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Abstract

We propose and develop a Lexicocalorimeter: an online, interactive instrument for measur-

ing the “caloric content” of social media and other large-scale texts. We do so by construct-

ing extensive yet improvable tables of food and activity related phrases, and respectively

assigning them with sourced estimates of caloric intake and expenditure. We show that for

Twitter, our naive measures of “caloric input”, “caloric output”, and the ratio of these mea-

sures are all strong correlates with health and well-being measures for the contiguous

United States. Our caloric balance measure in many cases outperforms both its constituent

quantities; is tunable to specific health and well-being measures such as diabetes rates; has

the capability of providing a real-time signal reflecting a population’s health; and has the

potential to be used alongside traditional survey data in the development of public policy and

collective self-awareness. Because our Lexicocalorimeter is a linear superposition of princi-

pled phrase scores, we also show we can move beyond correlations to explore what people

talk about in collective detail, and assist in the understanding and explanation of how popu-

lation-scale conditions vary, a capacity unavailable to black-box type methods.

Introduction

Online instruments designed to measure social, psychological, and physical well-being at a

population level are becoming essential for public policy purposes and public health monitor-

ing [1, 2]. These data-centric gauges both empower the general public with information to
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allow comparisons of communities at all scales, and naturally complement the broad, estab-

lished set of more readily measurable socioeconomic indicators such as wage growth, crime

rates, and housing prices.

Overall well-being, or quality of life, depends on many factors and is complex to measure

[3]. Existing techniques for estimating population well-being range from traditional surveys

[1, 4] to estimates of smile-to-frown ratios captured automatically on camera in public spaces

[5], and vary widely in the types of data they amass, collection methods, cost, time scales

involved, and degree of intrusion. Partly in response to policy makers’ desire for simple “one

number” quantification of complex systems—arguably a general human proclivity—many

measures are composite in nature. Two examples are (1) the Gallup Well-Being Index, which

is based on factors such as life evaluation, emotional health, physical health, healthy behavior,

work environment, and basic access to necessary resources [4]; and (2) the Living Conditions

measure developed by the United States Census Bureau, which is derived from housing condi-

tions, neighborhood conditions, basic needs met, a “full set” of appliances, and access to help if

needed [6].

While such measures will always have their place, we venture that we must resist oversim-

plification. The dashboard of society should be just that—a rich set of incompatible instru-

ments whose informational content may be observed individually and in total, not unlike the

required input needed for flying a plane where knowledge of just a single number representing

“things are going well” would be untenable. The construction of data-centric instruments for

social systems that deliver more direct, interpretable measures is therefore of great importance

as we move forward into the age of ubiquitous (but not complete) measurement.

With the explosive growth of online activity and social media around the world, the massive

amount of real-time data created directly by populations of interest has become an increas-

ingly attractive and fruitful source for analysis. Despite the limitation that social media users in

the United States are not a random sample of the US population [7], there is a wealth of infor-

mation in these data sets and uneven sampling can often be accommodated.

Indeed, online activity is now considered by many to be a promising data source for detect-

ing health conditions [8, 9] and gathering public-health information [10, 11], and within the

last decade, researchers have constructed a range of online public-health instruments with

varying degrees of success. The maturing of these and related instruments along with theoreti-

cal models will ultimately fundamentally inform the limits of characterization and predictabil-

ity of social systems.

In the next two subsections, we cover related research and then describe our approach to

measuring the “caloric content” of text.

Previous work

For a general overview of work relevant to our present effort, we briefly summarize related

research concerning public health and well-being in connection with a range of social media

and online data sets.

In the difficult realm of predicting pandemics [12], Google Flu Trends [13] enjoyed early

success and acclaim. Initially based very simply on search terms, the instrument proved unsur-

prisingly to be imperfect and in need of a more sophisticated approach [14].

In work by several of the current authors and colleagues, Mitchell et al. measured the happi-

ness of tweets across the US and found strong correlations with other indices of well-being at

city and state level, such as the Gallup Well-being Index; the Peace Index; the America’s Health

Ranking composite index of Behavior, Community and Environment, Policy and Clinical

Care metrics; and gun violence (negative correlation) [15]. Using the same instrument in 10
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languages, the Hedonometer, we have also shown that the emotional content of tweets tracks

major world events [2, 16].

Paul and Dredze found that states with higher obesity rates have more tweets about obesity,

and states with higher smoking rates have more tweets about cancer [11]. They also found a

negative correlation between exercise and frequency of tweeting about ailments, suggesting

“Twitter users are less likely to become sick in states where people exercise.” They further

found health care coverage rates to be negatively correlated with likelihood of posting tweets

about diseases.

Chunara et al. recently found that activity-related interests on Facebook are negatively cor-

related with being overweight and obese, while interest in television is positively correlated

with the same [17].

In an analysis of online recipe queries, West et al. found that the number of patients admit-

ted to the emergency room of a major urban hospital in Washington, DC for congestive

heart failure (CHF) each month was significantly correlated with average sodium per recipe

searched for on the Web in the same month [18].

Eichstaedt and colleagues [19] have demonstrated that psychological language on Twitter

outperforms certain composite socioeconomic indices in predicting heart disease at the county

level. They were able to show in particular that the expression of negative emotions such as

anger on Twitter could be taken as a kind of risk factor at the population scale.

On a US county level, Culotta [20] found that Twitter activity provided a more “fine-

grained representation” of community health than demographics alone with the prevalance of

particular words that indicate, for example, television habits, or negative engagement.

Finally, in work directly related to our present study, Abbar et al. [21] have recently per-

formed a similar analysis of translating food terms used on Twitter into calories. They found a

correlation between Twitter calories and obesity and diabetes rates for the US, and explored

how food-themed interactions over social networks vary with connectedness, finding sugges-

tions of social contagion. While our approach and results are largely sympathetic, our work

incorporates estimates of physical activity which we will show provides essential extra informa-

tion regarding health; introduces a phrase extraction method we call serial partitioning; and

leads to an online implementation, paving the way for a real-time instrument as part of

our proposed ‘panometer.’ We also note that we carried out our work concurrently and

independently.

Lexicocalometrics

From the preceding list of studies, it has become clear that we can estimate population-scale

levels of health and well-being through social media. Here, we examine the words and phrases

people post publicly about food and physical activity on Twitter on a statewide level for the

contiguous United States (48 states along with the District of Columbia). As we explain fully

below in Estimating Calories from Phrases in the Analysis and Results section, and in Methods

and Materials, we group categorically similar words and phrases into lemmas, and we then

assign caloric values to these lemmas using the terms and notation “caloric input” for food,

Cin, and “caloric output” for activity, Cout. We define the ratio of caloric output to caloric input

to be a third quantity, “caloric ratio”:

Crat ¼
Cout

Cin
: ð1Þ

While we will focus largely on the three quantities Cin, Cout, and Crat, we will also explore

The Lexicocalorimeter: Gauging public health through caloric input and output on social media
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“caloric difference”, an alternate combination of Cin and Cout involving a single parameter:

CdiffðaÞ ¼ aCout � ð1 � aÞCin; ð2Þ

where 0� α� 1. We use “phrase shifts” [2] to show how specific lemmas—e.g., “apples”,

“cake with frosting”, “white water rafting”, “knitting”, and “watching tv or movie” contribute

to the caloric texture of states across the contiguous US. We then correlate all three values with

37 measures relating to health and well-being, and we find statistically strong correlations with

quantities such as high blood pressure, inactivity, diabetes levels, and obesity rates. For ease of

language, we will generally speak of phrases rather than lemmas.

