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Abstract

Methicillin-resistant coagulase-positive staphylococci (CoPS) have become increasingly

recognised as opportunistic pathogens that limit therapeutic options in companion animals.

The frequency of methicillin resistance amongst clinical isolates on an Australia-wide level

is unknown. This study determined antimicrobial susceptibility patterns for CoPS isolated

from clinical infections in companion animals (dogs, cats and horses) as part of the first

nation-wide survey on antimicrobial resistance in animal pathogens in Australia for a one-

year period (January 2013 to January 2014). Clinical Staphylococcus spp. isolates (n = 888)

obtained from 22 veterinary diagnostic laboratories were identified by MALDI-TOF mass

spectrometry and subjected to antimicrobial susceptibility testing for 16 antimicrobials, rep-

resenting 12 antimicrobial classes. Potential risk factors associated with methicillin resis-

tance in Staphylococcus pseudintermedius isolates from dogs were analysed based on

demographic factors and clinical history, including gender, age, previous antimicrobial treat-

ment, chronic and/or recurrent diseases and site of infections. The most commonly identi-

fied CoPS were S. pseudintermedius (70.8%; dogs n = 616, cats n = 13) and S. aureus

(13.2%, horses n = 53, dogs n = 47 and cats n = 17). Overall, the frequency of methicillin

resistance among S. pseudintermedius (MRSP) and S. aureus (MRSA) was 11.8% and

12.8%, respectively. MRSP isolates were strongly associated with resistance to fluoroquino-

lones (OR 287; 95%CI 91.2–1144.8) and clindamycin (OR 105.2, 95%CI 48.5–231.9).

MRSA isolates from dogs and cats were also more likely to be resistant to fluoroquinolones

(OR 5.4, 95%CI 0.6–252.1), whereas MRSA from horses were more likely to be resistant to

rifampicin. In multivariate analysis, MRSP-positive status was significantly associated with

particular infection sites, including surgical (OR 8.8; 95%CI 3.74–20.7), and skin and soft tis-

sue (OR 3.9; 95%CI 1.97–7.51). S. pseudintermedius isolated from dogs with surgical site

infections were three times more likely to be methicillin-resistant if cases had received prior

antimicrobial treatment. Whilst the survey results indicate the proportion of CoPS obtained

from Australian companion animals that are methicillin-resistant is currently moderate, the
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identified risk factors suggest that it could rapidly increase without adequate biosecurity and

infection control procedures in veterinary practice.

Introduction

Coagulase-positive staphylococci (CoPS) cause a range of infections such us bacteraemia, uri-

nary tract infections, pyoderma, abscess and wound infections in both humans and animals

[1]. Infections are compounded by the emergence of methicillin-resistant strains that have

acquired mecA or mecC imparting resistance to all the beta-lactams with the exception of a few

anti-staphylococci cephalosporins [2]. The major methicillin-resistant CoPS that cause clinical

infections are methicillin-resistant Staphylococcus aureus (MRSA) in both humans and animals

[3], and methicillin-resistant S. pseudintermedius (MRSP) in dogs and cats [4]. MRSA and

MRSP isolates are often resistant to multiple classes of critically important antimicrobials

(CIAs) including fluoroquinolones and aminoglycosides, thereby limiting therapeutic options

to treat these infections. In recent years, studies have demonstrated the emergence and clonal

spread of MRSA in companion animals (defined here as dogs, cats and horses), and livestock,

with potential for bi-directional transmission of these strains between animals and humans

[5–7].

In companion animals, distinct MRSA clones appear to colonise specific animal host spe-

cies. For example, healthcare associated MRSA clone ST22 (EMRSA-15) is most commonly

isolated from dogs and cats while community associated MRSA CC 8 (ST8, ST612 and ST254)

clones are host-adapted to horses [8]. A recent study by Harrison et al. has also demonstrated

that globally disseminated MRSA ST22-IV strains can colonise and cause infection in humans,

dogs, and cats without undergoing typical host adaption involving loss or acquisition of anti-

microbial resistance and/or prophage genes [9]. These studies demonstrate the need for under-

standing the ecology and distribution of MRSA clones in companion animals.

Parallel to the emergence of MRSA in companion animals, MRSP has recently emerged in

dogs and cats as a cause of skin and soft tissue, post-surgical site and urinary tract infections.

Globally, the frequency of MRSP infections in dogs and cats has been increasing and MRSP is

now considered to be one of the most important pathogens in small animal medicine [10].

This is attributed to the global spread of MRSP clones and the associated resistance to other

CIAs such as fluoroquinolones and aminoglycosides. Unlike MRSA in companion animals,

MRSP is not a major zoonotic pathogen and has limited public health impact [10]. However,

due to the limited therapeutic options to treat MRSP infections they are now a major animal

health issue and require careful monitoring and management [11].

