necessary to suit such patterns.

Stepped Failure: Over a single masonry course, the ultimate moment capacity with respect
to stepped failure (Figure 3a) is calculated as

My step = kve Tum ti, (1)

which represents the torsional strength of a rectangular bed joint with thickness ¢,, and overlap
sp (Figure 4). In half overlap stretcher bond masonry, s, is calculated as

sp = (lu — tj) /2, (2)

where [, is the length of the brick unit, and ¢; is the mortar joint thickness. The expression
assumes that the joint fails once the maximum shear stress along the section as determined by
elastic theory (Timoshenko and Goodier 1934) reaches the shear stress capacity of the bond,
Tum- Due to the well-established experimental observation that perpend joints crack early in the
response (Base and Baker 1973; Lawrence 1995) any flexural contribution from perpend joints
is omitted. Parameter k. is a dimensionless coefficient relating the maximum shear stress in
a rectangular section to the applied torsion and is equal to 0.208 for square overlap (s, = ty,).
Equation (1) incorporates a slight refinement to an expression originally proposed by Willis
et al. (2004) in order to make it applicable to any overlap aspect ratio (sp/t,) as controlled
through k.. Values of kp. for bond patterns with generic values of overlap are provided in
Vaculik (2012).
To estimate T, within equation (1), Willis et al. (2004) proposed the expression

Tum = rfmt + poy, (3)
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where f,,; is the flexural tensile strength of the masonry and o, is the vertical stress acting
normal to the bed joint, whose respective coefficients were empirically calibrated as r = 1.6 and
© = 0.9 using small brickwork wallette tests.

It is worth noting that equations (1) and (3) represent uniaxial horizontal bending and ignore
any vertical bending on the section (i.e. biaxial bending) which would generate an eccentricity
of the acting normal stress. This is due to several reasons: The main practical application of
these moment capacity expressions is within a virtual work approach for estimating the strength
of two-way walls (Figure 2), and in such methods the actual internal moment demands along
cracks are not explicitly calculated, nor is it easy to calculate them. Additionally, in zones where
vertical cracks are generated, internal moment from vertical bending is generally expected to
be small in comparison to horizontal bending. Furthermore, the influence of a non-uniform
vertical stress distribution on the bed joint torsional capacity is expected to be relatively minor
in mortared masonry [due to dominance of the cohesion term in equation (3)] in comparison
to dry-joint masonry where friction provides the entirety of the resistance and therefore such
effects become much more important (Casapulla and Portioli 2015).

Line Failure: Over a single course, the moment capacity with respect to line failure is cal-
culated using the following expression by Willis et al. (2004):

1 hot?
My line = 5 (fut n Uv) 6 u7 (4)

where f,; is the lateral modulus of rupture of the brick unit, v, is the Poisson’s ratio of the

brick units (typically taken as 0.2), h,, is the height of the brick unit, and other variables as
defined previously. The capacity given by equation (4) is based entirely on the tensile strength
of the brick unit, and similarly to equation (1) it ignores any contribution from the perpend
joint. The expression also allows for the weakening influence on the flexural strength of the
unit arising from vertical axial load and Poisson’s effect.

The accuracy of equations (1)—(4) was originally validated by Willis et al. (2004) using flex-
ural tests on brick masonry wallettes (equivalent to that shown in Figure 1) by counting the
number of failed bed joints and bricks in each test specimen and summing their moment con-
tributions toward the overall crack. These calculations produced favourable correlation with
measured moment capacities; however, this validation process required a posteriori knowledge
of the relative proportions of each failure mode. Nonetheless, the fact that the expressions
were validated this way provides a sound basis for the development of the analysis techniques
proposed in this paper which are applicable a priori.

