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Abstract 

Hereby I present a PhD thesis by publications. The thesis includes five journal 

papers, of which two have already been published and three have been submitted for 

publication and are presently under review. The journals include high-impact-factor 

ones (Water Resources Research, Applied Mathematics Letters and Transport in 

Porous Media), and also Journal of Petroleum Science and Engineering, which is a 

major academic journal in petroleum industry.   

The thesis develops a new version of so-called splitting theory. The current 2006-

version of the theory encompasses analytical modelling of thermodynamically-

equilibrium conservation law systems for two-phase multicomponent flow in porous 

media. The theory allows the derivation of numerous analytical solutions. The thesis 

generalizes the splitting method and applies it for flow systems with dissipation, non-

equilibrium phase transitions and chemical reactions. It is shown how the general n×n 

system is split into an (n-1)×(n-1) auxiliary system and one scalar lifting equation. 

The auxiliary system contains thermodynamic parameters only, while the lifting 

equation contains transport properties and solves for phase saturation.     

First application of the splitting method is developed for low-salinity water-

flooding. Two major effects are accounted for: the wettability alternation and the 

induction of fines migration, straining and attachment. One-dimensional (1D) 

problems of sequential injection of high-salinity water slug, low salinity water slug 

and high-salinity water chase drive corresponds to one of the most promising modern 

processes of Enhanced Oil Recovery, which currently is under intensive investigation 

in major world oil companies. Both auxiliary and lifting problems allow for exact 

solutions. The exact analytical solution consists of implicit formulae for profiles of 
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phase saturations, salinity and fine particle concentrations. The exact solution allows 

for deriving explicit formulae in oil recovery. The solution permits the comparative 

study of the impact of both effects, which are the wettability alternation and the 

induction of fines migration, on incremental recovery. It was found out that both 

effects are significant for typical values of the physics constants. The exact solution 

allows for multi-variant study to optimize the injected water composition in a concrete 

oilfield.  

The second application of the splitting method corresponds to 1D displacement 

of oil by a low-salinity polymer slug followed by a low-salinity water slug and, 

finally, high salinity water chase drive. This problem corresponds to the Enhanced Oil 

Recovery Method that merges two traditional methods of polymer- and low-salinity 

water-floods. The exact analytical solutions are the result of the splitting system. The 

method was also generalized for the case of several low-salinity slugs and Non-

Newtonian properties of the polymer solution. The exact solution yields explicit 

formulae for propagation of saturation and concentration shocks, dynamics of 

different flow zones and explicit formulae for incremental oil recovery. The analytical 

model developed allows optimizing polymer concentration and its slug size, salinity 

concentration and sizes of slugs for secondary and tertiary oil recovery.      

The third application of the new splitting method is oil displacement by 

suspensions and colloids of solid micro particles. The injection of one suspension or 

colloid with multiple particle capture mechanisms is assumed. The novelty of this 

work is considering numerous particle capture mechanisms and kinetic equations for 

the capture rates, which do not have a conservation law type. However, the system is 

susceptible for splitting by the introduction of Lagrangian co-ordinate and using it 
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instead of time as an independent variable in the general system of Partial Differential 

Equations (PDEs). Introduction of the concentration potential linked with retention 

concentrations yields an exact solution for auxiliary problem. The exact formulae 

allow predicting the profiles and breakthrough histories for the suspended and 

retained concentrations and phase saturations. It also allows the calculation of 

penetration depth.  

The analytical models derived in the thesis are applicable also in numerous 

environmental and chemical engineering processes, including the disposal of 

industrial wastes in aquifers with propagation of contaminants and pollutants, 

industrial water treatment, injection of hot- or low-salinity water into aquifers and 

water injection into geothermal reservoirs. 

  





vii 

 

Acknowledgment 

I would never have been able to finish my dissertation without the guidance of 

my supervisors, help from friends, and support from my family and husband. 

Firstly, I would like to express my sincere gratitude to my supervisor, Prof. Pavel 

Bedrikovetsky, for his excellent guidance, caring and patience, without his expertise 

and supports I would not been able to complete my PhD thesis.  

A very special thanks to my co-supervisor Prof. Tony Roberts for persevering 

with me over the past few years and helping me to develop my background in 

mathematics. 

A big thank you to all of the fantastic people I have been fortunate enough to 

work and collaborate with, Dr. Rouhi Farajzadeh (Shell Research), Dr. Artem 

Alexeev (Technical University of Denmark), Dr. Aron Behr, Dr. Luis Genolet and Dr. 

Antje Van der net (Wintershall), Dr. Zhenjiang You, Dr. Abbas Zeinijahromi, Dr. 

Themis Carageorgos, Dr. Alireza Keshavarz, Dr. Azim Kalantariasl and Yulong Yang 

(The University of Adelaide). Thank you all for inspiration, mentoring, motivation, 

technical assistance and detailed review of my work.  

A sincere THANK YOU to my friends Graham and Jo Penson, their friendship 

and hospitality have supported and enlightened me over the past four years. Thanks 

also go out to my friend in Australian School of Petroleum, Stephanie, Tessa, 

Carmine, Mohammad, Jess, Sara, Mojtaba, Jack and Alireza. Thanks for being my 

friends.  

Lastly, I would like to thank my family for all their love and encouragement. To 

my mother Zahra and my brother Pouya, they were the first community that 

encouraged me to find my passion and shown belief in me. To my best friend 



viii 

 

my loving, supportive, encouraging, and patient husband, Ali, without him I would 

not have finished this thesis. Thank you.  



ix 

 

Thesis by Publication 

Published Journal Papers 

Borazjani, S., Bedrikovetsky, P., Farajzadeh, R.: Exact Solution for Non-Self-Similar 

Wave-Interaction Problem during Two-Phase Four-Component Flow in Porous 

Media, Abstract Applied Analysis, 2014, 13 (2014) 

Borazjani, S., Roberts, A.J., Bedrikovetsky, P.: Splitting in Systems of PDEs for 

Two-Phase Multicomponent Flow in Porous Media, Applied Mathematics Letter, 53: 

25-32 (2016) 

Borazjani, S., Bedrikovetsky, P., Farajzadeh, R.: Analytical Solutions of Oil 

Displacement by Polymer Slug with Varying Salinity, Journal of Petroleum Science 

and Engineering, 140, 28-40 (2016) 

Submitted Journal Papers 

Borazjani, S., Behr, A., Genolet, L., Van Der Net, A., Bedrikovetsky, P. Effects of 

fines migration on low-salinity water-flooding: analytical modelling, submitted to 

Journal of Transport in Porous Media  

Borazjani, S., Bedrikovetsky, P. Exact solutions for two-phase colloidal-suspension 

transport in porous media, submitted to Water Resources Research 

Borazjani, S., Bedrikovetsky, P. Exact Solutions for 1-D Polymer Flooding 

Accounting for Mechanical Entrapment, submitted to Water Resources Research 

International conference papers and presentations 

Zeinijahromi, A., Borazjani, S., Rodrigues, T., Bedrikovetsky, P. Low salinity fines-

assisted water-flood: analytical modelling and reservoir simulation, presented at SPE 

Asia Pacific Oil & Gas Conference and Exhibition, Society of Petroleum Engineers, 

Adelaide, Australia (2014). A full volume Conference paper, 19 pages 

 



x 

 

Borazjani, S., Farajzadeh, R., Roberts, A., Bedrikovetsky, P. Exact non-self-similar 

solutions for two-phase four-component flows in porous media, presented at 7th 

International Conference on Porous Media, Padova, Italy (2015) 



1 

 

1 Contextual Statement  

Significance of the project  Nowadays, under falling oil prices, petroleum industry 

is looking for new cost-effective Enhanced Oil Recovery (EOR) techniques with 

negligible environmental effects and simple process operations. Therefore, presently 

the development of improved versions of water flooding and new EOR technologies 

is the topic of “hot” research for numerous strong groups worldwide (Lager et al. 

2008; Rezaeidoust et al. 2009; Austad et al. 2010; Morrow and Buckley 2011; 

Mohammadi and Gary 2012; Sheng 2014). 

The development of new technologies and its application in a specific field 

condition is based on the results of laboratory studies and mathematical modelling. 

The development of a mathematical model is an essential part of the technology 

development, in particular derivation of equations for two-phase multi-component 

flow in porous media. Analytical modelling provides fast calculations, clear structure 

of flow phenomena, straight-forward interpretation of laboratory data and visual 

representation of oil recovery mechanisms. Therefore, derivation of new 

mathematical models for improved water flooding and analytical solutions is 

significant challenges in oil sciences and petroleum industry. 

State of the art  Consider 1D two-phase flow of water and oil in porous media, 

which is the simplest case of oil recovery processes. The system consists of mass 

conservation laws for water and is described in large scale approximation by a quasi 

linear first order hyperbolic equation 

( )
0

f ss

t x

∂∂ + =
∂ ∂

                  (1.1) 
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where s is water saturation and f is fractional flow function. t and x are dimensionless 

coordinates define as  

,   
x ut

x t
l lφ

→ →                   (1.2) 

Here l is reservoir size; u is total velocity and φ is porosity.   

The explicit formulae for exact solution of the problem (1.1) have been obtained by 

Buckley and Leverett in 1942 (Lake, 1989, Bedrikovetsky, 1993). 

In general, injection of water with n low-concentration adsorbing components 

(such as salt and polymer) is described by the mass conservation laws for water and 

for each component  

( ),
0

f s cs

t x

∂∂ + =
∂ ∂

                  (1.3) 

( )( ) ( ),
0         

sc a c cf s c

t x

∂ + ∂
+ =

∂ ∂
               (1.4) 

where c =(c1, c2,…, cn) and a =(a1, a2, …, an) are vectors of concentrations for water 

composition and adsorbed matters, respectively.  

The exact solutions for continuous injection have been obtained by numerous 

authors during 1954-2015 (the detailed reference lists are presented in Lake, 1989 and 

Bedrikovetsky, 1993). The analytical solutions for eqs (1.3, 1.4) subject to following 

boundary and initial conditions  

0, ,I It s s c c= = =                       (1.5) 

0, ,J Jx f f c c= = =                  (1.6) 

are self-similar and depend on the group ξ=x/t (Pope 1980; Johansen et al. 1988 and 

1989; Dahl et al. 1992; Rhee et al. 1998).  
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However in multi-component EOR flooding, only a fraction of the reservoir pore 

volume (a slug) of EOR chemical (polymer for example), is injected and then 

followed by either lower concentrations of the chemical or water (low salinity or high 

salinity). This injection option is applied in order to reduce the costs of the low-

salinity/polymer EOR flooding. The analytical solutions of system (1.3, 1.4) 

describing the slug injection are not self-similar. The methods of hyperbolic wave 

interactions are used in order to derive the analytical solutions for slug injection 

(Fayers 1962; Bedrikovetsky 1993). However, for the general case, where the 

adsorbed concentrations a , depend on concentrations of all components �,̅ the 

analytical solutions are not available in the literature. 

Pires, et al. (2006) introduced a new mathematical technique (so called the 

splitting method) that allows separating the (n+1)×(n+1) hyperbolic system for two-

phase multicomponent flow in porous media into n×n thermodynamic auxiliary 

equations and one scalar equation (lifting) for saturation. In various cases, where the 

auxiliary system allows for analytical solutions, the general system is reduced to the 

solution of a single scalar lifting equation.  

The above justifies half-century efforts on exact solutions for 1D two-phase 

multicomponent flows in porous media. It includes the above mentioned splitting 

technique, which was used for analytical modelling of several natural and industrial 

processes. However, this technique hasn’t been applied for two-phase multi-

component flows in porous media with dissipation, non-equilibrium phase transitions 

and chemical reactions, which encompass the majority of the new water flooding 

technologies.  

 



4 

 

Scope of the work  The main achievements of the thesis are creation of  

• an analytical model for low-salinity water flooding accounting for wettability 

alternation and induced fines migration (presented in Chapter 3) 

• an exact model for 1D oil displacement by low salinity polymer slug followed by low 

salinity water slug and high salinity water chase drive (presented in Chapter 4) 

• the derivation of a new splitting technique and analytical model for oil displacement 

by suspension and colloidal particles (presented in Chapter 5) 

• the development of the splitting technique presented by Pires, et al. (2006) for system 

of equation describing chemical flooding in porous media accounting for the 

dissipative capillary effects and non-equilibrium phenomena (presented in Chapter 6) 

1.1 Thesis Structure 

This is a PhD thesis by publication. Five journal papers are included in the thesis, 

of which two papers have been published in peer reviewed journals and three papers 

have been submitted to academic journals and are currently under review.  

The thesis body is formed by six Chapters. The first Chapter contains an 

introduction of the importance of the work for the petroleum industry. The second 

Chapter presents a critical analysis of contemporary literature on analytical modelling 

and two-phase multicomponent flows in natural reservoirs and, derivation of the basic 

equations for two-phase flow in porous media accounting for low salinity water 

flooding, low salinity polymer flooding and fines migration assisted water-flooding in 

porous media. The corresponding mathematical models have the form of the “multi-

component polymer flooding”. In addition, this Chapter contains the detailed 

derivation of the analytical method so-called splitting and its application in solving 
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the system of equations for multi component two-phase-flows in porous media.  

Chapters three, four, five and six are the novel original parts of the thesis.  

Paper Chapter Title Status 

1 Chapter 3 
Effects of fines migration on Low-Salinity Water-flooding: 

analytical modelling  
Submitted for 
publication 

2 Chapter 4 
Exact solution for non-self-similar wave-interaction 

problem during two-phase four-component flow in porous 
media  

Published 

3 Chapter 4 
Analytical Solutions of oil displacement by polymer slug 

with varying salinity 
Published 

4 Chapter 4 
Exact solutions for 1-D polymer flooding accounting for 

mechanical entrapment 
Submitted for 
publication 

5 Chapter 5 
Exact solutions for two-phase colloidal-suspension 

transport in porous media 
Submitted for 
publication 

6 Chapter 6 
Splitting in systems of PDEs for two-phase 

multicomponent flow in porous media 
Published 

 

Despite a strong demand of petroleum industry for reliable prediction of low 

salinity water flooding, the mathematical models describing the detailed equations of 

oil displacement with low salinity water flooding accounting for fines mobilization, 

migration, straining, non-equilibrium contact angle alternation and dissipative 

capillary effects are not available in the open literature. Thus, the complete set of 

equations for displacement of oil by varying water’s salinity accounting for above 

mentioned effects are derived in Chapter three. The system contains five 

dimensionless groups defining dissipative effects of capillary pressure, dispersion, 

kinetics of the contact angle variation and kinetics of fines straining and detachment. 

Analyzing the dimensionless groups allows for low-velocity, high-velocity and large-

scale approximations. It is shown that for large scale approximation, instant transfer 

of the excess of attached particle concentration over its maximum value into strained 

concentration results in instant permeability damage for aqueous phase. The analytical 

solution is presented for continuous low salinity water-flooding, and the results are 
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compared with normal water flooding. The impact of separate effects of fines 

migration and wettability effect alteration is analysed. The splitting technique is used 

to solve 3×3 hyperbolic system of equations subject to the slug injection of low 

salinity water flooding. Using the splitting technique separates the initial system to 

2×2 auxiliary system for concentrations and one scalar equation for saturation, which 

allows for full integration of non-self-similar problems. Therefore, third Chapter 

contains the derivation of self-similar solutions for continuous injection of low 

salinity polymer, derivation of non-self-similar solutions for slug injection of water 

and polymer with different salinities, derivation of new formula for oil recovery and 

sensitivity analysis for polymer slug size. The new analytical solutions allow for 

explicit formula for saturation, concentration and salinity front trajectories.  

Using the splitting method allows for a non-self-similar solution of two-phase 

multi-component problems of polymer slug with alternated water salinity injections in 

oil reservoirs, which is presented in Chapter four. Non-Newtonian properties of the 

injected polymer are accounted for in the mathematical modelling and results in a 

velocity-dependent fractional-flow function. The exact solution for 3×3 hyperbolic 

system of conservation laws that corresponds to two-phase, four-component flow is 

derived. Using the splitting technique separates the initial system into 2×2 auxiliary 

system for concentrations and one scalar equation for saturation, which allows for full 

integration of non-self-similar problems. Therefore, the Chapter contains the 

derivation of self-similar solutions for continuous injection of low salinity polymer, 

derivation of non-self-similar solutions for slug injection of water and polymer with 

different salinities, explicit expressions for water saturation, polymer and salt 

concentrations, an implicit expression for polymer- and salt-slug trajectories, 
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derivation of new formula for oil recovery and sensitivity analysis for polymer slug 

size. The analytical solution also allows calculating the minimum size of the low-

salinity slug preventing mixing between polymer and high salinity water chase drive. 

The analytical solution also allows calculating the minimum size of the low-salinity 

slug preventing mixing between polymer and high salinity water chase drive. This 

chapter also obtains non-self-similar solutions for one-dimensional problem of oil 

displacement by polymer solution accounting for mechanical entrapment of the 

polymer macro-molecules by the rock. 

Suspension flow in porous media with fine particles detachment and capture is 

important in numerous industrial areas, such as environmental, chemical, and 

petroleum industries. In petroleum industry, permeability impairment due to fine 

particle release and capture is a well-known phenomenon (so called deep bed 

filtration). This phenomenon can be described by system (1.3, 1.4) along with the 

kinetic equation of particle attachment. Despite of several publications in analytical 

solutions for single phase suspension flow in porous media (Bedrikovetsky et al. 

2008, 2011, 2012) the exact solution for two-phase flow is not found in the literature. 

Therefore, in Chapter five, analytical solutions for two-phase flow of particles with 

multiple capture mechanisms are derived. Introduction of the splitting technique 

allows for exact solution of the provided system. Propagation of concentration and 

saturation waves along with trajectories of shock fronts for water and suspension is 

discussed in this Chapter. 

Splitting technique introduced by Pires, et al. (2006) is only valid for system of 

equations in large scale approximation where the dissipative effects of capillary 

pressure and non-equilibrium effects are neglected. In Chapter six, a new version of 
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splitting method for the system of PDE equations accounting for two-phase n-

component flow in porous media is developed. Here, the system of equations consists 

of dissipative and non-equilibrium phenomena. It was shown that for several 

dissipative and non-equilibrium systems, using the new splitting method separates the 

general (n+1)×(n+1) system into an n×n auxiliary system and one scalar lifting 

equation. In numerous cases, where the auxiliary system allows for exact solution, the 

general flow problem is reduced to solution of one non-linear lifting equation. The 

Chapter also discusses the exact solution of the inverse problem for the system of 

equations under thermodynamic equilibrium and two-phase flows with inter-phase 

mass transfer.   

1.2 How the Publications are related to the Thesis 

The paper “Effects of fines migration on low-salinity water-flooding: analytical 

modelling” derives 1D equations for displacement of oil by varying water’s salinity 

and fines mobilization, migration and straining. The model is simplified for the cases 

of low-velocity, high-velocity and large-scale approximations. The analytical 

solutions for self-similar and non-self-similar problems are provided. 

In the paper “Exact solution for non-self-similar wave-interaction problem during 

two-phase four-component flow in porous media” the analytical model for low 

salinity polymer flooding is derived. As polymer is injected along with the low 

salinity water into the reservoir, one more equation describing polymer transport is 

added into the system of equations for low-salinity waterflooding in large scale 

approximation. Using splitting technique allows for exact solution of non-self-similar 
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problems for slug injection during the low salinity polymer flooding. The explicit 

formulae for water saturation and component concentrations are provided.  

The derived analytical solution in the previous paper does not account for non-

Newtonian rheology of polymer; the salinity effects on relative permeability are 

neglected and the salinity variation of the injected water has not been considered. 

Therefore, in the paper, “Analytical solutions of oil displacement by polymer slug 

with varying salinity”, the non-Newtonian properties of polymers are incorporated 

into the fractional flow yielding the velocity dependency of the fractional flow 

function. Also, wettability alternation is accounted for in relative phase permeability 

modifications. Comparing to the previous publication, where the slug injection of 

polymer is modelled analytically, here the analytical solution is expanded for the 

sequential injection of low-salinity polymer slug followed by low-salinity and high-

salinity water. Using the splitting technique allows for the exact solution and 

calculating the minimum size of the low-salinity water slug preventing the contact 

between the polymer and high salinity water drive. The focus of the previous paper 

was to provide mathematical model while in this paper a numerical example is used to 

analyze the results, and sensitivity analysis. In the paper “Exact solutions for 1-D 

polymer flooding accounting for mechanical entrapment” non-self-similar solutions 

for one-dimensional problem of two-phase flow accounting for mechanical 

entrapment and adsorption of component by the rock is obtained. To be specific, the 

component is called “the polymer”, since that exhibits both retention and adsorption 

in porous media. 

In the paper “Exact solutions for two-phase colloidal-suspension transport in 

porous media”, the splitting method is generalized for suspended-colloidal flow with 
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quasi-linear kinetics of the particle capture, and the analytical solutions for two-phase 

flow with multiple capture mechanisms (m mechanisms) are derived. The splitting 

procedure separates the (m+2)×(m+2) system into (m+1)×(m+1) auxiliary system 

containing one suspension and m retained concentrations, and a single lifting equation 

for saturation. The analytical solution of the auxiliary system is found for any form of 

filtration coefficient. The lifting equation permits for exact solution for the case of 

zero formation damage coefficients. It was found out that in the case of constant 

filtration coefficients, the suspended concentration is steady-state behind the 

concentration front, and all retained concentrations are proportional to the amount of 

passing suspended particles. The exact solution allows for calculation of propagation 

depth. It was shown that at infinite time the propagation depths for suspended and 

retained particles are the same and equal to those for a one-phase flow. 

Previous publications in splitting technique (Pires 2004; 2006) derive the 

analytical solution for the system of equations in large reservoir scales; however, 

often only short cores are available for laboratory core-flooding, so system (1.3, 1.4) 

cannot be fulfilled. The paper “Splitting in systems of PDEs for two-phase 

multicomponent flow in porous media” develops the splitting technique for the 

system with dissipative and non-equilibrium effects.  

Finally, the above mentioned 5 journal papers present the mathematical modeling 

and the analytical solution of multi-component two phase flow in porous media, 

accounting for low salinity; low salinity polymer and fines assisted water flooding. 

Furthermore, the development of the new splitting technique allows for the analytical 

solution for the system of equation with dissipative and non-equilibrium effects.  
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2 Literature Review 

2.1 Introduction  

The scientific novelty of the present thesis is the generalization of a new version of 

splitting method for two-phase multi-component flow systems with dissipative 

capillary effects, non-equilibrium phase transitions and chemical reactions. The 

version described by Pires et al. (2006) encompasses analytical modelling of 

thermodynamically-equilibrium conservation law which allows the derivation of 

various exact solutions. Therefore, the thesis also develops the splitting technique for 

low-salinity water-flooding; low salinity polymer flooding and two-phase colloidal-

suspension transport in porous media. Thus, the literature review first covers the 

analytical solutions for two-phase multi-component flows in porous media (Section 

2.2); self-similar solutions, which are the basics for the solution of non-self-similar 

problems, are presented in Section 2.2.1. Section 2.2.2 reviews the solution of non- 

self-similar problems and more recent a powerful splitting method is investigated in 

Section 2.2.3. 

With regards to the derivation of new models accounting for low salinity water 

flooding, low salinity polymer flooding and suspension-colloidal flow in porous 

media, Sections (2.3), (2.4) and (2.5) review the previous works in low-salinity water 

flooding, polymer flooding and suspension-colloidal flow, respectively. 

The main conclusion of the literature review is the significance of the research 

project on analytical modelling of two-phase multi-component flows in porous media, 

due to wide spreading of these processes in petroleum, environmental and chemical 
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engineering. The review is finalized by the statement that the solution of this problem 

is not available in the literature. 

2.2 Analytical solutions  

Two-phase flow of incompressible fluids with n low-concentration adsorbing 

components is described by the mass conservation laws for water and for each 

component   

( ) ( ) ( ), , , ,
, ,c ro

f s c a J s c as
k s c a

t x x
ε

∂ ∂∂ + = −
∂ ∂ ∂

               (2.1) 

( ) ( ) ( ) ( ) ( )( )

( ) ( )1 1

, , , ,, ,
- ( , ) , , ,

,..., ,..., , ,... ,..., , 1,2...,

roc D

i n i n

s c a J s c acs a cf s c a c
s c f s c a sck

t x x x x x

c c c c a a a a i n

ε ε
 ∂ Ε∂ + ∂ ∂ ∂ ∂ + = +   ∂ ∂ ∂ ∂ ∂ ∂   

= = =

  (2.2) 

( ) ( ) ( ) ( )1, , , ,..., ,... , , 1, 2,...,t i n i i

a
a c a f s c a a a a a a a c i n

t
ε ∂ = − = = =  ∂

            (2.3) 

where a is non-equilibrium adsorbed concentrations, kro is relative permeability for 

oil, J is capillary pressure, εD is Schmidt’s number, εc and εt are dimensionless groups 

for capillary pressure and delay, respectively. Here f(s,c,	��), kro(s,c,	��), J(s,c,	��) and 

a(c) are known functions (Ewing 1983; Bedrikovetsky 1983). 

In large reservoir scale approximation where dimensionless numbers εD, εc and εt 

tend to zero the system (2.1-2.3) is equivalent to system (1.3, 1.4) (Bedrikovetsky 

1983). Therefore, the system (1.3, 1.4) models the flow in large scale approximation, 

where the large length scale (reservoir size) yields domination of advective fluxes of 

water and of components over dissipative fluxes induced by the capillary pressure and 

component concentration gradients. 

For large number of components existing in the aqueous phase, interaction of 

several discontinuities in the solutions of slug problems (discontinuous boundary 
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condition) makes major difficulties in numerical modelling. While the analytical 

solutions provide trajectories of the shock interactions and the parameter jumps across 

the trajectories, further 1-D exact solutions make the basis for stream-line and front 

tracking simulators of 3-D flows in porous media (Ewing 1983; Holden 2002). 

Analytical solutions are also useful in understanding the physics behind the 

multicomponent flow and can be used to explain the core flood laboratory analysis, 

such as breakthrough concentrations and fractional flow of the fluid. 

Therefore, this Section reviews the analytical solutions for self-similar and no-self-

similar problems of two-phase flow in porous media. 

2.2.1 Self-similar solutions  

The equations (1.3, 1.4), is a first order quasilinear hyperbolic system of 

conservation laws, for two independent variables x and t, with n+1, s and � ̅dependent 

variables.  

Boundary and initial conditions play an important role in the solution of quasi-

linear hyperbolic system. Continuous injection of a fluid with constant component 

concentrations into the reservoir, saturated by another constant composition fluid, 

corresponds to the Riemann problems. Self-similar solutions of the Riemann 

problems have been presented in numerous works (Fayers 1962; Johansen 1988; 

Entov 1989, Bedrikovetsky 1993). 

For n=0 in large scale approximation system (1.3-1.6) agrees with the Buckley-

Leveret problems (eq (1.1)), continuous injection of water corresponds to self-similar 

solutions that depends on the group x/t 

( , ) ( ),   xs x t s tζ ζ= =                   (2.4) 
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Eq (1.1) in self-similar coordinate ζ takes the form 

0
ds f

d s
ζ

ζ
∂ − = ∂ 

                  (2.5) 

with following Initial and boundary conditions 

:   

0 :    ( ) 1
I

J

s s

f s

ζ
ζ

→ ∞ =
= =

                  (2.6) 

Eq (2.5) results in two types of solution 

s const

f

s
ζ

=
∂=
∂

                   (2.7) 

Depend on the fractional flow function the solution contains shock, rarefaction or 

the combination of both. The detailed solution of system (1.1-1.6) is presented by 

Lake (1989) and Bedrikovetsky (1993). 

Fig.1 shows the typical S-shaped of fractional flow as a function of saturation. 

The self-similar parameter ζ is presented as the tangent line of the fractional flow 

function eq (2.7). 

In order to have the continuous solution, ζ must increase along the path 

connecting points of boundary (J) and initial (I) conditions. Therefore in S-shaped 

fractional flow function (Fig.1), it is impossible to have the continuous solution only.  
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The Rankine–Hugoniot conditions or the conservation of volume of aqueous 

phase on the discontinuity define the relationship between the states on both sides of a 

 

Fig.1 Typical form of fractional flow curve and the graphical presentation of self similat 
coordinate in (s, f) plane (Bedrikovetsky 1993) 

 

discontinuous solution (shock wave). Usually the superscripts l (or −) and r (or +) 

denote the left and right-hand sides of a discontinuity and [] indicates the quantity of 

jump across the discontinuity (Gelfand 1959; Logan 2008; Whitham 2011).  

The Rankine–Hugoniot condition for eq(1.1) is 

( ) ( )f s f s
s D s D

s s

f f
D

s s

− +
− +

− +

+ −

+ −

   
− = −   

   

−=
−

                     (2.8) 

where D is the velocity of shock front. To have a unique single-valued solution the 

Lax entropy condition needs to be satisfied (Whitham 2011)  

( ) ( )f s f s
D

s s

− +∂ ∂
< <

∂ ∂
                 (2.9) 
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Finally the solution of eq (1.1) subject to boundary and initial condition (1.5, 1.6) 

with cI=cJ=0 is 

0 ( )

( ) ( )
( ) ( ) ( )

( ) ( )

J J

f I
J

f I

f I
I

f I

s f s

f s f s
s f s f s

s s

f s f s
s

s s

ζ

ζ ζ ζ

ζ




′< <
 − ′ ′= = < < −
 −
 < < ∞

−

            (2.10) 

where sf is found from the contact discontinuity condition (for detailed of 

derivations see Bedrikovetsky 1993) 

( ) ( )
( ) f I

s f
f I

f s f s
f s

s s

−
′ =

−
               (2.11) 

Solutions of Riemann problem for different mono-component chemical flooding, 

(n=1) are presented by De Nevers 1964; Claridge and Bondor 1974; Helfferich 1981 

and Hirasaki 1981.  

For the case of n=2 and ai=ai(ci), the self-similar solutions have been derived in 

works by Braginskaya and Entov 1980. The solutions show distinct jumps of each 

component which result in a chromatographic separation of the components. However 

some Riemann problems allow multiple evolutionary solutions that are stable by Lax 

condition and the non-uniqueness problem doesn’t solve by the introduction of the 

dissipative effects on the system of conservation laws (1.3, 1.4). The Riemann 

solutions for n=2 where the sorption isotherms depend on both aqueous 

concentrations ai=ai(c1, c2) are derived by Entov and Zazovskii (1982). The 

simultaneous jumps of the two components are investigated in the solution.  

Johansen and Winther (1988, 1989) projected the solution of two-phase flow 

system into the solution of one phase flow problem, (i.e. s=f=1 in eqs (1.3, 1.4)) to 
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solve the Riemann problems for n>2. The procedure consists of solution of single 

phase flow and its lifting to the solution of two-phase flow. However, the projection 

doesn’t allow for two-phase flow solution with non-uniform initial or boundary 

conditions (slug injection of different components). 

2.2.2 Non-self-similar solutions  

Piecewise injections of fluid into reservoirs (slug injection) correspond to non-

self-similar problems.  

Qualitative non-self-similar solutions of displacement of oil by hot and cold 

water sequential slugs are presented by Fayers (1962).  

Bedrikovetsky (1982, 1993) showed the exact integration of slug problems with 

decomposition of the piece-wise constant initial and boundary condition problems 

into the local Riemann problems and solution of interactions of the elementary wave. 

The solution allows for explicit formulae for trajectories of curvilinear fronts and for 

saturation and concentrations distributions. 

The exact integration for the case ai=ai(ci) shows the interaction of different 

concentration slugs after the injection, however the transmitted waves finally 

separated into the individual component slugs moving in order of reducing the 

derivative values of ∂ai(ci)/∂ci (Rhee et al. 1970 for one-phase flows).  