Various studies have demonstrated carriage and zooanthroponotic transmission of MRSA

and other multidrug-resistant staphylococci [12] between animals and humans. Consequently,

many countries have established surveillance programs to monitor emerging antimicrobial

resistance in animals, although companion animals are generally poorly represented in these

activities. The frequency and antimicrobial resistance profile of clinical staphylococci in com-

panion animals has been reported in Asia [13, 14], Africa [15], North America and Europe

[16]. Sweden and Norway are among the few countries that monitor the occurrence of these

resistant strains regularly [17, 18], enabling more accurate estimation of frequency, trends and

antimicrobial resistance profiles to be compared on a yearly basis.

In Australia, several one-off studies have documented the recent emergence of MRSA and

MRSP as causes of clinical infections as well as carriage by healthy companion animals [11,
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19–21]. In addition, carriage of MRSA by Australian veterinarians involved in clinical practice

has been well documented with the highest rates of carriage in equine veterinarians (21.4%),

mixed-practice veterinarians (11.8%) and those who work exclusively with dogs and cats

(4.9%) [7, 19, 22]. However, the frequency of methicillin resistance amongst isolates from

infections in companion animals on an Australia-wide level is currently unknown. Therefore,

in the present study, we undertook the first national survey of antimicrobial resistance in

CoPS isolated from clinical infections in Australian companion animals. The aims were to

define the distribution of CoPS species causing clinical infection in companion animals, the

frequency of antimicrobial resistance (particularly methicillin resistance and multidrug resis-

tance) and to examine potential risk factors that may contribute to the occurrence of methicil-

lin-resistant strains amongst the most prevalent species.

Materials and methods

Isolate collection and identification

The CoPS isolates were collected during the first national survey of antimicrobial resistance in

Australian animal pathogens, which took place over 12 months (January 2013 to January

2014) with the cooperation of all veterinary diagnostic laboratories in each Australian state

and territory (n = 22) [23]. Submitting laboratories were instructed to forward coagulase-posi-

tive isolates that were considered to be clinically relevant to the presenting condition, as judged

by the diagnostic microbiologist. The bacteria were isolated from swabs taken from site of

infections or clinical specimens (e.g. urine, biopsies) collected by veterinarians and submitted

to veterinary diagnostic laboratories for routine culture and susceptibility testing. All confiden-

tial information such as animal name, owner name, address and contract information was

removed by the participating veterinary diagnostic laboratories before sending the isolates and

clinical information to The University of Adelaide reference laboratory for this study. As a

result this study did not require animal ethics approval, as per the Australian National Health

and Medical Research Council, Animal Research Ethics code.

Prior to cryopreservation in 20% glycerol broth, isolates were confirmed for purity and hae-

molysis pattern on Columbia sheep blood agar (SBA; Thermo Fisher Scientific Australia), and

identified to genus level using standard phenotypic tests including Gram-stain and the catalase

test. A total of 888 isolates were collected in this study, originating from dogs (n = 743, 83.7%),

cats, (n = 77, 8.7%) and horses (n = 68, 7.7%). To confirm the identity of staphylococci isolates

to species level, all isolates were subjected to MALDI-TOF (Bruker) according to the manufac-

turer’s protocol for bacterial identification.

Antimicrobial susceptibility testing and interpretation

Minimum inhibitory concentrations (MICs) were determined by the broth microdilution

method of the Clinical Laboratory Standards Institute (CLSI) [24] (Table 1). A total of 16 antimi-

crobial agents from 12 antimicrobial classes were investigated including aminoglycosides

(AMK); ansamycins (RIF); β-lactam/β-lactamase inhibitor combinations (AMC); β-lactams

(OXA); fluoroquinolones (CIP, ENR, MRB and PRA); folate-pathway inhibitors (SXT); 1st gen-

eration cephalosporins (CEF); 2nd generation cephamycin (FOX); 3rd generation cephalosporins

(CVN and CRE); lincosamides (CLI); phenicols (CHL); and tetracyclines (TET). Antimicrobials

were obtained from Sigma Aldrich (Australia) and Zoetis (Australia). Staphylococcus aureus
ATCC 25923 and ATCC 29213 were used as control strains. MIC results were interpreted as

resistant (R), susceptible (S) and intermediate (I, if available), according to veterinary specific

and human approved interpretative criteria per Clinical and Laboratory Standards Institute

(CLSI) VET01S guidelines [25]. When clinical breakpoints were not available in CLSI, MICs
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were interpreted based on epidemiological cut-off values (ECOFFs) as non-wild type (non-WT)

organisms derived from assessment of the MIC distribution using ECOFFinder [26, 27] and/or

as published by European Committee on Antimicrobial Susceptibility Testing (EUCAST) [28] as

presented in Table 1.