General Assumptions
The following general assumptions are made:

1. Local crack formation is assumed to be governed by the weak link concept applied over a
single course of bricks. A basic module over two courses is illustrated in Figure 5, where
it is seen that stepped failure occurs when two bed joints fail in torsion, or line failure
occurs when a single brick fails in flexure. The moment capacity of the mixed failure
mode over a single course is taken as the lesser of equations (1) and (4), that is:

My mix = mln(mu steps T, line) . (5)

2. Material properties f,,; and f,; are treated as randomly distributed variables. It is
assumed that these can be adequately represented by any of the normal, lognormal
and Weibull distributions, as substantiated in various works (Baker and Franken 1976;
Lawrence 1985; Heffler et al. 2008; Vaculik 2012). The typical range of variability of these
properties expressed as the coefficient of variation (CoV) (standard deviation divided by
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FIG. 5: Basic masonry module consisting of two courses of bricks.

the mean) is between 0.15 and 0.5, as demonstrated in the aforementioned references as
well as in-situ testing (McNeilly et al. 1996).

3. All other parameters in the governing equations (1)—(4) including brick unit and mortar
joint dimensions, axial stress, and Poisson’s ratio are treated as constants.

ULTIMATE STRENGTH CAPACITY

This section describes the procedure for computing the ultimate strength of the mixed
failure mode allowing for the weak link effect. Further to the assumptions stated previously,
it will be assumed that the peak moment capacities of the stepped and line failure modes are
reached simultaneously. This allows the total moment capacity to be taken as the direct sum
of the individual mode contributions. As mentioned previously, work by Willis et al. (2004)
demonstrated that calculations made on this basis produced good correlation with experimental
results. Because the characteristic strength is of particular interest towards design, f,,; and
fut will be represented using either of the lognormal and Weibull two-parameter distributions
which adopt only positive values and thus provide more representative behaviour at the lower
end tail (compared to the normal distribution).

Non-dimensional formulation of the governing equations

For convenience, let us consider the strength in horizontal bending in terms of the non-
dimensionalised orthogonal strength ratio, i, as this convention is often adopted in the literature
(e.g. Sinha 1978; Seward 1982) including Eurocode 6 (Comité Européen de Normalisation 2005):

n= Mh/M’LM (6)

where M, and M, are the moment capacities for horizontal and vertical bending, respectively,

in terms of the moment per unit length of the crack [N.B. The definition of the orthogonal

strength ratio in the literature is sometimes interchanged between equation (6) and its inverse].
It is also useful to define the non-dimensional quantities

FutEfut/fmtv (7)
and Yo = 0u/ frnt, (8)
where fmt and fut are mean values of the respective properties.

Recognising that in the absence of vertical compressive stress, the mean vertical bending
moment capacity per unit length of crack is

_ ~ 2
Mv:fmt Euv (9)

7 for ASCE J Eng Mech
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and converting the moment over a single course (m) to a moment per unit length (M},) using
Mj, = m/(hy+t;), the orthogonal strength ratios for stepped failure and line failure are obtained
by substituting equations (1), (3), (4), (8), and (9) into (6), which gives

fmt
Tlstep = kstep =+ kstep Dy, (10)
mt
=TMstep,rand =Tstep,const
and s
ut
Mine = kline = - kline Uy ZJv . (11)
mt
—_———
=Mline,rand =Mline,const

All information in equations (10) and (11) that relates to unit geometry is contained within
the constants

Gkbe ty
kstep = , 12
tep hu + tj ( )
and Kline = _ T (13)
line — Q(hu +t])

PDFs and CDFs

The moment capacities of the individual failure modes [equations (10) and (11)] each con-
tain a random component proportional to the material strength (f,: or fu:), plus a constant
component due to vertical stress. Each random component must have the same type of under-
lying distribution and CoV as the related material property. For a generic parameter X, let
us use E(X) to denote its expected value (mean), and C(X) to denote its CoV. The random
component of capacity in stepped failure, nsep rand, is distributed such that:

E<nstep,rand> = kstep T, (14)

C<nstep,rand> = C<fmt> . (15)
Similarly, for line failure:

E<n1ine,rand> = kline Futv (16)

C<7]1ine,1rand> = C<fuf> . (17)

From this, the probability density functions (PDFs) and cumulative distribution functions
(CDFs) of nstep and miine can be formulated. For stepped failure, the PDF at the value n = x is

Prreses (£) = Prgep,rana (T = Nstep,const) » (18)

and the CDF is
Pnstep (Z‘) = Pn:;tep,rand (3;‘ - nstep,const) . (19)
The same can be rewritten for line failure.
Since the weak link hypothesis [equation (5)] defines nmix as the lesser of pairs of random
variables drawn from 7scp and 7Mine, according to joint probability theory the PDF and CDF
of the mixed failure mode are, respectively