We have also generated an accompanying online, interactive instrument for exploring

health patterns through the lens of “Twitter calories”: the Lexicocalorimeter. An initial,

fixed version of the instrument may be accessed at this paper’s Online Appendices, http://

compstorylab.org/share/papers/alajajian2015a/, with a evolvable, production version housed

within our larger measurement platform http://panometer.org at http://panometer.org/

instruments/lexicocalorimeter (all code for these sites can be found at https://github.com/

andyreagan/lexicocalorimeter-appendix). We note that while our online instrument is based

on Twitter, it may in principle be used on any sufficiently large text source, social media or

otherwise, such as Facebook.

From this point, we structure the core of our paper as follows. In Sec. Analysis and Results,

we establish and discuss our findings in depth. Specifically, we: (1) Outline our text analysis of

a Twitter corpus from 2011–2012 (see Estimating Calories from Phrases in the Analysis and

Results section), reserving full details for Methods and Materials in Sec. Methods and Materi-

als; (2) Present caloric maps of the contiguous US contrasting the 48 states and DC through

histograms and phrase shifts (see Caloric Maps of the Contiguous US in Methods and Materi-

als); and (3) Examine how Cin, Cin, Crat, and Cdiff(α) correlate with a suite of measures relating

to health and well-being. In the Supporting Information, we provide a sample of confirmatory

figures as well as all shareable data sets (e.g., IDs for all tweets). We offer concluding thoughts

in Concluding Remarks.

Analysis and results

Estimating calories from phrases

We used all available geotagged tweets from 2011 and 2012 (around 50 million) from a bound-

ing box of the contiguous US, using Twitter’s garden hose sample (which is a sample of

approximately 10% of all tweets, including those that are not geotagged) and the geotag feature

to determine from which of the 48 continental states and the District of Columbia each tweet

came. From this sample, we counted the total number of times each food and physical activity

phrase in our database was tweeted about in each of the 48 continental states and the District

of Columbia (see Methods and Materials and the dataset at https://dx.doi.org/10.6084/m9.

figshare.4530965.v1 for all tweet IDs). We then used these counts to determine the average

caloric input Cin from food phrase tweets and the average caloric output Cout from physical

activity phrase tweets as follows.

First, we equate each food phrase s with the calories per 100 grams of that food, using the

notation Cin(s). (We also explored serving sizes but the databases available proved far from

complete.) We then compute the caloric input for a given text T as:

CinðTÞ ¼
P

s2Sin
CinðsÞf ðsjTÞ

P
s f ðsjTÞ

¼
X

s2Sin

CinðsÞpðsjTÞ; ð3Þ
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where f(s| T) is the frequency of phrase s in text T, p(s| T) is the normalized version, and Sin is

the set of all food phrases in our database.

Second, for each tweeted physical activity phrase, we use an estimate of the Metabolic

Equivalent of Tasks, or METs, which we then converted to calories expended per hour, assum-

ing a weight of 80.7 kilograms, the average weight of a North American adult [22]. Analogous

to Cin(T) above, we then have

CoutðTÞ ¼
X

s2Sout

CoutðsÞpðsjTÞ; ð4Þ

where now Sout is the set of all phrases in our activity database.

We emphasize that both our food and exercise phrase data sets and Twitter databases are

necessarily incomplete in nature. The values of Cin and Cout are thus not meaningful as abso-

lute numbers but rather have power for comparisons. We also acknowledge that our equiva-

lences are crude—e.g., each mention of a specific food is naively turned into the calories

associated with 100 grams of that food—and later on we address our choices in more depth.

Nevertheless, our method is pragmatic yet—as we will show—effective, and offers clear direc-

tions for future improvement.

For simplicity and ultimately because the results are sufficiently strong, we did not filter

tweets beyond their geographic location. Tweets may thus come from individuals, restaurants,

sports stores, resorts, news outlets, marketers, fitness apps, tourists, and so on, and further

improvements and refinements may be achieved by appropriately constraining the Twitter

corpus.

Finally, we take the ratio of Cout(T) to Cin(T) to obtain the text’s caloric ratio Crat(T). In gen-

eral, we observe that a higher value of Crat(T) at the population scale would appear to be intui-

tively better, up to some limit indicating negative energy balance. We note that Crat = 1 is not

salient and should not be taken to mean a population is ‘balanced calorically’. As we discuss

later, using the difference, what we call Caloric Difference, a generalization of Cout − Cin, gen-

erates similar results but, from a framing perspective, we have reservations in creating a scale

with a 0 point given the approximate nature of our measures.

Caloric maps of the contiguous US

We now move to our central analysis and exploration of how our lexicocalorimetric measure

varies geographically. We start with visual representations and then continue on to more

detailed comparisons.

In Fig 1, we show two choropleth maps of our overall 2011–2012 measures of Twitter’s calo-

ric input Cin and caloric output Cout. For both maps and those that follow, quantities increase

as colors move from light to dark green.

These maps immediately allow for some basic observations which we will delve into and

harden up as our analysis proceeds. For the food calories map, we see Cin is generally largest

in the Midwest and the south while Colorado and Maine stand out as states with the lowest

calories.

We see a different texture in the activity calories map with the highest caloric output

according to our measure appearing in the three-state block of Wyoming, Colorado, and

Utah, as well as Vermont. Tweet-based caloric output drops to a low in Mississippi and the

surrounding states, while Michigan also appears to have a low value of Cout.

For the food and activities maps in Fig 1, we also show the most dominant phrase for each

population’s Cin and Cout scores. Almost uniformly, “pizza” (high calorie food) and “watching

tv or movie” (low calorie activity) are the lemmas with the largest contributions, a function of

The Lexicocalorimeter: Gauging public health through caloric input and output on social media
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Fig 1. Choropleth maps indicating (A) caloric input Cin and (B) caloric output Cout in the contiguous United States (including the District of

Columbia) based on 50 million geotagged tweets taken from 2011–2012. For both maps, darker means higher values as per the color bars on the

right. The histograms in Fig 5, S2 and S3 Figs show the specific rankings according to these two variables and also Crat (see Fig 3). The overlaid phrase

lemmas are the most dominant contributors to Cin and Cout—almost universally “pizza” and “watching tv or movie”.

doi:10.1371/journal.pone.0168893.g001
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both volume and caloric scores. Only Mississippi (“ice cream”) and Wyoming (“cookies”) are

exceptions, though “pizza” is still near the top for both.