Nevertheless, for the general case, where the sorption isotherms strongly depend 

on concentrations of all aqueous components, the exact solution is not available in the 

literature.  
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2.2.3 Splitting method 

Pires et al. (2006) introduced the splitting technique based on the existence of a 

stream function ϕ(x, t) such as 

,s f
x t

ϕ ϕ∂ ∂= − =
∂ ∂

                 (2.12) 

where the stream function ϕ(x, t) is the volume of water flowing through the 

trajectory x=x(t) starts at x=0 at the moment t. 

( )
,t

0,0

,
x

x t fdt sdxϕ = −∫                  (2.13) 

Using ϕ(x, t) instead of time t yields the following transformation of (1.3, 1.4) in 

co-ordinates (x, ϕ). Expressing dt from (2.13) and calculating its differential yields the 

expressions for eq (1.3) in (x, ϕ)-plane  

( ) ( )

0

1
,   

, ,

s

U F

x

F U
f s c f s c

ϕ
∂ ∂+ =
∂ ∂

= =−
              (2.14) 

Applying Green’s theorem, over any arbitrary domain ϖ to eq. (1.6) and 

accounting for (2.13) yields 

( ) ( ) ( )

0

cf dt cs a dx c fdt sdx adx cd adx

a c
dxd

x

ϖ ϖ ϖ

ϖ

ϕ

ϕ
ϕ

∂ ∂ ∂

− + = − − = − =

 ∂ ∂+ = ∂ ∂ 

∮ ∮ ∮

∬
          (2.15) 

therefore eq (1.6) in (x, ϕ)-plane becomes 

( )( )
0

ca c

xϕ
∂ ∂+ =

∂ ∂                 (2.16) 
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The system for (n+1) unknowns (s, �)̅ is separated into the n×n auxiliary system 

(2.16) for unknown �(̅x, ϕ) and a scalar hyperbolic lifting equation (2.14) with 

unknown s(x, ϕ). The auxiliary system (2.16) contains the thermodynamic terms � ̅

and��, while the lifting equation contains hydrodynamic variables f(s,	�̅) and s, with 

already known �(̅x,ϕ) from the solution of eq (2.16). On the contrary to the proposed 

method by Johansen and Winther (1989), that is valid for Riemann problems only, the 

projection (2.13) allows splitting for any initial and boundary conditions.  

For constant initial data sI and 	��� , the initial conditions now apply along the 

straight line ϕ=−sI x 

: ,I I Is x s s c cϕ = − = =                (2.17) 

For continuous injection of ��� in aqueous phase, the boundary condition in plane 

is   

0 : 1, Jx f c c= = =                (2.18) 

Figs 2(a) and (b) show mapping the co-ordinate (x, t) into (x,ϕ). As it follows 

from the projection K, the shock trajectory x0(t) with velocity D maps into the 

trajectory x0(ϕ) with velocity V. 

Taking the derivative in x from both sides of Eq. (2.14) results in the relationship 

between the real D and V velocities  

1 f
s

V D
= −                   (2.19) 

The Hugoniot-Rankine conditions on a discontinuity for system (1.3, 1.4) project onto 

the jump conditions for the auxiliary system (2.14, 2.16). The Lax’s stability 
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conditions for discontinuity of system (1.3, 1.4) project onto the Lax conditions for 

auxiliary system (2.14, 2.16) (Lax 1972; Rozdestvenskii and Janenko 1983). 

Therefore the solution of the hyperbolic system (1.3, 1.4) is constructed by the 

splitting method in three steps: 

• Solution of the auxiliary system (2.16) subject to boundary conditions eq. 

(2.18) and initial conditions (2.17),  

• Solution of the lifting equation (2.14) subject to boundary condition 

(2.18) and initial condition (2.17), 

• Inversion of the mapping from (x, ϕ) to (x, t) by calculating dt from eq. 

(2.13) as 

S dxd
dt

f f

ϕ= +                   (2.20) 

and integrating it in dϕ and dx. 

 

 

Fig.2 Coordinate transformation using splitting technique and expressing the speed of a water 

particle in (x, t) and (x,ϕ) planes  



22 

 

The auxiliary system (2.16) is a hyperbolic system of equation (Courant and 

Hilbert 1962; Smoller 1994). Initial and boundary conditions with constant values 

correspond to the Riemann problems that allow for self-similar 

solutions:	�̅(x,ϕ)=C(ϕ/x). Solutions of the initial-boundary problem with piecewise-

constant values are found by interactions of Riemann configurations. For many cases 

the exact solution of auxiliary system (2.16) is available in the literature, for example 

Rhee et al. (1970 and 1998) derived complete solution of the auxiliary system (2.16) 

for Langmuir sorption isotherms. The lifting eq (2.14) can be solved either 

numerically or analytically subject to boundary and initial conditions (2.17, 2.18) with 

the known solution of auxiliary problem (2.16). 

The characteristic form of the lifting equation can be express as  

,   0
d F dU

dx U dx

ϕ ∂= =
∂                (2.21) 

The analytical solution corresponding to the slug injection of polymer (boundary 

condition (2.22)) for linear sorption (a=Γc, where Γ is constant) is presented in Pires 

et al. (2006) 

1 1
0 : , ( ) 1

0 0 1 J

t
x c f s

t

>
= = = < <

             (2.22) 

The auxiliary solution of eq (2.16) subject to initial condition (2.17) and 

boundary condition (2.22) is  

( )
0,

, 1, 1

0, 1

Is x x

c x x x

x

ϕ
ϕ ϕ

ϕ

 − < <Γ
= Γ < <Γ +
 Γ + < < + ∞

              (2.23) 

With known function c(x,ϕ) in eq (2.23), Pires et al. (2006) solved lifting 

equation (2.14) to determine U and consequently s.  
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Fig.3 shows the graphical presentation of the lifting solution subject to the 

boundary condition (2.22) and initial condition (2.17). The solution for ϕ<1, consists 

of sJ-2 rarefaction wave, 2→3 shock, constant state 3 and 3→I shock. At ϕ=1 sJ-2 

rarefaction wave transmit through the c shock. 

The lifting solution in (x,ϕ) plane is 

( )

( )

3

0, 1

, 1

I

D

D

s s x x

s x s x x
x

s x x

ϕ

ϕϕ ϕ

ϕ ϕ−

 − < <Γ


 = Γ < <Γ +  
 

 Γ + < < + ∞

             (2.24) 

where s0, s3 , s2 and s- are calculated from the following equations  

( )/ 0 , 1UF U c
x

ϕ= =
                (2.25) 

( ) Γ==
−
−

1,
1

2
/

32

32

UFFF

UU

U                (2.26) 

( ) ( )
−+

−+

−
−=Γ

UU

UFUF 0,1,

               (2.27) 

( ) ( )

( )/

, ,

,0U

U x U x

F U
x x

ϕ ϕ
ϕ ϕ

−

−

′ ′=
′− =
′−

               (2.28) 

The inverse mapping from (x,ϕ) to (x, t) was performed using (2.20), and finally 

the solution was provided in (x, t) plane 
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( ) ( )
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( )( ) ( )( )
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 < < + ∞



     (2.29) 

Pires et al (2006) and Dutra et al. (2009) also applied the splitting to various EOR 

methods such as gas-flooding, Water Alternating Gas (WAG) injection, carbonized 

water-flooding and non-isothermal water-flooding. 

 

 

Fig 3. Graphical presentation of the lifting problem in plane (U, F) (Pires et al. 2006) 

The system of equations describing gas-flooding in porous media where n 

components are distributed between the aqueous and gas phases is 

( ) ( )0,   1 , 1 ,  1,2,..., 1i i
i i i i i i

C F
C c s y s F c f y f i n

t x

∂ ∂+ = = + − = + − = −
∂ ∂

            (2.30) 
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where ci, yi and Ci are the concentrations in water, gas and two-phase fluid, 

respectively. The concentrations c1, c2…cn-1 and y1 are functions of concentrations y2, 

y3…yn-1 and f is the fractional flow of liquid. The (n-1)×(n-1) system (2.30) has (n-1) 

unknowns y2, y3…yn-1 and s. 

Pires et al. (2006) transformed the system (2.30) into (2.33) by introduction of 

thermodynamic variables αi and βi  

( ) ( )2 1 2 1 1
1 1

... , ... ,  2,3,..., 1i i
i n i n i i

c y
c c c c y y i n

c y
α β α− −

−= = − = −
−

            (2.31) 

( ) ( )( ) ( )( ) ( )1 111
2 3 1

,
0, 0, , ...i i i i

n

C FF CC

t x t x

α β β α β ββ
β β β β −

∂ + ∂ +∂∂ + = + = =
∂ ∂ ∂ ∂

          (2.32) 

By using the potential φ and variable ψ instead of independent variables x and t 

, ,   C F x t
x t

φ φ ψ∂ ∂= − = = −
∂ ∂

               (2.33) 

the (n-2)×(n-2) auxiliary equation (2.35) is separated from the equation (2.34) 

1

1 1 1 1

1
0

C

F C F Cφ ψ
   ∂ ∂− =   ∂ − ∂ −   

              (2.34) 

( )
0ii

α ββ
φ ψ

∂∂ + =
∂ ∂                 (2.35) 

Equation (2.35) contains only thermodynamic terms and can be solved independently 

from eq (2.34). 

Oil displacement by carbonized water in large scale approximation is defined as 

( ),
0

f s cs

t x

∂∂ + =
∂ ∂

                (2.36) 
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( )( ) ( ) ( ) ( )( )( ), 1 ,( ) 1
0

cf s c b c f s ccs b c s

t x

∂ + −∂ + −
+ =

∂ ∂
                                 (2.37) 

Here c is the concentration of gas in injected water and ( )b c is the equilibrium 

concentration of gas in oil phase. Using coordinates ϕ and ψ instead of variables x 

and t results in the following separated auxiliary and lifting equations 

1
0

C

q C q Cφ ψ
   ∂ ∂− =   ∂ − ∂ −   

              (2.38) 

( ) ( )( ) ( )
0

c b c b c

x ψ
∂ − ∂

+ =
∂ ∂

                (2.39) 

The solution of system (2.34, 2.35) and (2.38, 2.39) is presented in Pires et al. (2006) 

and Dutra et al. (2009). 

The aim of the thesis is creation of the analytical solution based on the splitting 

method for non-self-similar problems of low salinity water flooding, low-salinity 

polymer flooding and colloidal suspension flow in porous media. Regarding the 

derivation of new equations for the mentioned EOR processes, next Section contains 

the review of the previous works in low-salinity water flooding, polymer flooding and 

colloidal transport. 

2.3 Low salinity water flooding 

In recent years, injection of low-salinity water into oil reservoirs for recovery 

enhancement has become an attractive method as it shows more benefits than 

chemical EOR processes, such as low cost, negligible environmental effect and 

simple process operations. Widespread experimental studies in the past decades 

offered different mechanisms of oil displacement during low salinity water flooding. 

It is reported that in sandstone reservoirs, presence of clay, polar components in oil, 
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formation water and multicomponent ions in the formation water are necessary 

requirements for the successful Low Salinity Water (LSW) flooding (Lager 2008; 

2011).  

Recently, Sheng (2014) provides a critical review of seventeen proposed LSW 

mechanisms. Most of these mechanisms are related to each other, and among them, 

wettability alternation of formation rock from oil wet to water wet, fines migration, 

mineral dissolution, increased pH and multicomponent ion exchange (MIE) are 

widely agreed mechanisms.  

The modification of rock wettability during the injection of LSW has been 

reported by many authors (Salatheil 1973; Kovscek et al. 1993; Agbalaka et al. 2008; 

Rezaeidoust et al. 2099; Takahashi et al. 2010; Kim 2013; Mahani et al 2015 a,b). It 

has been shown that low salinity water has an important impact on the shape of 

relative permeability curves. LSW flooding results in a decline in water relative 

permeability and an increase in oil relative permeability. This behavior can be 

described by the ionic exchange between the injection and initial water.   

Jerauld et al. (2008) provided a mathematical model for low salinity water 

flooding based on the salinity dependent oil and water relative permeabilities. In this 

work all salt groups in one pseudo-component (so called lumped model). Although 

the results of the proposed mathematical model in tertiary recovery agree with some 

experimental observation, however other mechanisms such as fines migration and 

multicomponent ion exchange were not accounted in this study. 

An increase in pH during LSW flooding is observed in several studies (Austad et 

al. 2010, Pu et al., 2010), which is explained due to the exchange of hydrogen ions in 

water with adsorbed sodium ions. The negative clay surface acts as a cation 
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exchanger. Primarily cations (mostly Ca2+) from formation water and polar 

components in the oleic phase are attached on to the clay surface. Injection of LSW 

disturbs the equilibrium between the positive components and negative charge of the 

clay. This effects result in the desorption of cations (Ca2+), to neutralize the negative 

charge of the clay proton H+ from the water adsorbed onto the clay, therefore pH 

close to the clay surface increases. A reaction between adsorbed oil components and 

available OH- occurs due to an increase in the local pH an oil component detaches 

from the rock surface resulting in lower residual oil saturation and higher oil relative 

permeability. 

Multicomponent ion exchange during LSW flooding is another mechanism that 

was proposed by Lager et al. (2008). The mechanism explains the mobilization of 

polar oil components previously attached to the clay by divalent ion bonding. In LSW 

flooding monovalent ions mainly sodium (Na+) replace the divalent ion such as 

calcium and magnesium (Ca2+ and Mg2+) with a consequent oil detachment (Lager et 

al. 2008, 2011). 

Numerical models accounting for multi-component ion exchange that include 

monovalent and divalent anions with active-mass-law kinetics of their adsorption on 

clay sites, and cations in brine are presented in works by Omekeh et al. (2013); Dang 

et al. (2013); Nghiem et al. (2015).  

Tang and Morrow (1999) observed the detachment of in-situ fines from rock 

surface by injecting low salinity water. Fines detachment occurs if the ionic strength 

of injected water is less than a critical salinity from where particles start to mobilize. 

The critical salinity is a function of the concentration of ions in the aqueous phase. 

The mobilized particles mainly clay and silt, flow with water. Water flow is more 
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intense in high permeable zones. The particles dispersed in water become trapped in 

pore throats with smaller size than the moving particles. This blockage results in 

decrease of water relative permeability, therefore the water is forced to take other 

flow paths, to the zones with lower permeability, this consequently increases the 

sweep efficiency of the oil displacement (Morrow et al. 2011). 

Effective fines migration management with varying injected water composition is 

based on the mathematical modelling. The equations for two-phase flow with fines 

migration have been presented for homogeneous reservoirs in large scale 

approximation (Yuan and Shapiro 2011; Zeinijahromi et al. 2013). Zeinijahromi et al 

(2013) derived the basic equations for two-phase flow with fines migration in aqueous 

phase. The introduction of the maximum retention function allows the modelling of 

the fine-particle detachment. It was shown that the large-scale system can be 

represented in the form equivalent to that of the polymer-flooding model, which 

allows using the available polymer-flooding simulator for modelling of the low-

salinity water-flood with induced migration of fines. The sweep efficiency 

enhancement due to the water relative permeability reduction was shown in this work. 

Despite the aforementioned works in modelling LSW flooding into reservoirs, to 

the best of our knowledge, the basic equations for low-salinity water-flooding (LSW) 

accounting for fines mobilisation, migration and straining and the local non-

equilibrium and dissipative effects are not available in the literature.   

In the current thesis (Chapter 3), the equations describe two-phase flow with 

single salt concentration in water accounting for fines mobilization, migration and 

aqueous phase permeability impairment are derived. The dissipative effects include 

non-equilibrium wettability alteration, capillary pressure, dispersion and deep bed 
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filtration. The provided system of equations in large scale approximation allows for 

exact solution. The analytical solution permits for sensitivity analysis of the impact of 

contact angle alteration and fines migration on incremental recovery as a separate 

physics factors. 

2.4 Low salinity polymer flooding 

Sweep efficiency is an important factor in oil displacement by water, which is 

linked to the mobility ratio of the displacing (water) and displaced (oil) phases. As the 

viscosity of water is often lower than that of oil, its mobility is higher, therefore, water 

usually by-passes the oil toward the production wells. Finally, the large area of the 

porous media remains un-swept.      

Adding polymer to the injected water increases the viscosity of the displacing 

agent and improves the mobility ratio between water and oil, which results in the 

sweep efficiency enhancement (Sorbie 1991). 

Section 2.3 shows that injection of water with lower salinity can improve oil 

recovery comparing to normal or high salinity water flooding. In some cases of 

tertiary LSW flooding, an unstable shock front due to high mobility of water is 

reported; adding polymer to the water phase can improve the stability of the shock 

front. A laboratory core-flood test on low- and high-salinity polymer flooding showed 

that adding polymer to the LSW improves the oil recovery to an extra 10% above the 

LSW-flood (Mohammadi, Gary 2012).  

Also, for a certain polymer concentration the viscosity of polymer solutions 

increases by decreasing salt concentration. This leads to injection of lower amount of 

polymer for a certain oil viscosity target. It is also reported that low salinity water 

reduces polymer adsorption (Sorbie 1991).  
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Therefore, the combined effect of LSW flooding and polymer flooding can be 

utilized simultaneously to improve the oil recovery in economically and operationally 

favorable conditions. 

Generally speaking, the high-concentration polymer solution is a non-Newtonian 

fluid. The rheology of non-Newtonian polymer solution depends on several 

parameters such as polymer concentration, velocity, and salt concentration. Bird et al. 

(1960) summarized many theoretical and experimental models for different one phase 

non-Newtonian fluids. Sorbie (1991) presents the rheological models of polymer 

solution in porous media. The power-law non-Newtonian fluid has been used 

extensively in the study of non-Newtonian fluid flow through porous media. Hirasaki 

and Pope (1974) described the apparent viscosity of the polymer as a power law 

function of the Darcy velocity. Wu et al. (1991) extended the power law model for 

two-phase flow. 

Effects of low salinity polymer flooding can be modelled through modifications 

of the fractional-flow functions (Mohammadi, Gary 2012). Analytical methods can be 

used to describe the underlying physics of LSW polymer injection.  

In polymer flooding, often a slug of polymer is injected and then is followed by 

either lower concentrations of polymer or water (low salinity or high salinity). 

Injection of multi-component slugs, corresponds to non-self-similar problems, 

interaction of several discontinuities in the solutions of slug problems makes major 

difficulties in analytical solutions. Despite several attempts to derive the analytical 

solution for  system (1.3, 1.4) subject to the slug injection (Fayers 1962; Dahl et al. 

1992; Bedrikovetsky 1993), for the general case, where the adsorbed concentrations 

depend on concentrations of all components, to the best of our knowledge the 
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analytical solution is not available in the literature. The current thesis (Chapter 4) 

presents analytical solution of a non-self-similar two-phase multi-component problem 

of polymer slug injection with varying water salinity in oil reservoirs.  

2.5 Two-phase colloidal flow in porous media  

Suspension-colloidal flow in porous media occurs in numerous areas of 

environmental, chemical and geo-engineering, like disposal of industrial wastes in 

aquifers with propagation of contaminants and pollutants, industrial water treatment 

and filtering (Bradford et al., 2011, 2012). A large body of literature has reported 

fines mobilization with permeability decline as a result of reduction of the salinity of 

aqueous phase, increased flow velocity and changed of pH (Lever and Dawe 1984; 

Khilar and Fogler 1998; Civan 2007, 2015). 

Particles may detach from the rock surface, as the electrostatic attraction between 

the particle-rock surface decreases due to the double layer expansion. This 

detachment increases the relative permeability slightly, hence plugging of small pore 

throats leads to substantial permeability decline. Muecke (1979), Tang and Morrow 

(1999) showed that in two- phase flow, the fine particles are mobilized and strained 

inside the water phase. Therefore, the mobilized fines affect the relative permeability 

of the water phase. The laboratory studies in two-phase flow of oil with low-salinity 

water, carried out by Liu and Civan (1996), Bennion and Thomas (2005), and Civan 

(2007) showed similar results.  

Therefore, as it was discussed in Section 2.3, the traditional vision is avoiding 

fines migration due to well productivity and injectivity decline. However, the 
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reduction in relative permeability in water-swept zone during water-flooding may be 

used to provide mobility control for improved performance of the water-flood. 

Design of the above mentioned technologies is based on the results of 

mathematical modelling. The exact models are used for interpretation of the 

laboratory core-flooding data and determination of the model coefficients. In 

particular, comparison of the concentration and phase saturations calculated by the 

analytical models with the breakthrough of particles and water along with the pressure 

drop yields more understanding of the processes. For example, Alvares et al., (2007) 

determine the filtration function from the effluent concentration and permeability 

damage function from the pressure drop growth along the core. 

The model for a one-phase suspension-colloidal flow in porous media consists of 

mass balance for suspended and retained particles and Darcy’s law accounting for 

permeability damage by the retained particles. Herzig et al. (1970) presented the 

analytical solutions for 1-D flows for constant, linear and power-law filtration 

functions. The exact solution for a particular case, where the filtration function 

remains zero above some critical retention concentration is presented by Santos and 

Barros, 2010. 

A mathematical model for the detachment of particles was derived by 

Bedrikovetsky et al. (2011). It is based on mechanical equilibrium of the torque 

balance of drag, lifting, electrostatic, and gravity forces, acting on the particle from 

the moving fluid and rock surface. The torque balance defines maximum retention 

concentration during the particle straining. A dimensionless ratio between the drag 

and normal forces exerting the particle determines the particle torque equilibrium and 

closes system of equations. Bedrikovetsky et al. (2011) derived the exact solution for 
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1-D colloid transport with particle release, under the assumptions of constant filtration 

coefficient and porosity. The explicit formulae allow the calculation of maximum 

retention concentration, filtration and formation damage coefficients from the 

pressure drop across the core during the injection. The exact solution for continuous 

suspension flooding was successfully matched with the core-flood laboratory data. 

Flow of suspensions in porous media with particle capture and detachment under 

alternate flow rates is discussed in Bedrikovetsky (2012). The mathematical model 

contains the maximum retention concentration function of flow velocity that is used 

instead of equation for particle detachment kinetics from the classical filtration model.  

Payatakes (1974) presents a population balance model accounting for average 

particle and pore sizes. The analytical solution is obtained for mono-sized particles in 

the rock with the pores distributed by sizes; see Bedrikovetsky (2008). The exact 

solution provides the averaged flow, yielding the generalization of the model that 

accounts for the pore volume, inaccessible for finite-size particles, and the fractional 

flows via the accessible and inaccessible parts of the porous space.  

The stochastic models, for single-phase colloidal-suspension flows including the 

particle- trajectory calculations are presented in Payatakes (1974) and for the random-

walk equations are provided in Shapiro (2007) and Yuan and Shapiro (2010).  

The numerical models for two-phase colloidal-suspension flows have been 

developed for propagation of viruses and nano-particles in porous media (Zhang et al., 

2013). 

Despite of several studies in analytical modelling of colloidal flow in one phase 

flow in porous media, to the best of our knowledge, the analytical models describing 
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two-phase suspensions and colloids flow in porous media are not available in the 

literature.  

In the present thesis (Chapter 5), the analytical solutions for two-phase flow of 

particles with multiple capture mechanisms are presented. Introduction of the splitting 

technique allows for separating auxiliary equations containing only suspension and 

retained concentrations from one lifting equation for unknown phase saturation. The 

auxiliary system allows for exact solution for any form of filtration functions. The 

lifting equation allows for exact solution for the case of constant filtration coefficients 

and zero formation damage coefficients. Semi analytical solution was provided for the 

general case of lifting equation, where fractional flow is a function of suspended and 

retained concentrations. The propagation of concentration and saturation waves along 

with trajectories of shock fronts for water and suspension is discussed.  

2.6 Conclusions 

The mathematical models for two-phase multicomponent flow in porous media with 

non-equilibrium phase transitions and chemical reactions describe numerous 

industrial and natural processes in chemical, environmental, geo- and petroleum 

engineering. Planning and design of the above mentioned technologies is based on the 

results of mathematical modelling. The exact analytical solutions are used for 

interpretation of the results of laboratory coreflooding and calculation of the model 

coefficients. The comparison of the concentration and saturation waves provided by 

the analytical models with the breakthrough of colloids and water during the 

corefloods or field tests yields more profound understanding of the processes. The 

analytical models are also widely used in three-dimensional reservoir simulation using 

the stream-line and front-tracking techniques.  
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The above applications motivated almost 70-year history of glorious studies on 

exact solutions for 1D two-phase multicomponent flows in porous media. It includes 

the recent splitting technique, which was used for analytical modelling of numerous 

natural and industrial processes. However, this technique hasn’t been applied for two-

phase multi-component flows in rocks with dissipation, non-equilibrium phase 

transitions and chemical reactions, which encompass the majority of the above 

mentioned processes and technologies. The critical literature analysis presented in this 

Chapter shows that the solution of this problem is not available in the literature.  
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Effects of fines migration on Low-Salinity Water-flooding: analytical modelling 
S. Borazjani, A. Behr, L. Genolet, A. Van Der Net, P. Bedrikovetsky 

 

Abstract  

We derive the governing system for oil-water flow with varying water composition. The 
model accounts for wettability alteration, affecting the relative permeability and capillary 
pressure, and for the fines migration, induced by the salinity variation and causing the 
permeability damage for water. The aqueous phase composition is lumped into a single salt. 
The model is simplified for asymptotic cases of low- and high-velocities as well as in large 
scale approximation. One-dimensional displacement of oil by low-salinity water at large 
scales allows for self-similar solution. Non-self-similar solution for high-salinity water-flood 
followed by the low-salinity-slug injection is derived using the splitting method.  The effects 
of wettability alteration and fines migration on oil recovery as two separate physics 
mechanisms are analysed using the analytical models. For the typical reservoir conditions, the 
significant effects of both mechanisms are observed. 

Keywords: low-salinity water-flooding; fines migration; wettability; non-self-similar 
solution; analytical model; oil recovery 
 
Nomenclature  
A Specific rock-liquid surface, L-1 
A132 Hamekar constant, J 
c Volumetric concentration of particles in water 
C Normalised particle concentration in water 

D Front velocity in (x, t) coordinates 

Dµ Molecular diffusion, L2T-1 

E Dimensionless product of interfacial tension and contact angle cosine 
f Fractional flow for water  
J Leverett function 
k Absolute permeability, L2 
kr Relative permeability 
k* End point relative permeability 
L Reservoir size, L 
n Corey exponent  
U Overall flow velocity, LT-1 
u Velocity, LT-1 
p Pressure, ML-1T-2 
pc Capillary pressure, ML-1T-2  
s Saturation 
Sa Dimensionless concentration of attached particles 
Ss Dimensionless concentration of strained particles 
sor Residual oil saturation 
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t Time 
V Front velocity in (x, ϕ) coordinates 
x Coordinate 
  
Greek letters  
αL Dispersivity, L 

β Formation damage coefficient 

γ Brine concentration, molL-3 

θ  Contact angle 

θe Equilibrium contact angle 

λ Filtration coefficient, L-1 

Λ Dimensionless filtration coefficient 

µ Viscosity, ML-1T-1 

σa Volumetric concentration of attached particles 

σcr Maximum volumetric concentration of attached particles 

σs Volumetric concentration of strained particles 

σwo Water-oil interfacial tension, MT-2 

τ Delay time, T 
εc Capillary-viscous ratio 

εθ Delay dimensionless number for contact angle 

εσ Delay dimensionless number for maximum retention 

 φ Porosity 

ϕ Potential function 

ΩH Volume of injected formation water, L3 

  
Subscripts  
H High salinity water 
I Initial value 
J Injected value 
L Low salinity water 
o Oil 
w Water 
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1. Introduction 

Injection of low-salinity (LS) or “smart” water into oilfields for recovery enhancement has 
several advantages, such as low cost relative to other Enhanced Oil Recovery techniques, 
often readily available injectant, negligible environmental impact and easy field process 
implementation. Planning and designing of the water-flood with alternative composition 
includes study of numerous physics mechanisms of incremental recovery; the degree of 
freedom for possible injection compositions highly exceeds those for “normal” flooding 
(Agbalaka et al. 2009; Austad et al. 2010; Sheng 2014; Brady et al. 2015). The injected water 
composition strongly affects the success of “smart” water-flooding; it’s optimal choice is 
extremely sensitive to numerous factors, like formation water and crude composition, mineral 
contents of the rock, etc. (Tang and Morrow 1999; RezaeiDoust et al. 2009; Morrow and 
Buckley 2011; Fogden et al. 2011). Therefore, the decision-making on low-salinity or 
“smart” waterflood must include multi-variant sensitivity study with reliable laboratory-based 
mathematical modelling. 
   The corresponding mathematical models have the form of “multi-component polymer 
flooding” (Braginskaya and Entov 1980; Pope 1980; Lake 1989; Barenblatt et al., 1989; Dahl 
et al. 1992). One-component “lumped” model, presented by Jerauld et al. 2008, groups all 
salts in one pseudo-component, referring to salinity as the “ionic strength”. The multi-
component models include monovalent and divalent anions with active-mass-law kinetics of 
their adsorption on clay sites, and cations in brine (Omekeh et al. 2013; Dang et al. 2013; 
Nghiem et al. 2015). The models also account for dissolution of calcite cement in the brine, 
and sorption of some oleic components on the rock surface (Al Shalabi et al. 2014a, b; 
Alexeev et al. 2015). 
   Planning and design of low-salinity or “smart” waterflood includes fines management 
(Civan 2007, 2010, 2011). Often the injected water salinity is chosen to avoid fines 
mobilisation and migration in order to restrict the consequent formation damage (Scheuerman 
and Bergersen 1990; Pingo-Almada et al. 2013). However, the fines-induced permeability 
damage decelerates the injected water resulting in sweep efficiency enhancement 
(Zeinijahromi et al. 2013). Effective fines migration management with varying injected water 
composition is based on mathematical modelling. The equations for two-phase flow with 
fines migration have been presented for homogeneous reservoirs in large scale approximation 
(Yuan and Shapiro 2011; Zeinijahromi et al. 2013). Their averaging in layer-cake formations 
yields pseudo-relative permeability equations (Lemon et al. 2011). However, to the best of 
our knowledge, the basic equations for low-salinity (LS) water-flooding accounting for fines 
mobilisation, migration and straining and the local non-equilibrium and dissipative effects are 
not available in the literature.   
   In the present work, we derive equations merging two-phase immiscible flow model with 
the “lumped” salt concentration in water, with the model of fines mobilization, migration and 
aqueous phase permeability impairment. The dissipative effects include non-equilibrium ion 
exchange with wettability alteration and fines release, capillary pressure, dispersion and deep 
bed filtration. For the case where the initial concentration of attached fines is below its 
maximum value, we proposed the extrapolation of the maximum retained function into the 
area where particle mobilisation does not occur, in order to avoid working with two different 
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systems of equations in different (x,t)-domains. In reservoir scale approximation, the 
dissipative and non-equilibrium effects are neglected, and the governing system is simplified 
up to the fractional flow model. The 1-D LS water-flooding problems allow for exact 
solutions. The solution for secondary recovery with continuous injection of low-salinity water 
is self-similar. The exact solution for tertiary recovery with “normal” waterflood followed by 
the injection of low-salinity water slug with high-salinity (HS) chase drive is non-self-similar; 
the solution is obtained by the splitting method. The exact solution provides explicit formulae 
for concentration and saturation profiles, front velocities, breakthrough concentration and the 
recovery factor. The analytical model allows for sensitivity analysis of the impact of two 
separate physics factors, i.e. contact angle alteration and fines migration, on incremental oil 
recovery. 

   The structure of the paper is as follows. The governing equations including large scale 
approximation are derived in Section 2, Appendixes A, B and C. Derivations of exact 
solutions corresponding to secondary and tertiary LS water-flooding are presented in Section 
3 and Appendix D. Section 4 contains the results of analytical modelling and analysis of 
incremental oil recovery with LS water-flooding applications.  

2. Governing equations 

The basic equations for two-phase flow with varying salinity and induced fines mobilisation 
and straining are presented in its dimensionless form in Section 2.1 along with the estimates 
of the dimensionless groups. The detailed derivations with formulation of initial and 
boundary conditions are shown in Appendixes A and B. The large-scale approximation of the 
governing system is presented in Section 2.2 and Appendix C.  