For S. pseudintermedius, veterinary specific breakpoints were used for AMK, AMC, CLI,

ENR, MRB, PRA and TET; human interpretative criteria were used for CHL, CIP, OXA, RIF

and SXT and ECOFF criteria as defined by ECOFFinder were used for CVN, FOX, CRE and

CEF. For S. aureus, veterinary specific breakpoints were used for AMK, AMC, CEF, CLI, ENR,

MRB, PRA and TET; human interpretative criteria were used for FOX, CHL, CIP, OXA, RIF

and SXT; ECOFF criteria were used for CVN (defined by ECOFFinder) and CRE (defined by

EUCAST). In this study, we used breakpoints for CEF of�0.5 μg/mL instead of�8 μg/mL for

S. pseudintermedius as stated in CLSI VET01S in order to correspond with ECOFF criteria and

presence of mecA genes in the isolates. Also, for dog and horse isolates, the veterinary specific

breakpoint for AMC of�1/0.5 μg/mL was used for isolates from skin and soft tissue infections

(SSTIs) and the breakpoint�16/8 μg/mL (non-susceptible) was used for isolates from urinary

tract infections (UTIs). For cat isolates, a breakpoint for AMC of�1/0.5 μg/mL was used for

both SSTIs and UTIs.

Isolates showing resistance to three or more antimicrobial classes interpreted by clinical

breakpoints were classified as multidrug-resistant (MDR) [29]. The frequency of antimicrobial

resistance according to established breakpoints were described as rare: <0.1%; very low: 0.1%

to 1.0%; low:>1% to 10.0%; moderate: >10.0% to 20.0%; high: >20.0% to 50.0%; very high:

>50.0% to 70.0%; and extremely high: >70.0%; according to the European Food Safety

Authority (EFSA) and the European Centre for Disease Prevention and Control (ECDC) [30].

Confirmation of methicillin resistance status

Phenotypic confirmation of methicillin resistance status for putative MRSA and MRSP strains

was assessed using resistance to cefoxitin and/or oxacillin, as well as colony appearance on Bril-

liance™ Agar MRSA2 (Thermo Fisher Scientific, Australia). Additionally, mecA PCR [31] was

undertaken on all S. aureus isolates with cefoxitin MICs�8 μg/mL and all S. pseudintermedius

Table 1. Antimicrobial agents and MIC breakpoints (μg/mL) used in this study based on CLSI VET01S and ECOFFs criteria.

Antimicrobial agent Code S. pseudinternedius S. aureus

Amikacin AMK �16 �16

Amoxicillin-clavulanate AMC �1/0.5;�16/8 �1/0.5;�16/8

Cefovecin CVN �1 �4

Cefoxitin FOX �1 �8

Ceftriaxone CRE �4 �16

Cephalothin CEF �0.5 �8

Chloramphenicol CHL �32 �32

Ciprofloxacin CIP �4 �4

Clindamycin CLI �4 �4

Enrofloxacin ENR �4 �4

Marbofloxacin MRB �4 �4

Oxacillin OXA �0.5 �4

Pradofloxacin PRA �2 �2

Rifampicin RIF �4 �4

Tetracycline TET �1 �1

Trimethoprim-sulfamethoxazole SXT �4/76 �4/76

https://doi.org/10.1371/journal.pone.0176379.t001
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isolates with oxacillin MICs�0.5 μg/mL as recommended by CLSI VET01S [25]. Methicillin-

resistant staphylococci were reported as resistant to all penicillins, cephems and β-lactams/β-lac-

tamase inhibitor combinations regardless of in vitro test results with those agents [24].

Risk factor analysis

Of the 794 CoPS isolates analysed in this study, a total of 661 (dogs n = 597, 90.3%; cats n = 16,

2.4%; horses n = 35, 5.3%) were accompanied by a detailed clinical history. However, due to

low sample size, only S. pseudintermedius isolates from dogs (n = 555) were further interro-

gated in the risk factors study. S. pseudintermedius that were methicillin-resistant (n = 68) were

used as the outcome in this analysis. The variables for potential risk factors were gender (male

or female), age group (<2 years, 2–10 years or >10 years), previous antimicrobial treatment

(yes/ no), chronic and/or recurrent diseases (yes/ no), and site of infection (ear, urinary tract,

skin and soft tissue, surgical site or respiratory tract). Initially, univariate analyses were used to

assess the effect of various factors on the frequency of methicillin resistance in S. pseudinterme-
dius isolates from dogs. This was followed by construction of a multivariate logistic regression

model to account for the possible effects of confounding and interaction. Age of animal was

forced into the multivariate model as a probable confounder and then each explanatory vari-

able was assessed for its significance on the outcome. The most significant explanatory vari-

ables were then added to the model and the process repeated (by adding only significant

variables) to obtain a main effects model. Two-way interactions between the main effects vari-

ables were then explored and retained when significant at P<0.05. Statistical analyses were

performed using Stata/MP 14.0 (Stata Corp., College Station, TX, USA).