Primix (m) = pnstep (.’)3) [1 - Pminc (‘r)] + Prtine (33) [1 - Pnstep (3?)] ’ (20)

and
P (@) = P (2) + Py (@) — Py, (2) Py () (21)

8 for ASCE J Eng Mech
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FIG. 6: Example of predicted probability distribution functions (PDF top, CDF bottom) for the
strength (n) of the stepped, line and mixed failure modes. The example considers 230 x 110 x 76
mm units and 10 mm thick mortar joints, with F,;; = 6 and X, = 0.1. Material properties f;
and f,; are modelled by Weibull distribution with CoV = 0.3. The functions demonstrate that
the strength of the mixed failure mode is lesser than either of the fundamental modes considered
individually.

The model described is suited for implementation using computer software where the PDFs
and CDFs of the probability distributions of interest can be programmed-in as functions. Figure
6 portrays an example which considers standard Australian clay brick units with dimensions
230 % 110 x 76 mm (I,, X t,, X hy,) and 10 mm thick mortar joints (¢;), and furthermore assumes
that v, = 0.2, r = 1.6 and p = 0.9 (Willis et al. 2004). In this example, the ratio of brick
strength to bond strength is F,; = 6 and the ratio of axial stress to bond strength is >, = 0.1.
The Weibull distribution is used to represent f,,; and f,: at CoV = 0.3. The plots demonstrate
the reduction in strength caused by weak link effects for both mean and characteristic values.

Mean and characteristic values of strength

The mean values of 7sep and mine can be obtained directly by assigning mean values of the
respective tensile strengths f,,,+ and f,; into equations (10) and (11), which gives

E<nstep> = kstep (T + EU) y (22)
and E<nline> = kline (Fut — Uy Ev) . (23)

The mean value of ny,;x however has to be computed numerically, since its PDF and CDF as
given by equations (20) and (21) will not generally follow any common distribution. This can
be done by numerically integrating the first moment of the PDF.

Characteristic values of 7step, Miine and Nmix are also easily obtained numerically by solving
for the n value at which the CDF equals 0.05.

Strength reduction factors
A convenient way to quantify the weakening effect is in terms of a strength reduction factor
(¢), defined as the ratio of the strength of the mixed failure mode to the lesser of strengths for

9 for ASCE J Eng Mech
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the individual modes; i.e. for mean strength:

E(nmix>
mean — T . 24
? mln(E<nstep> aE<771ine>) ( )
and for characteristic strength:
Char mix
¢char = <77 > (25)

min(Char (Nstep) ; Char (Mine))’

For example, in the scenario shown in Figure 6, the mean-strength reduction factor is ¢yean =
2.34/2.64 = 0.89, and the characteristic-strength reduction factor is @enay = 1.19/1.31 = 0.91.
Therefore in limit state design, which uses characteristic properties, weak link effects would gen-
erate a 9% reduction in strength compared to the conventionally calculated value, e.g. according
to AS 3700 (Standards Australia 2011).

To examine conditions under which the strength reduction becomes most severe, ¢y ean and
dcnar Were computed for standard Australian clay brick masonry in terms of F,; versus X,
as plotted in Figure 7. Material strengths f,,; and f,; were represented using the Weibull
distribution, and their CoV of was taken as 0.3 which is considered typical.

A notable feature of Figure 7 is the presence of distinct regions in the F;-3, space where
the reduction in strength is most pronounced. These occur where the strengths of the indi-
vidual failure modes are similar in magnitude, thus causing the mixed failure mode to become
dominant. The graphs also demonstrate that the most adverse strength reduction occurs at
zero axial stress (X, = 0) at F,; &~ 6.5. This critical value of F,; can be calculated as

.. kste
critical Fiy =1 P

kline ’ (26)
It is worth noting that F,; = 6.5 is well within the typical range observed in practice; hence,
these effects should not be ignored.