2.1. Dimensionless governing system 

Let us discuss the governing equations for oil displacement by low-salinity water. The overall 
molar concentration of cations is represented by the equivalent sodium ion concentration γ 
(so-called ionic strength). Two phases are assumed to be immiscible and incompressible (see 
Fig.1). Variation of small sodium concentration does not change the aqueous phase density. 
Other assumptions of the model include constant oil viscosity; relative phase permeabilities 
depend on the contact angle; the equilibrium contact angle depends on salinity; porosity is 
constant. It is also assumed that the dispersivity coefficients for salt and fines particles are 
equal (Geiger et al. 2012). Small fines concentrations c yield significant permeability decline 
but does not affect water viscosity and density (Muecke, 1979, Khilar and Fogler, 1998), 
which is assumed too. 
   Fig. 1 shows attached and strained fine particles, retained in the rock, and the mobilised 
fines suspended in aqueous phase (with concentrations σa, σs and c, respectively). The 
attached particles are mobilised into the suspension with the following straining in thin pore 
throats. The attached fines coat the grain surfaces and pore walls. So, the particle detachment 
by drag force yields non-significant increase in porosity and permeability. The significant 
permeability reduction by small amount of suspended mobilised particles is explained by the 
form of clay fines (thin large plates of kaolinite and shells of chlorite, long illite fines), where 
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a small-volume fine can strain even a large pore throat (Muecke, 1979, Lever and Dawe, 
1984, Sarkar and Sharma, 1990). So, the pore structure can be alternated by straining of the 
low-concentration fines suspension. Therefore, it is assumed that fines mobilisation does not 
change water viscosity, but the water relative permeability and capillary pressure are 
strained-concentration dependent. Fines are strained by the rock fraction where the aqueous 
suspension flows, so relative permeability of water depends on the strained fine concentration 
and oil relative permeability is independent of the concentration of strained fines. The 
mobilised fine particles are assumed to be water-wet and transported by the aqueous phase 
(Muecke, 1979, Yuan and Shapiro, 2011).    
   The mechanical equilibrium of particles on the rock surface is determined by the torques 
balance for drag, lifting, electrostatic and gravitational forces, i.e. the total of torques is equal 
to zero (Khilar and Fogler, 1998; Bradford et al., 2006 and 2011). For each particle, the 
torque balance determines, whether this particle is mobilised or remains attached for a given 
force values. So, the torque balance determines the amount of attached fines, which is called 
the critical retention function (Bedrikovetsky et al. 2011, 2012). Since the above mentioned 
forces depend on velocity and salinity, the critical retention concentration is a function of 
velocity and salinity. Under constant flow velocity, the attached concentration is a salinity 
function only. However, it takes some time for salt to diffuse from the particle-rock contact 
space to the bulk solution in the pore centre, so the attached concentration takes values of the 
maximum retention function with some delay (Mahani et al. 2015a, b).   
   Sarkar and Sharma 1990 investigated the permeability damage with injection of low 
salinity water. The lower formation damage under the presence of polar residual oil or at the 
presence of non-polar oil, if compared with a single-phase flow is observed. The 
phenomenon is attributed to incomplete accessibility of water to rock surface in the case of 
partial wettability by oil. Fig. 2 shows the fractions of the overall solid-liquid interface A 
accessible to water Aw and oil Ao, which is one of the schemas for oil and water distribution in 
mixed-wet rocks (Salathiel 1973; Kovscek et al. 1993; Kim and Kovscek 2013). The amount 
of fines attached to area Ao is not affected by salinity, while that on the Aw-surface depends on 
salinity (Schembre and Kovscek 2005; Schembre et al. 2006, Zeinijahromi et al. 2013). Both 
fractions are the saturation functions. So, the fines detachment occurs due to changing both 
salinity and water saturation.  
   The model also assumes that the drag force acting on a particle from the flowing oil is not 
enough for its mobilization.  
   The overall specific rock-liquid surface is a total of those accessible to water and oil:  

( ) ( ), ,w osA A sAθ θ= +            (1) 

The higher is water saturation and the lower is the contact angle, the higher is the accessible 
to water surface Aw. Consequently, the surface Ao is monotonically decreasing function of s 
and monotonically increasing function of θ.  
   Therefore, the overall attached fine particle concentration in the rock is a total of those 
attached to water-accessible and oil-accessible surfaces; the corresponding fractions depend 
on phase saturations and wettability. The attached fines can be mobilized by drag forces 
exerting from water with decreasing salinity, resulting in weakening of the attractive 
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electrostatic particle-grain forces (Khilar and Fogler 1998; Israelachvili 2011). Xxx For the 
case of instant fine particles release, the attached concentration is determined by the torque 
balance of forces exerting the particle attached to the water-accessible surface Aw and is 
called the maximum retention function of water composition (Bradford et al. 2006, 2011). 
The plot of the function is given in Fig. 3. For the points below the maximum retention curve, 
the attaching torques of electrostatic and gravitational forces exceed those for detaching drag 
and lifting forces. The initial point corresponds to “under-saturated” state, i.e. it takes the 

salinity decrease from γI to γcr in order to start the fine particle mobilisation. Therefore, the 
path corresponds to horizontal line without fines release followed by the curve with the 
release of some amount of fines, denoted as σs.  The critical salinity is determined as a 
minimum salinity where fines are released by the flow: 

( ) 0cr cr aσ γ σ=               (2) 

   For the case of instant fines release, the attached concentration is equal to the maximum 
retention function of the rock, where the attached particles on the rock surface accessible to 
water can be removed, plus the attached particles on the accessible to oil surface that cannot 
be removed (Yuan and Shapiro 2011; Zeinijahromi et al. 2013): 
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   Let us introduce the following dimensionless co-ordinates and parameters into the system 
of dimensional equations derived in Appendix A:  
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Substitution of the dimensionless parameters (4) along with expression (A-12) into the 
governing system (A-1,A-5, A-6-A-9) yields  
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   System of 6 equations (5-10) determines 6 unknowns: saturation s, salinityγ, attached fines 
concentration Sa, concentration of strained fines Ss, suspended fines concentration C and 
contact angle θ.  

   The system contains the following dimensionless groups: capillary-viscous ratio εc, 

Schmidt’s number εD=αL/L (inverse to Peclet’s number), filtration coefficient Λ=λL and two 

delay numbers εθ and εσ. The dimensionless groups correspond to different dissipative 
processes. Capillary-viscous ratio and Schmidt’s number correspond to “diffusion” of 
variables s, γ and C. The delay numbers corresponds to delay in establishing the equilibrium 
contact angle and the maximum retention values for attached fines concentration.  
   Let us calculate the dimensionless groups (4) for the laboratory coreflood, described further 
in Section 4. The properties of rock and fluids are: L=0.08 m, k=0.135×10-12 m2, φ=0.13, 

U=1.4×10-5 m/s, µo=0.11 Pas, µw=10-3 Pas, αL=4.1×10-6m, λ=100 1/m, σwo=0.04 N/m, 

Dµ=10-12 m2/s, θ=π/6, τθ=100 s. The dimensionless groups (4) are: εc=0.04; εD=0.00005; 

εθ=0.13; εσ=0.002; Λ=8. Dissipative numbers εn, n=c, D, θ and σ, are significantly smaller 
than one, while the dimensionless filtration coefficient highly exceeds unit, i.e. large scale 
approximation conditions are fulfilled, (see Appendix C). It means that the laboratory 
coreflood data must be matched by the simple model (11-13) rather than by the detailed 
model (5-10). 

2.2. Large scale approximation 

   Approximations of the system (5-10) for the cases of high and low velocities of laboratory 
corefloods and large reservoir scale are presented in Appendix C. In this Section, we present 
equations for large scale approximation (Bedrikovetsky 1993; Hussain et al. 2013): 
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                     (13) 

   It corresponds to water transport by pressure gradient only, advective salt transfer, 
equilibrium attached concentration that is equal to maximum retention function and instant 
straining of the released fines. 
   The governing system (11-13) is 2×2 hyperbolic system of quasi linear equations for two 
variables s and γ  (Courant and Friedrichs 1976).  
   The initial conditions correspond to reservoir saturation and salinity of formation water 
before the injection: 

0 : ,J Jt s s γ γ= = =                     (14) 
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   Entrance boundary conditions for continuous low-salinity water injection are fixed fraction 
of injected water and injected salt concentration: 

0: ( , ) 1,  J Jx f s γ γ γ= = =                     (15) 

   For formation water injection followed by the injection of low-salinity-water slug with 
high-salinity drive, the volume of injected formation water ΩH  is used to dimensionalise co-
ordinates x and t in (4); the dimensionless co-ordinate of the core outlet (production well row) 

becomes φL/ΩH. The inlet boundary conditions are:  

0 1
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= = = < <
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                  (16) 

3. Analytical models for Low-Sal Waterflood with fines migration 

In this Section we present exact solutions for fines-assisted low-salinity waterflooding in 
large scale approximation (11-13). The splitting procedure is used for the exact integration 
(Appendix D). Secondary recovery corresponds to continuous injection of low-salinity water 
and self-similar solution (Section 3.1). Tertiary recovery follows “normal” waterflooding and 
the solution is non-self-similar (Section 3.2). 

3.1. Self-similar solutions for continuous injection of low-salinity water  

The solutions of continuous injection problem (14, 15) for system (11-13) are well known 
(Pope 1980; Lake 1989). The solutions are self-similar and depend on the group x/t. Fig.4a 
presents the graphical solution. Points 6, 2 and 4 are tangent points of straight lines I-6, 0-2 
and 0-4 to the fractional flow curves γ=γI, γ=γJ. The corresponding slopes are the speeds of 
the jumps, where the points ahead and behind the jumps are located on those straight lines I-
6, 0-2 and 0-4. 
   The solution corresponds to the path in (s, f)-plane consisting of rarefaction wave from the 

saturation sL
0 to point 2, γ-jump from 2 to 3 and s-jump from 3 to sI:  

0
3 6 : 2 3Ls s s I< − → →                    (17) 

Fig. 4b shows the saturation profiles for injection of formation water (solid curve), low 
salinity water (dotted curve) and medium salinity water (dashed curve). The salinity profile is 
a step-function, given by a γ-jump with velocity D2. Water-cut history is shown in Fig. 4c. 
The graphic-analytical technique for solution is available from Lake, 1989 and 
Bedrikovetsky, 1993. 
   If the intersection point 5 is located above the point 6, the corresponding path is  

0
5 6 : 4 5 6Ls s s I> − → − →                    (18) 

Figs. 4b and c show profiles of saturation and water-cut history for normal water-flooding 
(solid curves), intermediate-salinity flood (dashed curves) and low-salinity water-flooding 
(dotted curves). As it follows from the curve shapes, for 1-D continuous water injection, low 
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salinity water-flooding results in later breakthrough if compared with formation water 
injection; it also causes decreased water-cut during production of oil-water bank and during a 
short period after the breakthrough of the injected water. It also results in lower oil residual at 
the late stage of the water-flooding. Oil production with intermediate-salinity water injection 
coincides with normal flooding from the beginning of injection until some moment after 
water breakthrough. Afterwards, normal waterf-lood exhibits higher water-cut and higher 
residual oil. 

3.2. Non-self-similar solutions for displacement of oil by formation water followed by 
low-salinity water slug  

Let us discuss displacement of oil by HS water followed by injection of LS water slug with 
HS-water chase drive. The solution of the large-scale system (11-13) subject to boundary 
conditions (16) is non-self-similar. The corresponding interactions of saturation- and 
concentration-waves have been investigated in Barenblatt et al. 1989, Entov and Zazovskii 
1989, Bedrikovetsky 1993. The exact solution of the problem (11-13, 14, 16) is derived in 
Appendix D using the splitting method. The method uses the stream-function (Lagrangian co-
ordinate) ϕ(x,t) as an independent variable in the governing system (11-13) instead of time t 

(eq D-2). The corresponding mapping Κ is presented in Fig. 5. It transforms mass balance for 
water(11) into conservation law (D-4). The graphical solution of the slug problem (D-9) is 
presented in the plane of fractional flow curves (s,f) and in the plane of density and flux (U,F) 
of conservation law (D-4) in Figs. 6 a and b, respectively. The corresponding characteristics 

and front trajectories are presented in planes (x,ϕ) and (x,t) (Figs. 7 and 8).   
   The solution of eq (D-6) subject to initial and boundary conditions (D-8) and (D-9) is: 
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                   (19) 

The solution s(x,ϕ) of eq (D-4) subject to initial and boundary conditions (D-8), (D-9) is 

discontinuous. The front trajectories ϕL(x) and ϕH(x), where the jumps γJ→γI and γI→γJ 

occur, respectively, are presented in plane (x, ϕ) (Fig. 7 a and b). Continuous solutions s(x, ϕ) 
in zones between the shocks are obtained by method of characteristics and are given by 
rarefaction and simple waves (Table 1). The geometric procedure to find points 2, 3, …6 is 
shown in Fig. 6a and b. 
   The rarefaction wave s0

H-6→I propagates from point x=0, t=0 (zones I and II in Table 1). 
The characteristic lines transport the values from s0

H to s4 until the shock trajectory ϕ=0, 

where the jump γJ→γI occurs. The corresponding points above the front vary from 5 to 2. The 

boundary value of saturation s0
L appear for ϕ>1 due to change of salinity. The corresponding 

rarefaction s0
L-5 connects the points along the curve γ=γJ in Fig. 7 b (zones III and IV). The 

simple wave propagates the characteristic lines with points varying from 5 to 2 in zone V. 
Point 2 is held above the line ϕ=1+0, x>xB. As it follows from Fig. 7 b, point 3 is held below 
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this line at ϕ=1-0, x>xB. Trajectory ϕ=ϕL2(x) separates zone II of rarefaction wave 4-6 from 
zone VI with constant state 3. The trajectory is defined by condition on characteristic line 

( ),U IF U
x

ϕ γ′=                      (20) 

and the Hugoniot-Rankine condition that corresponds to conservation law (D-4):     
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Integration of eq (D-4) along the contour (0, 0)→(xB, tB)→(xL2, tL2)→(0, 0) results in first 

integral for ordinary differential equation (21), defining the trajectory x=xL2(ϕ): 
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              (22) 

The intersection between front trajectory ϕ=ϕL2(x) and line ϕ=-sIx corresponds to point 6 

behind the shock. It gives the intersection moment: ϕ=ϕF. The jump 3→I appears after the 
intersection. 
   Salinity jump γI →γJ occurs along the front ϕ=ts. Saturation jumps occur along this shock 

with conservation of the flux F(U,γ). The saturation values s(ts+0, x) propagate in zones VII, 
X and VIII along the characteristic lines in simple waves. The corresponding formulae are 
presented in Table 1. Finally, solution for γ and s is obtained for the overall domain x>0, -

sI<ϕ/x<∞. 

Calculating t(x,ϕ) for each point of the domain by formula (D-3) maps the solution into 
variables (x, t). Formulae in Table 2 are obtained from those in Table 1 by transfer (D-3). 
Here points (x, t) and (x’, t’ ) in zone V are located on the same characteristic line. Points (x, t) 

and (x’’ , t’’ ) in zone X are also located on the same characteristic line. The front xL1(ϕ) is 
mapped into the following trajectory xL1(t), determined parametrically: 
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here  

( ) ( ) ( ), ,, ss f s sf sγγ γ′∆ = −                     (24) 

   In Fig. 6 a, AO=∆(s+,γI) and BO=∆(s+,γI)/fs’(s
+,γI). It allows for graphical expression of the 

dependency xL1=xL1(t): point A is determined by AO=1/t for any arbitrary t; point B is 
determined by tangent line A-s+ to fractional flow curve γ=γI; the front co-ordinate xL1 is 
determined by BO=1/ xL1 (t). Trajectories xL2 (t), xH1 (t) and xH2 (t) are determined in the same 
way. 
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   Fig. 8 presents trajectories of saturation and concentration shocks in (x, t)-plane. The 
displacement zone consists of the following reference patterns: 

0– Unperturbed zone of initial water saturation; 

I– Zone with residual immobile oil and injected formation water; 

II– Zone of oil flow together with injected formation water, saturation changes from sH
0 to s6 

at the displacement front;  

III– Zone with residual immobile oil and injected low-salinity water;   

IV– Zone with low-mobility oil and injected low-salinity water, which substitutes zone I 
during the displacement;   

V– Zone with mobile oil and injected low-salinity water;   

VI – Oil-water bank with saturation s3; 

VII– Zone of immobile oil with saturation s0
L; 

VIII– Zone of immobile oil with saturation varying from s0
L to s0

H; 

IX– Zone of immobile oil with saturation s0
H; 

X– Zone with injected high-salinity water, which substitutes zone V during the displacement;   

XI– Oil-water bank with saturation s4. 

   Implicit formulae for front trajectories (23) and straight lines for characteristics allow 
explicit calculation of the recovery factor 
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   Let us derive formula for average water saturation <s>(x, t) at the moment t2. Integrate eq 
(11) by rectangular, bounded by the contour (0,0)→(0,t2)→(φL/ΩH ,t2)→(φL/ΩH,0)→(0,0), 
i.e. during LS water injection. Following Green’s formula, the mass integral is equal to the 
integral of mass flux fdt-sdx along this contour. The integral over the side (0, t2)→(φL/ΩH, t2) 

is equal to <s>(t2)× φL/ΩH. The integral over the interval (0,0)→(0,t2) is equal to t2 and the 

integral over (φL/ΩH,0) →(0,0) is equal to sI×φL/ΩH. Finally, the average water saturation at 
the moment t2 is (see Fig. 8 (a)): 
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Average saturation (26) is substituted into formula (25) for recovery factor calculation. 
Similarly, the recovery factor is calculated for any arbitrary moment t. 

4. Results 

In this Section, the water-flood cases of injection of formation and low salinity waters are 
compared. The effects of low-salinity water on relative permeability and on fines 
mobilisation and straining are treated together in the mathematical model (11-13). However, 
those are separate physics mechanisms that act independently. The effect of low-salinity on 
contact angle reduction is expressed in eq (A-2) by reduction of relative permeability for 
water, decrease of residual oil saturation and some increase in relative permeability for oil. It 
is expressed by the contact angle-dependency of both relative permeabilities on contact angle 
(eq (A-2)), which in turn depends on salinity (θ=θe(γ)). The above mechanisms yield the 
reduction in fractional flow for water and increase of the fractional flow for oil, leading to 
enhanced oil recovery.  
   As it is explained at the beginning of Section 2.1, fine particle mobilisation is triggered by 
weakening of electrostatic particle-grain attraction, which decreases as salinity decreases. 
Fines mobilisation and migration follow by particle straining in thin pore throats. Since the 
particles are transported by water, it results in declining of relative permeability for water, see 
eq (A-3). The main effect of induced fines migration is the reduction of relative permeability 
for water and deceleration of the aqueous phase. However, sweep on the micro scale can 
increase, resulting in the reduction of the residual oil saturation. Those effects also cause 
reduction of fractional flow function for water and consequent oil recovery enhancement.   
   A separate effect of salinity on relative permeability, where the fines are not mobilised 

corresponds to β=0 in (A-3). A separate effect of fines-induced formation damage, where the 
contact angle remains constant with salinity decrease, corresponds to salinity-independent 
relative permeability for water k/

rw in eq (A-3). The effects of fractional flow reduction on 1D 
displacement of oil are described at the end of Section 3.1. 
   The maximum retention function is calculated for poly-layers of mono-sized particles in 
cylindrical capillary (see Bedrikovetsky et al. 2011, 2012). The sandstone rock with kaolinite 
fines attached to the grain surfaces is assumed. The typical values of physics properties are: 
for salinity equal to 0.5 M NaCl are Hamaker constant A132= 9.5561E-21 J, electrostatic 
potentials for quartz-brine and kaolinite brine are -19.1 and -10.7 mV, respectively, and for 
0.1 M NaCl,  Hamaker constant A132=9.5938E-21 J, electrostatic potentials for quartz-brine 

and kaolinite brine are -34.9 and -23.0 mV, respectively, mean particle size rs=3 µm, drag 

factor ω=60 ; formation damage coefficient β=1000 (Khilar and Fogler 1998; Israelachvili 

2010). The plot is given by a bold curve in Fig. 3; the dashed curve σs(γ) corresponds to the 
amount of strained fines that have been captured by size exclusion mechanism. The curve 
σs(γ) is approximated by a positive function for γcr<γ<γI, where a positive but negligibly 
small amounts of fines are released for salinities above the critical value, i.e. the fines release 
occurs at any salinity below the initial salinity. So, the governing system (5-10) can be used 
in the overall interval for salinity variation. 
   Relative permeability kr

/(s,γ) is expressed by Corey’s formulae. The typical values for the 
relative permeability at HS and LS waters are taken from Lager et al. 2007, 2008, 2011 and 
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are presented in Table 3. The fractions of rock surface accessible to water and oil have been 
calculated from the porous space model of a bundle of parallel capillaries. The values of 
formation damage parameters follow the works by Bradford et al., 2006, 2011; Civan, 2011; 
Hussain et al., 2013. The same Corey coefficients are used for LS water for the cases of 
wettability effect only and for both effects. For the case of LS water with fines migration 
effect only, Corey’s coefficients for HS are utilized. At the cases of HS and LS water 
accounting for wettability effect only, the formation damage coefficient is equal zero, β=0.  
   Fractional flow curves for HS and three above mentioned LS cases are shown in Fig. 9. 
Water-cut and recovery factors as calculated from the analytical model (11-13) subject to 
initial and boundary condition (14-15) are presented in Figs. 10 a, b. Blue fractional flow 
curve is located below the black curve, i.e. the impact of fines-induced formation damage is 
higher than that of wettability alteration. Fines straining does not alternate the residual oil 
saturation, so blue curve in Fig. 10 b tends to green curve at large times. Wettability variation 
does alternate the residual oil, so the black and red curves converge at large times. If 
compared with HS flood, LS flood yields 0.35 incremental oil after 1 PVI due to both effects. 
Separately, the wettability alteration and fines migration effects after 1 PVI bring 0.14 and 
0.21 of incremental oil, respectively. 
The results of recovery factor calculations for different volumes of HS injected before the LS 
water is given in Fig. 11. The trajectories of concentration and saturation fronts in plane (x, t) 
are shown in Fig. 8a. Here time and linear coordinate are dimensionalised using the volume 
ΩH of HS water injected, i.e. x→φx/ΩH, t→ut/ΩH. The dimensionless moment of switching 
from HS to LS is constant and equal to unity, while the dimensionless coordinate of the 

production line x=φL/ΩH depends on the volume ΩH. With increasing of the volume ΩH of 
injected HS water, the solution in (x, t)-plane is intact, while the line of production wells 

x=φL/ΩH moves to the left.   

   Fig. 8a shows that for a small volume ΩH of injected HS water, that xF<φL/ΩH, the bank of 
formation water and oil with composition 3 arrives at the production row after water 
breakthrough; the injected LS water arrives after the bank production with water-cut 2 (Fig. 
6a), which will monotonically rise, i.e. the solution asymptotically tends to that for 
continuous injection of LS water. For larger HS volumes, the arrival time, water-cut at the 
arrival and its further growth coincide with that of continuous HS waterflood; the water-cut 

decrease occurs after the arrival of LS water front. For so large HS volume that φL/ΩH is 
equal to maximum coordinate of zone I, the production fully coincide with HS flood exactly 
until the 100%-water-cut. LS water arrives at that moment, and water-cut falls up to the point 
5 with further increase during oil production with LS water.     
   Fig. 11 presents the recovery curves for different volumes of HS injected before the LS 
waterflood. The higher is the injected HS volume, the lower is the recovery. At high HS 
volumes, it tends to recovery at HS water injection. As low volumes of injected HS water, the 
recovery tends to that of continuous LS flood from the very beginning. 
   Let us compare a specific contribution of wettability alteration and fines-migration to oil 
recovery. The data for calculations are presented in Table 3. For both effects, if compared 
with “normal” 1-D waterflooding, injection of water with salinity with typical conditions 
results in increase of the water-less production period from 0.34 to 0.48, decrease of water-
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cut from 0.83 to 0.41 before the salinity front breakthrough and increase of recovery factor 
after 1 PVI from 0.47 to 0.82. 
   For wettability alteration effect only (the case of zero formation damage coefficient), if 
compared with “normal” 1-D waterflooding, injection of low salinity water results in increase 
of the water-less production period from 0.24 to 0.39, decrease of water-cut from 0.83 to 0.58 
before the salinity front breakthrough and increase of recovery factor after 1 PVI from 0.47 to 
0.62. 
   For the effect of fines-migration only (water relative permeability in the nominator in eq 
(A-3)) is independent of salinity, if compared with “normal” 1-D water-flooding, injection of 
low salinity water results in increase of the water-less production period from 0.34 to 0.43, 
decrease of water-cut from 0.83 to 0.42 before the salinity front breakthrough, increase of 
recovery factor after 1 PVI from 0.47 to 0.68. 

5. Discussions 

Impact of wettability alternation and fines migration on LS water-flood The distinguished 
physics effects of low-salinity water-flood are wettability alteration and fines-migration-
induced formation damage, both triggered by the difference between salinities of formation 
and injected waters. In order to compare low-salinity and “normal” water-flooding, we 
discuss water-flood by formation water, where no salinity alteration occurs. So, the term 
“high salinity” in this paper assumes equality of connate and injected HS waters. 
    The explicit analytical formulae for sequential injection of HS slug, LS slug and HS drive 
presented in Tables 2 and 3 can be implemented in Excel or MatLab and used for sensitivity 
study and low-salinity EOR screening (Excel 2010; MATLAB 2015).  
    The 1D analytical modelling, presented in Section 4 shows that for typical values of 
wettability alteration and induced formation damage by application of LS water, either effect 
can make a major contribution to incremental oil recovery if compared with HS water. For 
example, for typical conditions of secondary low-salinity waterflood (Table 3), the 
incremental recovery after 1 PVI due to collective effects of wettability alteration and fines 
migration is 0.35, while for each effect separately the incremental recovery is 0.14 and 0.25, 
respectively. For tertiary low-salinity-slug injection with wettability alteration effect only, the 
incremental recovery after 1.5 PVI is 0.22, 0.20 and 0.09, with secondary injection of 0.1, 0.3 
and 1.0 PVI of HS water. 
   The effects of wettability alternation and fines migration affect also 2D LS water-flooding. 
The wettability alternation causes the reduction in residual oil and more complete oil 
displacement from the swept areas. The induced fines migration and consequent permeability 
damage in swept area decrease water flux and diverts it into unswept zones, yielding sweep 
efficiency enhancement. The 2D effects of sweep increase with LS water injection have been 
discussed in details by Lemon et al., 2011 and Zeinijahromi et al., 2013. The derived 
analytical model can be used for 3D reservoir simulation in stream-line or front-tracking 
modes (Oladyshkin, Panfilov, 2007; Holden, Risebro, 2013). 
Roles of dissipative and non-equilibrium effects The model for low-salinity water-flooding 
accounting for wettability alterations and fines migration (5-10) accounts for "vanishing 
viscosity" effects of capillary pressure and dispersivity and non-equilibrium fines 
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mobilisation, migration and straining along with the contact-angle-alteration kinetics. The 
capillary pressure effect smooths the saturation shocks, while other effects of dispersivity and 
non-equilibrium smooth the concentration shocks. 

   Thickness ∆ of smoothed zones for the saturation-concentration shocks is determined from 
the travelling wave solutions (Dujin and Knabner 1992; Dujin et al. 1997). A travelling wave 
converges to each shock with the dissipative dimensionless groups tending to zero. The 
condition ∆<<L is more precise estimate of large scale approximation than inequalities for 

small dimensionless groups εc, εD, εθ, εσ, Λ-1<<1 (Bedrikovetsky 1993).  
   Let us consider determination of relative permeabilities from low salinity core flood data 
measuring rates of two phases and pressure drop across the core. In large scale 
approximation, where six dimensionless parameters for the long cores are significantly 
smaller than one, the exact recalculation is based on self-similarity of solution (see eq (17) or 
(18)) using the generalised Weldge-JBN method for system (11-13) (Bedrikovetsky, 1993; 
Jerald et al., 2008). If the dimensionless numbers εc, εD, εσ, εθ and 1/Λ are not small, the 
dissipative and non-equilibrium terms cannot be neglected. In this case, the overall system (5-
10) must be solved numerically, and the relative permeabilities are determined by tuning of 
the laboratory data into the mathematical model, using the iterative optimization algorithms. 
However the dissipative and non-equilibrium parameters in this case are not known (capillary 
pressure, delay times, dispersivity and contact angle). If compared with the generalised 
Weldge-JBN method, using the general model (5-10) increases the uncertainty in determining 
of the unique tuning data, i.e. in order to determine the same level of uncertainty as with 
Weldge-JBN method, the Leverett function and delay times must be known.  
   Recently obtained semi-analytical and exact solutions for two-phase multi-component 
systems with dissipation and non-equilibrium simplify the solution of inverse problem for the 
general system (Schmid et al., 2010, 2013; Geiger et al., 2012; Borazjani et al., 2015). 
   Example in Section 2.1 shows that the reservoir-scale conditions can be reached during 
laboratory coreflooding. So, the experimental data can be matched using simpler model (11-
13) rather than the detailed system of equations (5-10). In this case, the modelling results are 
independent of the capillary pressure, dispersion, delay times for contact angle and fines 
detachment and the filtration coefficient. It significantly reduces the number of tuning 
parameters. The above advantages encourage reaching the conditions of large scale 
approximation by selecting proper velocity, oil viscosity, core length, etc in the laboratory 
tests. 
More complex mathematical models More sophisticated model rather than that of single-
salinity is the multi-component ionic exchange model, which reflects the effect of different 
cations on rock surface and wettability alteration during their adsorption on clay sites 
(Omekeh et al. 2013; Nesterov et al. 2015).  
   The wettability alteration results in sor- and krw-decrease (Omekeh et al. 2013; Dang et al. 
2013; Nghiem et al. 2015), leading to displacement coefficient enhancement, like it is the 
case for chemical EOR (Lake 1989). Fines-migration-induced formation damage for water 
yields the injected water re-direction into un-swept zones, leading to sweep enhancement, 
like it is with the mobility-control EOR.  
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   Different behaviour of oil-wet, mixed-wet and water-wet fines during low-salinity water-
flooding has been reported in the literature (Sarkar and Sharma 1990; Tang and Morrow 
1999). Here we discuss initially oil-wet fine particles, like those of kaolinite or illite. The oil-
wet particles are coated by oil, so there is no direct contact between the particles and water. 
However, arrival of low-salinity water causes alternation of wettability, resulting in oil 
displacement from the rock surface and exposing it to the injected water. From this moment 
on, particle equilibrium on the rock surface is determined by torque balance of drag and 
electrostatic forces. The electrostatic particle-rock attraction decreases with salinity decrease, 
resulting in particle mobilisation. 
   In the current paper we discussed two EOR mechanisms of low-salinity water flooding: the 
wettability and interfacial tension alternations resulting in changing the relative permeability, 
and the induced formation damage to aqueous phase by mobilising and straining of the 
natural reservoir fines. However, numerous other EOR mechanisms are presently under 
intensive investigation. Sheng 2014 reviewed the mechanisms of fine migration, mineral 
dissolution, increased pH effect and reduced interfacial tension, saponification, 
multicomponent ion exchange, wettability alteration, etc. Morrow and Buckley (2011) briefly 
mentioned osmotic pressure as an important factor leading to incremental oil recovery. 
Sandengen and Arntzen (2013), provided a detailed description of how osmosis could 
operate. The mentioned works claim that the mechanisms for LS water flooding are presently 
not well understood and their modelling is a subject of forthcoming research.  

6. Conclusions               

Development of the mathematical model for LS-water flood accounting for wettability 
alternation and fines migration, derivation of the exact solution for 1D slug problem and 
recovery prediction by the analytical modelling allow drawing the following conclusions:  

1. One-dimensional equations for displacement of oil by varying salinity water with 
wettability alternation, lumped salt and fines mobilisation, migration and straining 
contain five dimensionless groups describing dissipative effects of capillary pressure, 
dispersion of components, kinetics of the contact angle alteration and kinetics of fines 
detachment and straining. 