Results

Distribution of staphylococci species

Of the 888 isolates from companion animals submitted by Australian veterinary diagnostic

laboratories for this study, a total of 877 isolates (98.8%) were confirmed to belong to the

Staphylococcus genus. The most commonly identified CoPS were S. pseudintermedius (n = 629)

and S. aureus (n = 117). Other CoPS identified included S. schleiferi (n = 44), S. intermedius
(n = 2) and S. delphini (n = 2). Of the 629 S. pseudintermedius isolates, 97.9% were obtained

from dogs and 2.1% from cats. Of the 117 S. aureus isolates, 45.3% were recovered from horses,

40.1% from dogs, and 14.5% from cats. All S. schleiferi isolates originated from dogs while one

S. intermedius was isolated from a dog and a cat, respectively. Both S. delphini isolates came

from horses. A small number of coagulase-negative staphylococci were also identified, as either

Staphylococcus felis (n = 34) isolated from cats, Staphylococcus epidermidis (n = 10) from dogs

and cats and Staphylococcus sciuri (n = 10) from horses and dogs. Coagulase-negative isolates

were excluded from further analyses.

Phenotypic antimicrobial resistance among S. pseudintermedius

The MIC distribution and frequency of antimicrobial resistance among S. pseudintermedius is

shown in Table 2. Among 81 isolates with oxacillin MICs�0.5 μg/mL, a total of 74 isolates

(11.8%, dog n = 72, cat n = 2) were classified as methicillin-resistant S. pseudintermedius. The

remaining isolates (n = 7) were classified as methicillin-susceptible because of negative results

either on the basis of mecA PCR and colony appearance on Brilliance™ MRSA 2 Agar (S1

Table).

Among dog isolates (n = 616), resistance to AMC (37.5% of isolates; 45.1% for SSTI, 3.5%

for UTI) was most common followed by SXT (37.3%) and TET (22.7%). CLI resistance was
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observed at a moderate level (12.7%). Similarly, a moderate level of resistance was observed to

fluoroquinolones, ranging from 6.5%-8.8% for the four compounds tested in this study (CIP,

ENR, MRB, PRA). Resistance to CHL was observed in 5.7% of isolates. A very low number of

isolates were resistant to AMK (1.1%; n = 7) and RIF (1%, n = 6).

Among cat isolates (n = 13), the most common resistance found was to AMC (53.8% of iso-

lates) and SXT (30.8%). CHL and CLI resistance was detected in 7.7% isolates. Resistance to

AMK, RIF and fluoroquinolones was not detected.

Table 2. MIC distribution and frequency of resistance (%R) among clinical Staphylococcus pseudintermedius isolated from dogs (n = 616) and

cats (n = 13) in Australiaa.

Antimicrobials Animals % R 95% CI Percentage of isolates with indicated MICb

�0.004 0.008 0.016 0.03 0.06 0.13 0.25 0.5 1 2 4 8 16 32 �64

Amikacin Dog 1.1 0.5–2.3 1.3 10.7 59.1 22.6 5 0.8 0.3

Cat 0 0.0–24.7 23.1 53.8 15.4 7.7

Amoxicillin-clavulanate Dog (SSTI) 45.1 40.7–49.6 3.4 15.3 12.1 24.1 18.7 14.1 1 1.8 1.6 8