The greatest possible strength reduction that can occur at a given level of material strength
variability (as CoV) is plotted in Figure 8. It is seen that the reduction is sensitive to the type
of distribution chosen to represent the material properties, and that the Weibull distribution is
associated with a greater reduction in strength than the lognormal distribution. The difference
between the two distributions is greatest in relation to the characteristic strength. This trend
can be explained by the fact that the Weibull distribution has a fatter lower end tail than the
lognormal distribution.

The plot in Figure 8 also demonstrates that considerable strength reduction can develop
at typical levels of material strength variability. For instance, at CoV = 0.3, which is deemed
typical on the basis of in-situ tests by McNeilly et al. (1996), there is a 17% reduction in
strength. At CoV = 0.5, which is the largest level of variability observed in that study, a 28%
reduction occurs. Nonetheless, allowance for this level of reduction appears to be adequately
provided by the capacity reduction factor ¢ = 0.6 prescribed by AS 3700 for bending design.

EXPECTED LIKELIHOOD OF EACH FAILURE MODE

For the purpose of estimating the relative probabilities of each failure mode, it will be
assumed that f,,; and f,; follow the normal distribution, which allows for some useful simplifi-
cations of the governing formulae. Allowance is also made to treat Poisson’s ratio of the brick
unit (1) as a normally distributed random variable.

Probability of Each Failure Mode in a Single Course
Let us consider the probability of stepped failure, denoted as Pstop, Which occurs when
My step < My line- USIng equations (1)—(4) this can be written as

rfmt+ﬂJU<Gh(fut_Vqu)7 (27)

10 for ASCE J Eng Mech
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FIG. 7: Isolines of strength reduction factors for clay brick masonry with 230 x 110 x 76 mm
units and 10 mm thick mortar joints. Material properties f,,; and f,; are modelled by Weibull
distribution with CoV = 0.3. The plots demonstrate distinct regions in the F,;-3, space where
the weak link effect is most pronounced, which coincides with zones where the strength of the
individual modes are comparable in magnitude.
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FIG. 8: Strength reduction factors corresponding to the maximum possible strength reduction
that can occur at any given level of material strength (f,,; and f,;) variability as defined by
the CoV. This point of maximum strength reduction corresponds to the critical value of F,,; as
given by equation (26).

where % h

_ line _ U ) (28)
kstep 12 ty kbe

Inequality (27) contains the randomly distributed variables fy+, fut and v,,. By assuming that
each is normally distributed, the inequality can be reduced to 0 < wu, where u is a normally

distributed dummy variable which has the mean

G

E(u) = GpFyt —r — Xy (GhE(wy) + 1), (29)
and variance
S(u)” = (GrFuC(fur))” + (rC(fme))” + (ZoGaBva) C(v))*. (30)

From this, the basic probability that a single course undergoes stepped failure (Pitep) is deter-
mined by computing the probability that v > 0, such that

Piep =1 — Piine = Pr(u>0) =0y (M) , (31)
where ®x(---) is the CDF of the standard normal distribution.

The solution of equation (31) is illustrated for standard Australian clay brick units and
CoV = 0.3 in Figure 9, by plotting contour lines of the probability of stepped failure versus
F,: and X,,. The figure demonstrates that stepped failure becomes more likely as the brick-to-
bond strength ratio (F,;) increases, and less likely at higher levels of axial stress (X,). This
latter trend arises due to a combination of axial stress having both a strengthening influence on
stepped failure due to internal friction and a weakening influence on line failure due to Poisson’s
effect.

The influence of higher variability (CoV) in the material properties (fit, fut and v,) on
the plot in Figure 9 would be to increase the spread of the contour lines relative to the median
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FIG. 9: Isolines of the probability of stepped failure (Psep = 1 — Pine) for clay brick masonry
with 230 x 110 x 76 mm units and 10 mm thick mortar joints. Material properties f,,; and f,;
are modelled by normal distribution with CoV = 0.3.

contour line, whereby the median contour line corresponds to Py, = 0.5 and represents equal
probability of stepped and line failure. In other words, masonry with highly variable material
properties will tend to develop closer amounts of stepped and line failure. The median contour
line is unaffected by the CoV and can be determined from equation (29) by setting E({u) = 0.