2. The model allows for simplified versions in low-velocity, high-velocity and large-
scale approximations. 

3. In large scale approximation, the excess of the attached particle concentration over the 
maximum retention value is instantly transferred to strained concentration, yielding 
instant permeability damage for aqueous phase. The governing equations are 
equivalent to the fractional flow model of oil displacement by chemical solution. 

4. Well-known analytical EOR model describes a lumped-salt LS water-flooding 
accounting for both wettability alteration and induced fines migration.  

5. Continuous low salinity water-flooding results in later breakthrough if compared with 
formation water injection; it causes decreased water-cut during production of oil-
water bank and during a short period after the breakthrough of the injected water. It 
also results in lower oil residual at the late stage of the water-flooding.  
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6. With injection of intermediate salinity water, the breakthrough moment and water cut 
during some times after the breakthrough coincide with the formation-water-flooding. 
Afterwards,     water-cut at the intermediate salinity water is lower. The residual oil is 
lower also. 

7. One-dimensional problem for oil displacement by formation water with further 
injection of LS slug and HS chase drive allows for exact solution. The saturation and 
salinity front trajectories are described by explicit formulae. 

8. For short time formation water injection before low-salinity-water flooding, the 
solution asymptotically tends to that for oil displacement by low-salinity water. For 
long time formation water injection, the solution tends to that for oil displacement 
with high initial water saturation by low-salinity water. 
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Appendix A. Derivation of governing equations 

Mass balance equations for incompressible immiscible water and oil phases are (Lake 1989): 

(1- )
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Momentum balances for aqueous and oil phases are expressed by modified Darcy’s law  
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   The effect of wettability variation with salinity is expressed in the contact-angle-
dependency of relative permeabilities, see eq (A-2). The formation damage to aqueous phase 
due to straining of the released fines is expressed as 
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i.e. the effect of attached particles on relative permeability for water is assumed to be 
negligible (Civan 2007, 2010). Here k/

rw(s, θ) is relative permeability for water for fines-free 
flow. 

   The capillary pressure is the difference between pressures in oil and water 
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   Mass conservation law for salt includes the advective salt transfer by the carrier aqueous 
phase and its advective dispersion 
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   Establishing the salinity-dependent contact angle θe(γ) occurs with some delay due to 

diffusion of salt from connate water layer into the injected water, τ=αL
2/Dµ (Mahani et al. 

2015a, b): 
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   Concentration of the attached particles reaches the critical retention function (3) with delay 

τσ: 
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The delay is due to the ion diffusion time into the contact area between fine particles and rock 
surface, resulting in the particle mobilisation. For the case of instant fine particles release, the 
attached concentration is equal to the maximum retention function (3). 
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   The kinetics of fines straining is proportional to the advective flux of suspended fines 

( , )s
s wcu

t

σ λ γ σ∂ =
∂

                  (A-8) 

where the proportionality coefficient λ is called the filtration coefficient. Since the attaching 
electrostatic force is a salinity function, and the particle capture probability depends on the 
pore space geometry, the filtration coefficient is a function of salinity and strained 
concentration (Herzig et al. 1970). Here we assume that attached particles coat the grains and 
do not change the pore space geometry. 

    The conservation law for suspended, attached and strained fines is 
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                (A-9) 

   For the reservoir part where the salinity is higher than the critical salinity, the reservoir 

fines remain attached( ), 0cr sγ γ σ> = , and the model comprises Buckley-Leverett equations 

with changing salinity and contact angle (A-1,A-2,A-4-A-6) without fines migration, i.e. 

c=σs=0 and σa=σa0. 

   Adding two eq (A-1) results in conservation of the total flux of two incompressible phases:  

( )w ou u u U t= + =                 (A-10) 

   Calculation of the total flux U by adding two eq (A-2) and substituting the expression for 
pressure in oil phase from (A-4) into the resulting formula, yields 
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   Expressing pressure gradient from (A-11) and its substitution into first eq (A-2) results in 
the following expression for water flux 

( )( )
( , , )

cos
,   ( , , )

( , , ) ( , )

rw s

woro w
w s

rw roso

w o

sk
Jk k

u f U f s
s sk kxk

θ σ
σ γ θ µθ σ θ σ θφ µ

µ µ

 ∂
= + = 

∂   +

,                    (A-12) 

In (A-12), the total flux of water consists of the advective flux moved by pressure gradient, 
and the capillary flux due to saturation gradient.  
 
Appendix B. Initial and boundary conditions for 1-D displacement    

System (5-10) has time derivatives for six unknowns: saturation s, salinity γ, attached fines 

concentration Sa, concentration of strained fines Ss , contact angle θ and suspended fines 
concentration C, which corresponds to transient behaviour of those parameters during the 
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displacement. Therefore, initial conditions must be posed for six unknowns: s, γ, Sa, Ss ,θ and 
C:  

0 00: , 0, 0, , ,I s a a It s s C S S S γ γ θ θ= = = = = = =               (B-1) 

corresponding to their values in the reservoir before the injection. 
   System contains first order x-derivatives for three unknowns s, γ and C. The x-derivatives 

for three unknowns s, γ and C corresponds to the carrier fluxes, transporting the 
corresponding species (water, salt and suspended fines).. Therefore, three entrance boundary 
conditions must be set for those variables. It includes unity overall water flux carried by 
pressure and capillary pressure gradients, zero fine particle flux transported by the overall 
water and particle diffusive fluxes, given flux of salt transported by the overall water and salt 
diffusive fluxes and given injection pressure: 

( )( ) ( )( )

( )( )

, ,
0 : 1 ( , ) 1, 1 ( , ) 0,

,
1 ( , )

c ro c ro D

c ro D J

J J C
x f k s Cf k s s

x x x

J
f k s s

x x

γ θ γ θ
ε θ ε θ ε

γ θ γγ ε θ ε γ

   ∂ Ε ∂ Ε ∂= + = + − =   
∂ ∂ ∂      

 ∂ Ε ∂+ − = 
∂ ∂  

           (B-2) 

which corresponds to injected concentrations of fines and salt and the water fraction in the 
injected fluid. Here we discuss the particular case where no fine particles are injected.  
   The attached and strained fine particles are immobile, their fluxes are equal zero. The 
equation (A-6) for kinetics of the contact angle also does not contain the advective term. 
Therefore, their concentrations at the entrance x=0 are determined from kinetics of their 
variations (see Tikhonov and Samarskii 1990 on so-called Goursat problem). The ordinary 
differential equations for attached fines concentration at the entrance Sa(0, t) and contact 
angle, follow from kinetics eqs (A-7), (A-6)  

( ) ( ) ( ) ( ) ( )0

0, 1 , 1 ,
0,a w or w or

cr J a a

dS t A s A A s
S S S t

dt A Aσ
θ θ

ε γ
− − −

= + −              (B-3) 

( ) ( ) ( )0,
0,e J

t
t

tθ
θ

ε θ γ θ
∂

= −
∂

                 (B-4) 

   The initial condition for ordinary differential equations (B-3) and (B-4) corresponds to 
initial concentrations of attached fines on rock surface accessible to water and oil and the 
initial contact angle: 

( ) 0 00,0 ,   (0,0)a aS S θ θ= =                  (B-5) 

   The solution of the problem (B-4) is obtained by separation of variables 

( ) ( )( ) ( )00,
t

e J e Jt e θεθ θ γ θ θ γ
−

= − − +                                            (B-6) 

   The solution of eq (B-3) is obtained by solving the ordinary differential equation 



65 

 

( ) ( )
( )( ) ( ) ( )( ) ( )

( )
0 0
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1 , 1 ,
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t t

w or e J e J w or e J e J

a
cr J a a

A s e A A s e
dS t

S S S t
dt A A

θ θε ε

σ

θ γ θ θ γ θ γ θ θ γ
ε γ

− −   
− − − + − − − − +   

   
   = + −

(B-7) 

   As it follows from kinetics of straining (9) and boundary condition (B-2) for injected fines, 
the ordinary differential equation for strained fines at the entrance x=0 and corresponding 
boundary conditions are: 

( ) ( )0,
0, 0, 0 0s

s

dS t
S t

dt
= = =                  (B-8) 

resulting in zero-solution: 

( )0, 0sS t =                    (B-9) 

   System of governing equations contains second order x-derivatives for saturation, salinity 
and suspended fines concentration. It corresponds to capillary flux for water and dispersive 
fluxes for salt and suspended fines. Therefore, boundary conditions at the outlet x=1 must be 
set for s, γ and C. 
   The boundary condition for saturation is so-called end-effect (Barenblatt et al. 1989) 

( )1: -1 - 0or c ro

J
x s s f k f

x
ε ∂= + = ∂ 

             (B-10) 

As it follows from (B-10), s=sI before the water breakthrough; afterwards capillary pressure 
is equal zero, and oil saturation takes the oil residual value. 
   Dispersive fluxes are zero at the outlet 

1: 0
C

x
x x

γ∂ ∂= = =
∂ ∂

                (B-11) 

corresponding to the assumption that a salt or fine particle that exited the core by advective 
flux, never diffuses back. 
   System of governing equations (5-10) subject to initial (B-1) and boundary conditions (B-2, 
B-7-B-11) provides a unique solution, stable with respect to small perturbations 
(Bedrikovetsky 1993). 
 
Appendix C. Large scale approximation 

Let us discuss the case of large L, such that three dimensionless groups are negligibly small 
and dimensionless filtration coefficient is infinitely large, i.e. L is significantly larger than 
four values (see eq (4)): 

cos  1
; , ,

 
wo

L

o

k U
L L L L

U

σ θ φ τα
φ λµ

>> >> >> >>                (C-1) 
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Left hand side of eq (9) is limited and independent of L. Tending Λ to infinity corresponds to 
tending C to zero. Tending C to zero in eq (10) results in  

( ) 0a sS S
t

∂ + =
∂

                   (C-2) 

Therefore, the total retained concentration is found from initial conditions (B-1) 

( ) ( ) 0, ,a D D s D D aS x t S x t S+ =                  (C-3) 

Eq (C-3) means that all released particles are strained instantly, and there are no suspended 
particles. 

   Tending εθ and εσ to zero in left hand side of eqs (7) and (8) and accounting for (C-3), we 

obtain the equilibrium values for strained concentration (first eq (12)) and contact angle θe(γ). 
Straining concentration in (12) becomes the difference between the initial and current values 

of the maximum retention function. Tending εc to zero in left hand side of eqs (5-10) 

eliminates the capillary-pressure-driven flux if compared with advection flux f=f(s,θ,Ss).  
   Finally, large scale approximation of the system (5-10) is given by eqs (11-13). 
   However, often only short cores are available for laboratory coreflooding, so the conditions 
(C-1) cannot be fulfilled. Some simplification of the basic system (5-10) can be achieved by 
going to extremes of high and low velocities. 
   Slow displacement approximation corresponds to negligible delay numbers. Tending εθ and 

εσ to zero in left hand side of eqs (7) and (8) results in “instant” maximum retention function, 

given by eq (3), and equilibrium contact angle θe(γ). So, the slow-displacement system 
consists of 5 equations (5, 6, 9-10) with equilibrium maximum retention functions and 
contact angle. 
   Fast displacement approximation corresponds to negligible capillary-viscous ratio (see eq 
(4)). The governing system at fast displacement approximation consists of eqs (5-10) with εc 
=0. 
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Appendix D. Splitting method for equations of two-phase multicomponent mass 
transfer in porous media 

Following papers by Pires et al. 2004, 2006, here we briefly present the splitting procedure 
for hyperbolic system (11-13). Let us introduce the hydrodynamic potential ϕ from the 
conservation law (11): 

,s f
x t

ϕ ϕ∂ ∂= − =
∂ ∂                  (D-1) 

As it follows from (D-1), the potential has the following form 

( )
( )

( ),

0,0

,
x t

d fdt sdx

x t fdt sdx

ϕ

ϕ

= −

= −∫                  (D-2) 

Differential dt can be expressed from eq (D-2)  

d sdx
dt

f f

ϕ= +                          (D-3) 

The equality of second mixed derivatives of function t=t(x, ϕ) in (C-3) yields 

( )

( ) ( ) ( )
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1
, ,

, ,

F U U

x

U F U
f s

s

f s

γ
ϕ

γ
γ γ

∂ ∂+ =
∂ ∂

= = −
                (D-4) 

Eq (D-4) is the result of the eq (11) transform to co-ordinates (x,ϕ).
 Applying Green’s theorem over any arbitrary domain ϖ with continuous boundary ∂ϖ, to Eq 

(12) and accounting for eq (D-3), 
 

( ) ( ) ( )0 f dt s dx fdt sdx d dxd
xϖ ϖ ϖ ϖ

γγ γ γ γ ϕ ϕ
∂ ∂ ∂

∂= − = − = =
∂∮ ∮ ∮ ∬                                     (D-5) 

yields the transformation of this equation to (x,ϕ)-coordinates 

0
x

γ∂ =
∂

                                           (D-6) 

So, the original system (11-13) in (x, ϕ)-coordinates has the form (D-4, D-6). 

   Fig. 5a, b shows the mapping Κ: (x,t)→(x,ϕ) along with the images of the initial-condition 
axis t=0 and the boundary-condition axis x=0. The images depend on initial and boundary 
data. 

   Inlet boundary conditions for continuous injection (15) become             

0 : 1,   Jx U γ γ= = =                                           (D-7) 

   Initial conditions (14) take the form 

  :  ,I Ixs Uϕ γ γ= − = → ∞                  (D-8) 
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   Inlet boundary condition for formation water injection followed by the injection of low-

salinity water (16) becomes             

, 0

,

,

1

0 :   1
I

J s

I s

x t

t

γ ϕ
γ γ ϕ

γ ϕ

<
= = < <

< < ∞

<


                             (D-9) 

   Speeds of rarefaction and shock waves in planes (x,ϕ) and (x, t) (V and D, respectively) are 
related as 

1 f
s

V D
= −                  (D-10) 

The geometric interpretation of Eulerian and Lagrangian speeds D and V are shown in Fig. 
5c. 
   The Hugoniot-Rankine conditions of flux continuity on the discontinuities for two 
conservation laws (D-4) and (D-6) are (Courant and Friedrichs 1976)  

[ ] [ ] [ ], 0   U V F γ= =
                (D-11)

 

As it follows from (D-11), for shocks with salinity and saturation jumps, 

[ ] [ ]0, ,VF γ= = ∀ = ∞
               (D-12)

 

For saturation shocks with continuous salinity,  

[ ]
[ ] [ ]1

, 0
F

V U
γ= =

                (D-13)
 

   Eq (D-6) for unknown γ  separates from eq (D-4) and is solved independently (Fig. 7a). 

Then, eq (D-4) is solved with respect to unknown s(x,ϕ) for known γ(x,ϕ) using method of 
characteristics (Fig. 6b). This is so-called lifting problem. As it follows from the shock 
conditions (D-12, D-13), the solutions for initial-boundary problems with piecewise constant 
γ-values contain those values only. Fig. 6a shows the form of flux curves F=F(U, γ) for γ-

values γI and γJ appearing in initial and boundary conditions (D-8) and (D-9). Finally, the 

transformation of solution s(x,ϕ), γ(x,ϕ) to co-ordinates (x,t) is performed by calculation of 

t(x,ϕ) from eq (D-3): 

( )
( ),

,
x

d sdx
t x

f f

ϕ ϕϕ = +∫                (D-14) 

where any arbitrary point (x, ϕ) is connected to the point with ϕ=0 or x=0, where the 
connections are the characteristic lines. 
   Solutions for continuous injections in co-ordinates (x, t) are self-similar and depend on the 
group x/t. The corresponding solutions in (x,ϕ)-plane are also self-similar and depend on the 

group ϕ/x. The solution γ(x,ϕ) for continuous injection (D-7) is achieved by a single infinite-
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speed jump along the axes ϕ=0. The solution s(ϕ/x) corresponds to rarefaction wave J-2, 

jump 2→3 and jump 3→I in Fig. 6a. The solution s(x/t), γ(x/t) corresponds to rarefaction 

wave J-2, jump 2→3 and jump 3→I in Figs. 6b. 
  



70 

 

Figures 

 

  
 
Figure 1. Schematic for porosity, phase 
saturations and component concentrations in 
porous space; the fine particles are in 
suspension (c), can be attached (σa) or 

retained by the rock (σs) 
 

 
Figure 2. The attached particles can be 
mobilised by the injected water from the rock 
surface accessible to water Aw, fines attached 
to the surface Ao remain immobile 
 

 

  

Figure 3. Strained concentration σs in large scale approximation is determined by the 

maximum retention function σcr(γ); here concentrations σs and σcr(γ) are approximated by the 

vanishing function into the domain σ<σcr(γ) where no particles are mobilised 
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Figure 4. Analytical model and graphical solution for continuous low-salinity water injection: 
(a) solutions for formation water injection (S0

H-6->I), medium salinity (S0
L-4->5-6->I) and 

low-salinity flooding (S0
L-2->3->I) on the fractional flow curves; (b) profiles for saturation 

for three displacement cases; (c) water-cur history for three cases of displacement 

Figure 5. Mapping using the stream function ϕ(x,t) : (a) initial and boundary conditions and 
front velocity at the plane (x,t); (b) mapped initial and boundary conditions and front velocity 
at the plane (x, ϕ); (c) graphical presentation of Lagrangian speed V and Eulerian speed D in 
(s,f) plane 
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Figure 6. Graphical solution for 1D displacement of oil by formation water followed by the 
LS slug and HS water chase drive: (a) fractional flow curves and typical saturations 
corresponding to points 2,3…6; (b) lifting of the solution for auxiliary problem in (F, U)-
plane 
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Figure 7. Solution of the problem for HS and LS slugs followed by HS water chase drive in 

(x, ϕ) co-ordinates: (a) solution of the auxiliary system; (b) solution of the lifting equation 
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Figure 8. Analytical model for 1D injection problem of HS and LS slugs followed by HS 
water drive in (x, t) co-ordinates: (a) Trajectories of saturation and concentration waves in (x, 
t)-plane along with typical zones I,II…XI; (b) saturation profiles in three different moments; 
(c) salinity profiles in three different moments 
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Figure 9. Fractional flow curves for injection of formation water and low salinity water: 
green curve correspond to injection of formation water; red curve encompasses both effects 
of wettability alternation and induced fines migration; the case of fines-free and wettability-
affected low-salinity flood is presented by black curve; blue curve corresponds to no 
wettability alternation and fines mobilisation with straining during low-salinity waterflood. 

 

 
Figure 10. Comparison between cases of oil displacement by formation HS water (green), by 
LS water accounting for wettability alteration effect only (black), by LS water accounting for 
fines migration effect only (blue), by LS water accounting for both effects (red): a) water cut 
history; b) recovery factor versus PVI 
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Tables 

Table 1. Exact solution for 1D oil displacement by formation water and low-salinity slug in (x, ϕ) 
domain 
zones U(x,ϕ) γ(x,ϕ) domain 
0 sI Iγ  Is xϕ = −  

I s0
H 

Iγ  ( )/ 00 1,   ,U H IF U xϕ ϕ γ< < >  

II ( )/ ,U IF U
x

ϕ γ=  Iγ  ( ) ( )/ 0
21,   , ,   I U H I Ls x F U x x xϕ ϕ γ ϕ< − < < <  

III s0
L Jγ  ( )/ 01 ,  , 1s U L Jt F U xϕ ϕ γ< < > +  

IV ( )/1
,U JF U

x

ϕ γ− =  Jγ  ( ) ( )/ / 0
51 ,   , 1 , 1s U J U L Jt F U x F U xϕ γ ϕ γ< < + < < +  
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x x
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VI s3 Iγ  ( )2 1Lxϕ ϕ< <  

VII s0
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0 0
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XI s4 Iγ  ( )( )/
4 ,s U J E st F U x x tϕ γ< < − +  
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Table 2. Exact solution for 1D oil displacement by formation water and low-salinity slug in (x, t) 
domain 

zones s γ domain 
0 sI Iγ

 
( ) ( )1/ 3
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Table 3. Recovery factor calculations during sequential injection of formation- and low-salinity water 
 sI k*

w sor k*
o nw no β  

HS water 0.15 0.5 0.2 1 2.77 4.5 0  
LS water, wet 0.14 0.5 0.1 1 4.1 3.15 0  
LS water, fines 0.15 0.5 0.2 1 2.77 4.5 1000  
LS water, both 0.14 0.5 0.1 1 4.1 3.15 1000  
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4 Analytical Solutions of Oil Displacement by 

Low Salinity Polymer Flooding 
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4.1 Exact Solution for Non-Self-Similar Wave-Interaction Problem 

during Two-Phase Four-Component Flow in Porous Media 
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Analytical solutions for one-dimensional two-phase multicomponent flows in porous media describe processes of enhanced oil
recovery, environmental flows of waste disposal, and contaminant propagation in subterranean reservoirs and water management
in aquifers. We derive the exact solution for 3 × 3 hyperbolic system of conservation laws that corresponds to two-phase four-
component flow in porous media where sorption of the third component depends on its own concentration in water and also on
the fourth component concentration. Using the potential function as an independent variable instead of time allows splitting the
initial system to 2 × 2 system for concentrations and one scalar hyperbolic equation for phase saturation, which allows for full
integration of non-self-similar problem with wave interactions.

1. Introduction

Exact self-similar solutions of Riemann problems for hyper-
bolic systems of conservation laws and non-self-similar
solutions of hyperbolic wave interactions have been derived
for various flows in gas dynamics, shallow waters, and
chromatography (see monographs [1–8]). For flow in porous
media, hyperbolic systems of conservation laws describe two-
phase multicomponent displacement [9, 10]. Consider

𝜕𝑠

𝜕𝑡
+
𝜕𝑓 (𝑠, 𝑐)

𝜕𝑥
= 0 (1)

𝜕 (𝑐𝑠 + 𝑎 (𝑐))

𝜕𝑡
+
𝜕 (𝑐𝑓 (𝑠, 𝑐))

𝜕𝑥
= 0, (2)

where s is the saturation (volumetric fraction) of aqueous
phase and f is the water flux. Equation (1) is the mass
balance for water and (2) is the mass balance for each
component in the aqueous solution. Under the conditions
of thermodynamic equilibrium, the concentrations of the

components adsorbed on the solid phase (ai) and dissolved in
the aqueous phase (ci) are governed by adsorption isotherms:

𝑎 = 𝑎 (𝑐) , 𝑎 = (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) , 𝑐 = (𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑛
) .

(3)

Exact and semianalytical solutions of one-dimensional flow
problems are widely used in stream-line simulation for flow
prediction in three-dimensional natural reservoirs [10]. The
sequence of concentration shocks in the one-dimensional
analytical solution is important for interpretation of labo-
ratory tests in two-phase multicomponent flow in natural
reservoir cores.

The scalar hyperbolic equations (1) and (2), 𝑛 = 0,
correspond to displacement of oil by water [9, 10]. The
(𝑛 + 1) × (𝑛 + 1) system (1) and (2) describes two-phase
flow of oleic and aqueous phases with 𝑛 components (such
as polymer and different salts) that may adsorb and be
dissolved in both phases. These flows are typical for so-called
chemical enhanced oil recovery displacements, like injections
of polymers or surfactants, and for numerous environmental
flows [9, 10]. For polymer injection in oil reservoirs, 𝑖 = 1

corresponds to polymer and 𝑖 = 2, 3, . . . , 𝑛 to different ions.
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Therefore the system (1) and (2) is called themulticomponent
polymer-floodingmodel [11, 12]. Besides, (𝑛−1)×(𝑛−1)hyper-
bolic system (1) and (2) describes two-phase 𝑛-component
displacement, which is typical for so-called gas methods of
enhanced oil recovery [9, 10, 13, 14]. The processes of hot
water injection with phase transitions, secondary migration
of hydrocarbons with consequent formation of petroleum
accumulations, enhanced geothermal energy projects, and
injections into aquifers are described by the above systems.
The Riemann problems correspond to continuous injection
of chemical solutions or gases into oil reservoirs; the solutions
are self-similar [3, 9, 14]. The wave-interaction problems cor-
respond to piece-wise-constant initial-boundary conditions,
for which the solutions are non-self-similar [1, 10, 15–17].The
wave-interaction solutions describe injection of limited slugs
(banks) of chemical solutions or gaseous solvents driven in
the reservoirs by water or gas [9, 10].

Riemann problem (1) and (2) with 𝑛 = 1 has been solved
with applications to various injections of polymers [17, 18],
carbonized water and surfactants [19, 20], and so forth. More
complex self-similar solutions of (1) and (2) for 𝑛 = 2, 3 were
obtained by Barenblatt et al. [21] and Braginskaya and Entov
[22] and later by Johansen et al. andWinther et al. [11, 12, 23–
25]. Analogous solutions for gas injection and 𝑛 = 3, 4,. . .
have been obtained by Orr and others [9, 13, 26–31].

The system (1) and (2) describes two-phase multicom-
ponent displacements in large scale approximation, where
the dissipative effects of capillary pressure, diffusion, and
thermodynamic nonequilibrium are negligible if they are
compared with advective fluxes under the large length scale
of the natural subterranean reservoirs. Travelling waves near
to shock discontinuities in dissipative systems have been
presented in [10, 32]. A semianalytical global solutions have
been obtained by Geiger et al. [33] and Schmid et al. [34]; see
also [16].

The particular case of so-calledmulticomponent polymer
flooding is the dependency of the component sorption
concentration of its own concentration only 𝑎

𝑖
(𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
) =

𝑎
𝑖
(𝑐
𝑖
). Exact solutions of the Riemann problem for this case

show that the concentration of each component performs
the jump without shocks of other components (see the
corresponding solution in the books [10, 21]). Therefore, in
concentration profiles, the shocks are located in order of
decrease of derivatives of the sorption functions. In the case of
Henry isotherms 𝑎

𝑖
(𝑐
𝑖
) = Γ
𝑖
𝑐
𝑖
, the shocks are located in order

of increase of Henry’s sorption coefficients Γ
𝑖
.

The distinguished invariant feature of (𝑛 + 1) × (𝑛 +

1) conservation law systems for two-phase multicomponent
flows in porous media with sorption and phase transitions
equations (1) and (2) is its splitting into an 𝑛 × 𝑛 auxiliary
system for concentrations 𝑐

𝑖
(𝑥, 𝑡) and a scalar hyperbolic

equation for saturation 𝑠(𝑥, 𝑡) [35, 36].This splitting explains
the simple form of Riemann problem solutions for system (1)
and (2) as compared with gas dynamics or chromatography
[1, 2, 37].

The non-self-similar solution of system (1) and (2), 𝑛 =

2, for slug injections has been considered by Fayers [17],
where the qualitative behaviour of characteristic lines and
shocks has been described. The exact solutions of system

(1) and (2) for 𝑛 = 2 and 3 have been obtained in [15]
(see book [10] for detailed derivations, in which the sorption
of component depends on its own concentration only 𝑎

𝑖
=

𝑎
𝑖
(𝑐
𝑖
), 𝑖 = 1, 2, . . .). Numerous interactions of different

saturation-concentration shocks occur after the injection,
resulting in appearance of moving zones with different
combinations of components. However, after all interactions,
different component slugs are separated from each other.
As in the case of continuous injection, the slugs are finally
positioned in the order of decreasing sorption isotherm
derivatives (𝑑𝑎

𝑖
/𝑑𝑐
𝑖
). It seems that this simplified case draws

the line where the analytical solutions can be found from the
analysis of system (1) and (2) directly. Consideration of cross-
effects 𝑎

𝑖
= 𝑎
𝑖
(𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
) in sorption functions equation

(3) introduces significant difficulties into wave analysis, and
even the Riemann problem cannot be solved for any arbitrary
case 𝑛 = 2 (see [38], where the Riemann solutions have been
obtained for several particular cases).

The splitting technique reduces number of equations in
(1) and (2) by one, allowing for exact solutions in more com-
plex multicomponent cases [35–40]. The Riemann problem
with cross-effects for adsorption 𝑎

𝑖
= 𝑎
𝑖
(𝑐
1
, 𝑐
2
) has been

solved in [39, 41, 42] for continuous polymer injection with
varying salinity using the splitting method. In the current
paper, the exact solution for non-self-similar problem of
injection of polymer slug with varying salinity followed by
water drive is obtained.

The structure of the text is as follows. The particular
case of the general system (1) and (2) that is discussed
in the current work is introduced in Section 2 along with
physics assumptions and initial-boundary conditions for slug
injection problem. The detailed description of the splitting
procedure for the system is discussed along with formulation
of initial and boundary conditions for the auxiliary system
which is presented in Section 3. Section 4 contains derivation
of the Riemann solution that corresponds to the first stage
of the slug injection. The wave-interaction slug injection
problem is solved in Section 5. Section 6 contains a simplified
solution for the particular case where the initial chemical
concentration is zero, which corresponds to the case of
polymer slug injection. The paper is concluded by physical
interpretation of the solution obtained for chemical slug
injection with different water salinity into oilfield (Sections
7 and 8).

2. Formulation of the Problem

Let us discuss the displacement of oil by aqueous chemical
solution with water drive accounting for different salinities
of formation and injected waters. In the following text, the
component 𝑛 = 1 is called the polymer, and that 𝑛 = 2 is
called the salt. The assumptions of the mathematical model
are as follows: both phases are incompressible, dispersion
and capillary forces are neglected, there are two phases (oleic
and aqueous phases) and two components dissolved in water
(polymer and salt), water and oil phases are immiscible,
chemical and salt concentrations in water are negligibly
small and do not affect the volume of the aqueous phase,
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the fractional flow of the aqueous phase is affected by
concentration of the dissolved chemical, the fractional flow
is independent of salt concentration, chemical and salt do
not dissolve in oil, linear sorption for the polymer 𝑎 = Γ𝑐,
Henry’s sorption coefficient Γ is salinity-dependent, salt does
not adsorb on the rock, and temperature is constant.

The system of governing equations consists of mass bal-
ance equations for aqueous phase, for dissolved and adsorbed
chemical, and for dissolved salt [8, 9]:

𝜕𝑠

𝜕𝑡
+
𝜕𝑓 (𝑠, 𝑐)

𝜕𝑥
= 0 (4)

𝜕 (𝑐𝑠 + 𝑎 (𝑐, 𝛽))

𝜕𝑡
+
𝜕 (𝑐𝑓 (𝑠, 𝑐))

𝜕𝑥
= 0 (5)

𝜕 (𝛽𝑠)

𝜕𝑡
+
𝜕 (𝛽𝑓 (𝑠, 𝑐))

𝜕𝑥
= 0, (6)

where 𝑠 is the water saturation, 𝑓 is the fractional flow
function, 𝑎 is the polymer sorption isotherm, and 𝑐 and 𝛽 are
chemical and salt concentrations, respectively.

The fractional flow function (water flux) depends on
the water saturation 𝑠 and on the chemical concentration
𝑐. The typical S-shapes of fractional flow functions 𝑓 under
𝑐 = const are shown in Figure 1. The fractional flow is a
monotonically decreasing function of 𝑐. Sorption isotherms
are linear for fixed salinity 𝑎(𝑐, 𝛽) = Γ(𝛽)𝑐. The functions
𝑓and 𝑎 are assumed to be bounded and smooth.

The system (4)–(6) is a hyperbolic 3 × 3 system of
conservation laws with unknowns 𝑠, 𝑐, and 𝛽.

The displacement of oil by chemical slug corresponds to
the following initial-boundary problem:

𝑥 = 0{
𝛽 = 0, 𝑐 = 𝑐

1
, 𝑠 = 𝑠

𝐿
, 𝑡 < 1

𝛽 = 0, 𝑐 = 𝑐
2
, 𝑠 = 𝑠

𝐿
, 𝑡 > 1

(7)

𝑡 = 0, 𝛽 = 1, 𝑐 = 𝑐
2
, 𝑠 = 𝑠

𝑅
. (8)

For 𝑡 < 1, during continuous injection of chemical solution
with different salinity, the solution of system (4)–(6) subject
to initial-boundary conditions equations (7) and (8) coin-
cides with the solution of the Riemann problem:

𝑥 = 0, 𝛽 = 0, 𝑐 = 𝑐
1
, 𝑠 = 𝑠

𝐿 (9)

𝑡 = 0, 𝛽 = 1, 𝑐 = 𝑐
2
, 𝑠 = 𝑠

𝑅
. (10)

The initial condition is denoted by 𝑅 in Figure 1 and the
boundary condition corresponding to injection of the slug is
denoted as 𝐿.