In Fig 2, we present the same choropleth maps from Fig 1, but now with the phrase most

distinguishing a population. Specifically, we show phrases whose increased prevalence most

contributes to moving a population’s Twitter calorie scores away from the overall average for

the contiguous US. For example, if a population’s Cin is above average, we find the food phrase

whose frequency coupled with its caloric content most strongly moves the population’s Cin up

from the average. (We explain in full how we determine these phrases later with phrase shifts

in Analysis and Results.) We now see a diverse spread of terms. We find a number of phrases

make for reasonable representations:

• “lobster” in Maine and Massachusetts;

• “grits” in Georgia;

• “skiing” in Vermont, New Hampshire, and Utah;

• and “running” in Colorado and a number of other locations.

Prototypical unhealthy foods rise to the top in various states:

• “donuts” in Texas;

• “cake” in Mississippi;

• “chocolate candy” in Louisiana;

• and “cookies” in Indiana.

By contrast, a few “virtuous” foodstuffs appear such as “green beans” in Oregon and “tomato”

in California.

Our activity list also includes some rather low intensity ones and we see:

• “eating” rising to the top in Texas, the south, and a number other states;

• “watching tv or movie” in Pennsylvania and elsewhere;

• “sitting” in Tennessee;

• “talking on the phone” in Delaware;

• “getting my nails done” in New Jersey;

• and simply “lying down” in Michigan.

Now, we do not pretend that these phrases all come from individuals diligently recording

their present meals or activities. Apart from tweets from individuals, our database contains

tweets from companies, advertisers, resorts, and so on. And some phrases are problematic in

their generality of meaning, most especially “running” (the word “run” currently has the most

meanings in the Oxford English Dictionary). Nevertheless, as we dig deeper into all the phrases

found for a particular state, we will continue to find commonsensical lexical patterns.

In Fig 3, we show a choropleth map for caloric ratio, Crat. We see that the highest values of

Crat are found in Colorado, Wyoming, and Vermont, and secondarily for Maine, Minnesota,

Oregon, and Utah. Low values of Crat appear in the region comprising Mississippi, Louisiana,

Alabama, and Arkansas, as well as West Virginia.

An initial visual comparison of of Figs 1 and 3, suggest that Cout is more well aligned with

Crat than Cin. The reason is that for the present version of the Lexicocalorimeter, Cout has a

The Lexicocalorimeter: Gauging public health through caloric input and output on social media
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Fig 2. The same choropleth maps for Cin and Cout presented Fig 1 but now with phrases whose increased usage contribute the most to a

population’s Cin and Cout differing from the overall averages of these measures. See the section on Phrase Shifts in Analysis and Results. For

example, tweets from Vermont, which was above average for both Cin and Cout for 2011–2012, disproportionately contain “bacon” and “skiing”. Michigan

was above average for Cin and below for Cout in 2011–2012, and the most distinguishing phrases are “chocolate candy” and “laying down”. See Fig 5, S2

and S3 Figs for ordered rankings.

doi:10.1371/journal.pone.0168893.g002
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larger dynamic range than Cin, roughly 250 to 285 versus 160 to 210 giving ratios of 210

160
’ 1:31

and 285

250
’ 1:14. We could assert that Cin is fundamentally less informative but:

1. In Correlations with Other Health and Well-being Measures in our Analysis and Results

section, we will find that some measures relating to health and well-being correlate more

strongly with Cin and some with Cout;

2. We may adjust the dynamic range of either measure by rescaling, introducing a kind of tun-

ability [2] to the instrument (a feature we will reserve for future iterations); and

3. Because our food phrase database is a factor of 10 smaller than our activity phrase one, revi-

sions of our instrument may elevate the power of Cin.

To provide some support for point 1, we compare Cout and Cin in Fig 4 (see also S1 Fig).

Importantly, we see that the two measures are indeed not well correlated, indicating they con-

tain different kinds of information (Pearson correlation coefficient r̂p ’ 0:13, p-value = 0.39).

This demonstrates why we might expect Cin or Cout to separately correlate more strongly with

other population-level measures, and justifies forming a dashboard using both Cin and Cout as

well the composite measure of Crat.

Regarding point 2 above, we have evidently made a number of choices in computing Cin

and Cout that mean we have already introduced an arbitrary tuning of the ratio Crat (e.g.,

assuming 100 grams of a food and an hour’s worth of activity). Having no principled way of

rescaling (i.e., one that is not a function of the data set being studied), we have chosen to leave

the measures as computed. As we discuss later, in future iterations we envisage for the Caloric

Difference version that introducing tunability of the dynamic ranges of Cin and Cout—altering

the bias of the measure toward food or activity—will allow the Lexicocalorimeter to be refined

Fig 3. Choropleth for caloric ratio Crat = Cout/Cin. See Fig 5, S2 and S3 Figs for ordered rankings.

doi:10.1371/journal.pone.0168893.g003
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Fig 4. Plots for the contiguous US showing the lack of correlation between caloric input Cin and caloric output Cout, demonstrating their

separate value as they bear different kinds of information. The Pearson correlation coefficient r̂p is -0.13 and the best line of fit slope is m = -1.64. S1

Fig adds plots of Crat as a function of Cin and Cout.

doi:10.1371/journal.pone.0168893.g004
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for a range of purposes such as estimating correlates of diabetes levels versus cancer rates (see

Correlations with Other Health and Well-being Measures in Analysis and Results).

Rankings for the contiguous US

Having taken in the maps of our three measures Cin, Cout, and Crat, we now explore the rank-

ings quantitatively, first through the histograms shown in Fig 5. We order the 48 states and

DC by Crat (rightmost plot) and all bars are relative to the overall average of the specific mea-

sure. Numeric rankings for each measure are given next to each bar. In S2 and S3 Figs, we

present the same histograms re-sorted respectively by Cin and Cout.

As was indicated by our inspection the choropleth maps, we do indeed see that Crat is more

strongly driven by Cout than Cin due to the former’s larger dynamic range. The states with the

highest values of Crat achieve their scores through high levels of Cout but more variable levels of

Cin. Wyoming (23), Vermont (21), and Utah (25) are all middling in Cin while Colorado (48)

Fig 5. Histograms of caloric intake Cin (food), caloric output Cout (activity), and caloric ratio Crat for the states of the contiguous US, all ranked

by decreasing Crat. Bars indicate the difference in the three quantities from the overall average with colors corresponding to those used in Figs 1, 2 and 3.

We provide the same set of histograms re-sorted by Cin and Cout in S2 and S3 Figs.

doi:10.1371/journal.pone.0168893.g005
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and Maine (49) have the lowest ranks for caloric intake. At the trailing end, we see by contrast

that low activity ranks are coupled with high ranks for caloric intake.