Relative Proportions of Each Failure Mode

An example of a potential practical application of the developed methodology would be in
predicting the residual moment capacity of a vertical crack, where it is necessary to be able to
estimate the relative proportion of each failure mode. Let us denote the proportion of stepped
failure as Rgtcp, the total number of courses as n, and the number of courses undergoing stepped
failure as k. If we assume that all masonry courses are independent in terms of their material
properties, then k will follow the binomial distribution and have the CDF":

k
Tl' i —1
PrX < k) =D i —r Poer’ (1= Puaen)"™

1=

(32)

from which the proportion of stepped failure is determined as Rgtep = k/n.

Over any number of courses (n), the expected value of Rgep, is equivalent to Pyyep. However,
the characteristic (0.05 quantile) value of Rgiep, which may be of interest in design, becomes
dependent on n as plotted in Figure 10. It is seen that Char(Rgep) decreases with reducing n,
and conversely, it asymptotically approaches Picp as n increases. This is because over a large
number of courses it is less likely that Rgcp will deviate significantly from Piep, whereas over
fewer courses it becomes more likely.

COMPARISON WITH EXPERIMENT
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FIG. 10: Characteristic value of the proportion of stepped failure (Rsiep) versus the basic
probability of stepped failure (Pyep) for varying number of masonry courses. Over a large
number of courses Char(Rsiep) approaches Pyep, but if the number of courses is small then
Char(Rgep) can become considerably smaller than Psgep.

Tests on Small-Sized Wallettes

Accuracy of the analytical methods was examined using results of bending tests on small-
sized wallettes undertaken by Willis (2004) (also reported in Willis et al. 2004). It is important
to note that these tests were part of the data set that Willis used to calibrate the empirical
parameters r and g in equation (3), and as such, one would expect the correlation between
the measured and predicted moment capacity to already be good. However, since the main
focus of the present comparisons is the stochastic nature of response, which was not previously
addressed by Willis, the use of this data set is still valuable.

This experimental study involved four-point-bending tests on wallettes 6 courses tall and
3.5 bricks long (approx. 440 mm by 840 mm) using the arrangement shown in Figure 1. The
wallettes were constructed using 230 x 114 x 65 mm clay brick units and 10 mm mortar joints. It
is worth noting that the constant peak moment zone was applied across a length of a single half-
overlap bed joint (s, as shown in Figure 4) to facilitate failure within this zone. Five sets of tests
were performed: In the first four, the walls were oriented vertically and subjected to different
levels of precompression levels, including 0, 0.075, 0.15, and 0.25 MPa. The fifth set involved
walls oriented horizontally with no precompression. Each set included five repetitions, giving a
total of 25 individual tests. Material properties f,,; and f,; were quantified separately through
material tests on the individual batches of mortar and brick units used in the construction of
the wallettes— f,,,; was quantified using bond the wrench test as prescribed by AS 3700, and f,;
was determined from four-point-bending tests on beam specimens comprising three bricks glued
together end-to-end. From these tests, mean values and CoVs of the properties were quantified
for use in the present analysis (Table 1).

Figure 11 compares the measured strength to predictions made using two alternate ap-
proaches: firstly with the ‘conventional’ approach as the direct minimum of the mean values
for stepped and line failure (Figure 11a), and secondly with the developed stochastic approach
where the mean strength was computed as the first moment of the PDF defined by equation
(20) (Figure 11b). Additional detail of these analyses is presented in Table 1, including material
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(a) Strength calculated as minimum of stepped and line failure
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FIG. 11: Comparison of predicted and experimentally measured ultimate strength in small-
sized (six course) wallettes. Predicted values were calculated using mean values and CoVs of
material properties measured experimentally.
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FIG. 12: Comparison of predicted and experimentally observed proportion of stepped failure
in small-sized (six course) wallettes. Mean values for each precompression data set are shown
using solid circles. Predicted values were calculated using mean values and CoVs of material
properties measured experimentally.

properties, analysis results, and experimental results for each specimen. The average ratio of
the predicted to experimental strength is 0.88 for the conventional method and 0.80 for the
stochastic method. That the conventional method gives slightly closer correlation with the test
results is not surprising given that this data set was used by Willis to calibrate the coefficients in
equation (3). It is also possible that by not allowing for the stochastic effects, these coefficients
may have been slightly underestimated in Willis’ calibration process.