Generally 𝑐(𝑥, 0) = 𝑐
2
> 0 is positive. Further in the

text, the component with concentration 𝑐 is called “chemical,”
while for the case of the absence of this component initially
in the reservoir 𝑐(𝑥, 0) = 𝑐

2
= 0 we use the term “polymer.”

The solution of the Riemann problem is self-similar:
𝑠(𝑥, 𝑡) = 𝑠(𝜉), 𝑐(𝑥, 𝑡) = 𝑐(𝜉), 𝛽(𝑥, 𝑡) = 𝛽(𝜉), 𝜉 = 𝑥/𝑡 and
it can be found in [37, 39, 40]. The solution of the problem
(7) and (8) in the neighbourhood of the point (0, 1) in (𝑥, 𝑡)-
plane is also self-similar. The global solution of the system
(4)–(6) subject to the initial-boundary conditions equations

0,1

0 1,0

1
L

s

f

R

D3

D2

D1

2

3

4

c = c1

c = c∗

c = c2

−Γ(1)

Figure 1: Fractional flow curves and Riemann problem solution,
where 𝑐

1
is the slug concentration, 𝑐

2
is the initial concentration, and

𝑐
∗ is the intermediate concentration.

(7) and (8) is non-self-similar; it expresses the interactions
between hyperbolic waves occurring fromdecays of Riemann
discontinuities in points (0, 0) and (0, 1) in (𝑥, 𝑡)-plane.

System of (4)–(6) subject to the initial and boundary
conditions equations (9) and (10) is solved in Section 4 using
themethod so-called splitting procedure [35].This procedure
is explained in the next section.

3. Splitting Procedure

In the present section we briefly explain the splitting method
for the solution of hyperbolic system of conservation laws
equations (4)–(6).

3.1. Streamline/Potential Function and Auxiliary System. As it
follows from divergent (conservation law) form of equation
for mass balance for water (1) or (4), there does exist such a
potential function 𝜑(𝑥, 𝑡) that

𝑠 = −
𝜕𝜑

𝜕𝑥

𝑓 =
𝜕𝜑

𝜕𝑡
;

(11)

that is,

𝑑𝜑 = 𝑓𝑑𝑡 − 𝑠𝑑𝑥, (12)

𝜑 (𝑥, 𝑡) = ∫

𝑥,𝑡

0,0

𝑓𝑑𝑡 − 𝑠𝑑𝑥. (13)

Equation (4) is merely the condition of equality of second
derivatives of the potential 𝜑 as taken in different orders.
It also expresses that the differential of the first order form
equation (12) equals zero. The splitting procedure consists
of changing the independent variables from (𝑥, 𝑡) to (𝑥, 𝜑)

in system (4)–(6). Figures 2 and 3 show the corresponding
mapping [43, 44].

From fluid mechanics point of view, 𝜑(𝑥, 𝑡) is a potential
function, which equals the volume of fluid flowing through
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Figure 2: Introduction of potential function (Lagrangian coordinate) and mapping between independent variables.
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Figure 3: Derivation of mass balance equation in Eulerian and Lagrangian coordinate systems.

a trajectory connecting points (0, 0) and (𝑥, 𝑡). As it follows
from (12), two streamlines in Figure 3 correspond to constant
values of potential, that is, there is no flux through stream-
lines:

𝜑 (𝑥, 𝑡
2
) − 𝜑 (𝑥, 𝑡

1
) = ∫

𝑡
2

𝑡
1

𝑓 (𝑥, 𝑡) 𝑑𝑡. (14)

Equation (4) shows that the integral of (13) along the closed
contour is equal to zero; that is, the volume of fluid flowing
through a trajectory connecting points (0, 0) and (𝑥, 𝑡) is
independent of trajectory and depends on end points only.
The potential function equation (13) is determined in the way
that one end of trajectory is fixed at point (0, 0).

Let us derive the relationship between the elementary
wave speeds of the system in (𝜑, 𝑥) coordinates and those of
the large system in (𝑡, 𝑥). Consider the trajectory 𝑥 = 𝑥

0
(𝑡)

and its image 𝜑 = 𝜑
0
(𝑡) by the mapping equation (13):

𝜑
0
(𝑡) = 𝜑 (𝑥

0
(𝑡) , 𝑡) . (15)

Define the trajectory speeds as

𝐷 =
𝑑𝑥

𝑑𝑡
, 𝑉 =

𝑑𝑥

𝑑𝜑
. (16)

Let us use 𝑥 as a parameter for both curves 𝑥 = 𝑥
0
(𝑡) and

𝜑 = 𝜑
0
(𝑡). Taking derivation of both parts of (13) in 𝑥 along

trajectories and using speed definitions in (16), we obtain

1

𝑉
=
𝑓

𝐷
− 𝑠 (17)

from which follows the relationship between elementary
wave speed in planes (𝑥, 𝑡) and (𝑥, 𝜑):

𝐷 =
𝑓

𝑠 + 1/𝑉
. (18)

For example, the eigenvalues of the system of equation in
(𝑡, 𝑥) plane 𝜆

𝑖
and in (𝜑, 𝑥), Λ

𝑖
, are related by (Figure 4

[43, 44])

Λ
𝑖
(𝑠, 𝑐) =

𝑓

𝑠 + 1/𝜆
𝑖

. (19)

From now on, the independent variables (𝑥, 𝜑) are used in
(4)–(6) instead of (𝑥, 𝑡). Expressing the differential form 𝑑𝑡

from (12) as

𝑑𝑡 =
𝑑𝜑

𝑓
+
𝑠𝑑𝑥

𝑓
(20)
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Figure 4: Speeds of a particle in Eulerian and Lagrangian coordinates.

and accounting for zero differential of the form 𝑑𝑡

𝑑
2
𝑡 = 0 = [

𝜕

𝜕𝑥
(
1

𝑓
) −

𝜕

𝜕𝜑
(
𝑠

𝑓
)]𝑑𝑥𝑑𝜑 (21)

we obtain the expression for (4) in coordinates (𝑥, 𝜑)

𝜕 (𝑠/𝑓)

𝜕𝜑
−
𝜕 (1/𝑓)

𝜕𝑥
= 0. (22)

So, (22) is themass balance for water; that is, it is (4) rewritten
in coordinates (𝑥, 𝜑).

Let us derive (5) in (𝑥, 𝜑) coordinates. The conservation
laws for (5) in the integral form are

∮

𝜕Ω

(𝑐𝑓) 𝑑𝑡 − (𝑐𝑠 + 𝑎) 𝑑𝑥 = 0, (23)

where Ω is a closed domain Ω ⊂ 𝑅
2, so the integral of (23) is

taken over the closed contour.
Applying the definition of the potential function equation

(13) into (23) yields

∮

𝜕Ω

𝑐 (𝑓𝑑𝑡 − 𝑠𝑑𝑥) − 𝑎𝑑𝑥 = ∮

𝜕Ω

𝑐𝑑𝜑 − 𝑎𝑑𝑥 = 0. (24)

Tending the domain radius to zero and applying Green’s
theorem,

𝜕𝑎 (𝑐, 𝛽)

𝜕𝜑
+
𝜕𝑐

𝜕𝑥
= 0. (25)

Now let us perform change of independent variables in (6) in
(𝑥, 𝜑) coordinates as follows:

∬(
𝜕 (𝛽𝑠)

𝜕𝑡
+
𝜕 (𝛽𝑓 (𝑠, 𝑐))

𝜕𝑥
)𝑑𝑥𝑑𝑡 = ∮

𝜕Ω

𝛽𝑠𝑑𝑥 − 𝛽𝑓 (𝑠, 𝑐) 𝑑𝑡

= ∮𝛽𝑑𝜑 = ∬
𝜕𝛽

𝜕𝑥
= 0.

(26)

Finally, the (𝑛 + 1) × (𝑛 + 1) system of conservation laws for
two-phase n component chemical flooding in porous media
with adsorption can be split into an 𝑛 × 𝑛 auxiliary system
equations (25) and (26) and one independent lifting equation

(22).The splitting is obtained from the change of independent
variables (𝑥, 𝑡) to (𝑥, 𝜑).This change of coordinates also trans-
forms the water conservation law into the lifting equation.
The solution of hyperbolic system (22), (25), and (26) consists
of three steps: (1) solution of the auxiliary problem, (25), and
(26) subject to initial and boundary conditions, (2) solution
of the lifting equation, (22), and (3) determining time 𝑡 for
each point of the plane (𝑥, 𝜑) from (13).

The auxiliary system contains only equilibrium thermo-
dynamic variables, while the initial system contains both
hydrodynamic functions (phase’s relative permeabilities and
viscosities) and equilibrium thermodynamic variables.

The above splitting procedure is applied to the solution of
displacement of oil by polymer slug with alternated salinity
in the next section.

3.2. Formulation of the Splitting Problem for Two-Phase Flow
with Polymers and Salt. Introducing new variables “density”
𝐹 and “flux”𝑈 and applying the splitting technique, the 3 × 3
system (4)–(6) is transformed to the following form:

𝐹 = −
𝑠

𝑓
, 𝑈 =

1

𝑓
(27)

𝜕 (𝐹 (𝑈, 𝑐))

𝜕𝜑
+
𝜕 (𝑈)

𝜕𝑥
= 0 (28)

𝜕𝑎 (𝑐, 𝛽)

𝜕𝜑
+
𝜕𝑐

𝜕𝑥
= 0 (29)

𝜕𝛽

𝜕𝑥
= 0. (30)

The auxiliary system equations (29) and (30) are independent
of (28).The auxiliary systemhas thermodynamic nature since
it contains only sorption function 𝑎(𝑐, 𝛽) and the unknowns
are the component concentrations c and 𝛽. Equation (28) is
the volume conservation for two immiscible phases. For the
known auxiliary solution of (29) and (30), equation (28) is a
scalar hyperbolic equation. Figure 5 shows the projection of
the space of the large system into that of auxiliary system and
the lifting procedure [43, 44].



6 Abstract and Applied Analysis

+

+

+

−

−

−

s

cn

c1

Figure 5: Projection of the space of the large system into that of
auxiliary system and the lifting procedure using the solution of
auxiliary system.

The boundary conditions for slug problem equation (7)
are reformulated for coordinates (𝑥, 𝜑) as

𝑥 = 0{
𝛽 = 0, 𝑐 = 𝑐

1
, 𝑈 = 1, 𝜑 < 1

𝛽 = 0, 𝑐 = 𝑐
2
, 𝑈 = 1, 𝜑 > 1.

(31)

Figure 2 shows how the initial and boundary conditions
for the large system (4) and (6) are mapped into those for
auxiliary system and the lifting equations (28)–(30).

The initial conditions for slug problem equation (8) are
reformulated for coordinates (𝑥, 𝜑) as

𝜑 = − 𝑠
𝑅
𝑥, 𝛽 = 1, 𝑐 = 𝑐

2
, 𝑈 = +∞. (32)

The solution of the Riemann problem for 𝜑 < 1 corresponds
to the following initial and boundary conditions:

𝑥 = 0, 𝛽 = 0, 𝑐 = 𝑐
1
, 𝑈 = 1

𝜑 = −𝑠
𝑅
𝑥, 𝛽 = 1, 𝑐 = 𝑐

2
, 𝑈 = +∞.

(33)

4. Solution for the Riemann Problem

Let us discuss the solution of the problem equations (7) and
(8) for 𝑡 < 1, which is self-similar; that is, the boundary and
initial conditions become (9) and (10).

Themass balance conditions on shockswhich follow from
the conservation law (Hugoniot-Rankine condition) form of
the system (28)–(30) are

𝜎 [𝑈] = [𝐹] (34)

𝜎 [𝑐] = [𝑎] (35)

𝜎 [𝛽] = 0, (36)

where 𝜎 is reciprocal to the shock velocity of (28)–(30).
As salt and polymer concentration are connected by the
thermodynamic equilibrium relationship 𝑎(𝑐, 𝛽), function
𝑎 is discontinuous if 𝑐 is discontinuous, so is 𝛽. Since 𝐹
is a function of 𝑐 and 𝑈, discontinuity of 𝑐 and 𝑈 yields
discontinuity of 𝐹.

As it follows from equality (36), either 𝜎 = 0 or [𝛽] = 0.
From (34) and (35) it follows that if𝜎 = 0, [𝑎] = 0 and [𝐹] = 0.
If [𝛽] = 0, from (35) and (36) it follows that 𝜎 = [𝑎]/[𝑐] and
𝜎 = [𝐹]/[𝑈]; therefore it yields to 𝜎 = [𝑎]/[𝑐] = [𝐹]/[𝑈].
Finally from (34), if [𝛽] = 0 and [𝑐] = 0 this leads to 𝜎 =

[𝐹]/[𝑈].
The shock waves must obey the Lax evolutionary condi-

tions [1–4, 9].

4.1. Solution for the Auxiliary System. The solution of auxil-
iary system is presented in Figure 6 by sequence of c-shock
from point 𝐿 into intermediate point and (𝑐, 𝛽)-shock into
point 𝑅. The corresponding formulae are as follows:

𝑐 (𝑥, 𝜑)

𝛽 (𝑥, 𝜑)
=

{{

{{

{

𝑐
1
, 𝛽 = 0, 𝜑 > Γ (0) 𝑥

𝑐
∗
, 𝛽 = 0, 0 < 𝜑 < Γ (0) 𝑥

𝑐
2
, 𝛽 = 1, −𝑠

𝑅
𝑥 < 𝜑 < 0,

(37)

where the condition of continuity of function 𝑎(𝑐, 𝛽) on the
shock with 𝜎 = 0, and (35) allows finding the intermediate
concentration

𝑐
∗
=
Γ (1)

Γ (0)
𝑐
2
. (38)

4.2. Solution for the Lifting Equation. Figure 7 exhibits initial
and boundary conditions for hydrodynamics lifting equation
(28). Curves 𝐹 = 𝐹(𝑈, 𝑐) are shown for constants 𝑐 = 𝑐

1
, 𝑐 =

𝑐
2
, and 𝑐 = 𝑐

∗; they are obtained from fractional flow curves
𝑓 = 𝑓(𝑠, 𝑐) for the same constant values of concentration 𝑐.
Point 𝑅 corresponds to𝑈 tending to infinity and 𝐹 tending to
minus infinity, where the fractional flow 𝑓 tends to zero. The
tangent of the segment (0, 0)–(𝑈, 𝐹) tends to −𝑠𝑅.

The solution of lifting equation with known concentra-
tions (37) is given by centred wave 𝐿–2, (𝑐-𝑈)-shock 2–
>3, (𝛽-𝑐-𝑈)-shock 3–>4, and 𝑈-shock 4–>R (Figure 7). The
centred wave (𝐿–2) is given by (39)

𝜑

𝑥
=

𝜕𝐹 (𝑈
1
, 𝑐
1
)

𝜕𝑈
. (39)

Points 2 and 3 are determined by the condition of equality of
𝑈 and 𝑐 shock speeds:

𝜕𝐹 (𝑈
2
, 𝑐
1
)

𝜕𝑈
=
𝐹
2
(𝑈
2
, 𝑐
1
) − 𝐹
3
(𝑈
3
, 𝑐
∗
)

𝑈
2
− 𝑈
3

= Γ (0) . (40)

Point 4 is determined by condition of equality of the shock
velocities 𝑐, 𝛽, and 𝑈:

𝐹
3
(𝑈
3
, 𝑐
∗
) = 𝐹
4
(𝑈
4
, 𝑐
2
) = 0. (41)

Point 4 is connected to point 𝑅 by 𝑈-shock:

𝐹
4
(𝑈
4
, 𝑐
2
) − 𝐹
𝑖
(𝑈
𝑅
, 𝑐
2
)

𝑈
4
− 𝑈
𝑖

=
−𝑠
4
𝑓
𝑅
+ 𝑠
𝑅
𝑓
4

𝑓𝑅 − 𝑓
4

= −𝑠
𝑅
. (42)
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c1c2 c∗ c

R

a
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L

𝛽 = 1

𝛽 = 0

(a)

c1

c2

c∗

c

R

L

𝛽1

(b)

Figure 6: Solution of the auxiliary problem. (a) Adsorption isotherm for chemical for different water salinities and the Riemann problem
solution; (b) Riemann problem solution on the plane of chemical concentration c and salinity 𝛽.

F = −s/f

U = 1/f
0
1

2

3
4

67

L−sL

−sR

R

c = c1
c = c∗

c = c2

Figure 7: The image of the solution in (𝐹-𝑈) plane.

The solution of the Riemann problem equations (28)–(30)
with free variables (𝑥, 𝜑) is given by the following formulae:

𝑈(𝑥, 𝜑)

𝑐 (𝑥, 𝜑)

𝛽 (𝑥, 𝜑)

=

{{{{{

{{{{{

{

𝑈
1
(
𝜑

𝑥
) , 𝑐
1
, 𝛽 = 0, 𝜑 > Γ (0) 𝑥

𝑈
3
, 𝑐

∗
, 𝛽 = 0, 0 < 𝜑 < Γ (0) 𝑥

𝑈
4
, 𝑐

2
, 𝛽 = 1, −𝑠

𝑅
𝑥 < 𝜑 < 0

∞, 𝑐
2
, 𝛽 = 1, 𝜑 > −𝑠

𝑅
𝑥.

(43)

The expression 𝑠 = −𝑈𝐹(𝑈, 𝑐) allows calculating saturation
𝑠(𝑥, 𝜑):

𝑠 (𝑥, 𝜑)

𝑐 (𝑥, 𝜑)

𝛽 (𝑥, 𝜑)

=

{{{{{

{{{{{

{

𝑠
1
(
𝜑

𝑥
) , 𝑐
1
, 𝛽 = 0, 𝜑 > Γ (0) 𝑥

𝑠
3
, 𝑐

∗
, 𝛽 = 0, 0 < 𝜑 < Γ (0) 𝑥

𝑠
4
, 𝑐

2
, 𝛽 = 1, −𝑠

𝑅
𝑥 < 𝜑 < 0

𝑠
𝑅
, 𝑐

2
, 𝛽 = 1, 𝜑 < −𝑠

𝑅
𝑥.

(44)

Figure 8 shows the solution of the system (28)–(30) in (𝜑, 𝑥)-
plane. For 𝜑 < 1, the solution is self-similar; the wave
interaction occurs at 𝜑 > 1.

I

II

III

IV

V
𝜑

(f = 1, 𝛽 = 0, c2)

(f = 0, 𝛽 = 1, c2)

(f = 1, 𝛽 = 0, c1)

1

0

U5(𝜑, x)

𝛽 = 0

𝛽 = 0

𝛽 = 0

c2

c2

U1(𝜑/x)

c1

𝜑 = Γ(0)x + 1

𝜑 = Γ(0)x

c∗U3

U4 𝛽 = 1
x

U = ∞

𝜑 = −sRx

6
7

(x, 𝜑)

Figure 8: Solution of the auxiliary and lifting system for slug
problem in (𝜑, 𝑥)-plane.

4.3. Inverse Mapping: Change of Variables from (𝜑, 𝑥) to (𝑡, 𝑥).
Time 𝑡 = 𝑡(𝑥, 𝜑) for solution is calculated from (12) along any
path from point (𝑥, 𝜑) to point (0, 0). The expression for time
t in zone II is

𝑡 =
1

𝑓
4

∫

𝜑

0

𝑑𝜑 +
𝑠
4

𝑓
4

∫

𝑥

0

𝑑𝑥 = (
−𝑠
𝑅
+ 𝑠
4

𝑓
4

)𝑥. (45)

The expression for time 𝑡 in zone III is

𝑡 =
1

𝑓
3

∫

𝜑

0

𝑑𝜑 +
𝑠
3

𝑓
3

∫

𝑥

0

𝑑𝑥 =
𝑠
3

𝑓
3

𝑥. (46)
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I

V

II

III

IV

t

(f = 1, 𝛽 = 0, c2)

(f = 1, 𝛽 = 0, c1)

1

0

s5(t, x)

𝛽 = 0

𝛽 = 0 𝛽 = 0

c2

c2

c2

c1 c∗s3

s4
𝛽 = 1

𝛽 = 1

x

t =
(Γ(

0)
+ s 2

)x
/f2

t =
(s 3

/f3
)x

t =
(−s

R + s4)
x/f4

s1(t/x)

(x, t)

sR

(f = 0, 𝛽 = 1, c2)

Figure 9: Non-self-similar solution of the problem for wave inter-
actions in (𝑥, 𝑡)-plane.

In zone IV, integral for calculation time, 𝑡 = ∫
𝑥,𝜑

0,0
(𝑑𝜑/𝑓 +

𝑠𝑑𝑥/𝑓) is calculated along the characteristic in centred 𝑈-
wave:

𝑡 =
𝜑

𝑓 (𝑠1 (𝜑/𝑥) , 𝑐
1
)
+

𝑠
1
(𝜑/𝑥)

𝑓 (𝑠1 (𝜑/𝑥) , 𝑐
1
)
𝑥. (47)

Figure 9 shows the solution for the Riemann problem at 𝑡 < 1;
see Figure 10 for detailed description of the Riemann solution
and profiles of unknown functions. Finally, the solution of the
Riemann problem for the system (4)–(6) is

𝑠 (𝑥, 𝑡)

𝑐 (𝑥, 𝑡)

𝛽 (𝑥, 𝑡)

=

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

𝑠
1
(
𝑡

𝑥
) , 𝑐
1
, 𝛽 = 0, 𝑡 >

Γ (0) + 𝑠
2

𝑓
2

𝑥,

𝑠
3
, 𝑐

∗
, 𝛽 = 0,

𝑠
3

𝑓
3

𝑥 < 𝑡 <
Γ (0) + 𝑠

2

𝑓
2

𝑥,

𝑠
4
, 𝑐

2
, 𝛽 = 1,

−𝑠
𝑅
+ 𝑠
4

𝑓
4

𝑥 < 𝑡 <
𝑠
3

𝑓
3

𝑥,

𝑠
𝑅
, 𝑐

2
, 𝛽 = 1, 𝑡 <

−𝑠
𝑅
+ 𝑠
4

𝑓
4

𝑥.

(48)

5. Solution of the Slug Problem

Now let us solve the slug problem equations (31) and (32)
for auxiliary system (29) and (30). The solution of Riemann
problem at the point (0, 1) is given by 𝑐-shock with 𝑐− = 𝑐

2

and 𝑐+ = 𝑐
1
under constant 𝛽:

𝑐 (𝑥, 𝜑)

𝛽 (𝑥, 𝜑)
=

{{{{

{{{{

{

𝑐
2
, 𝛽 = 0, 𝜑 > Γ (0) 𝑥 + 1

𝑐
1
, 𝛽 = 0, Γ (0) 𝑥 < 𝜑 < Γ (0) 𝑥 + 1

𝑐
∗
, 𝛽 = 0, 0 < 𝜑 < Γ (0) 𝑥

𝑐
2
, 𝛽 = 1, −𝑠

𝑅
𝑥 < 𝜑 < 0.

(49)

The solution of the auxiliary system is given by (49).
So, zone I in Figure 8 corresponds to initial conditions,

the solution is given by point 4 in zone II, and point 3 holds

I

II

III

IV

t

0

𝛽 = 0

𝛽 = 0

c2

c2

c∗
s3

s3

s2

s4

s4

𝛽 = 1

𝛽 = 1

x

x

x

x

t =
(Γ(

0)
+ s 2

)x
/f2

t =
(s 3

/f3
)x

t =
(−s

R + s4)
x/f4

sR

sR

sL

c1

c2

c∗

c1

s

c

1

0

𝛽

D1t1 D2t1 D3t1

(a)

(b)

(c)

(d)

t1

s1(t/x)

Figure 10: Solution of the Riemann problem: (a) trajectories of
shock fronts and characteristic lines in (𝑥, 𝑡)-plane; (b) saturation
profile; (c) chemical concentration profile; (d) salinity profile.

in zone III. Centred waves equation (39) fills in zone IV. In
zone V, 𝑐 = 𝑐

2
and 𝛽 = 0.

Now let us solve the lifting equation (28) with given
𝑐(𝑥, 𝜑) and 𝛽(𝑥, 𝜑).

TheHugoniot-Rankine condition for the rear slug front is

𝐹 (𝑈
+
, 𝑐
1
) − 𝐹 (𝑈

−
, 𝑐
2
)

𝑈+ − 𝑈−
= Γ (0) . (50)
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𝑈 is constant along the characteristic lines behind the rear
front

𝑈
5
(𝑥, 𝜑) = 𝑈

−
(𝑥

, 𝜑

) , (51)

where point (𝑥, 𝜑) is located on the rear front and is located
on the same characteristic line with point (𝑥, 𝜑):

𝜑 − 𝜑


𝑥 − 𝑥
=
𝜕𝐹 (𝑈

5
, 𝑐
1
)

𝜕𝑈
. (52)

The solution of lifting equation 𝑈(𝑥, 𝜑) is given by different
formulae in zones I–V:

𝑈 (𝑥, 𝜑)

𝑐 (𝑥, 𝜑)

𝛽 (𝑥, 𝜑)

=

{{{{{{{

{{{{{{{

{

𝑈
5
(𝑥, 𝜑) , 𝑐

2
, 𝛽 = 0, 𝜑 > Γ (0) 𝑥 + 1

𝑈
1
(
𝜑

𝑥
) , 𝑐
1
, 𝛽 = 0, Γ(0) 𝑥<𝜑<Γ(0) 𝑥+1

𝑈
3
, 𝑐

∗
, 𝛽 = 0, 0 < 𝜑 < Γ (0) 𝑥

𝑈
4
, 𝑐

2
, 𝛽 = 1, −𝑠

𝑅
𝑥 < 𝜑 < 0

∞, 𝑐
2
, 𝛽 = 1, 𝜑 > −𝑠

𝑅
𝑥,

(53)

where the equation for rear front of the chemical slug in the
auxiliary plane is

𝜑 = Γ (0) 𝑥 + 1. (54)

Finally, the solution of auxiliary problem equation (53) allows
calculating 𝑡(𝑥, 𝜑) for zones I, II, . . . ,V. Let us start with
determining time 𝑡 along the rear front of the slug. The
centred 𝑠-wave propagates ahead of the rear front

𝜑

𝑥
=
𝑓 (𝑠
+
, 𝑐
1
) − 𝑠
+
𝑓

(𝑠
+
, 𝑐
1
)

𝑓 (𝑠+, 𝑐
1
)

. (55)

From (54), (55) follow the expression for 𝑥
𝐷
(𝜑
𝐷
) in a

parametric form:

𝑥
𝐷
(𝑠
+
) =

𝑓

(𝑠
+
, 𝑐
1
)

𝑓 (𝑠+, 𝑐
1
) − 𝑓 (𝑠+, 𝑐

1
) (𝑠
+ + Γ)

=
𝑓

(𝑠
+
, 𝑐
1
)

Δ
(56)

𝜑
𝐷
(𝑠
+
) =

𝑓 (𝑠
+
, 𝑐
1
) − 𝑠
1+

𝑓

(𝑠
+
, 𝑐
1
)

𝑓 (𝑠+, 𝑐
1
) − 𝑓 (𝑠+, 𝑐

1
) (𝑠
+ + Γ)

=
𝑓 (𝑠
+
, 𝑐
1
) − 𝑠
1+

𝑓

(𝑠
+
, 𝑐
1
)

Δ
.

(57)

Integration of the form (41) along the rear front gives

𝑡
𝐷
=

𝜑

𝑓 (𝑠+ (𝜑, 𝑥) , 𝑐
2
)
+

𝑠
+
(𝜑, 𝑥)

𝑓 (𝑠+ (𝜑, 𝑥) , 𝑐
2
)
𝑥

𝑡
𝐷
=

1

𝑓 (𝑠+, 𝑐
1
) − 𝑓 (𝑠+, 𝑐

1
) (𝑠1
+
+ Γ)

=
1

Δ
.

(58)

Finally, the solution of the slug problem for the system (4)–
(6) subject to initial and boundary conditions equations (7)
and (8) is (Figure 9)

𝑠 (𝑥, 𝑡)

𝑐 (𝑥, 𝑡)

𝛽 (𝑥, 𝑡)

=

{{{{{{{{{{{

{{{{{{{{{{{

{

𝑠
5 (𝑡, 𝑥) , 𝑐2, 𝛽 = 0, 𝑡 >

Γ (0) + 𝑠5 (𝑡, 𝑥)

𝑓
5
(𝑠
5 (𝑡, 𝑥) , 𝑐2)

𝑥 + 1

𝑠
1
(
𝑡

𝑥
) , 𝑐
1
, 𝛽 = 0,

Γ (0) + 𝑠2

𝑓
2

𝑥 < 𝑡 <
Γ (0) + 𝑠5 (𝑡, 𝑥)

𝑓
5
(𝑠
5 (𝑡, 𝑥) , 𝑐2)

𝑥 + 1

𝑠
3
, 𝑐

∗
, 𝛽 = 0,

𝑠
3

𝑓
3

𝑥 < 𝑡 <
Γ (0) + 𝑠2

𝑓
2

𝑥

𝑠
4
, 𝑐

2
, 𝛽 = 1,

−𝑠
𝑅
+ 𝑠
4

𝑓
4

𝑥 < 𝑡 <
𝑠
3

𝑓
3

𝑥

𝑠
𝑅
, 𝑐

2
, 𝛽 = 1, 𝑡 <

−𝑠
𝑅
+ 𝑠
4

𝑓
4

𝑥.

(59)
Figure 11 presents trajectories of shock fronts in (𝑥, 𝑡)-plane
along with profiles of unknowns 𝑠, 𝑐, and 𝛽 at typical
moments.

Here the trajectory of the rear slug front 𝑥
𝐷
= 𝑥
𝐷
(𝑡) is

given in a parametric form (Figure 12)
1

𝑥
𝐷

= 𝑠
𝐵
+ Γ (0)

1

𝑡
𝐷

= 𝑓
𝐴
,

(60)

where 𝑠
𝐵
is the abscissa of point 𝐵 and 𝑓

𝐴
is the ordinate of

point𝐴 (Figure 12). Equations (60) can be solved graphically.
Straight line AB is a tangent to the fractional flow curve
𝑐 = 𝑐

1
, the tangent point in 𝑠+. The rear front position 𝑥

𝐷

is determined by the interval BC at the moment determined
by AC.

6. Particular Case for the Polymer Absence in
the Reservoir before the Injection

In reality, there is no chemical initially in the reservoir during
the majority of chemical enhanced oil recovery applications;
that is, 𝑐(𝑥, 0) = 0. For zero initial polymer concentration,
the intermediate polymer concentration is equal to zero, so
the points ahead and behind the 𝛽-shock coincide in planes
(𝑐, 𝑎) and (𝑠, 𝑓). The particular simplified solution is (Figures
13 and 14)
𝑠 (𝑥, 𝑡)

𝑐 (𝑥, 𝑡)

𝛽 (𝑥, 𝑡)

=

{{{{{{{{{{{

{{{{{{{{{{{

{

𝑠
5 (𝑡, 𝑥) , 𝑐 = 0, 𝛽 = 0, 𝑡 >

Γ (0) + 𝑠5 (𝑡, 𝑥)

𝑓
5
(𝑠
5 (𝑡, 𝑥) , 𝑐2)

𝑥 + 1

𝑠
1
(
𝑡

𝑥
) , 𝑐 = 𝑐

1
, 𝛽 = 0,

Γ (0) + 𝑠2

𝑓
2

𝑥<𝑡<
Γ (0)+𝑠5 (𝑡, 𝑥)

𝑓
5
(𝑠
5 (𝑡, 𝑥) , 𝑐2)

𝑥+1

𝑠
3
, 𝑐 = 0, 𝛽 = 0,

𝑠
3

𝑓
3

𝑥 < 𝑡 <
Γ (0) + 𝑠2

𝑓
2

𝑥

𝑠
3
, 𝑐 = 0, 𝛽 = 1,

−𝑠
𝑅
+ 𝑠
3

𝑓
3

𝑥 < 𝑡 <
𝑠
3

𝑓
3

𝑥

𝑠
𝑅
, 𝑐 = 0, 𝛽 = 1, 𝑡 <

−𝑠
𝑅
+ 𝑠
3

𝑓
3

𝑥.