A few of the more anomalous states are both evident in the Cin and Cout histograms and as

those appearing farthest away from the best line of fit in the scatter plot of Fig 4. South Dakota

has both high values of Cin and Cout (ranks of 1 and 7) that arrange to give it a ranking of 25

for Crat. Maryland ranking 42nd and 45th in Cin and Cout, is the only state in the ‘bottom’ 10 of

both measures.

Phrase shifts

In our work on measuring happiness, we have developed and extensively used “word shifts” to

show which words make a given text appear more positive than another text in aggregate (see

[2] and [16]). Such visualizations not only provide our necessary test, but also allow us to draw

insight from the lexical tapestry of texts. Here, we will explain and use analogously constructed

phrase shifts for both Cin and Cout to examine the states at the extremes of our Crat rankings,

Colorado and Mississippi. Interactive food and activity phrase shifts for the 49 regions of the

contiguous US form a central part of our online Lexicocalorimeter: http://panometer.org/

instruments/lexicocalorimeter.

We start with two texts: a base “reference text” Tref, and a “comparison text” Tcomp which

we wish to compare to Tref. In this paper, we will use the Contiguous US as the reference text

(weighting the phrase distributions of each state equally), but in principle any text can be used

(e.g., in comparing two states, one would be selected as a reference). Our interest is in deter-

mining which words or phrases most contribute to or go against the difference in estimated

calories. Ci/o(Tcomp) − Ci/o(Tref) where i/o stands for in or out. Following [2] and using Eq (3),

we can express the difference as

Ci=oðTcompÞ � Ci=oðTrefÞ

¼

X

s2Si=o

Ci=oðsÞ pðsjTcompÞ � pðsjTrefÞ
h i

¼

X

s2Si=o

Ci=oðsÞ � CðrefÞ
i=o

h i
pðsjTcompÞ � pðsjTrefÞ
h i

:

ð5Þ

We now have a sum contributions due to all phrases. We normalize these contributions as per-

centages and annotate their structure as follows:

dCi=oðsÞ ¼

100

CðcompÞ
i=o

� CðrefÞ
i=o

�
�
�

�
�
�

Ci=oðsÞ � CðrefÞ
i=o

h i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
þ=�

pðcompÞ
s � pðrefÞ

s

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
"=#

; ð6Þ

where ∑s2Si/o
δCi/o(s) = ±100. We use the symbols +/− and "/# to respectively encode whether

the calories of a phrase exceed the average of the reference text, and whether a phrase is being

used more or less in the comparison text. We call δCi/o(s) the “per food/activity phrase caloric

expenditure shift”. Finally, we sort phrases by the absolute value of δCi/o(s) to create each

phrase shift.

In Fig 6, we present food phrase shifts which help to illustrate why:

• Colorado ranks 48/49 for caloric input Cin (Fig 6A),

• Mississippi ranks 12/49 for caloric input Cin (Fig 6B),
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Fig 6. Phrase shifts showing which food phrases and physical activity phrases have the most influence on Colorado and

Mississippi’ stop and bottom ranking for caloric ratio, when compared with the average for the contiguous United States.

Note that phrases are lemmas representing phrase categories. Overall, Colorado scores lower on Twitter food calories (257.4

versus 271.7) and higher on physical activity calories (203.5 versus 161.3) than Mississippi. We provide interactive phrase shifts

as part of the paper’s Online Appendices at http://compstorylab.org/share/papers/alajajian2015a/ and at http://panometer.org/

instruments/lexicocalorimeter. We explain phrase (word) shifts in the main text (see Eqs 5 and 6), and in full depth in [2] and [16]

and online at http://hedonometer.org [23].

doi:10.1371/journal.pone.0168893.g006
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• Colorado ranks 2/49 for caloric output Cout (Fig 6C),

• and Mississippi ranks 49/49 for caloric output Cout (Fig 6D).

These shifts display phrases that fall into four categories:

+", yellow: Phrases representing above average quantities (here calories) being used

more often. Examples: “cookies” for Mississippi in Fig 6B and “rock climb-

ing” for Colorado in Fig 6C.

-#, pale blue: Phrases representing below average quantities being used less often. Exam-

ples: “watching tv or movie” for Mississippi in Fig 6B and “laying down” for

Colorado in Fig 6C.

+#, pale yellow: Phrases representing above average quantities being used less often. Exam-

ples: “chocolate candy” for Colorado in Fig 6A and “running” for Mississippi

in Fig 6D.

-", blue: Phrases representing below average quantities being used more often. Exam-

ples: “reading” for Colorado in Fig 6A and “catfish” for Mississippi in Fig 6B.

Note that depending on the quantity, higher or lower may be “better” and the four categories

flip signs in their support. For example, Cin and Cout increase with +" phrases; after we exam-

ine correlations with health and well-being measures in Correlations with Other Health and

Well-being measures in Analysis and Results, we will be able to interpret this as “bad” for Cin

and “good” for Cout.

At the top of each phrase shift, the bars indicate the total contribution of each of the four

types of phrases, and the black bar the net change. We see that the four net changes arise in dif-

ferent ways.

• Fig 6A: Colorado is lower than average for Cin largely due to tweeting more about relatively

low calorie (per 100 grams) foods: “noodles”, “egg”, “pasta”, and “turkey”. We also find less

tweets about high calorie foods such as “candy”, “cake”, and “cookies.” Going against these

phrases, we see Colorado does tweet relatively more about “bacon” and “olive oil”, and less

about some relatively lower calorie foods “chicken”, “ice cream”, “shrimp”, and “corn”. We

note that this does not mean these foods are low calorie in absolute terms (“ice cream” is a

good example), just that 100 grams of them are low calorie in comparison to the US baseline.

• Fig 6B: Mississippi almost equally tweets less about a variety of low calorie foods, e.g.,

“pasta”, “banana”, and “crab” (pale blue bar) while also tweeting more about the comple-

mentary range of such foods including “shrimp”, “peaches”, and “pineapple” (dark blue

bar). The modest net gain is mostly due to a small increase in tweeting about high calorie

foods such as “cake”, “cookies”, and “sausage”.

• Fig 6C: For physical activity, tweets from Colorado show a preponderance of relatively high

caloric expenditure phrases (+", yellow) including “running”, “skiing”, “hiking”, “snowboard-

ing” and so on. Tweeting less about low effort activities is the only other contribution of any

substance—Colorado tweets less about “eating”, “laying down”, and “watching tv or movie”.

• Fig 6D: Mississippi’s low ranking in activity is largely due to tweeting less about high output

activities (+#, pale yellow): less “running”, “dancing”, “walking”, and “biking”. The second

most important category is an increase in low output activity phrases such as “eating”,

“attending church”, and “talking on the phone.”
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In S4, S5, S6 and S7 Figs we complement the four phrase shifts of Fig 6 by showing the top

23 phrases for each of four ways phrases may contribute. Interactive phrase shifts for all of the

contiguous US are housed at http://panometer.org/instruments/lexicocalorimeter.