Dog (UTI) 3.6 1.1–9.4 2.7 8.9 14.2 26.6 30.1 13.3 0.9 0.9 2.7

Cat 53.8 26.7–80.9 7.7 23.1 7.7 7.7 23.1 7.7 7.7 15.4

Cefovecin Dog 13.1 10.6–16.1 2.8 71.8 11.5 0.6 3.1 0.6 0.3 0.2 0.2 8.8

Cat 15.4 1.9–45.4 61.5 15.4 7.7 15.4

Cefoxitin Dog 11.5 9.1–14.3 1.3 36.2 40.1 10.7 3.7 3.6 1.9 1.5 0.2 0.5 0.2

Cat 23.1 5.0–53.8 46.2 23.1 7.7 7.7 7.7 7.7

Ceftriaxone Dog 12.8 10.3–15.7 0.2 0.2 0.5 1 37.2 46.9 1.1 2.1 1.1 0.8 8.8

Cat 23.1 5.0–53.8 23.1 53.8 7.7 15.4

Cephalothin Dog 13.5 10.9–16.4 28.4 50.5 7.5 2.9 1 0.5 0.6 1.5 0.8 1.9 4.2

Cat 23.1 5.0–53.8 15.4 61.5 7.7 7.7 7.7

Chloramphenicol Dog 5.7 4.0–7.8 0.2 0.5 54.1 39 0.6 0.2 5.5

Cat 7.7 0.2–36.0 38.5 53.8 7.7

Ciprofloxacin Dog 8.1 6.1–10.6 0.2 0.5 12 61.5 12.7 2.9 1.3 0.6 1 7.1

Cat 0.0 0.2–36.0 23.1 53.8 15.4 7.7

Clindamycin Dog 12.7 10.1–15.5 0.2 10.7 69 6.3 0.5 0.3 0.2 0.5 0.6 11.5

Cat 7.7 0.2–36.0 7.7 84.6 7.7

Enrofloxacin Dog 8.1 6.1–10.6 0.2 0.6 15.9 56.3 12.3 3.6 2.1 0.6 0.8 7.3

Cat 0 0.0–24.7 15.4 69.2 15.4

Marbofloxacin Dog 8.8 6.7–11.3 0.5 0.2 5.4 61 19.2 4.5 0.3 1.3 7.5

Cat 0 0.0–24.7 84.6 15.4

Oxacillin Dog 12.7 10.1–15.5 0.2 2.1 61.2 23.7 1.5 0.8 0.8 0.8 0.3 0.3 1.3 6.8

Cat 23.1 5.0–53.8 76.9 7.7 15.4

Pradofloxacin Dog 6.5 4.7–8.7 5.7 38.8 42 2.9 1.5 1.3 1.1 5.7 0.8 0.2

Cat 0 0.0–24.7 46.2 38.5 7.7 7.7

Rifampicin Dog 1 0.1–2.1 37 58.9 2.9 0.2 1

Cat 0 0.0–24.7 38.5 61.5

Tetracycline Dog 22.7 19.5–26.2 18.7 52.1 6.2 0.3 0.2 0.2 11 11

Cat 15.4 1.9–45.4 38.5 30.8 15.4 15.4

Trimethoprim-sulfamethoxazole Dog 37.3 33.5–41.3 0.3 0.6 4.7 33 8.1 15.7 26.9 1.1 9.3

Cat 30.8 9.1–61.4 30.8 38.5 23.1 7.7

a Among dog isolates, SSTI n = 503, UTI n = 113, cat isolates SSTI n = 10, UTI n = 3.
b Unshaded areas show the dilution range for each drug. Vertical solid lines indicate veterinary specific breakpoints.

Double vertical solid lines indicate human interpretative criteria. ECOFFs are indicated as vertical dotted lines. Resistance to CVN, FOX, CRE, CEF and

OXA after confirmation of methicillin resistance status is presented in S2 Table.

https://doi.org/10.1371/journal.pone.0176379.t002
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Phenotypic antimicrobial resistance among S. aureus

The MIC distribution and frequency of antimicrobial resistance among S. aureus is shown in

Table 3. Overall, 12.8% of the S. aureus isolates were methicillin-resistant, including six isolates

from horses (11.3%), six isolates from dogs (12.8%), and three isolates from cats (17.6%).

Among methicillin-susceptible S. aureus, resistance to at least one or more β-lactam antimicro-

bials was observed in three isolates (2.6%).

Among isolates from horses (n = 53), resistance to AMC and TET was high (47.1% and

32.1%, respectively). Resistance to SXT was observed in 13.2% of isolates and resistance to

AMK and RIF in 9.4% of isolates. Resistance to CHL and fluoroquinolones was observed at a

low level (1.9%). Resistance to CLI was not observed.

Among dog isolates (n = 47), AMC (57.4% of isolates; 59.5% for SSTI, 0% for UTI) and

CVN (14.9%) had the highest rates of resistance. Resistance to fluoroquinolones was observed

in 8.5% of isolates. A low frequency of resistance (2.1%) was observed for AMK and CHL.

Among cat isolates (n = 17), resistance to AMC was the most common (58.8%), followed by

resistance to fluoroquinolones (11.8%). Resistance to five antimicrobials (AMK, CHL, CLI,

RIF and SXT) was not detected.

Resistance profiles of S. pseudintermedius isolates

The resistance profiles of the S. pseudintermedius isolates are presented in Table 4. In total,

51.2% of S. pseudintermedius isolates were fully susceptible to eight antimicrobial classes. The

proportion of single drug resistance in S. pseudintermedius was 38.1%, with single SXT resis-

tance the most common pattern (18.8%). MDR was observed in 83 isolates (13.2%) including

74 isolates that were regarded as MRSP based on phenotypic characteristics and mecA PCR

and nine S. pseudintermedius isolates that were methicillin-susceptible. The most common

MDR pattern was resistance to phenicols, lincosamides, fluoroquinolones (FQN), β-lactams,

tetracycline and folate-pathway inhibitors (CHL-CLI-FQN-OXA-TET-SXT) in 23 canine

MRSP isolates. Methicillin resistance was significantly associated with resistance to CLI (OR

105.2, 95%CI 48.5–231.9), FQN (OR 287; 95%CI 91.2–1144.8), TET (OR 7.5, 95%CI 4.4–13.1)

and SXT (OR 8.5, 95%CI 4.6–16.6).