(61)
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Figure 11:The solution of the slug injection problem: (a) trajectories
of shock fronts and characteristic lines in (𝑥, 𝑡)-plane; (b) saturation
profile; (c) chemical concentration profile; (d) salinity profile.

7. Fluid Mechanics Interpretation
of the Solution

Following exact solution equations (4)–(9), let us describe
structure of two-phase flow with chemical and salt additives
during chemical slug injection.

During continuous injection 𝑡 < 1, the solution of
chemical slug injection coincides with that of continuous
chemical injection. Initial conditions equation (10) is shown
by point 𝑅 that corresponds to low initial saturation and
initial concentrations of chemical 𝑐

2
and of salt 𝛽 = 1.

The boundary condition at 𝑥 = 0 corresponds to point 𝐿
of injection of chemical solution with concentration 𝑐

1
and

salinity 𝛽 = 0. The path of Riemann problem solution in
plane (𝑠, 𝑓) consists of centred 𝑠-wave with injected chemical
concentration and unity salinity, 𝑐-𝑠-shock 2–>3, 𝑐, 𝑠, 𝛽-
shock 3–>4, and 𝑠-shock 4–>R into initial point (Figure 1).
Following nomenclature by Courant and Friedrichs [1] and
Lake [9], the Riemann solution is L–2–>3–>4–>R. Shock

0.1

0 1.0

1
L

f

R

2

3

4

c = c1

c = c∗

c = c2

s

s+
s−

c

ab

Δ

Δ/f(s+)

Figure 12: Solution of the lifting equation in (𝑠, 𝑓)-plane.

0.1

0 1.0

1
L

s

f

R

2

3

c = c1

−Γ(0)

c = c2 = 0

Figure 13: Solution of the lifting system in (𝑓-𝑠) plane when 𝑐
2
= 0.

2–>3 in plane (𝑐, 𝛽) is horizontal; shock 3–>4 is vertical
(Figure 6(b)). Shock 2–>3 in plane (𝑐, 𝑎) occurs along the
sorption isotherm; shock 3–>4 is a horizontal jump from
isotherm 𝑐 = 𝑐

∗to that 𝑐 = 𝑐
2
(Figure 7).

The trajectories of shocks 2–>3, 3–>4, and 4–> 𝑅 are
shown in Figure 7. Shock velocities are constant, so the
trajectories are straight lines. Let us fix the position 𝑥 = 1

of the raw of production wells. Before arrival of the front 4–
> 𝑅 at themoment 𝑡 = 1/𝐷

3
, oil with fraction of water𝑓𝑅 and

initial concentrations of chemical and salt is produced. After
arrival of the front, water-oil mixture with water fraction 𝑓

4

and initial concentrations of chemical and salt is produced
until the arrival of the 3–>4 front at the moment 𝑡 = 1/𝐷

2
.

The corresponding profiles of saturation and concentra-
tions are shown in Figure 10. The moment 𝑡

1
for profiles is

fixed in Figure 10(a), allowing defining positions of all fronts
in this moment. Corresponding profiles at that moment for
saturation, chemical concentration, and salinity are shown
in Figures 10(b), 10(c), and 10(d), respectively. The saturation
profile consists of declining interval 𝑠𝐿–𝑠

2
in 𝑠-wave, two oil-

water banks 𝑠
3
and 𝑠
4
, and the initial undisturbed zone 𝑠𝑅.

The chemical concentration profile consists of injected value
𝑐 = 𝑐
1
in 𝑠-wave, intermediate value 𝑐∗ in 𝑠

3
-bank, and initial



Abstract and Applied Analysis 11

I

II

III

IV
V

(f = 1, 𝛽 = 0, c1)

1

0

𝛽 = 0

𝛽 = 1

𝛽 = 1

𝛽 = 0

𝛽 = 0

x

s5(t, x)

s3

s3

(x, t)

sR

c1

t =
(Γ(

0)
+ s 2

)x
/f2

t =
(s 3

/f3
)x

t =
(−s

R + s3)
x/f3

c = 0

c = 0

c = 0

c = 0

(f = 0, 𝛽 = 1, c = 0)

(f = 1, 𝛽 = 0, c = 0)

t

s1(t/x)

Figure 14: Non-self-similar solution of the problem for wave
interactions in (𝑥, 𝑡)-plane when 𝑐

2
= 0.

concentration 𝑐
2
in 𝑠
4
-bank and in the initial zone. Salinity 𝛽-

profile consists of injected value in zones IV and III and initial
value in other zones.

Injection of water without chemical and with salinity
𝛽 = 0 starts at the moment 𝑡 = 1. The flow is not self-
similar anymore.The front trajectories and profiles are shown
in Figure 11. The solution for slug problem coincides with
the solution for continuous injection ahead of the rear front
𝑥
𝐷
(𝑡). The profiles taken at the moment 𝑡

1
< 1 during

continuous injection (Figure 11) coincide with those from
Figure 10.

The propagation of the rear slug front from the begin-
ning of water drive injection in the reservoir is shown in
Figure 11(a). The rear front velocity decreases reaching the
value of the forward front𝐷

3
when time tends to infinity.The

slug thickness increases and stabilises.
The profiles are shown in Figures 11(b), 11(c), and 11(d)

for the moment after the beginning of slug injection 𝑡
2
> 1.

Saturation decreases in a simple wave behind the rear slug
front, jumps down on the front, decreases in centred 𝑠-wave
in the slug, and is constant in zones II, II, and I. Chemical
slug dissolution during the water drive injection is shown in
Figure 11(c). There does occur the full concentration shock
from zero behind the read slug front to the injected value in
the slug. Further in the reservoir, there does appear a zone of
intermediate chemical concentration 𝑐∗ in the bank 𝑠

3
. The

concentration is equal to its initial value in banks 𝑠
4
and in

the initial zone. So, dissolution of slug occurs in the initial
water by formation of oil-water bank 𝑠

3
with lower chemical

concentration. Salinity changes by full shock on the front
between zones III and II.

8. Conclusions

Application of the splitting method to 3 × 3 conservation law
system describing two-phase four-component flow in porous
media allows drawing the following conclusions.

(1) The method of splitting between hydrodynamics and
thermodynamics in system of two-phase multicom-
ponent flow in porous media allows obtaining an
exact solution for non-self-similar problem of dis-
placement of oil by chemical slug with different water
salinity for the case of linear polymer adsorption
affected by water salinity.

(2) The solution consists of explicit formulae for water
saturation and polymer and salt concentrations in the
continuity domains and of implicit formulae for front
trajectories.

(3) First integrals for front trajectories allow for graphical
interpretation at the hodograph plane, yielding a
graphical method for finding the front trajectories.

(4) For linear sorption isotherms, the solution depends
on three fractional flow curves that correspond to
initial reservoir state 𝑅, injected fluid 𝐿, and an inter-
mediate curve for intermediate polymer concentra-
tion and injected salinity; the value for intermediate
polymer concentration is the part of exact solution.

(5) For linear sorption isotherms, the only continuous
wave is 𝑠-wave with constants 𝑐 and 𝛽; concentrations
𝑐 and 𝛽 change only across the fronts by jumps;
thus the solution of any problem with piece-wise
constant initial and boundary conditions is reduced
to interactions between 𝑠-waves and shocks.

(6) Introduction of salinity dependency for sorption of
the chemical introduces the intermediate (𝑐, 𝛽)-shock
into the solution of the Riemann problem; this shock
interacts with 𝑠-wave and concentration shocks in
the solution of any problem with piece-wise constant
initial and boundary conditions.

(7) The exact solution shows that the injected chemical
slug dissolves in the connate reservoir water rather
than in the chemical-free water injected after the slug.
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This paper presents an analytical solution of a non-self-similar, two-phase, multi-component problem of
polymer slug injection with varying water salinity (ionic strength) in oil reservoirs. The non-Newtonian
properties of polymers are incorporated into the fractional flow, yielding the velocity dependency of the
fractional-flow function. Using the Lagrangian coordinate instead of time allows splitting the initial
system (nþ1�nþ1) into a n�n system for concentrations and one scalar hyperbolic equation for phase
saturation, which allows for full integration of the non-self-similar problem of wave interactions. The
solution includes implicit formulae for saturation, polymer, and salt concentrations and front trajectories
of the components. The solution allows determining the slug size of the low-salinity water that prevents
the contact between the polymer and the high-salinity water.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Polymer flooding aims at improving sweep efficiency of the
water displacement process by increasing the mobility ratio be-
tween the displacing agent and the in-situ oil. This is achieved by
adding a polymer to the aqueous phase. The rheology of the
polymer solution depends on parameters such as polymer con-
centration, velocity, and salt concentration. For example, if poly-
mer concentration is held constant, the viscosity of a polymer
solution increases as salt concentration decreases. This means that
for given oil viscosity target, potentially less polymer would be
required to maintain mobility control as salinity decreases (Sorbie,
1991). Furthermore, it has been observed that more oil is released
from rocks when the salinity of the aqueous phase is reduced. This
is mainly attributed to modifications in the wetting state of the
rock surface among other mechanisms (Lager et al., 2008; Mahani
et al., 2015). This implies that the combined effect of low-salinity
water and polymer can in principle be utilized to improve oil re-
covery in economically and operationally favourable conditions. To
minimize the cost of low-salinity polymer (LSP) injection, usually a
slug (fraction of the reservoir pore volume) of polymer is injected
and then followed by one or more slugs with reduced polymer
concentration and, finally, by a water drive.
. Borazjani).
Effects of the polymer and of lowering the salinity can be
modelled through modifying the fractional-flow functions: addi-
tion of polymer increases viscosity of the displacing agent, and
lowering the salinity affects the relative permeability parameters
(Mohammadi and Gary, 2012). Analytical methods are useful in
understanding the underlying physics of many enhanced oil re-
covery processes (Pope, 1980; Bedrikovetsky, 1993; Lake, 1989).
These methods can also be used to check the accuracy of the nu-
merical schemes that are employed for large-scale simulations.
Multiple discontinuities in the solutions of multi-component slug
injections typically create major difficulties in numerical model-
ling, whereas the analytical solutions provide trajectories for the
multiple shocks and the parameter jumps across the trajectories.
Moreover, one-dimensional analytical models form the basis for
streamline and front-track simulators of three-dimensional flows
in heterogeneous formations (Ewing, 1983; Holden and Risebro,
2002).

Continuous injection of a fluid having a constant composition
into a reservoir initially saturated by another fluid with a constant
composition corresponds to corresponds to so-called Riemann
problems, with initial conditions corresponding to the reservoir
fluid saturation and composition, and boundary conditions of the
injected fluid fractional flow and composition. The Riemann so-
lutions are self-similar (Gel'fand, 1959; Courant and Friedrichs,
1976), and depend on the group ξ¼x/t. The solutions contain in-
dividual discontinuities of each component, and can exhibit
chromatographic separation of the components. Numerous
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Nomenclature

a concentration of adsorbed polymer
c polymer concentration in water (g/m3)
cs salt concentration in water (g/m3)
cs

D salt concentration in the drive (g/m3)
D shock speed for (x, t) co-ordinates
f water fractional flow
H power law coefficient (Pa sn)
K absolute permeability (m2)
kr relative permeability of liquid phase
L reservoir size (m)
n power-law exponential index
p pressure (Pa)
S water saturation
t time
RF recovery factor
u total velocity (m/s)
uw aqueous phase velocity (m/s)
V shock speed in (x, φ) co-ordinate
Vp polymer slug volume per unit area (m3/m2)
x coordinate

Greek letters

Γ Henry's polymer sorption coefficient

η self-similar coordinate φ/x
κ Bulk power law coefficient (Pa sn)
μ apparent viscosity (Pa s)
ϕ porosity of porous media
ξ self-similar coordinate x/t
φ potential function

Subscripts

H high salinity water
L low salinity water
o oil
s salt
w water

Superscripts

D drive condition
I initial condition
J injection condition
þ value ahead of the shock
� value behind the shock
* intermediate point
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authors have provided solutions for one- and multi-component,
two-phase flow systems that allow for different kinds of de-
pendencies of parameters (De Nevers, 1964; Claridge and Bondor,
1974; Helfferich, 1981; Hirasaki, 1981; Braginskaya and Entov,
1980).

Johansen and Winther (1988) and Johansen et al. (1989) solved
the Riemann problem for a multi-component, two-phase system
by projecting it onto the solution of a single-phase problem. The
authors prove that the direct projection transforms all elementary
waves of two-phase system into those for a single-phase system.
So, the solution process consists of finding a solution for one-
phase flow and extending it to two-phase flow. The projection
principle allows for algorithmic integration of an arbitrary Rie-
mann problem for two-phase multi-component with adsorption,
based on the corresponding solute transport problem for a single-
phase flow. However, the projection is valid for Riemann problems
only: the two-phase flow solution with non-constant initial or
boundary conditions cannot be mapped onto the corresponding
one-phase-flow solution.

Injection of multi-component slugs corresponds to non-self-
similar solutions. The qualitative phase plane with characteristics
is presented in (Fayers, 1962) for sequential displacement of oil by
intercalated slugs of cold and hot water. The exact integration is
achieved by decomposition of the problem with piece-wise-con-
stant initial and boundary conditions into local Riemann problems
and solution of interactions of the elementary waves (Bed-
rikovetsky, 1982, 1993). Integration of the conservation law over
the invariant contours yields the exact solutions with explicit
formulae for trajectories of curvilinear fronts and for saturation
and concentration distributions. In the simplified case, where ad-
sorption of a component is a function of its own concentration
only, the exact integration shows that the multi-component slugs
interact after the injection and finally separate into single-com-
ponent slugs moving in order of decreasing the sorption derivative
values, similar to Rhee et al. (1998) for one-phase flows. Never-
theless, for the general case, where the adsorbed concentrations
depend on the concentrations of all components, the analytical
solution is not available in the literature.

Pires et al. (2006) and Borazjani et al. (2016) show that the
introduction of Lagrangian coordinate φ (stream function) asso-
ciated with mass conservation for water in n-component two-
phase flow problems and using it as an independent variable in-
stead of time t allows separating the (nþ1)� (nþ1) hyperbolic
system into an n�n auxiliary one-phase system and one scalar
equation (so called lifting) for two-phase flow. The auxiliary sys-
tem and the lifting equation are the results of transformation of
conservation laws for water and for all components, respectively,
in co-ordinates (x, φ). In various cases, where the auxiliary system
allows for an analytical solution, the general system is reduced to
the solution of a single scalar equation (Pires et al., 2006). In
contrast to direct projection onto the one-phase solution that is
valid for Riemann problems only (Johansen and Winther, 1988;
Johansen et al., 1989), this mapping results in splitting for any
initial and boundary-value problems.

Generally, the solution of the lifting equation is obtained nu-
merically (Vicente et al., 2014). However, for the case of linear
adsorption isotherms, even with the Henry's constants depending
on other concentrations, the lifting problem allows for exact so-
lution (Borazjani et al., 2014).

In this paper the splitting method presented by Pires et al.
(2006) is applied for hyperbolic systems corresponding to two-
phase multi-component flows in the reservoir scale approxima-
tion. Yet, recently the splitting method has been extended for two-
phase multicomponent systems of parabolic PDEs accounting for
capillary pressure and non-equilibrium phase transitions and
chemical reactions (Borazjani et al., 2016).

The objective of this work is to provide exact solutions based
on the mapping presented in Pires et al. (2006) for the cases when
the displacing aqueous phase contains varying viscosity and sali-
nity. Our special focus is to describe the physics of the process
when a slug of low-salinity polymer is followed by injection of
polymer-free aqueous solutions. The adsorption of the chemical
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(and other fractional-flow parameters) is assumed to be salinity
dependent.

The structure of the paper is as follows. Section 2 derives the
governing equations. Section 3 presents derivations of the exact
solutions, corresponding to continuous and slug injections of
polymer solution with varying salinity. Section 4 contains the re-
sults of this work, provides the mechanisms of physics of low-
salinity polymer injection under some simplifying assumptions,
and compares it to conventional polymer injection. Section 5
concludes the paper, with an interpretation of the solution.
Fig.1. Schematic representation for porosity, phase saturations and component
concentrations: oil, aqueous phase, polymer and salt components in aqueous so-
lution and an adsorbed polymer within a pore space.
2. Mathematical model

2.1. Formulation

We consider injection of an aqueous solution with varying
viscosity and salinity at a constant temperature into a one-di-
mensional homogeneous porous medium with length L, perme-
ability K, and porosity ϕ. The system is considered uniform and
isotropic. The aqueous phase containing polymer and salt is in-
jected to displace oil. The two phases are assumed to be im-
miscible and incompressible. The displacing phase can exhibit a
shear-thinning behaviour, i.e., its viscosity reduces with increasing
velocity; whereas the oil is considered Newtonian. The only rock–
fluid interaction considered is the adsorption of polymer on the
rock, which depends on the polymer and salt concentrations in the
aqueous phase. The polymer and salt concentrations (on the solid
and in the aqueous phases) are small enough not to affect the
phase density and porosity of the rock. We assume Henry's sorp-
tion equation for low-concentration polymer solutions. The mod-
ified Darcy's law describes the fluid flow in the porous medium.
The relative-phase permeabilities are functions of saturation and
of polymer and salt concentrations. We assume no adsorption
involving the salt. The gravitational effects are considered to be
negligible. Viscous fingering is not accounted for. Furthermore,
dissipative effects of dispersion and capillary pressure are ignored.
The schematic of the pore space saturated by oil and water with
polymer and salt dissolved in water and polymer adsorbing on the
rock is shown in Fig. 1.

2.2. Governing equations

Mass-balance equations for two-phase flow with polymer and
salt components are
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= ( )

c S

t

c f S u a c c

x

, , , ,
0. 3

s s s

where S is water saturation, f is fractional flow of water (f¼uw/u),
and 1� f is the fractional-flow of oil (f¼uo/u), u is overall velocity
of oil and water, c, cs and a are mass concentrations for polymer,
salt and adsorbed polymer, respectively. The dimensionless co-
ordinates x and t are defined as

∫ϕ→ → ( )
( )

x
x

V
t

V
u t dt,

1
.

4p p

t

0

Vp is the polymer slug volume per unit area, and the di-
mensionless position of the outlet is at l¼ϕL/Vp. Usually the di-
mensionless time is introduced in terms of the reservoir pore
volume ϕL. Definition (4) is more convenient for the solution of
polymer slug problem and study of the effect of polymer slug on
the performance.

Following Wu et al. (1991) and Sorbie (1991) we assume the
power-law model to describe the non-Newtonian behaviour of the
polymer solution in porous media:

μ = ( )−Hu 5w w
n 1

where μw is the apparent aqueous phase viscosity in the porous
medium, n is the bulk power-law index, and H for two phase flow
is

( )( )κ ϕ= + −
( )

( − )⎛
⎝⎜

⎞
⎠⎟H

n
Kk S S

12
9

3
150 .

6

n

rw
I n1 /2

Here, κ is the bulk power-law coefficient and SI is initial water
saturation. κ and n are function of polymer and salt concentra-
tions. Formulae (5) and (6) are the results of upscaling of the
power-law flow of non-Newtonian fluid in the pore capillary to the
Darcy's scale.

Combining modified Darcy's equation for water and (5) yields
the expression for aqueous phase flux

= − ∂
∂ ( )

⎜ ⎟
⎛
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⎛
⎝

⎞
⎠

⎞
⎠⎟u

Kk
H

p
x

.
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w
rw

n1/

Using the definition of overall velocity (u¼uwþuo), Darcy's law
for oil, and Eq. (7), the following transcendental equation can be
derived for the fractional-flow function:

μ
= + ( )

( )
u fu

k H
k

fu .
8

ro

o rw

n

As it follows from Eqs. (5–8), non-Newtonian properties can be
incorporated into the fractional flow theory, where the fractional-
flow function becomes velocity-dependent (Wu et al., 1991; Bed-
rikovetsky, 1993).
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For small concentrations c and cs, the equilibrium polymer-
adsorption isotherm is described by the linear Henry's sorption

Γ( ) = ( ) ( )a c c c c, . 9s s

Polymer adsorption increases as salinity increases, i.e., ∂Γ(cs)/∂
cs40 (Sorbie, 1991).

The boundary condition for polymer-slug injection with vary-
ing salinity in the slug is

( )= = = <
>

=
( )

⎪

⎧⎨
⎩x f S u a c c c c t

t
c c0: , , , , 1, , 1

0, 1
, .

10
s

J

s s
J

We assume that initially no polymer is present in the reservoir,
i.e.,

= = = = ( )t c c c S S0: , 0, 11s s
I I

where cs
I4cs

J.
From this point forward, the injection rate is assumed to be

constant; therefore, the velocity-dependency of the fractional-flow
function need no longer be mentioned.
3. Analytical model for polymer injection with varying salinity

The solutions of the continuous injection (to1, in Eqs. (10, 11))
for system (1–3) are self-similar and depend on the group x/t
(Pope, 1980; Bedrikovetsky, 1993; Lake, 1989), i.e.,

ξ ξ ξ ξ= ( ) = ( ) = ( ) = ( )S S c c c c x t, , , / 12s s

The self-similarity is obtained from the analysis of dimensions,
where only one dimensinless group x/t can be obtained from two
independent variables (Landau and Lifshitz, 1987). The solutions
for slug injection of low-salinity polymer (LSP) followed by water
drive with different salinities are non-self-similar, since the
boundary condition (10) contains one extra parameter, which is
the slug size. The splitting technique (Pires et al., 2006) is used to
derive the exact solutions for non-self-similar problems.

3.1. Splitting procedure

Introduction of a stream function φ associated with mass
conservation for water (1),

∫φ ( ) = ( − )
( )

x t fdt Sdx,
13

x t

0,0

,

yields the following form for system (1–3) in coordinates (x, φ)
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0 16
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where

( )= = −
( )

U
f

F U a c c
S
f

1
, , , , .

17
s

The detailed derivations of Eqs. (14–16) are presented in Ap-
pendix A.

Eq. (14) is separate from the 2�2 system (15, 16), thus the
unknowns c and cs are found from Eqs. (15, 16) followed by the
determination of U(x, φ) from Eq. (14). This means that the
transformation (x, t)-(x, φ) splits the 3�3 system (1–3) into the
2�2 auxiliary system (15, 16) and the lifting Eq. (14). We present
the properties of projection for the elementary waves, along with
the continuous and discontinuous solutions in Appendix A.

With this transformation, the abscissa axis t¼0 transfers to
straight line φ¼�SIx; however, the ordinate axis does not change
(i.e., along the straight line x¼0, φ¼t).

Accordingly, the inlet boundary condition of Eq. (10) in co-
ordinates (x, φ) becomes

φ
φ

= = = <
> ( )

⎪

⎪⎧⎨
⎩

x c c c
c

0: ,
, 1

0, 1 18
s s

J
J

= = ( )x U0: 1 19

and the initial conditions of Eq. (11) take the form

φ = − = = ( )S x c c c: , 0 20I
s s

I

φ = − = − ∞ ( )S x F: . 21I

3.2. Solution of the auxiliary system

The solution of the auxiliary system (15, 16) subject to
boundary condition Eq. (18) and initial condition Eq. (20) is self-
similar for φo1, the self-similar group is x/φ. The solution is
shown in Fig. 2a (Path 1) by a sequence of c-shock from the in-
jection point (cs¼CS

J , c¼cJ) to an intermediate point (cs¼CS
J , c¼0),

represented by Eq. (A-10)

( ) ( )Γ
Γ[ ]

[ ]
= =

( )
a
c

c c

c
c ,

22
s

J J

J s
J

followed by a cs-shock across the line φ¼0 from the intermediate
point into the initial condition (cs¼ CS

I , c¼0). The shock in c ap-
pears before the shock in cs (Lax condition).

The solution of the Riemann problem for φo1 corresponds to
waves (CS

J , cJ)-(CS
J , 0)-(CS

I , 0). The terms A–B and A-B denote a
centred wave and a shock connecting states A and B, respectively.

At φ¼1, a c-shock connects (cs¼CS
J , c¼0) to the injection point

at φ o1 (cs¼CS
J , c¼cJ) (Path 2 in Fig. 2b). Using Eq. (A-10) to find

the velocity of this c-shock yields

( ) ( )Γ φ Γ= → ( ) = + ( )V
c x c x

1
1. 23s

J
s

J

Finally, the solution of the auxiliary system is
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Zones I, II, III, IV and V in Fig. 3a represent the auxiliary solution
of Eq. (24).

3.3. Solution of the lifting equation

For system (14–16), the solution is reduced to one hyperbolic
lifting Eq. (14) subject to boundary and initial conditions (19, 21)
with the known solution of auxiliary problem (24). The solution
for φo1 corresponds to the path in (U, F) and (S, f)-plane con-
sisting of a rarefaction wave from the saturation �S0

L to point 2, c-



Fig.2. Initial and boundary Riemann values with the solution path; (a) path 1- Riemann problem solution with discontinuity at the point x¼0, φ¼0 for the case cI¼0,
consisting of c-jump and cs-jump;(b) path 2- Riemann solution for discontinuity at the point x¼0, φ¼1 is a c-jump; (c) path 3- Riemann solution with discontinuity at the
point x¼0, φ¼ts is cs-jump; (d) path 4- Riemann solution for discontinuity at the point x¼0, φ¼0 for cI≠0; consists of c- and c-cs-jumps.

S. Borazjani et al. / Journal of Petroleum Science and Engineering 140 (2016) 28–4032
jump from 2 to 3, cs-jump from 3 to 4 and a S-jump from 4 to I, �S

0
L–2-3-4-I; see solid red paths in Figs. 4 and 5.

Eq. (A-12) allows implicit calculation of U¼U1(x, φ) in the
rarefaction wave �S0

L–2:

( )φ φ
=

∂ ( ) = =

∂ ( )x

F U x c c c c

U

, , ,
. 25

J
s s

J
1

Point 2 is calculated from the equality of the S-waves and the
characteristic speed of the c-shock given by Eq. (A-9) and Eq. (A-
12).

( ) ( )φ Γ=
∂ = =

∂
= ( )x

F U c c c c

U
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, ,
. 26

J
s s
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Point 3 is calculated from the Hugoniot–Rankine condition at
the c-shock given by Eq. (A-10).

( ) ( ) ( )Γ
= = − = =

−
=
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F U c c c c F U c c c

U U
c

, , , 0,
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Constant state 3 is shown in zone III in Fig. 3 (for the case ∂F3
/∂Uo0).

Point 4 is determined from condition of continuity of F along
cs-jump (see Eq. (A-9)).

( ) ( )= = = = = ( )F U c c c F U c c c, 0, , 0, . 28s s
J

s s
I

3 4

Jump velocity from point 4 to point I is calculated from the
Hugoniot–Rankine condition on S-shock, given in Eq. (A-11).

( )( )φ =
= = − = =

−
= −

( )x

F U c c c F U c c c

U U
S
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Next we solve the slug problem, φ41. The rarefaction wave
(�S0

L-2) originating from (0, 0) in the (x, φ) plane interacts with
the c-shock originating from point (0, 1). The two waves are
transmitted through each other and build the transmitted rar-
efaction wave and the transmitted shock wave. Values U1(x, φ) and
U5(x, φ) ahead of and behind the c-shock are related by the mass-
balance condition on the c-shock given by Eq. (A-10).

( ) ( ) ( )Γ
= = − = =
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=
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U U
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The c-shock velocity remains constant and equal to 1/Γ( CS
J)

during this transition. U5 also remains constant along the char-
acteristic lines behind the slug rear, which results in the straight
characteristic lines starting from any point (x′, φ′) on the c-shock.

( )φ φ− ′
− ′
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∂ ( )x x
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, 0,
. 31

s s
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The expression U(x, φ) in zone V along with the corresponding
point (x′, φ′) on the c-shock front is determined from three
transcendental Eqs. (25, 30, 31). The slug path (6-7) for U1(x,
φ)¼U6 is shown by the dashed lines in Figs. 4 and 5. The initial
conditions I in Fig. 5 correspond to initial connate water satura-
tion, i.e. only secondary oil recovery by the polymer flooding is
considered.

Finally, the solution of the auxiliary and lifting system is
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The zones I, II, III, IV and V in Fig. 3 contain the auxiliary and
lifting solution (32). The water saturation S(x, φ) is obtained from



Fig.3. Solution of the auxiliary and lifting equations for oil displacement by low
salinity polymer slug with alternated water salinity in the slug and in the water
drive in (x, φ) plane (a) solution of the auxiliary equations, (b) solution of the lifting
problem.
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Eq. (32) using Eq. (17).
3.4. Inverse mapping–change of variables from (x, φ) to (x, t)

Next we reverse the mapping (x, φ) to (x, t) by calculating time
t ¼t(x, φ) along any path from point (0, 0) to point (x, φ) (see Eq.
(A-3)).

∫φ φ( ) = ( + )
( )

φ
t x fd S fdx, 1/ / .

33
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Because S4 and S3 are constant in zones II and III, the expres-
sions for time t in these zones are
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Although S is not constant in zone IV, it remains constant
through each of the centred waves; therefore, the integral of Eq.
(33) along each characteristic line is
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In zone V, time is calculated along the U5-rarefaction waves:
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Along the polymer-slug rear; i.e., φ¼Γ(CS
J)xþ1,
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and time t is determined from Eq. (A-3).

=
Δ ( )t
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. 40

Fig. 5 shows the graphical expression for the polymer-slug rear,
where AD is equal to Δ and AC is equal to Δ� (∂f1/∂s)�1.

Finally, the solution of the slug problem for system (1–3) sub-
ject to the boundary and initial conditions Eqs. (10) and (11) is

( )

( ) ( )

( )

( )

( )

( )

Γ

Γ Γ

Γ

( )
( )
( )

=

( ) = = ≥
+ ( )

( )
+

( ) = =
+

≤ ≤
+ ( )

( )
+

= = ≤ ≤
+

= = − + ≤ ≤

= = ≤ ≤ − +

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪
41

S x t
c x t
c x t

S x t c c c t
c S x t

f S x t
x

S x t c c c c
c S

f
x t

c S x t

f S x t
x

S c c c
S
f

x t
c S

f
x

S c c c
S S

f
x t

S
f

x

S c c c t
S S

f
x

,
,
,

, , 0, ,
,

,
1

/ , , ,
,

,
1

, 0, ,

, 0, ,

, 0, , 0

.

s

s s
J s

J

J
s s

J s
J

s
J

s s
J s

J

s s
I

I

I
s s

I
I

5
1

1

1
2

2

1

1

3
3

3

2

2

4
4

4

3

3

4

4

The solution to Eq. (41) in the (x, t) domain is shown in Fig. 6(a)
(zones I, II, III, IV and V). The profiles of water saturation and of
polymer and salt concentrations at t1, t2, and t3 are presented in
Fig. 6(b)–(d), respectively. The water-displacement front moves at
velocity Ds¼ f4/(�SIþS4), the salt front at velocity Dcs¼ f3/S3, and
the polymer front at velocity Dc¼ f2/(Γ(CS

J)þS2). Because salt does
not adsorb on the rock, Dcs4Dc.

The displacement zones during injection of a low-salinity-
polymer slug, followed by low-salinity water consist of the fol-
lowing reference patterns:

I. Initial reservoir mixture, SI, c¼0, cs¼ CS
I .

II. High-salinity water oil bank formed ahead of the low-salinity
water front, S4, c¼0, cs¼ CS

I .
III. Low-salinity water oil bank formed ahead of the polymer

slug, with a constant saturation. The bank contains no poly-
mer, S3, c¼0, cs¼ CS

J .
IV. Polymer slug, S, declines from SO

L to S2 on the leading front of
slug, S1(x/t), c¼cJ, cs¼ CS

J .
V. Low-salinity water drive zone with oil, S5(x, t), c¼0, cs¼ CS

J .