Overall, we find the lexical texture afforded by our phrase shifts is generally convincing, but

we expect future improvements in our food and activity data sets will iron out some oddities

(we again use the example of ice cream). We also note that phrase shifts are very sensitive and

that terms that seem to be being evaluated incorrectly may easily be removed from the phrase

set, and that doing so will minimally change the overall score for sufficiently large texts.

Correlations with other health and well-being measures

We now turn to a suite of statistical comparisons between our three measures—caloric input,

caloric output, and caloric ratio—and a collection of demographic, behavioral, health, and psy-

chological quantities.

We use Spearman’s correlation coefficient r̂s to examine relationships between Cin, Cout,

and Crat and 37 variables variously relating to food and physical activity, “Big Five” personality

traits, and health and well-being rankings (a total of 111 comparisons) [4, 6, 24–33]. To correct

for multiple comparisons, we calculate the q-value for each correlation coefficient using the

Benjamini-Hochberg step-up procedure [34] (the q-value is to be interpreted in the same way

as a p-value). We then consider correlations in reference to the standard significance levels of

0.01 and 0.05.

We must first acknowledge that many of the variables we test against our measures are

highly correlated with each other. The food and physical activity-related variables are in the

areas of physical activity levels, produce intake and availability rates (including trends in public

schools), chronic disease rates, and rates of unhealthy habits. Many of these variables are well

known to be influenced by diet and physical activity (e.g., obesity rates [25]), and others may

be less directly related (e.g., percent of cropland in each state harvested for fruits and vegetables

[28]).

To give some grounding for the full set of comparisons, we show in Fig 7 how six demo-

graphic quantities vary with caloric ratio Crat. We see strong correlations with jr̂sj � 0:68, and

the highest value for Benjamini-Hochberg q-value is 5.8×10 − 7.

We present a summary of all results in Table 1 where we have ordered and numbered

demographic quantities in terms of ascending Benjamini-Hochberg q-values for Crat. For com-

parison and to further demonstrate the robustness of our approach, in (see S1, S2 and S3

Tables, we reproduce the same analysis with the inclusion of liquids and for a differential mea-

sure Cdiff(α) = αCout − (1 − α)Cin, both with and without liquids. Here, we choose to set the

effective means of Cout and Cin equal across the statewide averages (i.e., αhCouti = (1 − α)hCini),

resulting in α = 0.598. Overall, we find little variation in our results whether we use Crat and

Cdiff(0.598).

Surveying the health-based demographics, we found Crat was significantly correlated with

all chronic disease-related rates we tested against (high blood pressure (#3), adult diabetes

(#4), adult overweight and obesity (#6), heart disease deaths (#7), adult obesity (#8), childhood

overweight and obesity (#13), high cholesterol (#19), and colorectal cancer (#22)). All of these

but colorectal cancer rate were also significantly correlated with Cout.

Caloric input Cin results were more mixed. Chronic disease-related rates were also signifi-

cantly correlated with Cin, with the exception of adult diabetes, childhood overweight and obe-

sity, and high cholesterol, after correcting for multiple comparisons.

The variables relating to unhealthy habits (smoking (#16) and binge drinking rates (#26))

both correlated significantly with all three of our measures with the one exception of binge
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drinking and caloric input. The direction of correlations for these two habits are opposite each

other (e.g., negative for smoking and Crat, positive for binge drinking and Crat), consistent with

recent work on alcohol consumption [35].

The two variables relating to physical activity rates (percent of population that has had no

physical activity in past 30 days (#1), and percent of population that has been physically active

in past 30 days (#2)) correlated significantly with all three of our measures. The two measures

relating to rates of physical and mental health (average number of poor mental health days in

past 30 days (#24), and average number of poor physical health days in past 30 days (#27)) cor-

related significantly with both Cout and Crat, but did not correlate significantly with Cin.

The four variables relating to fruit and vegetable consumption rates all correlated signifi-

cantly with all three of our measures. The variables relating to presence of produce in the state

(percent of cropland in each state harvested for fruits and vegetables (#33), percent of census

tracts with a healthy food retailer within one-half mile (#35), and percent of schools offering

fruits and vegetables at celebrations (#31)) were significantly correlated with Cin but were not

correlated with Cout or Crat. Variables relating to local food (number of farmers markets per

100,000 people (#28) and Strolling of the Heifers locavore score (#29)) were not significantly

correlated with Cin, but were significantly correlated with Cout.

Our health and well-being ranking variables included the CNBC quality of life ranking (#5),

Gallup Wellbeing ranking (#9), America’s Health Ranking overall state rank (#10), life

Fig 7. Six demographic quantities compared with caloric ratio Crat for the contiguous US. The inset values are the Spearman correlation coefficient

r̂s, and the Benjamini-Hochberg q-value. See Table 1 for a full summary of the 37 demographic quantities studied here.

doi:10.1371/journal.pone.0168893.g007
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expectancy ranking (#11), Brain Health ranking (#20), Gini index score (#23), and George

Mason’s overall freedom ranking (#36). Caloric ratio correlated with all of these variables

except for George Mason’s freedom ranking (which did not correlate with any of our three

measures). Cout correlated significantly with all of these measures except for the Brain Health

Table 1. Spearman correlation coefficients, r̂s, and Benjamini-Hochberg q-values for caloric input Cin, caloric output Cout, and caloric ratio Crat =

Cout/Cin and demographic, data related to food and physical activity, Big Five personality traits [31], health and well-being rankings by state, and

socioeconomic status, correlated, ordered from strongest to weakest Spearman correlations with caloric ratio. The two breaks in the table indicate

significance levels of 0.01 and 0.05 for the Benjamini-Hochberg q of Crat, corresponding to the first 24 health and/or well-being quantities and then the next

four, numbers 25 to 28. The bottom 9 quantities were not significantly correlated with Crat according to our tests. S1, S2 and S3 Tables present the same anal-

ysis for caloric measures including phrases representing liquids, and for the difference Cdiff(α) = αCout − (1 − α)Cin, both without and with liquids included.

Health and/or well-being quantity r̂s for

Crat

q-val r̂s for

Cin

q-val r̂s for

Cout

q-val

1. % no physical activity in past 30 days [24] -0.78 2.73 × 10−09 0.58 5.67 × 10−05 -0.66 1.51 × 10−06

2. % have been physically active in past 30 days [24] 0.78 2.73 × 10−09 -0.57 6.53 × 10−05 0.67 1.24 × 10−06

3. % high blood pressure [24] -0.77 2.73 × 10−09 0.32 4.05 × 10−02 -0.78 2.73 × 10−09

4. Adult diabetes rate [25] -0.76 5.44 × 10−09 0.29 6.09 × 10−02 -0.77 2.73 × 10−09

5. CNBC quality of life ranking [26] -0.76 6.75 × 10−09 0.28 7.34 × 10−02 -0.77 3.60 × 10−09

6. % adult overweight/obesity [27] -0.73 3.16 × 10−08 0.55 1.41 × 10−04 -0.59 3.07 × 10−05