Resistance profiles of S. aureus isolates

The resistance profiles of S. aureus isolates are shown in Table 5. In total, 68.4% of S. aureus
isolates were fully susceptible to eight antimicrobial classes. MDR was detected with a fre-

quency of 12.8%, including six MRSA isolates from horses, six MRSA isolates from dogs and

three MRSA isolates from cats. Resistance to TET was the most common pattern observed in

horse isolates (17%) and dog isolates (6.4%). Dog and cat isolates were more likely to be resis-

tant to fluoroquinolones (OR 5.4, 95%CI 0.6–252.1), which was also always associated with

methicillin resistance, compared to horse isolates. Horse isolates were more likely to be amika-

cin-resistant (OR 6.5, 95%CI 0.7–315.2) compared to dog and cat isolates. All rifampicin-resis-

tant S. aureus isolates from horses (n = 5) were methicillin-resistant.

Risk factors for MRSP in dogs

In univariate analysis, there was no significant difference in the proportion of MRSP isolates

between female versus male dogs; chronic versus non-chronically diseased dogs; or the various

age groups (Table 6). Site of infection and prior antimicrobial treatment were significantly

associated with MRSP isolation and were retained in the multivariate model. In multivariate

analysis, after controlling for the confounding effect of age, isolates from particular infection
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sites, including surgical sites (OR 8.8; 95%CI 3.74–20.7), and skin and soft tissue (OR 3.9; 95%

CI 1.97–7.51) continued to have a strong association with MRSP isolation. In the main effects

model, prior antimicrobial treatment was not a significant factor contributing to the isolation

of methicillin-resistant strains (OR 1.63; 95%CI 0.86–2.8). However, after inclusion of interac-

tion terms, surgical site infections (OR 15.7; 95%CI 5.37–46.19) and skin and soft tissue infec-

tions (OR 6.1, 95%CI 2.52–14.84) were significantly more likely to be methicillin-resistant in

dogs who had received prior antimicrobial treatment compared to dogs who had not received

prior antimicrobial treatment (Table 7).

Table 4. Resistance profile per antimicrobial class found in clinical Staphylococcus pseudintermedius isolates in Australia (2013–2014)

Resistance profilea No. (%) of isolates

Dog (n = 616) Cat (n = 13)

0: NIL 316 (51.3) 6 (46.2)

1: CLI 6 (1) -

1: FQN 1 (0.2) -

1: OXA 7 (1.1) 2 (15.4)

1: TET 45 (7.3) -

1: SXT 113 (18.8) 3 (23.1)

2: CHL-CLI 1 (0.2) -

2: CLI-SXT 4 (6.5) -

2: OXA-CLI 3 (0.5) -

2: OXA-TET 1 (0.2) -

2: OXA-SXT 7 (1.1) -

2: FQN-OXA 1 (0.2)

2: TET-SXT 46 (7.5) 1 (7.7)

3: CHL-TET-SXT 1 (0.2) -

3: CLI-TET-SXT 3 (0.5) -

3: OXA-CLI-SXT 3 (0.5) -

3: OXA-TET-SXT 2 (0.3) -

4: AMK-CLI-OXA-RIF 1 (0.2) -

4: CLI-CHL-TET-SXT 1 (0.2) -

4: CLI-OXA-RIF-TET 1 (0.2) -

4: OXA-FQN-CLI-SXT 9 (1.5) -

4: OXA-CLI-CHL-TET 4 (0.6) -

5: AMK-CLI-FQN-OXA-SXT 5 (0.8) -

5: CHL-CLI-FQN-OXA-TET 2 (0.3) 1 (7.7)

5: CHL-CLI-OXA-FQN-SXT 1 (0.2) -

5: CHL-CLI-FQN-TET-SXT 1 (0.2) -

5: CLI-FQN-OXA-TET-SXT 7 (1.1) -

6: CHL-CLI-FQN-OXA-TET-SXT 23 (3.7) -

6: OXA-FQN-CLI-RIF-TET-SXT 1 (0.2) -

7: AMK-CLI-OXA-OXA-RIF-TET-SXT 1 (0.2) -

7: CHL-CLI-OXA-FQN-RIF-TET-SXT 2 (0.3) -

Total MRSP 72 (11.7) 2 (15.4)

Total MDR but not MRSP 9 (1.5) -

Total MDR 81 (13.1) 2 (15.4)

a Antimicrobial classes included: aminoglycosides (AMK); lincosamides (CLI), phenicols (CHL), fluoroquinolones (FQN, including CIP, ENR, MRB and

PRA); β-lactams (OXA, representing methicillin resistance); ansamycin (RIF); tetracyclines (TET); and folate-pathway inhibitors (SXT). NIL, none.

https://doi.org/10.1371/journal.pone.0176379.t004
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Table 5. Resistance profile per antimicrobial class found in clinical Staphylococcus aureus isolates from horses, dogs and cats in Australia

(2013–2014)

Resistance profilea No. of isolates (%)

Horse (n = 53) Dog (n = 47) Cat (n = 17)

0: NIL 33 (62.3) 33 (70.2) 14 (82.3)