Fig.4. The image of auxiliary and lifting solutions in (U–F) plane (a) graphical determination of the basic points 2, 3…17; (b) zoom near to the point (0,�S0
H) (For inter-

pretation of the references to color in this figure, the reader is referred to the web version of this article.).

Fig.5. Fractional flow curves and graphical solution of oil displacement by polymer and salt slugs (a) the auxiliary and lifting solutions in (s, f)-plane; (b) zoom near to the
point 7 exhibiting the graphical determination of the basic points.
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3.5. Solution of the sequential injection of a low-salinity polymer
slug followed by low-salinity and high-salinity water drives

This section derives the solution of system (1–3), subject to the
following boundary condition

( )
= = = <

>
=

<

>
>⎪

⎪
⎪
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0, 1
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,
, 1,

J

s
s

J
s

s
D

s
s

where ts is the injection time of high-salinity water CS
D in the drive,

i.e., the low-salinity slug is driven by the high-salinity water, as-
suming CS

J o CS
Do CS

I . The previous section showed that the low-
salinity water front moves faster than the polymer-slug front.
Therefore, to avoid the negative effect of high salinity on polymer
viscosity, the high-salinity water should be injected in an optimum
time, ts. This time can be obtained from the ordinate of the low-
salinity slug trajectory at x¼0, when the low-salinity-slug rear
intersects with the polymer-slug rear at the outlet, x¼ϕL/Vp.

( )Γ ϕ= +
( )

t c
L

V
1.

43
s s

J
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Fig. 3 shows the solution for the auxiliary and lifting problems
of system (1–3) subject to the boundary condition of Eq. (42) and
the initial condition of Eqs. (20, 21) in the (x, φ) plane. The solution
coincides with the solution in Eq. (41) in zones I, II, III, IV and V.

At φ¼ts, a cs-shock connects (cs¼ CS
D, c¼0) to the injection
point at φots (cs¼ CS
J , c¼0) (Path 3 in Fig. 2). The horizontal line

φ¼ts corresponds to the infinite cs-shock velocity V, as shown in
Fig. 3.

The rarefaction wave U5(x, φ), interacts with the cs-shock at
φ¼ts. The values U5 and U10 ahead of and behind the cs-shock are
related by the mass-balance on the cs-shock:

( ) ( )φ φ( ) = = = ( ) = = ( )F U x c c c F U x c c c, , 0, , , 0, . 44s s
J

s s
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5 10

For any point on the low-salinity-water-slug trajectory ( ″x , φ″),

( )φ φ φ− ″
− ″

=
∂ ( ) = =

∂ ( )x x

F U x c c c

U

, , 0,
. 45

s s
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Zone VI in Fig. 3 and lines 7⟶8 in Figs. 4b and 5b show this
transition path.

The polymer-slug rear and front intersect with the low-salinity-
slug rear at points a((ts�1)/Γ(CS

J), ts) and b(ts/Γ(CS
J), ts), respec-

tively (Fig. 3). These intersections result in a constant polymer
concentration, cD, in zones VIII and IX.

( )
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Γ
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c

c c

c
.

46

D s
J J
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D

U11, U12 and U13(x, φ) are obtained from the Hugoniot condition
on c and cs shocks:



Fig.6. Solution for oil displacement by low-salinity polymer slug with alternated
water salinity in the slug and in the water drive and different flow zones
(a) trajectories of concentration and saturation fronts in (x, t)-plane separating
different zones I, II…XII with different forms of the analytical solution;
(b) saturation profiles in three moments; (c) polymer concentration profiles;
(d) salt concentration profiles in three moments.
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where U9 is found from U1(x, φ) at x¼xa and φots.
For any point on the low-salinity-water-slug trajectory ( ‴x ,φ‴)

between a and b,

φ φ φ− ‴
− ‴

= ∂ ( )
∂ ( )x x

F x
U

,
. 48

13

U12 is transferred to U13(x, φ) by an S-shock. The shock trajec-
tory φ(xf2) is found from Eq. (48) and Eq. (49).
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.
49

12 13

12 13

U14, U15, U16 and U17 are found form the Hugoniot condition on
c and cs shocks.
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U17 transfers to U3 in zone XII through rarefactions U18(x, φ).
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Table 1 contains solutions in (x, φ) for zones VI, VII, VIII, IX, X
and XI.

With a similar inverse mapping (x, φ)-(x, t) as in Section 3.5,
the solution of the problem in Eq. (42) in zones VI, VII, VIII, IX, X
and XI in the (x, t) domain is presented in Table 2.

Low-salinity front, φ¼ts, in zone VI is mapped into the trajec-
tory t(xf1):
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The front φ¼ts in zone IX is mapped into the trajectory t(xf3).
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Fig. 6(a) illustrates the solution in the (x, t) plane.

3.6. Injection of polymer slug with salinity higher than the initial
salinity of the reservoir

This section presents the Riemann solution of injection of a
polymer slug into a reservoir with salinity cs

H, higher than the
initial salinity of the reservoir, csI. The solution for this case de-
pends on the fractional-flow curves corresponding to (cJ, csH), (0,
cs

H), and (0, csI). At a fixed water saturation, the fractional-flow
curve corresponding to (0, csH) is located above the fractional-flow
curve corresponding to the initial condition of the reservoir, i.e.,
f(cJ, csH)o f(0, csI)o f(0, csH).

The solution is on the path in the (s, f)-plane and consists of the
rarefaction wave from the saturation S0

H to point 2, c-S jump from
2 to 4, S-jump from 4 to 5, cs-S-jump from 5 to 3, rarefaction wave
from 3 to 6 and an S-shock from 6 to I. This path is shown in Fig. 7.

− → → → − → ( )s I2 4 5 3 6 . 54H
0

Compared to LSP flooding, injection of the high-salinity poly-
mer results in the appearance of an S-shock, 4-5, and an extra oil
bank between the polymer and salt shocks. Also, injection of the
high-salinity polymer increases the velocity of the water front,
causing a decline in the water-free oil production period and faster
water breakthrough. The water cut increases sharply from f3 to f5
during the production of the second oil bank. Afterwards, the
water cut decreases from f5 to f4. At the final stage of the pro-
duction, the high-salinity-polymer flood exhibits higher residual
oil than does the LSP injection.

3.7. Analytical model for nonzero initial polymer concentration

For a general case of LSP flooding into the reservoir, where
initial polymer (or ion) concentration is not zero, i.e., cI≠0, an in-
termediate concentration of chemical c*≠ 0 will appear in the so-
lution; see Fig. 2 (Path 4). The concentration of c* is defined by the
equality of the sorption functions across the cs-jump; see (A-9):

Γ Γ Γ
Γ

[ ] = ( ) * − ( ) = → * = ( )
( ) ( )

a c c c c c
c c
c

0
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I I s
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The Riemann problems with a nonzero initial concentration
arise in low-salinity water flooding accounting for multi-compo-
nent ions in the aqueous phase (Pope et al., 1978). The relative
permeability of saline water is a function of ion compositions



Table 1
Exact solution for sequential injection of low-salinity polymer slug followed by
low-salinity and high-salinity water drives in (x, φ) domain.

Zones c(x, φ) cs(x, φ) U(x, φ) Domains

VI 0 CS
D U10(x, φ) φ4ts, φ4F′11 (x�xa)þts

VII 0 CS
D U11 φ4ts, Γ(CS

D)(x�xa)þ tsoφo F′11 x�xa) ts
VIII cD CS

D U12 φ4ts, φ(xf2)oφoΓ(CS
DD)(x�xa)þts

IX cD CS
D U13(x, φ) tsoφoφ(xf2), φ4Γ(CS

D)(x�xb)þts
X 0 CS

D U15 φ4ts, ((F16�F15)/(U16�U15))(x�xb)þtso
φoΓ(CS

D)(x�xb)þts
XI 0 CS

D U16 tsoφo((F16�F15)/(U16�U15))(x�xb)þts

XII 0 CS
J U18(x, φ) F′3 (x�xb)þ tsoφots
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(mainly calcium), and eventually, the concentration of c* affects
drastically the relative permeability of aqueous and oil phases.

Consider the following Riemann problems:
(1) Injection of low-salinity, high-concentration polymer solu-

tion (J1) into the rock with high-salinity, low-concentration poly-
mer (I1);

(2) Injection of high-salinity, high-concentration polymer so-
lution (J2) into the rock with low-salinity, low-concentration
polymer (I2);

(3) Injection of low-salinity, low-concentration polymer solu-
tion (J3) into the rock with high-salinity, high-concentration
polymer (I3);

(4) Injection of high-salinity, low-concentration polymer solu-
tion (J4) into the rock with low-salinity, high-concentration poly-
mer (I4).

For conditions 1 to 4, Fig. 8 shows the solution of the auxiliary
system (15, 16) in the (a, c) plane. The initial and injected com-
ponent concentrations have strong effect on c* concentration. In
cases (1) and (4), c* is between the initial and injected con-
centrations; whereas in case (2), it is less; and in case (3), it is
more than the initial and injected conditions. Thus, adjusting the
injected ion concentrations can provide a favourable operating
condition for LSP flooding. For the detailed solution of case (1), see
Borazjani et al. (2014).
4. Examples

This Section uses the obtained exact solution from Section 3.4
to calculate the fractional-flow functions, saturation and con-
centration profiles, and recovery factors using some typical
parameters.

Phase-relative permeabilities are calculated using Corey's
function. The viscosity of the aqueous phase containing polymer is
expressed by Eq. (5). The parameters are listed in Table 3, the
additional physical properties used are ϕ¼0.2, K¼1 Darcy, μo¼20
cp, L¼5 m, Vp¼0.1 PVI, and residual resistance factor R¼3.

The structure of the Riemann solutions (10, 11) depends on the
form of fractional flow curves f(S,u,a,c,cs). Let us show that for
conditions under consideration in this Section, the fractional flow
curves have S-shape typical for Newtonian fluids. Fig. 9 shows the
fractional-flow curves calculated for three flow velocities 10�4,
10�5, and 10�6 m/s and for the power-law exponents n¼0.4,
0.5 and 0.7, under the conditions listed in Table 3. The higher in-
jection rates yield lower fractional flow values at fixed water sa-
turation, which is the result of the shear-thinning behaviour of the
polymer solution. In the following, we will use the fractional-flow
curve corresponding to u¼10�6 m/s.

Fig. 10 compares water saturation and polymer and salt con-
centration profiles of HSP flood (0.2 PVI polymer slug with con-
tinuous injection of high-salinity water) and LSP flood (0.2 PVI
polymer slug with continuous injection of low-salinity water) into
a reservoir initially containing high-salinity water.

Fig. 10(a) shows five zones in LSP flooding profile: 1) LS water,
2) polymer slug, 3) low-salinity water oil bank, 4) high-salinity
water oil bank, 5) initial oil–water fluid. The HSP profile exhbits
four zones. Compared to HSP injection, an additional oil bank
occurs in LSP injection; that is, because of the low-salinity-water
front, injection of LSP results in delay of the water breakthrough,
increase of oil cut before salinity breakthrough time, and decline of
residual oil saturation at the final stage of production from 0.24 to
0.2. In addition, a larger value of the polymer sorption isotherm, a,
in HSP results in a larger lag of polymer appearance at the pro-
duction well (t¼7.8 PVI in LSP, and t¼8.1 PVI in HSP). Fig. 10
(b) shows polymer slug position at the given time 2 PVI.

Implicit formulae for front trajectories in Eqs. (38–40) and
straight lines for characteristics allow explicit calculation of the
recovery factor. We use the contour integration method to de-
termine the oil recovery at any instant of time t; see Appendix B
for details. Fig. 11(a) and (b) show the recovery factors and water
cut subject to following cases:

1. 0.1 PVI of low-salinity polymer slug followed by low-salinity
water.

2. 0.1 PVI of high-salinity polymer slug followed by high-salinity
brine.

3. Continuous injection of high-salinity water.

The ultimate oil recovery after 10 PVI of fluid injection for low-
salinity polymer flooding is about 32% higher than that for the
continuous water flood and 14% higher than that of the polymer
flood. The water breakthrough time is 2.11 PVI for Case 3, 2.13 PVI
for Case 2, and 2.56 PVI for Case 1. The recovery factors at the
breakthrough time for these cases are 0.32, 0.33, and 0.4,
respectively.

Fig. 11(b) shows the comparison of water cut for all the cases.
The water breakthrough occurs latest for low-salinity polymer
flood. Moreover, the water cut is the lowest for low-salinity
polymer.

The independent dimensionless variable defined in Eq. (4) re-
lates x and t to the polymer slug volume, Vp. Thus, a change in Vp

has no effect on the solution of system (1–3) in the (x, t) domain,
only changing the coordinate of the outlet ϕ=l L V/ p. Therefore, the
relation between the recovery factor and slug size can be studied
by changing the position of the outlet ϕ=l L V/ p, from right to left.
An example of the sensitivity of the results to the slug volume is
presented in Fig. 12. The assumed values are identical to Case 1,
and only the slug volume changes from 0.1 to 0.3 PVI. The results
show a slight increase in the recovery factor at t¼8 PVI as the slug
size increases, although at t¼1 PVI, the recovery factor increases
from 0.15 to 0.51, and the recovery stabilization time decreases
from 9 to 3 PVI.
5. Summary and conclusions

The system of governing equations describing two-phase dis-
placement of oil by the aqueous solution of non-Newtonian
polymer with varying salinity allows for a fractional flow form and
consists of conservation mass laws for aqueous phase, for polymer,
for salt and of the modified Darcy's law. The exact solutions of the
system allow analysing the non-Newtonian behaviour effects on
efficiency of injection of polymer slug with alternating salinity in
the slug and the drive chase. For a fixed polymer concentration,



Table 2
Exact solution for sequential injection of low-salinity polymer slug followed by low-salinity and high-salinity water drives in (x, t) domain.

Zones c(x, t) cs(x, t) S(x, t) Domains

VI 0 CS
D S10(x, t) t4t(xf1), t4(Γ(CS

D)þS11)/f11(x�xa)þta
VII 0 CS

D S11 (Γ(CS
D)þS11)/f11(x�xa)þtaoto((F′11 þS11)/f11)(x�xa)þta

VIII cD CS
D S12 t(xf2)oto(Γ(CS

D)þS11)/f11(x�xa)þta
IX cD CS

D S13(x, φ) t(xf3)otot(xf2), t4(Γ(CS
D)þS14)/f14(x�xb)þtb

X 0 CS
D S15 ((F16�F15)/(U16�U15)þS15)/f15(x�xb)þtboto(Γ(CS

D)þS14)/f14(x�xb)þtb
XI 0 CS

D S16 S17/f17(x�xb)þtboto((F16�F15)/(U16�U15)þS15)/f15(x�xb)þtb

XII 0 CS
J S18(x, φ) (F′3þS3)/f3(x�xb)þtb ot otbþS17/f17(x�xb)

Fig.7. Graphical construction of the Riemann solution for displacement of oil by
polymer with salinity higher than the formation water salinity and calculation of
the basic points 2, 3…6.

Fig.8. Riemann solutions for auxiliary system for: 1-injection of low-salinity high-
concentration polymer solution into the rock with high salinity low-concentration
polymer; 2-injection of high-salinity, high-concentration polymer solution into the
rock with low salinity, low-concentration polymer; 3-injection of low-salinity, low-
concentration polymer solution into the rock with high salinity, high-concentration
polymer; 4-injection of high-salinity, low-concentration polymer solution into the
rock with low salinity, high-concentration polymer.

Table 3
Parameters for Corey correlation, power law function and polymer adsorption in
different salinities.

Low salinity water High salinity water

End point water relative permeability 0.17 0.29
End point oil relative permeability 0.57 0.57
Oil residual saturation 0.2 0.23
Connate water saturation 0.2 0.2
Corey exponent for water 4.5 3.1
Corey exponent for oil 3 4.6
Power-law exponential index 0.5 0.65
Bulk power law coefficient 0.212 0.039
Concentration of adsorbed polymer a¼0.2c a¼0.4c

Fig.9. Fractional flow curve for two-phase flow of non-Newtonian and Newtonian
liquids for three different velocities u and different power-law exponents n.

S. Borazjani et al. / Journal of Petroleum Science and Engineering 140 (2016) 28–40 37
the increase in injection velocity shifts the fractional-flow function
to higher water saturations because of the decrease in polymer
viscosity. Consequently, both the polymer breakthrough time and
the oil recovery increase with decreasing velocity. The increase in
exponent n (from 0.5 to 0.7) for a fixed velocity and polymer
concentration slightly increases the breakthrough time and oil
recovery.
The salinity-dependent Corey relative-permeability parameters
were used to study the effect of salinity variations on efficiency of
polymer flooding. With the parameter listed in Table 3, the salinity
reduction results in decrease of the fractional-flow function.

The example considered in this paper reveals that the salinity
reduction in the polymer slug slows the waterfront and increases
the water breakthrough time. Even after the water breakthrough,
higher oil cuts are observed in the effluent for LSP flooding than
for HSP flooding. The solution of LSP flooding contains an addi-
tional shock, which is the low-salinity water shock. The lower
adsorption of polymer in the LSP case leads to later breakthrough
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of polymer and slight increase in oil cut after polymer
breakthrough.

Application of the splitting method to non-self-similar, two-
phase, multi-component problems of polymer slug with alternated
water salinity injections in oil reservoirs, with the assumptions
made in this paper, leads to the following conclusions:

� Accounting for non-Newtonian properties of the injected poly-
mer allows for fractional-flow description of the problem using
a velocity-dependent fractional-flow function.

� Application of the splitting technique to the one-dimensional
problem of displacement of oil by non-Newtonian polymer slug
with varying water salinity yields an exact solution. The solu-
tion contains explicit expressions for water saturation and
polymer and salt concentrations, and an implicit expression for
polymer- and salt-slug trajectories.

� Salinity-dependency of polymer sorption results in appearance
of a shock with simultaneous jump in salinity and polymer
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concentrations. The polymer concentration jump in this shock
disappears at zero initial polymer concentration.

� The solution for cI¼0 depends on three fractional-flow curves
corresponding to initial salinity, injected fluid and the injected
salinity, and zero polymer concentration.

� The low-salinity front moves faster than the polymer front be-
cause of polymer adsorption, yielding the oil–water bank with
the injected salinity moves ahead of the polymer. It prevents
contact between the polymer and formation water.

� Similarly, the back front of the low-salinity slug moves faster
than the rear front of the polymer slug, which can also result in
a reduction in polymer viscosity. The analytical solution allows
calculating the minimum size of the low-salinity slug, pre-
venting the mixing between the polymer and high-salinity
water drive.

� Compared to constant-salinity polymer slug flooding, using
low-salinity water in the polymer slug results in an increase of
water breakthrough time and decrease of water-cut after water
breakthrough.
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Appendix A. Splitting method for system of two-phase, multi-
component polymer flooding

Following Pires et al. (2006), this appendix shows briefly the
splitting procedure for the hyperbolic system (1–3). The stream
function φ(x, t) can be introduced from the conservation law in Eq.
(1):

φ φ= − ∂
∂

= ∂
∂ ( )S

x
f

t
, , A-1

i.e., substitution of Eq. (A-1) into Eq. (1) yields the equality of
mixed second-order derivatives of the potential φ, and the po-
tential function has the following form:

φ = − ( )d fdt Sdx. A-2

The differential dt can be expressed from Eq. (A-2) as

φ= +
( )

dt
d
f

Sdx
f

.
A-3

Calculating the differential of dt in Eq. (A-3) yields the ex-
pressions for Eq. (1) in (x, φ)-coordinates, Eq. (14).

Applying Green's theorem, over any arbitrary domain ϖ with
continuous boundary ∂ϖ, to Eq. (2) and accounting for Eq. (A-2),
yields the transformation of Eq. (2) into Eq. (15):

∮ ∮ ∮ ∬
( )

φ
φ

φ( ) − ( + ) = ( − ) − = − = ∂
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+ ∂
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⎞
⎠⎟ A-4

cf dt cS a dx c fdt Sdx adx cd adx
a c

x
dxd 0

Applying Green's theorem, over any arbitrary domain ϖ, to Eq.
(3) and accounting for Eq. (A-2),
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c f dt c S dx c fdt Sdx c d
c
x

dx 0s s s s
s

transforms Eq. (3) to Eq. (16).
Therefore, the original system (1–3) has the form of Eqs. (14–

16) in (x, φ)-coordinates. Velocities of rarefaction and shock waves
in planes (x, φ) and (x, t) (V and D, respectively) are related as
= − ( )V
f
D

S
1

. A-6

The values of real D and auxiliary V velocities fulfil Eq. (A-6).
System (14–16) has three real distinct eigenvalues λ = φd

dx
:

λ λ Γ λ= ∂
∂

= ( ) = ( )
F
U

c; ; 0. A-7s1 2 3

For discontinuous solutions, the mass balance (Hugoniot-Ran-
kine) conditions on shocks associated with conservation laws (14–
16) are

Γ[ ] = [ ] [ ] = ( ) [ ] = ( )⎡⎣ ⎤⎦U V F c V c c c, , 0 A-8s s

and

Γ ( ) = [ ] = [ ] = ∀ = ∞ ( )⎡⎣ ⎤⎦c c F c V0, 0, , . A-9s s

Eq (A-8) shows that salinity, cs,, can jump only across the lines
φ¼const that correspond to the infinite V.

From Eq. (A-8), it follows that the velocity of c-shocks is

Γ= ( ) = [ ]
[ ]

[ ] = [ ] ≠
( )V

c
F
U

c c
1

, 0, 0
A-10s s

and that the velocity of S-shocks is

= [ ]
[ ]

[ ] = [ ] =
( )

V
U
F

c c, 0, 0.
A-11s

Finally, the auxiliary system (15, 16) permits two types of
shocks: cs-shocks given by Eq. (A-9) and c-shocks given by Eq. (A-
10).

Continuous solutions of both general and auxiliary systems
correspond to a constant salinity. Therefore, c-rarefactions for
Henry’s adsorption (9) degenerate into c-shocks. It yields constant
concentrations of salt and polymer in the continuous S-waves:

( )
η Γ η

η
= ( ) = =

( )
dF U a c c

dU
c

dc
d

, , ,
, , 0,

A-12
s

s
s

where η¼φ/x. The above elementary waves are used to solve the
auxiliary and lifting problems in Sections 3.3, 3.4, and 3.5.
Appendix B. Calculation of the recovery factor

The exact solution of system (1–3) allows deriving explicit
formulae for recovery factor

( ) =
¯ ( ) −

− ( )RF t
S t S

S1
, B-1

I

I

where S̄ is the average water saturation in the reservoir and is
defined by

∫¯ = ( ) ( )

ϕ

S S x t dx, . B-2

L
V

0

p

The contour integration method can be used to derive the ex-
plicit formulae for the average saturation S̄(Bedrikovetsky, 1993).
For to1, integration of Eq. (1) over the domain bounded by the
contourω: (0, 0)-(0, t)-(ϕL

Vp
, t)-(0, 0) with further application of

Green's formula yields
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which results in
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The average saturation (B-4) allows for the graphical calcula-
tion. The intersection of a straight line with slope ϕL

V tp
originating

from points SI (zone I), S4 (zone II), and S3 (zone III) with f¼1 in the
(S, f) plane gives S̄ in zones I, II, and III, respectively.

In zone IV where 1ototw (tw is found from Eqs. (38, 40) at
= ϕx L

Vp
), the intersection of a straight line with slope ϕL

V tp
originating

from (S1(x/t), cJ, csJ) and with f¼1 gives S .
To find S for t4tw, we integrate Eq. (B-3) over the region

bounded by (0, 0)-(0, tw�)-( ϕL
Vp
, tw�)-(x(twþ), twþ)-(0, 0):
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That yields
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Here, superscripts þ and – represent the values ahead of and
behind the polymer-slug rear. Grouping the terms in (B-6) and
using Eqs. (36, 37), we finally obtain the formula for S
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Abstract Two-phase transport of aqueous colloids and solutes occurs in numerous areas of 
chemical, environmental, geo-, and petroleum engineering. The main effects are particle 
capture by the rock, its adsorption and altering the flux by the changing suspended, adsorbed 
and retained concentrations. The mathematical model for the component capture and 
adsorption is considered, resulting in a 3×3 system of partial differential equations. Using the 
stream-function as an independent variable instead of time splits the system into a 2×2 
auxiliary system, containing only concentrations, and one lifting hydrodynamic equation for 
unknown phase saturation. The auxiliary problem is linear and allows for exact solution. The 
exact formulae allow predicting the profiles and breakthrough histories for the suspended, 
adsorbed and retained concentrations and phase saturations. The solution shows that for small 
retained concentrations, the suspended concentration is steady-state behind the concentration 
front, where all retained concentrations are proportional to the mass of suspended particles 
that passed via a given reservoir cross-section. The maximum penetration depths for 
suspended and retained particles are the same and are equal to those for a single-phase flow. 

1. Introduction 

Suspension-colloidal and solute flows in porous media occur in numerous engineering areas, 
such as disposal of industrial wastes in aquifers with propagation of contaminants and 
pollutants, industrial water treatment and filtering, injection of hot or low-salinity water into 
aquifers for storage purposes, or water injection into geothermal reservoirs [Dagan, 1989; 
Benson et al., 1991; Dagan et al., 2008; Bradford et al., 2011, 2012; Chrysikopoulos et al., 
2012; Katzourakis and Chrysikopoulos, 2014, 2015]. An aqueous suspension of solid 
particles invades formations during well drilling; the penetration depth highly affects the 
formation damage and skin factor; these effects are also important for interpretation of 
electrical logging based on the salinity contrast between the invaded drilling fluid and 
reservoir water [Civan, 2015]. Similar invasion by the fracturing fluid occurs during 
hydraulic fracturing of artesian, oil, and geothermal wells. Clay and soil suspensions and 
colloids flow in the vadose zone and during irrigation. Two-phase suspension-colloidal flows 
occur in unsaturated aquifers. All metal cations adsorb on clays that are present in the rock. 
Almost all subterranean flows are accompanied by the ionic exchange between the aqueous 
brines and the rock minerals. In the petroleum industry, low-quality water with solid or liquid 
particles is injected into oilfields, impairing the wells but often enhancing oil recovery 
[Civan, 2015]. 

Numerical models for two-phase solute and colloidal-suspension flows have been used to 
study propagation of viruses, bacteria, and nano-particles in under-saturated aquifers 
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[Mitropoulou et al., 2013; Zhang et al., 2013, 2014]. The one-dimensional problems for 
solute invasion/injection with adsorption (so-called multicomponent polymer flooding) 
correspond to Riemann problem and allow for self-similar solutions [Johansen and Winther 
1988]. However, kinetic capture of the aqueous components by the rock breaks the 
conservation-law type of the governing system, and one-dimensional flow is not self-similar 
anymore. To our knowledge, analytical models for two-phase flow of solutes and colloids in 
porous media are unavailable in the literature.  

In the current paper, non-self-similar solutions for one-dimensional problem of two-phase 
flow accounting for mechanical entrapment and adsorption of component by the rock is 
obtained. To be specific, the component is called “the polymer”, since that exhibits both 
retention and adsorption in porous media. The effects of continuous increase of the pressure 
drop and reduction of the breakthrough concentration if compared with the injected 
concentration, which was observed in laboratory tests and was not described the model that 
ignores the capture, are clearly exhibited. Both cases of continuous polymer injection and of 
polymer slug with the water chase drive are discussed. 

The structure of the text is as follows. Section 2 presents a 3×3 system of governing 
equations along with initial and boundary conditions for one-dimensional flow. Section 3 
derives the analytical solution using the splitting method for the case of linear sorption 
isotherm and constant filtration coefficient. Section 4 analyses the obtained solution and 
describes the structure of the flow zone. Section 5 derives exact solutions for the cases of 
non-linear sorption isotherm and varying filtration coefficient. Sections 6 and 7 discuss the 
results of the analytical modelling of two-phase solute and colloidal flows in porous media, 
which concludes the paper. 

2. Basic system of equations 

This section formulates the one-dimensional two-phase flow of aqueous polymer solution 
through porous media, including the main assumptions (Section 2.1), derivation of governing 
equations (Section 2.2).and the initial and boundary conditions (Section 2.3). 

2.1 Assumptions  

Consider incompressible, one-dimensional flow of an aqueous polymer solution in porous 
media with polymer sorption and mechanical entrapment. Figure 1 shows rock porosity φ, 

water saturation s, concentrations of flowing, adsorbed and entrapped polymer c, a, and σs, 
respectively. Figure 2 shows polymer capture mechanisms include adsorption and mechanical 
entrapment.  

The polymer concentration is small enough not to affect the volumetric balance of the 
aqueous solution. The deep-bed-filtration formula is assumed for the polymer entrapment 
rate, where, the polymer-capture rate is proportional to the dispersion-free polymer flux cu 
[Lotfollahi et al., 2015]. The linear equilibrium sorption isotherm is assumed. We assume that 
the relative permeability of the aqueous phase is a monotonically decreasing function of the 
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sum of sorbed and entrapped concentrations. Capillary pressure between phases is considered 
negligible compared with phase pressures. 

2.2 Governing equations 

System of governing equations for 1-D flow of polymer solution through porous media 
includes equation for mass balances of water, dissolved (c), adsorbed (a), and trapped 

polymer concentrations (σs) in dimensionless form are [Lake 1989, Bedrikovetsky 1993]: 

( , , )
0ss f s c

t x

σ∂ ∂+ =
∂ ∂

         (1) 

( ) 0s

cf
sc a

t x
σ∂ ∂+ + + =

∂ ∂
         (2) 

( ), ,s
scf s c

t

σ λ σ∂ =
∂

         (3) 

where, λ is the filtration coefficient and is assumed to be constant, f is fractional flow of 
water, x and t are dimensionless coordinates.  

The dimensionless concentrations and coordinates are defined as follow:  

0

1
, ( ) , ,  ,

t
s

sJ J

x c
x t U t dt L c

L L c c

σλ λ σ
φ φ

→ → → → →∫
      (4) 

For small concentration c, the equilibrium polymer-adsorption isotherm is described by the 
linear Henry’s sorption 

a c= Γ            (5) 

2.3 Initial and boundary conditions 

Initial conditions for one-dimensional flow correspond to connate water saturation with no 
polymer in the porous medium 

0,    0,    0,    I
st c s sσ= = = =        (6) 

Slug injection of polymer solution corresponds to boundary conditions with the fixed injected 
fractional flow, and a piecewise constant injected concentration 

( )( ) 1
0,    ,1, 0, 1,

0
sJ

s
s

c t t
x f s t

c t t
σ

= <
= =  = >

      (7) 

For unknown concentrations of captured polymer, Goursat boundary conditions are 
formulated [Tikhonov and Samarskii, 1990]. Substituting c=1, c=0 and f=1 from the boundary 
condition (7) into rate equations (3) yields 
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3. Splitting method  

This section reduces the 3×3 system of quasi-linear hyperbolic equations (1-3) to one scalar 
hyperbolic equation and 2×2 retention-kinetic equations. The governing system (1-3), subject 
to the initial and boundary conditions of the previous section, is solved using the splitting 
method [Wagner, 1987; Pires et al., 2006; Borazjani et al., 2016]. Section 3.1 introduces the 
stream-function and splits the system into the retention-kinetics auxiliary system and the 
lifting equation for unknown saturation. Section 3.2 presents the solution of the auxiliary 
system. Sections 3.3 and 3.4 present the solution of the lifting problem and inverse mapping, 
respectively. 

3.1 Stream function and splitting mapping 

Consider a stream function ϕ(x,t) associated with the conservation law in Eq. (1) 

,s f
x t

ϕ ϕ∂ ∂= − =
∂ ∂

        (9) 

The corresponding differential form for two-phase flux is 

d fdt sdxϕ = −          (10) 

which determines the stream-function  

( )
( ),

00

,
x t

x t fdt sdxϕ = −∫          (11) 

The transformation of system (1-3) from (x, t) into (x, ϕ) coordinate using Eq. (10) yields the 
following  

( )
( ) ( )

1, ... , 1
0,     ,     

, , , ,
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s s
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x f s c f s c

σ σ
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σ λ
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For detailed derivations see Pires et al., 2006 and Borazjani et al., 2016. 