7. Heart disease death rate [27] -0.73 2.50 × 10−08 0.34 2.80 × 10−02 -0.73 2.30 × 10−08

8. % adult obesity [25] -0.72 4.30 × 10−08 0.53 2.26 × 10−04 -0.59 2.96 × 10−05

9. Gallup Wellbeing score [4] 0.72 4.69 × 10−08 -0.31 4.43 × 10−02 0.73 3.99 × 10−08

10. America’s Health Rankings, overall [24] -0.72 4.10 × 10−07 0.43 4.74 × 10−03 -0.67 2.77 × 10−06

11. Life expectancy at birth [27] 0.68 5.81 × 10−07 -0.4 6.91 × 10−03 0.65 2.64 × 10−06

12. % who eat fruit less than once a day [28] -0.67 1.20 × 10−06 0.61 1.39 × 10−05 -0.51 5.35 × 10−04

13. % child overweight/obesity [27] -0.64 3.53 × 10−06 0.27 7.55 × 10−02 -0.64 3.20 × 10−06

14. % who eat vegetables less than once a day [28] -0.61 1.39 × 10−05 0.51 5.33 × 10−04 -0.46 1.57 × 10−03

15. Median daily intake of fruits [28] 0.6 1.98 × 10−05 -0.62 8.33 × 10−06 0.41 5.37 × 10−03

16. Smoking rate [27] -0.59 2.96 × 10−05 0.51 5.26 × 10−04 -0.48 1.08 × 10−03

17. Median household income [27] 0.51 5.55 × 10−04 -0.53 3.27 × 10−04 0.4 8.38 × 10−03

18. Median daily intake of vegetables [28] 0.5 6.10 × 10−04 -0.56 7.44 × 10−05 0.31 4.36 × 10−02

19. % high cholesterol [24] -0.49 8.11 × 10−04 0.23 1.45 × 10−01 -0.48 9.05 × 10−04

20. Brain health ranking [29] (lower is better) -0.49 8.11 × 10−04 0.62 1.39 × 10−05 -0.29 5.70 × 10−02

21. % with bachelor’s degree or higher [6] 0.46 1.57 × 10−03 -0.54 1.66 × 10−04 0.33 2.82 × 10−02

22. Colorectal cancer rate [25] -0.44 4.09 × 10−03 0.53 3.59 × 10−04 -0.27 8.25 × 10−02

23. US Census Gini index score [30] (lower is better) -0.42 5.37 × 10−03 -0.03 8.42 × 10−01 -0.5 5.55 × 10−04

24. Avg # poor mental health days, past 30 days [24] -0.42 5.37 × 10−03 0.12 4.80 × 10−01 -0.48 1.06 × 10−03

25. Neuroticism Big Five personality trait [31] -0.38 1.09 × 10−02 0.2 2.03 × 10−01 -0.37 1.44 × 10−02

26. Binge drinking rate [24] 0.37 1.46 × 10−02 -0.15 3.56 × 10−01 0.41 5.84 × 10−03

27. Avg # poor physical health days, past 30 days [24] -0.35 2.34 × 10−02 0.19 2.19 × 10−01 -0.38 1.13 × 10−02

28. Farmers markets per 100,000 in pop. [28] 0.34 2.72 × 10−02 0.06 7.17 × 10−01 0.42 5.14 × 10−03

29. Strolling of the Heifers locavore score (lower is better) [32] -0.29 5.86 × 10−02 -0.3 5.41 × 10−02 -0.45 2.94 × 10−03

30. Extraversion Big Five personality trait [31] -0.28 6.94 × 10−02 0.03 8.42 × 10−01 -0.29 5.63 × 10−02

31. % schools offering fruit/veg at celebrations [28] 0.24 1.31 × 10−01 -0.46 1.96 × 10−03 0.05 7.90 × 10−01

32. Openness Big Five personality trait [31] 0.23 1.31 × 10−01 -0.5 6.11 × 10−04 0.04 8.10 × 10−01

33. % cropland harvested for fruits/veg [28] 0.19 2.34 × 10−01 -0.62 1.37 × 10−05 -0.04 8.10 × 10−01

34. Conscientiousness Big Five personality trait [31] -0.12 4.81 × 10−01 0.2 2.10 × 10−01 -0.05 7.93 × 10−01

35. % census tracts, healthy food retailer within 1/2 mile [28] -0.03 8.44 × 10−01 -0.52 3.68 × 10−04 -0.24 1.31 × 10−01

36. George Mason overall freedom ranking [33] (lower is freer) -0.03 8.42 × 10−01 -0.11 5.15 × 10−01 -0.1 5.64 × 10−01

37. Agreeableness Big Five personality trait [31] -0.01 9.61 × 10−01 0.22 1.50 × 10−01 0.08 6.47 × 10−01

doi:10.1371/journal.pone.0168893.t001
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ranking and the freedom ranking. caloric input Cin did not correlate significantly with the

CNBC quality of life ranking, Gini index score, or freedom ranking.

Regarding correlations with the Big Five personality traits, Pesta et al. noted that “Neuroti-

cism. . .emerged as the only consistent Big Five predictor of epidemiologic outcomes (e.g.,

rates of heart disease or high blood pressure) and health-related behaviors (e.g., rates of smok-

ing or exercise)” [36]. Additionally, “neuroticism correlates with many health-related variables,

including depression and anxiety disorders, mortality, coping skill, death from cardiovascular

disease, and whether one smokes tobacco” [36]. Here, in keeping with these observations, we

found that neuroticism (#25) was indeed the only Big Five personality trait that correlated sig-

nificantly and negatively with caloric ratio.

We also tested our three measures against two measures of socioeconomic status—median

income (#17) and percent of state with a bachelor’s degree or higher level of education (#21)—

and found these correlations were significant for all three of our measures.

Concluding remarks

Our Lexicocalorimeter has thus, when applied to Twitter, proved to find and demonstrate a

range of strong, commonsensical patterns and correlations for the contiguous US. We invite

the reader to explore our online instrument, a screenshot of which is shown in Fig 8.

Fig 8. Screenshot of the interactive dashboard for our prototype Lexicocalorimeter site (taken 2015/07/03). An archived development version can

be found as part of our paper’s Online Appendices at http://compstorylab.org/share/papers/alajajian2015a/maps.html, and a full dynamic implementation

will be part of our Panometer project at http://panometer.org/instruments/lexicocalorimeter. See https://github.com/andyreagan/lexicocalorimeter-

appendix for source code.

doi:10.1371/journal.pone.0168893.g008
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Given the complex relationships between health, well-being, happiness, and various mea-

sures of socioeconomic status, it is rather difficult to say that we are only measuring health or

only measuring well-being. We are also measuring socioeconomic status to some extent. How-

ever, the correlations between caloric ratio and measures of socioeconomic status are not as

strong as the correlation of caloric ratio with many of the other measures. Given the above, we

believe that the caloric content of tweets can be used successfully, along with other well-being

and quality of life measures, to help gauge overall well-being in a population.