For the same data set, the proportion of stepped failure observed experimentally is compared
to the value predicted using equation (31) in Figure 12. The plot demonstrates fairly large
scatter in the individual experimental values of Rgep, which is not unexpected given the small
number of courses in each wallette (n = 5). By considering the mean values at each level
of precompression (solid circles in Figure 12), it can be seen that both the experimental and
predicted values exhibit a trend where Rsiep reduces with increasing precompression (with the
exception of the ‘H’ specimens). On average, the proposed method underpredicts Rggep in the
test specimens by a difference of 0.25 indicating that it is slightly conservative.

The fact that the proposed methodology underestimates the strength of the wallettes (Figure
11b) while underpredicting the proportion of stepped failure (Figure 12) suggests that Willis’
expression [equation (4)] may be slightly underestimating the basic strength in line failure, pos-
sibly because it ignores any flexural contribution from the perpend joints. It is worth noting
that the line failure moment capacity expression presently prescribed in AS 3700 includes both
a brick flexure component ( f,;-proportional) plus a perpend flexure component equal to the full
elastic moment capacity of the perpend section (f,,+ Z); however as evidenced experimentally,
a full contribution from perpends is not justifiable due to early cracking (Base and Baker 1973;
Lawrence 1995). It is nonetheless conceivable that a partial contribution from perpends may
still be active at the point that the brick units reach their peak flexural strength, which is sup-
ported by the present results. Modification of the proposed stochastic methodology to include
a fmi-proportional perpend contribution into equation (4) would be relatively straightforward.
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FIG. 13: Comparison of predicted and experimentally observed proportion of stepped failure
along the fully fixed vertical edges of full-scale walls. Predicted values were calculated us-
ing mean values and CoVs of material properties measured experimentally. Data points are
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However, due to uncertainty as to the extent of the perpend contribution, undertaking such an
exercise is beyond the scope of this paper.

Tests on Full-Scale Walls

The accuracy of the proposed method for predicting the expected likelihood of the alternate
failure modes was evaluated using out-of-plane cyclic loading tests on full-scale walls reported
in Griffith et al. (2007). This data set included eight walls constructed using 230 x 110 x 76
mm cored clay brick units and 10 mm thick mortar joints. All walls were nominally 2.5 m tall
(29 courses of bricks) and either 4.0 m (6x) or 2.5 m (2x) long; six of the eight walls had a
window opening; and four of the walls were subjected to vertical precompression of either 0.05
or 0.10 MPa. Each wall had short return walls at its lateral edges which were restrained so as to
create full moment fixity at the vertical edges of the main wall face (idealised support conditions
depicted in Figure 2¢). The walls were tested under cyclic face loading applied using airbags
positioned on both faces of the wall. Upon loading, the walls underwent two-way bending which
caused vertical cracks along the lateral edges. Further detail of these experimental arrangements
is provided in Griffith et al. (2007).

The expected proportion of stepped failure was computed using equation (31). Material
properties used as input in the analyses were quantified through tests on small-sized specimens
using the same techniques as in the tests by Willis, described previously. The experimental
value of Rgtcp was determined by examining the crack patterns at the conclusion of the tests
and counting the number of failed brick units and bed joints along the vertical edges of the
walls. Note that in three of the walls, an asymmetrically positioned opening meant that the
vertical crack was only partially developed along the edge closer to the opening, and these cases
are ignored. A detailed summary of these analyses is presented in Table 2. Comparison of the
predictions with experiment is shown in Figure 13. The method has favourable accuracy with
the average error in Rgep, being equal to +0.01 (taken as the difference between the calculated
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and observed values). The precision of the predictions is also favourable, with nine of the 13
cases falling within the +0.1 band. The fact that these results show less scatter than results
for the small-sized wallettes is consistent with an averaging effect due to a greater number of
brick courses.

CONCLUDING REMARKS

This paper has described a pair of methodologies for the analysis of unreinforced brick ma-
sonry walls in horizontal bending which account for weak link effects involved in the crack for-
mation process. The methods employ a probabilistic treatment of simplified design expressions
for moment capacities of the stepped and line failure modes where the mechanical properties
are represented as random variables.