1: FOX - 2 (4.2) -

1: CHL - 1 (2.1) -

1: TET 9 (17) 3 (6.4) -

1: SXT 2 (3.8) 2 (4.2) -

2: AMK-TET 3 (5.7) 1 (2.1) -

2: FOX-FQN 1 (1.9) 3 (6.4) 2 (11.8)

2: FOX-TET - 1 (5.9)

2: TET-SXT - 1 (2.1) -

3: FOX-FQN-LNC - 1 (2.1) -

4: FOX-RIF-TET-SXT 2 (3.8) - -

5: AMK-FOX-RIF-TET-SXT 2 (3.8) - -

5: FOX-CHL-RIF-TET-SXT 1 (1.9) - -

Total MRSA 6 (11.3) 6 (12.8) 3 (17.6)

Total MDR 6 (11.3) 6 (12.8) 3 (17.6)

a Antimicrobial classes included: aminoglycosides (AMK); 2nd cephemycins (FOX, representing methicillin resistance); lincosamides (CLI), phenicols (CHL),

fluoroquinolones (FQN, including CIP, ENR, MRB, PRA); ansamycin (RIF); tetracyclines (TET); and folate-pathway inhibitors (SXT). NIL, none.

https://doi.org/10.1371/journal.pone.0176379.t005

Table 6. Univariate analysis of risk-factor variables from Staphylococcus pseudintermedius isolates from dogs in Australia (n = 555). Odds ratios

define the risk of isolates being classified as methicillin-resistant strains.

Risk factor n %MRSP OR P value 95% CI

Age in years

<2 51 5.9 Ref

2–10 391 13.3 2.45 0.143 0.74–8.17

<10 113 8.8 1.56 0.518 0.41–5.9

Chronic and recurrent disease

No 492 12 Ref

Yes 63 9.5 0.77 0.567 0.32–1.87

Prior antimicrobial treatment

No 419 9.3 Ref

Yes 136 19.1 2.3 0.002 1.34–3.95

Sex

Male 247 11.3 Ref

Female 308 12 1.07 0.805 0.563–1.8

Site of infection

Ear 255 6.3 Ref

Skin and soft tissue 138 19.6 3.63 <0.000 1.88–7.01

Urinary tract 104 5.7 0.91 0.865 0.34–2.4

Surgical site 42 35.7 8.3 <0.000 3.7–18.63

Respiratory tract 16 6.2 1 0.997 0.12–8.02

https://doi.org/10.1371/journal.pone.0176379.t006
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Discussion

This is the first comprehensive study describing the distribution of antimicrobial susceptibility

profiles in CoPS isolated from clinical infections in companion animals in Australia. This study

generated three major findings: 1) The frequency of MRSP and MRSA isolation from clinical

infections in companion animals in Australia was estimated as moderate (11.8% and 12.8% of

total isolates for each species, respectively); 2) Resistance to critically important antimicrobials

used in human medicine (fluoroquinolones, amikacin) remains very low to low among Austra-

lian companion animal CoPS; and 3) Prior antimicrobial treatment was identified as a significant

risk factor for isolation of MRSP from dogs with surgical site, skin and soft tissue infections.

MRSP infections are increasingly reported in veterinary practice, spreading among compan-

ion animals and to a lesser extent among veterinarians [10]. The increased frequency of MRSP

that are MDR poses a serious concern for biosecurity and infection control in veterinary prac-

tices, due to limited therapeutic options and the ease of transmission between animals. In parallel

to other noteworthy studies from Australia [11], MRSP isolates were resistant to more antimi-

crobial classes than MRSA isolates, exemplified by the high proportion of MRSP isolates showing

resistance to more than six antimicrobial classes (n = 29, 4.8%), while this level of multidrug

resistance was not identified in any S. aureus isolates. Compared to similar surveys in other

countries conducted over the same time period, the frequency of methicillin-resistant strains

among canine S. pseudintermedius in Australia (11.8%) was significantly higher (P<0.0001) than

that reported in Sweden (0.4%) [17] and Norway (0.5%) [18]. However, resistance to clindamy-

cin in S. pseudintermedius in Australia (12.7%) was significantly lower (P = 0.0001) than in Swe-

den (21.6%). While a high level of amikacin resistance in S. pseudintermedius isolates has been

demonstrated in some studies [32], we found that only a very low proportion of companion ani-

mal S. pseudintermedius isolates from Australia were resistant to this critically important human

drug (n = 7; 1.1%). It is therefore recommended that use of amikacin in veterinary medicine con-

tinues to be reserved for MDR infections identified on the basis of culture and susceptibility test-

ing when no other drug class is available [33].

In the only other comparable study conducted in 2006 in two regions of Australia, involving

both clinical and non-clinical (i.e. carriage) of Staphylococcus spp. isolates from dogs and cats

(n = 331), the frequency of methicillin-resistant (mecA) and β-lactam-resistant (blaZ) strains

was only 3% and 6.9%, respectively [20, 34]. Although methodologies for sampling, testing and

data interpretation were somewhat different to this study, it might indicate that methicillin

resistance amongst Australian companion animal staphylococci has substantially increased in

less than a decade.