There are many potential forward directions. A promising avenue is to incorporate tunabil-

ity to the Lexicocalorimeter by manipulating its dynamic range. While we chose the caloric

ratio Crat for its generality in the main body of this work, there is more flexibility in the mea-

surement of caloric difference: Cdiff(α) = αCout − (1 − α)Cin. Though a universal approach is

unclear (α should be independent of the particular data set being studied), we may profit from

the versatility of Cdiff(α) when focusing on a single demographic. For example, if we are inter-

ested in diabetes rates, we could tune the instrument to obtain the best correlation with known

levels, and thereby create a real-time estimator. To do so, we would tune α and find the value

that gives the highest correlation between Cdiff(α) and diabetes rates for a given set of popula-

tions. Of course, we could use a “black box” method to generate a more optimal fit, but in bas-

ing our instrument on food and activity words, we have a far more principled approach that

grants us the opportunity not just to mimic but to understand and explain patterns that we

find. In particular, our word shifts will be of great use in showing why our hypothetical esti-

mate of diabetes is varying across populations.

We fully recognize that the Twitter population is not the same as the general population;

Twitter users differ from the general population in terms of race, age, and urbanity [7]. How-

ever, we currently have no reliable way to know, for example, the true age, race, gender, and

education level of individual users and as such, are not able to adjust for these factors. While

we were able to vet our food and physical activity lists to some extent (as described in Methods

and Materials), we could not realistically go through every tweet to be certain that the phrase

was being used in the way that we thought. We realize that even if the phrases are being used

as we imagine, it does not necessarily mean that the person who tweeted actually performed

the physical activity or ate the tweeted-about food (West et al. address a similar issue in infer-

ring food consumption from accessing recipes online [18]).

We also currently do not know at what point our metric breaks down at smaller time scales

(e.g., months or weeks) or for smaller spatial regions (e.g., city or county) level. Our prelimi-

nary research shows that the physical activity metric on its own may be quite effective at the

city level, but the food measure may not be accurate on a smaller scale. We have also found the

physical activity list to be robust to random partitioning [37], whereas the food list was not.

We believe that these preliminary findings may be due to several factors: (a) the size of the

food list (just over 1400 phrases) is much smaller than the physical activity phrase list (just

over 13,400 phrases); (b) there are generally more tweets about physical activities in our list

than the foods in our food list; and (c) the amount of data within a city may not be a large

enough sample for any food-based Twitter metric. We note that we have not tried using the

metric on counties or Census block or tract groups, and it may be that these are more condu-

cive to the metric.

We propose to use crowdsourcing as a way to build a more comprehensive food phrase list

that includes commonly eaten foods with brand names as well as food slang that we did not

capture here. Ideally, we would arrive at a food phrase database similar in scale to that of our

existing physical activity phrase list. However we move forward, we believe it is clear that the

Lexicocalorimeter we have designed and implemented is already of some potency and may be

improved substantively in the future.
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Methods and materials

In order to attempt to estimate the “caloric content” of text-extracted phrases [37] relating to

food (caloric input) and physical activity (caloric output), we needed comprehensive lists of

foods and physical activities and their respective caloric content and expenditure information.

Here, we explain in detail how we constructed these phrase lists and assigned calories to each

phrase.

In the dataset (https://dx.doi.org/10.6084/m9.figshare.4530965.v1), we provide message IDs

for all tweets that are part of our study, and we make both this dataset and other material and

visualizations available at the paper’s Online Appendices (http://compstorylab.org/share/

papers/alajajian2015a/, and as part of our Panometer project at http://panometer.org/

instruments/lexicocalorimeter. We have drawn on Twitter’s Gardenhose API which has been

provided to the Computational Story Lab by Twitter.

Calorie estimates for phrases

We used the USDA National Nutrient Database [38] to approximate the caloric content of

foods, and the Compendium of Physical Activities from Arizona State University and the

National Cancer Institute [39] to approximate average Metabolic Equivalent of Tasks (METs)

for physical activities, which we converted to calories expended per hour of activity [39].

Because the foods listed in the USDA National Nutrient Database are not described in a way

that people talk about food, we created a list of food phrases used on Twitter by starting with a

kernel of basic food terms from the USDA’s MyPlate website’s food group pages [40]. If the

food phrase was not specific, such as “cereal”, we chose the most popular version of that food

in the United States via an informal Google search at the time of the study (in this instance,

Cheerios). If a brand name food was not in the USDA National Nutrient Database, we chose

the closest match we could find. (Please note that this means that data in appendix may be

inaccurate when searching brand name items.)

This approach yielded examples of foods in the food groups of fruits, vegetables, grains,

proteins, dairy, oils, solid fats, and “empty calories” (e.g., junk food), and built up a list of

nearly 1400 food phrases used on Twitter. For the main results we present in this study, we did

not include drinks or soups (liquids) in our list. We found there is very little change in our

findings when liquids are included, as we discuss below, and we have omitted them at present

both for simplicity and because we were not satisfied with a straightforward way of balancing

liquid and solid nutrition estimates. Note that we have included ice creams, oils, and some

other items that may act as liquids, and these could be separated out for future versions of our

instrument.

For physical activity, we used the physical activities listed in the Compendium to build up a

list of nearly 14,000 physical activity phrases used on Twitter. The order of magnitude of differ-

ence between the length of the two lists exists because of the difference in the number of terms

that went into creating each list and the rates at which people tweet about foods vs. physical

activities.

Phrase extraction

A major obstacle to the development of the food and physical activity lists is the determination

of those phrases used by individuals that most accurately represent a food or physical activity.

Various methods exist which may help one ascertain information about the frequency of usage

of higher-order lexical units [37]. However, we require one that not only determines reason-

able estimates of frequency of usage, but further, does so with nuance regarding context. For

example, one should not count the phrase “apple” as having occurred if it appeared within a
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larger phrase that was recognized as meaningful, such as “you’re the apple of my eye.” To

accomplish these goals, we define a low-assumption text segmentation algorithm, which we

refer to as serial partitioning.

Serial text partitioning is a greedy algorithm for finding distinct, coherent subsequences

(phrases) within a sequence (clause). It relies on the directionality of a sequence, and so is par-

ticularly adept for processing text into multi-word expressions for many modern languages.

The algorithm relies on an objective function, which we will generally refer to as L. At a high

level, the algorithm seeks to find find the largest subsequences possible, following a chain of

optimizing, growing subsequences.