The first method considers the ultimate bending strength of the mixed (combined stepped
and line) failure mode, whose probability distribution functions are formulated by taking the
strength as the lesser of the stepped and line failure modes. The strength reduction that occurs
due to weak link effects was quantified for both the mean and characteristic values of ultimate
strength, the latter being relevant toward design. These predictions indicate that for typical
levels of material strength variability (CoV = 0.3) there can be up to a 17% reduction in
strength compared to conventional design methodology; whilst at the upper end of variability
levels observed in practice (CoV = 0.5) this reduction could be as high as 28%. It is emphasised
that in its present state, the model described represents only a single ‘element’ comprising the
two alternate failure modes (brick and bed joint) connected in series. Further work is planned
to quantify expected strength reductions in full cracks consisting of multiple such elements
connected in parallel, and to investigate the effect of load redistribution under different levels of
element ductility. The resulting methodology has numerous possible applications: The moment
capacity of the mixed failure mode may be directly incorporated into a generalised virtual work
approach for estimating the ultimate out-of-plane strength of various types of out-of-plane
failure mechanisms (Lawrence and Marshall 2000; Baker et al. 2005; Vaculik et al. 2014). The
outcomes can furthermore be used to provide a rational basis for the development of a partial
safety factor design procedure for ultimate out-of-plane strength design.

The purpose of the second method described in this paper is to estimate the expected
likelihood of stepped failure versus line failure along vertical cracks. The proposed method
shows good agreement with experimental tests on both small wallettes and full-sized walls.
The usefulness of being able to predict the relative likelihood of the failure modes stems from
their contrasting post-cracking behaviour—stepped cracks can maintain some residual frictional
capacity, whereas line cracks are brittle and unable to carry any residual load (in typical non-
arching wall configurations). Since previous experimental research (Willis et al. 2004) has
demonstrated that the residual horizontal bending moment capacity of a vertical crack is effec-
tively proportional to the amount of stepped failure along the crack, a direct implementation
of the developed method is to use the predicted proportion of stepped failure [computed via
equation (32)] as a strength reduction factor applied to the frictional post-cracking moment
capacity (Vaculik et al. 2014). This residual moment capacity can then be implemented into a
virtual work limit analysis approach for computing the overall residual strength of out-of-plane
walls (i.e. in absence of any bond). A further potential application of the proposed method
is the provide the basis for development of an analytical tool for checking whether vertical
edge separation in two-way spanning walls is expected to occur following crack formation. The
implication of these considerations is particularly important toward the out-of-plane seismic
performance of wall panels.
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APPENDIX I. NOTATION

The following symbols are used in this paper.
Variables and Operators:

C(X) = coefficient of variation of X;
Char(X) = characteristic value of X;
E(X) = mean value of X;
fmt = flexural tensile strength of the bond;
fut = tensile modulus of rupture of the brick unit;
F,: = ratio of mean f,; to mean f,,;
G = geometric constant;
h, = height of brick unit;
kye = elastic torsion constant for rectangular section;
kine = geometric constant for line failure;
kstep = geometric constant for stepped failure;
l, = length of brick unit;
m, = ultimate moment per course of the masonry;
M = moment per unit length of the crack;
n = total number of courses;
px(z) = PDF of variable X at value z;
Pine = probability of line failure;
Pyep = probability of stepped failure;
Px(x) = CDF of variable X at value z;
r = bond shear strength coefficient for f,¢;
Rstep = proportion of stepped failure along a crack;
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Subscripts:

char
const
line
mean
mix
rand
step

bed joint overlap;

standard deviation of X

thickness of mortar joint;

thickness of brick unit;

mean value of X;

orthogonal strength ratio;

bond shear strength coefficient for o,;
Poisson’s ratio of brick unit;

vertical axial stress;

ratio of o, to mean f,;;

ultimate shear capacity of the bond; and
strength reduction factor.

characteristic strength;

constant component;

line failure;

mean strength;

mixed failure (stepped and line);
random component; and
stepped failure.
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