In a recent Australian study, colonisation of veterinarians by MRSA was dominated by

strains belonging to CC8 MRSA (ST8-IV [2B], spa t064; and ST612-IV [2B], spa variable).

These were strongly associated with equine practice veterinarians and were often resistant to

Table 7. Odds ratios showing the likelihood of isolates being methicillin-resistant in Staphylococcus

pseudintermedius isolates from dogs in Australia for different combinations of site of infection in the

host and exposure of the host to prior antimicrobial treatment.

Prior antimicrobial treatmenta Surgical site Skin and soft tissue

n OR; 95%CI n OR; 95%CI

No 19 5.4; 1.65–17.39 96 2.9; 1.32–6.45

Yes 23 15.7; 5.37-46-19 42 6.1; 2.51–14.84

a Reference value isolates obtained from dogs with ear infections that did not receive prior antimicrobial

treatment.

https://doi.org/10.1371/journal.pone.0176379.t007
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rifampicin and gentamicin [19]. MRSA CC8 (ST8 and ST612) is the most commonly identified

clone among both Australian veterinarians and clinical equine samples [35]. Similarly, in the

present study, a high proportion of MRSA isolates from cases of infection in Australian horses

were also resistant to rifampicin (9.4%) but rarely resistant to fluoroquinolones. Rifampicin is

almost exclusively used in equine practice, where it is combined with a macrolide for the oral

treatment of Rhodococcus equi infections in foals [35, 36]. The equine MRSA isolates identified

in the present study were sensitive to range of additional antimicrobial classes including chlor-

amphenicol and fluoroquinolones, demonstrating that additional therapeutic options were

still available for treating MRSA infections in horses.

The significant association between methicillin resistance and fluoroquinolone resistance

in Staphylococcus spp. isolates from dogs and cats in this study reflects the observation that a

high proportion of Australian MRSP isolates may belong to internationally disseminated fluo-

roquinolone-resistant clones such as ST71 and ST45 [11, 37], whereas MRSA isolates are likely

to belong to ST22-IV [2B], spa variable, commonly found in small animal practice veterinari-

ans in Australia [19, 38] and community-acquired infections [39]. A comparative genomics

study is currently underway to determine genetic similarity of methicillin-resistant isolates in

this study. Comparative genomics represents the most rapid, cost effective and accurate tech-

nique for molecular typing including determination of sequence type.

The most important finding from the risk factors study was that particular sites are associated

with the risk of a S. pseudintermedius infection being methicillin-resistant. In agreement with the

present study, other studies have also found that isolates from surgical site infections were at

higher risk of being resistant to methicillin when compared to other sites [10, 40]. In parallel to

the work here, animals that were hospitalised, visited veterinary clinics frequently or had previ-

ous antimicrobial treatment were at higher risk for MRSP infections [41]. Compared to studies

from 2006, [20, 34] it appears that MRSP infections are becoming increasingly common in veter-

inary companion animal practice in Australia. The results strongly reinforce the need for veteri-

narians to place a high priority on implementing infection control procedures, biosecurity and

antimicrobial stewardship such as those recommended by the Australian Veterinary Association

[42]. Understanding potential factors that lead to emerging resistance may aid in the develop-

ment of strategies that could curtail the ongoing spread of MRSP within veterinary hospitals.

This study has some limitations. Inclusion of isolates was performed at the convenience

and discretion of the animal owners (who would be expected to pay for tests at the primary

laboratory), the consulting veterinarian (who may or may not favour sensitivity testing), and

the primary laboratory (who may or may not be interested in the study). Consequently, the

resulting size and direction of bias in estimates of resistance frequency is difficult to define.

Further, the small sample size of methicillin-resistant feline isolates led to wide confidence

intervals, limiting our ability to draw statistically significant conclusions on feline isolates.

Future studies should therefore focus on achieving a sufficiently large collection of isolates

from cats to increase the accuracy of these estimates. Despite these shortfalls, we are unaware

of any collection of isolates that is as representative of the Australian population of companion

animals, both in terms of size and geographic diversity. Certainly the data presented here sur-

passes what is currently available elsewhere in the literature [20, 43] and is therefore a useful

basis for reviewing prescribing practices for staphylococcal infections in companion animals

both in Australia, and more broadly.

Conclusions

This study shows that antimicrobial resistance is commonly present in the coagulase-positive

staphylococci cultured from animal infections in companion animals in Australia. Of greatest
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concern is the occurrence of moderate levels of MRSP and MRSA, some of which are also

resistant to fluoroquinolones. The data provides important baseline measurements for future

surveillance and international benchmarking. A strong association of MRSP with surgical site

infections in dogs suggests that there could be shortfalls in infection control in animal hospi-

tals. Periodically repeated surveys of this type are crucial for understanding the trends in emer-

gence and dissemination of antimicrobial resistance in companion animals.
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