In the context of this article, we define L relative to a text T as follows, providing pseudo-

code below. First, let f : S! R�0 be the random partition frequency function [37] under the

pure random partition probability (q ¼ 1

2
) for the text T. We then apply the model of context

developed in [41] under the parameterization q = 1, so that a given phrase s is a member of

ℓ(s) contexts Cs (e.g., the phrase s = (New, York, City) is a member of three contexts, labeled

Cs ¼ fð�;York; CityÞ; ðNew; �;CityÞ; and ðNew;York; �ÞgÞ. Then for C 2 Cs, we consider the

context-local likelihood probabilities:

Pðs j CÞ ¼
f ðsÞ

X

t2C

f ðtÞ
; ð7Þ

and prescribe to s the likelihood-minimizing context

Cs ¼ argmin
C2Cs

ðPðs j CÞÞ; ð8Þ

which chooses the context-pattern that is most prevalent in T. The objective function for this

instantiation of serial partitioning is then defined as

LðsÞ ¼ Pðs j CsÞ; ð9Þ

and referred to as the local likelihood of a phrase s.
An outline of serial text partitioning of a (left-to-right) directional clause, given an objective

function L : S! R�0 (whose maximization is desired, in this case) that is zero on the empty

phrase (�), and a clause t = (t1, � � �, tℓ(t)), consisting of ℓ(t) words is as follows:

1: procedureSERIALTEXTPARTITIONING(t)
2: P  ð�Þ ⊳ init.the partition.
3: s (�) ⊳ init.the phrase.
4: for i 2 (1, � � �, ℓ(t)) do
5: ifLðs_tiÞ > LðsÞ then
6: s s⌢ti
7: else
8: P  P_s
9: s ti
10: returnP

Note that for any a, b 2 S, a⌢b = (a1, � � �, aℓ(a), b1, � � �bℓ(b)) denotes the concatenation of

phrases, and that for convenience, a single sequence element, ai, may be treated as sequence of

one term, (ai).

We manually applied the following criteria for constructing both food and exercise phrase

lists. For a phrase to be included, it had to be a phrase that used the food or physical activity

word(s) in a way that pertained to eating or physical activity; we excluded phrases that were

part of hashtags, Twitter user names, song lyrics, or names of organizations or businesses,
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and phrases that appeared four or fewer times were not included. Misspellings and alternate

spellings were included if we happened upon them (for example, “mash potatoes” instead of

“mashed potatoes”), but we did not go out of our way to search for them. We queried question-

able phrases to be sure that the majority of their uses were referring to the item of interest.

Because we were building up from a small list, some specific versions of foods were included

while more general forms were not. For example, because we built phrases up from “straw-

berry,” “strawberry jam” was included while we did not conduct a larger search for “jam”. In

another example, in building phrases up from “bacon,” “bacon wrapped dates” turned up so

we included those dates but did not conduct a larger search for all possible “dates”. (Note: We

removed the physical activities category ‘sexual activity’ from the study because the task of

determining meaning and context was too difficult.)

We searched for phrases containing the physical activities in multiple tenses in order to cap-

ture as much information as possible. For example, for the activity type shoveling snow, we

searched for the forms of shovel, shoveling, and shoveled. Tweets were initially converted to all

lowercase text, so we were assured that we were not missing data due to capitalization. To

match each food phrase with its closest caloric data, we found the most closely corresponding

food from the USDA National Nutrient Database, counting all vegetables and fruits in their

raw form unless the phrase indicated otherwise. Similarly, we entered meats as roasted or

cooked with dry heat, not fried, unless the phrase indicated otherwise or there was no home-

made option. We used the nutrition content of homemade versions of foods (for example,

baked goods) rather than store-bought foods unless the phrase indicated otherwise. Our

approach, while systematic, was not exhaustive, nor is it the only way of taking on this chal-

lenge; there are certainly other methods that we expect to yield similar results.

Finally, we lemmatized the food phrases by their code in the USDA National Nutrient Data-

base. If there were food phrases that were more general in each set of phrases that held the

same code, we used the more general phrase as the lemma.

We lemmatized the activity phrases by their METs and activity category. Activity categories

were largely the same as listed in the Compendium with slight changes due to items in Com-

pendium being listed in a Miscellaneous category, etc. This yielded instances of physical activ-

ity phrases that were in the same activity category but were very different with the same METs

being included in the same lemma. From this level of lemmatization, we then used our best

judgement to break these lemmas down further until proper phrases were included in each

lemma.

Supporting information

S1 Fig. Plots for the contiguous US showing the relationships Crat versus Cin (left), and Crat

versus Cout (right). With its larger range, caloric output Cout is more tightly coupled with the

ratio Crat.

(TIFF)

S2 Fig. Histograms as per Fig 5 with states sorted by food rank. The bar colors correspond

those used in for the choropleth maps in Figs 1, 2 and 3.

(TIFF)

S3 Fig. Histograms as per Fig 5 with states sorted by activity rank. The bar colors corre-

spond those used in for the choropleth maps in Figs 1, 2 and 3.

(TIFF)

S4 Fig. Food phrase shifts for Colorado, broken down into the four ways phrases may con-

tribute to a shift. See Fig 6A for the combined shift. See Phrase Shifts in the Analysis and
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Results section for an explanation of phrase shifts.

(TIFF)

S5 Fig. Food phrase shifts for Mississippi, broken down into the four ways phrases may

contribute to a shift. See Fig 6B for the combined shift. See Phrase Shifts in the Analysis and

Results section for an explanation of phrase shifts.

(TIFF)

S6 Fig. Activity phrase shifts for Colorado, broken down into the four ways phrases may

contribute to a shift. See Fig 6C for the combined shift. See Phrase Shifts in the Analysis and

Results section for an explanation of phrase shifts.

(TIFF)

S7 Fig. Activity phrase shifts for Mississippi, broken down into the four ways phrases may

contribute to a shift. See Fig 6D for the combined shift. See Phrase Shifts in the Analysis and

Results section for an explanation of phrase shifts.

(TIFF)

S1 Table. Identical to Table 1 but with liquids included. Spearman correlation coefficients,

r̂s, and Benjamini-Hochberg q-values for caloric input Cin, caloric output Cout, and caloric

ratio Crat = Cout/Cin and demographic data related to food and physical activity, Big Five per-

sonality traits [31], health and well-being rankings by state, and socioeconomic status, corre-

lated, ordered from strongest to weakest Spearman correlations with caloric ratio.

(PDF)

S2 Table. Identical to Table 1 but using a caloric difference rather than caloric ratio. Spear-

man correlation coefficients, r̂s, and Benjamini-Hochberg q-values for caloric input Cin, calo-

ric output Cout, and caloric difference Cdiff(α) = αCout + (1 − α)Cin and demographic data

related to food and physical activity, Big Five personality traits [31], health and well-being

rankings by state, and socioeconomic status, correlated, ordered from strongest to weakest

Spearman correlations with caloric ratio. We chose α so that the average of Cout matched the

average of αCin.

(PDF)

S3 Table. Identical to Table 1 but including liquids and using a caloric difference rather

than caloric ratio. Spearman correlation coefficients, r̂s, and Benjamini-Hochberg q-values

for caloric input Cin, caloric output Cout, and caloric difference Cdiff(α) = αCout + (1 − α)Cin

and demographic data related to food and physical activity, Big Five personality traits [31],

health and well-being rankings by state, and socioeconomic status, correlated, ordered from

strongest to weakest Spearman correlations with caloric ratio. We chose α so that the average

of Cout matched the average of αCin.

(PDF)
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