The inlet boundary conditions (7) in co-ordinates (x,ϕ) become 
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0 :    1x U= =           (16) 

and initial conditions (6) take the form 

:   0,   0I
ss x cϕ σ= − = =         (17) 

    :   Is Fxϕ = − = −∞          (18) 

Thus, in the system of co-ordinates (x,ϕ), the auxiliary problem (13, 14) separates from the 

lifting problem (12). The auxiliary system contains unknown kinetics variables c and σs, 
whereas the lifting equation depends also on unknown saturation s. Here the uniform initial 

conditions (17, 18) are set along the straight line ϕ=-sIx, which is the image of axes t=0 in 

(x,ϕ) coordinates. The solution of lifting equation (12) G(x,ϕ) is also presented in the plane 

(x,ϕ).  

3.2. Solution of the auxiliary system 

The characteristic form of the first-order-partial-differential Eq. (13) substituting (14) is 

,
d dc

c
dx dx

ϕ λ= Γ = −          (19) 

Equation (19) with boundary condition Eq. (15) behind the front Γx<ϕ<Γx+ϕs is solved by 
separation of variables to obtain polymer concentration in the aqueous solution:  

xc e λ−=           (20) 

Derivation of the characteristic form of the first order partial differential Eq. (19) along the 

characteristics ϕ=Γ(x-x0)+ϕ0 ahead of the front -sIx<ϕ<Γx, and behind the slug front 

Γx+ϕs<ϕ and solving it yields to zero concentration.  

Therefore, the polymer concentration is: 

( )
0

,
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s
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s
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c x

c x c e x x

c s x x

λ

ϕ ϕ
ϕ ϕ ϕ

ϕ

−

= Γ + < < ∞
= = Γ < < Γ +
 = − < < Γ

      (21) 

Integrating both sides of Eq. (14) in ϕ and using (21) results in an expression for the 
concentration of the entrapped polymer 
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The solution of auxiliary problem (13, 14) c(x, ϕ), σs(x, ϕ) as obtained by the method of 

characteristics can be presented in the (x, ϕ)-plane (Figure 3). 

3.3. Lifting procedure 
 
Let us solve lifting equation (12) for the already known suspended and retained 
concentrations (21-22). Subjecting lifting equation (12) to initial and boundary conditions 
(16, 18) yields a hyperbolic PDE and has the conservation law type.  
The characteristic form of lifting equation (12) is 

( ) ( ) ( ), , , , , ,
,   s s s s

F G c F G c F G cd dG c

dx G dx c

σ σ σϕ σ
ϕ σ ϕ

∂ ∂ ∂∂ ∂= =− −
∂ ∂ ∂ ∂ ∂

     (23) 

As follows from Eq. (23), for -sIx<ϕ<Γx and ϕ>Γx+ϕs where c=σs=0, saturation is constant 

along the characteristics, which become straight lines. In zone Γx<ϕ<Γx+ϕs the characteristic 
curves are obtained by solving two equation (23) simultaneously.   

3.4. Inverse mapping 

To obtain the solution of problem (1-3), the inverse transformation of (x, ϕ) to (x, t) in the 
solution of auxiliary and lifting problems is performed 

As follows from Eq. (10), 

( ) ( )
( )
( )

,

0,0

,1
,

, ,

x s x
t x d dx

f x f x

ϕ ϕ
ϕ ϕ

ϕ ϕ
 

= +  
 

∫ ,                                                                        (24) 

expressing the inverse mapping. Substitution of Eq. (24) into the auxiliary and lifting 
solutions yields the solution of general problem (1-3). 

4. Exact Solution for the Case of Fractional Flow Independent of Retained 
Concentrations 

Consider the injection of a high-concentration suspension that affects the aqueous phase 
viscosity. We also assume that the effect of retained concentration on relative permeability of 
water is neglected. These assumptions are valid in the following cases: low capture rate, low 
values of formation damage coefficients, low injected concentration, and short times. In all 
those cases, the process is described by system (1-3) where the fractional flow is independent 
of retention concentrations. The solution of auxiliary problem (13–14) is given by Eqs. (21, 
22).  
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Substituting the expression for functions F and G from the second and third terms in system 
(12) into (23) yields 
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=
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Let us solve the lifting problem using the method of characteristics. First we discuss the 
characteristic lines that start at the axis x=0, which corresponds to zone V (Figure 5). In zone 

IV, the characteristic curves start at the axis ϕ=Γx and propagate inside the area ϕ>Γx. Zone 

III is formed by straight characteristic lines that start at the axis ϕ=Γx and propagate inside 

the area ϕ<Γx. Zone II is a shock s-wave 3-sI for c=0. Zone VI 

In zone V, consider a characteristic that starts in point (0, 0) and corresponds to any arbitrary 
value s0, s2<s0<sJ. Here point 2 is determined by  

( ),1F G

G

∂
= Γ

∂
          (27) 

The solution s=sI(x,s0) is determined from the condition of fractional flow conservation along 

the characteristic ϕ=ϕ(x): 

( ) ( ) ( )( )0 (,1 , ,)f s f s x x c xϕ=         (28) 

Substituting eqs (28) and (21) into eq (26), we obtain the equation of the characteristic curve, 
presented in first line of fifth column (Table 1). The curve with s0=s2 separates zones V and 
IV.  

Change of parameters along characteristic curves in zone V corresponds to straight horizontal 
lines f=const that start at the fractional flow c=1 in the saturation interval [2, sJ] and finish up 

at the fractional flow c=e-λxa (Figure 5). The tangent dF/dG>0 increases along the 
characteristic curves, therefore, the characteristic curves do not intersect in zone V. No s-
shocks appear in zone V. 

In zone IV, all characteristic lines start at axis ϕ=Γx. Concentration c above this line is given 
by eq (21); below this line, concentration c is equal zero. The concentration-saturation shock 

occurs along this line. It determines the saturation s(x0) above the line ϕ=Γx for each point x0: 

( )0( ,exp )F G x

G

λ−∂ −
= Γ

∂
        (29) 

Saturation s(x0) above the axis ϕ=0 change from s2 for x0=0 to s5 with x0 tending to infinity. 
The points 2…5 behind the shock front correspond to maxima of curves F(G,c) (Figure 5). 
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The fractional flow is constant along the characteristics ϕ=ϕ(x): 

( )( ) ( )( ) ( ) ( )( )0 0, ,exp ,expf s x x x f s x xϕ λ λ−− = −      (30) 

Expressing s(x, ϕ(x)) from (30) and substituting it into first eq (26) yields the explicit 
expression for the characteristic line presented in second line of the fifth column in Table 1.  

Now let us consider saturation distribution in zone III. Saturation s+ ahead of c-shock (at 

ϕ<Γx) is calculated from mass balance across the shock  
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f

−
= Γ

 
 
 

          (31) 

Eq (90) shows that the points below and above axis ϕ=Γx in plane (s, f) are located on the 

straight line that crosses three points s-=s2, s
+=s3, and (0,-Γ) (Figure 5). 

Below the axis ϕ=Γx, the solution is given by the characteristics emanating from a point 
(x0,0). In this zone, c=0, so the characteristics are straight lines and given by the equation 
presented in Table 1 (third line and fifth column). 

In zone II, c=0 and the solution is given by a constant value s3. 

In zone VI all characteristic lines start at axis ϕ=Γx+ϕs. In this zone, c=0, so the 

characteristics are straight lines, saturation behind of ϕ=Γx+ϕs is calculated from the equality 
of the concentration shock velocity and saturation and given by the equation presented in 
Table 1 (third line and fifth column). 
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          (32) 

The boundaries between six zones are given in Table 2.  

Applying formula (24) for inverse mapping of independent co-ordinate t results in the 
representation of the solution in plane (x, t) (Figure 6a). The explicit formulae for saturation 
distribution in six zones are presented in Table 3, where the boundaries between six zones are 
given in Table 4. The c-s-shocks are exhibited in suspended-concentration and saturation 
profiles in Figures 6b and 6c; the continuous retention profiles are shown in Figure 6c. 

The exact solution of eqs (16-18) exhibits the following structure of two-phase (Figure 6): 

I - unperturbed zone with initial saturation and no polymer; 

II - first polymer-free bank with constant water saturation; 
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III - second particle-free bank with increase of water saturation s3 to s5; 

IV - first two-phase flow zone with suspended and retained particles behind the concentration 
front; 

V - two-phase flow zone with suspended and retained particles where saturation increases up 
to sJ-value; 

VI - particle free zone with saturation sJ to s5. 

5. Solutions for Non-linear sorption and capture. 

Consider the auxiliary system with non-linear adsorption isotherm a=a(c): 

( )( )
0s a cc

x

σ
ϕ

∂ +∂ + =
∂ ∂

         (33) 

Substitution of the expression (14) for the retention rate into Eq (33) yields 

( )a c c
c

x
λ

ϕ
∂ ∂+ = −

∂ ∂
          (34) 

The analytical solution for Eq (34) with initial and boundary conditions (6) and (7) have been 
found by Lotfollahi et al., 2016.   

Another non-linear case allowing for analytical solution corresponds to high concentration of 

strained particles, where the filtration coefficient is σs–dependent: 

( )     s
s c

σ λ σ
ϕ

∂ =
∂

          (35) 

The problem can be solved by introduction of the potential (see Alvares, 2005, 2006) 

( )0

s du
c

u

σ

λ
= ∫

 

Substituting the expression (36) into Eq (13) yields the decreasing of its order by one. The 
solution of the obtained first-order hyperbolic equation allows for exact integration. 

6. Discussions 

The system for two-phase flow of polymer solution with sorption and capture mechanisms 

consists of 3 equations. It was found that using the stream function ϕ (10) as an independent 

variable instead of time separates 2×2 auxiliary equations with unknowns c, σs from one 
scalar lifting equation for unknown saturation s. The 2×2 auxiliary problem with uniform 
initial and boundary data allows for an exact solution in the cases linear sorption and varying 
filtration function, and non-linear adsorption and constant filtration coefficient.  

Structure of the two-phase polymer flow zone. The solution exhibits the following flow zone 
structure: the undisturbed zone with initial saturation and no polymer is followed by the 
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polymer-free two-phase bank with higher saturation; then follows the concentration front 
with saturation increasing as far as the core inlet. Suspension concentration jumps across the 
concentration front, whereas the captured concentration is continuous. For slug injection, the 
polymer two-phase flow bank is followed by the polymer free zone with increasing water 
saturation.  

In the case of small adsorbed and captured concentrations that correspond to constant 
filtration coefficient, the solution shows that the suspension concentration is zero ahead of the 
concentration front. The suspension concentration instantly becomes steady-state at any given 
reservoir point behind the front after the front passes this point. The polymer captured 
concentration is proportional to the mass of particles that passes this point; the proportionality 
coefficient for each retained concentration is the corresponding filtration coefficient. 

The above quantitative observations aid in interpreting the breakthrough data during 
laboratory experiments and production data from the field tests. 

Conclusions 

The analytical modelling of two-phase flow of polymer solution in porous media accounting 
for the polymer adsorption and mechanical entrapment allows drawing the following 
conclusions: 

1. Using the Lagrangian co-ordinate (stream-function) as an independent variable 
instead of time, in the 3×3 system of water and polymer conservation laws along with the 
mechanical entrapment rate expression, recasts the system into an auxiliary 2×2 system and 
one scalar lifting equation. The auxiliary problem allows for exact solution in the cases of 
non-linear adsorption isotherm and varying filtration coefficient.  

2. In the case of small dissolved retention concentrations, where the adsorption 
isotherms has Henry’s type and the filtration coefficient is constant, the suspended 
concentration is zero ahead of the particle motion front and instantly becomes steady-state 
after the front passes a given reservoir point. The breakthrough suspended concentration in 
this case is constant. The retained concentration is proportional to the mass of particles that 
passes this point; the proportionality coefficient is the filtration coefficient.  

3. In the case of negligible formation damage coefficients, the lifting equation is solved 
analytically. 

4. Larger filtration coefficients imply a faster concentration-saturation front, lower 
breakthrough saturation, higher retained concentrations, and a lower breakthrough 
concentration.  

Acknowledgements. The authors thank Prof. A. Roberts from the University of Adelaide and 
Dr. R. Farajzadeh from Delft University for fruitful discussions. Many thanks are due to David 
H. Levin (Murphy, NC, USA) who provided professional English-language editing of this article. 

 

 



118 

 

References  

Alvarez, A. C., P. Bedrikovetsky, G. Hime, D., Marchesin, J. R., Rodríguez (2006), A fast inverse 
solver for the filtration function for flow of water with particles in porous media, Journal of Inverse 
Problems, 22, 69-88. 

Alvarez, A. C., G. Hime, D. Marchesin, and P. G. Bedrikovetsky (2007), The inverse problem of 
determining the filtration function and permeability reduction in flow of water with particles in porous 
media, Transp. Porous Media, 70(1), 43–62. 

Bedrikovetsky, P. (1993), Mathematical Theory of Oil and Gas Recovery, Kluwer Academic 
Publishers, Boston.  

Benson, S. M., A. F. White, S. Halfman, S. Flexser, and M. Alavi (1991), Groundwater contamination 
at the Kesterson Reservoir, California: 1. Hydrogeologic setting and conservative solute transport, 
Water Resour. Res., 27(6), 1071–1084.  

Borazjani, S., A. Roberts, and P. Bedrikovetsky (2016), Splitting in systems of PDEs for two-phase 
multicomponent flow in porous media, Appl. Math. Let., 53, 25–32.  

Bradford, S. A., S.Torkzaban, and J. Simunek (2011), Modeling colloid transport and retention in 
saturated porous media under unfavorable attachment conditions, Water Resour. Res., 47(10), 
W10503.  

Bradford, S. A., S. Torkzaban, H. Kim, and J. Simunek (2012), Modeling colloid and microorganism 
transport and release with transients in solution ionic strength, Water Resour. Res., 48(9), W09509. 

Chrysikopoulos, C. V., V. I. Syngouna, I. A. Vasiliadou, and V. E. Katzourakis (2012), Transport of 
pseudomonas putida in a 3-D bench scale experimental aquifer, Transp. Porous Media, 94(3), 617–
642. 

Civan, F. (2015), Reservoir Formation Damage, Gulf Professional Publishing, N. Y. 

Dagan, G. (1989), Flow and Transport in Porous Formations, Springer, Berlin, N. Y. 

Dagan, G., A. Fiori and I. Jankovic (2008), Transport in Porous Media, article in Vol. 5 “Ecological 
Processes” of “Encyclopedia of Ecology”, 3575-3582, Elsevier, Oxford. 

Johansen, T., and R. Winther (1988), The solution of the Riemann problem for a hyperbolic system of 
conservation laws modeling polymer flooding, SIAM J. Math. Anal., 19(3), 541–566. 

Katzourakis, V. E., and C. V. Chrysikopoulos (2014), Mathematical modeling of colloid and virus 
cotransport in porous media: Application to experimental data, Adv. Water Resour., 68, 62–73. 

Katzourakis, V. E., and C. V. Chrysikopoulos (2015), Modeling dense-colloid and virus cotransport 
in three-dimensional porous media, J. Contam. Hydrol. 

Lake, L. W. (1989), Enhanced Oil Recovery, Prentice Hall, Englewood Cliffs, NJ. 

Lotfollahi, M., R. Farajzadeh, M. Delshad, K., Al-Abri, B. M., Wassing, R., Mjeni, K., Awan, and P., 
Bedrikovetsky (2015), Mechanistic Simulation of Polymer Injectivity in Field Tests. In SPE Asia 
Pacific Enhanced Oil Recovery Conference, SPE. 



119 

 

Mitropoulou, P. N., V. I. Syngouna, and C.V. Chrysikopoulos (2013), Transport of colloids in 
unsaturated packed columns: Role of ionic strength and sand grain size, Chem. Eng. J., 232, 237–248. 

Pires, A. P. and P. G. Bedrikovetsky (2006), A splitting technique for analytical modelling of two-
phase multicomponent flow in porous media, J. Petr. Sci. Eng., 51(1), 54–67. 

Tikhonov, A. N., and A. A. Samarskii (1990), Equations of Mathematical Physics, Courier 
Corporation, Dover, New York. 

Wagner, D. H. (1987), Equivalence of the Euler and Lagrangian equations of gas dynamics for weak 
solutions, J. Differ. Equat., 68(1), 118–136 

Zhang, Q., S. Hassanizadeh, N. Karadimitriou, A. Raoof, B. Liu, P. Kleingeld, and A. Imhof (2013), 
Retention and remobilization of colloids during steady-state and transient two-phase flow, Water 
Resour. Res., 49(12), 8005–8016. 

Zhang, Q., S. Hassanizadeh, B. Liu, J. Schijven, and N. Karadimitriou (2014), Effect of 
hydrophobicity on colloid transport during two-phase flow in a micromodel, Water Resour. Res., 
50(10), 7677–7691.  

  



120 

 

 

Fig.1. Schematic for phase saturations along with dissolved, adsorbed and retained polymer 
in porous media  

 

Fig.2. Dissolved, adsorbed and strained polymer molecules in porous space  

 

 

Fig.3. Auxiliary solution for a polymer slug problem.   



121 

 

 

Fig.4. Lifting solution path in (s,f) plane. 

 

 

Fig.5. Solution of the lifting problem for one-dimensional polymer slug injection with typical 
flow zones I, II …VI. 
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Fig.6. Analytical solution in(x,t) plane (a) Characteristic and shock wave trajectories for 
polymer slug flow in (x, t)-plane; profiles of (b) saturation and concentrations of dissolved (c) 
and retained (d) polymer before and after chase water drive injection 
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Table 1. Exact solution of the auxiliary and lifting problems in the (x, ϕ)-plane   

Zone c σ s Characteristic 
I 0c =  0σ =  Is  Is xϕ = −  
II 0c =  0σ =  3s   

III 0c =  0σ =  ( ),IIIs x ϕ
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Table 2. Five flow zones in the (x, ϕ)-plane for the solution of auxiliary and lifting problems  

Zone Domain 
I Is xϕ = −  
II ( ) ( ) 1

3 3,0 ,0I
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Table 3. Exact solution in the (x, t) plane after the inverse mapping   

Zone c σ s Characteristic 
I 0c =  0σ =  Is   
II 0c =  0σ =  3s   

III 0c =  0σ =  ( ),IIIs x ϕ
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Table 4. Six flow zones in the (x, t)-plane for the solution of 1-d flow problem  
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Abstract Two-phase transport of colloids and suspensions occur in numerous areas of 
chemical, environmental, geo- and petroleum engineering. The main effects are particle 
capture by the rock and alternation of the flux by the changing suspended and retained 
concentrations. Multiple mechanisms of suspended particle capture are discussed. The 
mathematical model for m independent particle capture mechanisms is considered resulting in 
(m+2)×(m+2) system of partial differential equations. Using the stream-function as an 
independent variable instead of time splits the system into (m+1)×(m+1) auxiliary system, 
containing only concentrations and one lifting hydrodynamic equation for unknown phase 
saturation. Introduction of the concentration potential linked with retention concentrations 
yields an exact solution for auxiliary problem. The exact formulae allow predicting the 
profiles and breakthrough histories for the suspended and retained concentrations and phase 
saturations. The solution shows that for small retained concentrations, the suspended 
concentration is steady-state behind the concentration front, where all retained concentrations 
are proportional to the mass of suspended particles that passed via a given reservoir cross-
section. The maximum penetration depths for suspended and retained particles are the same, 
and are equal to those for a single-phase flow. 

1. Introduction 

Suspension-colloidal flow in porous media occurs in numerous engineering areas, like 
disposal of industrial wastes in aquifers with propagation of contaminants an pollutants, 
industrial water treatment and filtering, injection of hot- or low-salinity water into aquifers 
for storage purposes, water injection into geothermal reservoirs [Bradford et al., 2011, 2012, 
Chrysikopoulos et al., 2012; Katzourakis and Chrysikopoulos, 2014, 2015]. An aqueous 
suspension of solid particles invades formations during well drilling; the penetration depth is 
important for evaluation of formation damage and prediction of skin factor; it is also 
important for interpretation of electrical logging based on the salinity contrast between the 
invaded drilling fluid and reservoir water [Civan, 2015]. Similar processes of fracturing fluid 
invasion occur during hydraulic fracturing of artesian, oil- and geothermal wells. Clay- and 
soil suspensions and colloids flow in vadose zone and during irrigation. Two-phase 
suspension-colloidal flows correspond to under-saturated aquifers. Two-phase gas-water flow 
with colloidal products of chemical reactions occurs with CO2 geo-sequestration [Perrin and 
Benson, 2010; Krevor et al., 2012; Mijic et al., 2014; Kuo and Benson, 2015]. In petroleum 
industry, the low-quality water with solid or liquid particles is injected in oilfields, causing 
significant well impairment but some oil-recovery enhancement [Civan, 2015]. 
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Planning and design of the above mentioned technologies is based on the results of 
mathematical modelling. Exact analytical solutions are used for interpretation of the results of 
laboratory coreflooding and calculation of the model coefficients. The comparison of the 
concentration and saturation waves provided by the analytical models with the breakthrough 
of colloids and water during the corefloods or field tests yields more profound understanding 
of the processes. The analytical models are also widely used in three-dimensional reservoir 
simulation using stream-line and front-tracking techniques [Oladyshkin and Panfilov, 2007; 
Holden and Risebro, 2013]. The above applications motivate numerous studies on exact 
solutions for one-dimensional two-phase multicomponent flows in porous media. Those 
include self-similar solutions for continuous injection of constant-composition fluids into 
formations, corresponding to Riemann problems for conservation law systems [Braginskaya 
and Entov, 1980; Pope, 1980; Johansen and Winther, 1988; Barenblatt et al., 1989; Lake, 
1989; LaForce et al., 2008; LaForce and Jessen, 2010]. The non-self-similar solutions for 
injection of different-composition slugs are obtained by interaction of non-linear hyperbolic 
waves [Fayers, 1962; Bedrikovetsky, 1993]. Recently obtained semi-analytical solutions 
accounting for capillary pressure and diffusion  are based on integral representation of the 
saturation field and significantly extend the class of 1-d flows permitting for analytical 
modelling [Schmid et al., 2011].The continuous-mechanics model for a single-phase 
suspension-colloidal flow in porous media consists of mass balance for suspended and 
retained particles, equation of the retention rate and Darcy’s law accounting for permeability 
damage by the retained particles[Herzig et al., 1970]: 

( ) 0   
c

c U
t x

φ σ∂ ∂+ + =
∂ ∂

                     (1) 

( )cU
t

σ λ σ∂ =
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                      (2) 

( ) ( )1

k p
U

c xµ βσ
∂= −

+ ∂
                      (3) 

where φ is the rock porosity, c is the concentration of particles suspended in aqueous phase 

and σ is the retained concentration on the accessible to water rock surface, U is the Darcy’s 

flow velocity, λ(σ) is the filtration function, k is the absolute permeability, µ is the viscosity, 

β is the formation damage coefficient and p is the pore pressure. 

Here the filtration function λ is related to the attachment rate coefficient kd from the Colloid 
Filtration Theory transport in porous media [Tufenkji and Elimelech, 2004; Elimelech et al., 
2013] as  

0

3 1

2
d

c

k

U d

φ φλ αη
φ

−= =           (4) 

where dc is the average grain diameter, α is the attachment efficiency (probability that the 

particle collided a grain remains attached to the grain surface), η0 is the single collector 
contact efficiency (probability for the particle flowing towards the grain to strike this grain). 
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The exact solutions for one-dimensional single-phase flows with constant, linear and power-

law filtration functions λ(σ) are presented by [Herzig et al., 1970]:. Introduction of the 
concentration potential from the capture rate equation allows for derivation of the exact 
solution for any form of the filtration function [Polyanin and Zaitsev, 2003; Alvares et al., 
2007]. In particular, Santos and Araujo, [2015] derive the exact solution for the case where 
the filtration function remains zero above some critical retention concentration.  

The exact solutions, obtained by the concentration potential method permit for well-posed 
inverse problems of determining the model functions from the results of laboratory flow tests. 

Alvares et al., [2007] determines the filtration function λ(σ) from the breakthrough 

concentration and the permeability damage function k(σ) from the pressure drop growth 
across the core. 

The phenomenological model (1-4) is formulated for average particle and pore sizes. The 
population balance models account for probabilistic particle and pore size distributions 
[Payatakes et al., 1974; Sharma and Yortsos, 1987]. The exact solution can be obtained for 
mono-sized suspension flow in the rock with the pores distributed by sizes [Bedrikovetsky, 
2008]. The solution allows for the averaging of the flow, yielding the generalisation of the 
model (1-4) that accounts for the pore volume, inaccessible for finite-size particles, and the 
fractional flows via the accessible and inaccessible parts of the porous space. [You et al., 
2013]. 

The stochastic models for a single-phase colloidal-suspension flows include the particle- 
trajectory calculations [Payatakes et al., 1974; Lin et al., 2009], random-walk equations 
[Shapiro, 2007; Yuan and Shapiro, 2010; Araujo and Santos, 2013].  

Presently, the numerical models for two-phase colloidal-suspension flows are used in studies 
of propagation of viruses, bacteria and nano-particles in porous media [Mitropoulou et al., 
2013; Zhang et al., 2013; 2014]. To the best of our knowledge, the analytical models for two-
phase flow of suspensions and colloids in porous media are unavailable in the literature.  

The splitting method, proposed by Wagner [1987] allows the derivation of numerous 
analytical solutions for two-phase multi-component flows in porous media. Change of time to 
stream-function as an independent variable in the system of conservation laws (the 
Lagrangian approach) decreases the number of equations by one. For two-phase flows in 
porous media, the method has been applied to conservation law systems under 
thermodynamic equilibrium [Pires et al., 2006] and non-equilibrium phase transitions and 
chemical reactions [Borazjani et al., 2016].      

The present work generalises the splitting method for suspended-colloidal flow with quasi-
linear kinetics of the particle capture and derives the analytical solutions for two-phase flow 
with multiple (m>1) capture mechanisms. The splitting procedure separates the 
(m+2)×(m+2) system into (m+1)×(m+1) auxiliary system containing only one suspension 
and m retained concentrations, and one lifting equation for phase saturation  The exact 

solution of the auxiliary system is found for any form of filtration functions λk(σ1, …σm), 
k=1,2…m. The lifting equation allows for exact solution for the case of negligible retained 
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concentrations. It was found out that in the case of constant filtration coefficients λk=const, 
the suspended concentration is steady-state behind the concentration front, and all retained 
concentrations are proportional to the amount of passing suspended particles. The maximum 
propagation depths for suspended and retained particles are the same and equal to those for a 
one-phase flow. 

The structure of the text is as follows. Second Section presents the formulation of basic 
governing equations and assumptions along with the initial- and boundary-value problem for 
one-dimensional flows. The splitting technique with exact solution of auxiliary problem is 
presented in third Section. Section 4 contains the exact solution the case of constant filtration 
coefficients and the retention-independent fraction flow. The calculation results are given in 
Section 5. The extended discussion of the analytical model and wave propagation is Sections 
6 and 7 conclude the paper.      

2. Governing system 

The Current Section formulates one-dimensional problem of two-phase colloidal-suspension 
flow in porous media, including the main assumptions (Section 2.1), derivation of governing 
equations (Section 2.2), transformation of the system with dimensionless parameters (Section 
2.3) and the initial and boundary conditions (Section 2.4). 

2.1. Assumptions  

Consider two-phase transport of aqueous suspension with different mechanisms of particle 

retention in the porous medium. Figure 1(a) shows rock porosity φ, water saturation s, 

concentration c of particles suspended in aqueous phase and retained concentrations σ1, 

σ2…σm on the accessible to water rock surface. The particle capture mechanisms include 
straining, attachment, diffusion, sedimentation and bridging (see Figure 1(b)). The above 
capture mechanisms have been extensively discussed for propagation of bacteria, viruses and 
nano-particles in aquifers with consequent contamination.[Benson et al. 1991; Bradford et 
al.,  2011; Elimelech et al., 2013; Mitropoulou et al., 2013; Syngouna and Chrisikopoulos, 
2013; Molnar et al., 2015]. 

Two immiscible incompressible phases are assumed. Capillary pressure between phases is 
neglected if compared with phase pressures. We assume that the rock is water-wet, so the 
subscript w is used for water (wetting phase). For non-wetting phase (air, oil, gas), the 
subscript n is used. We discuss water-wet suspended particles transported by aqueous phase.  

Concentrations of suspended and retained particles are small and do not affect the volumetric 
balance of the carrier water. Particle diffusion/dispersion in aqueous phase is neglected as 
compared with the advective flux, which is typical for large-scale systems. We discuss water-
wet suspended-colloidal particles only, assuming that they are transported by the aqueous 
phase [Zhang et al., 2014]. 

2.2. Governing equations  

Mass balance equations for both phases are [Barenblatt et al., 1989; Bedrikovetsky, 1993]: 
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where ρw and ρn are water and air (oil) densities, respectively, uw and un are phase velocities. 

Aqueous phase viscosity is the suspension-concentration dependent. Relative permeability of 
the aqueous phase depends on suspended and all retained concentrations: 

( )
( )

( )1, , ... ,
,rw m rn

w n
w n

k s c k s cp p
u k u k

c x x

σ σ
µ µ

∂ ∂= − = −
∂ ∂

       (6) 

where krw and krn are the relative permeabilities of wetting and non-wetting phases, 
respectively.   

Cancelling the constant phase densities in eqs (5) and (6) and adding the resulting equations 
yield conservation of the overall flux U for two-phase flow of incompressible phases: 

( )w nu u U t+ =            (7) 

Introduce the fractional flow f for water as a fraction of the aqueous phase flux in the overall 
flux: 

wu fU=             (8) 

The expression for fractional flow follows from eqs (6, 7) 
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Substituting expression for water flux (8) into mass balance (5) yields 
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                    (10) 

Mass balance for suspended and retained particles accounting for eq (9) is 
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For a single-phase suspension transport in porous media, it is assumed that the retention rate 
is proportional to the suspension flux cU, see eqs (5-7) [Herzig et al., 1970]. For each particle 
capture mechanism by the rock from the aqueous suspension in two-phase flow, it is also 
assumed that the retention rate is proportional to the suspended flux of the particles:  

( ) ( )1 1... , ...i
i m mcf s U

t

σ λ σ σ σ σ∂ =
∂

                              (12) 

In the case where the overall retained concentration σ is negligibly small if compared with 
the number of the capture sites, the retained particle accumulation does not affect the particle 

capture probability, and the filtration functions λk are assumed to be constant. For small 
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retention concentrations, the form of the Langmuir blocking functions follow from the active 
mass low for the “interaction” between the particle and capture site populations [Kuhnen et 
al., 2000] 

( ) ( )1
0 max1λ σ λ σσ −= −                       (13) 

More complex dependencies λk(σk) take place for large retention concentrations [Herzig et 
al., 1970]. 

The expression for the total flux follows from (7) 

( )( )1 1
1( , , ... ) ( , )rw m w rn n

p
U k k s c c k s c

x
σ σ µ µ− − ∂= − +

∂
                 (14) 

System of m+3 equations (10-14) determines the unknowns s,c, σ1,…σm and p. 

2.3. Dimensionless parameters  

Introduce the following dimensionless independent variables and parameters 

0

1
, ( ) , , ,  , ,

t
i w

i wJ J
n n

x k c
x t U t dt p p L c

L L UL c c

σ µλ λ σ µ
φ µ φ µ

→ → → → → → →∫               (15) 

Substituting the dimensionless parameters (15) into eqs (10-14) yield the dimensionless form 
of the system for two-phase suspension flow in porous media 

1( , , ... )
0mf s cs

t x

σ σ∂∂ + =
∂ ∂

                    (16) 

1

0
m

i
i

cf
sc

t x
σ

=

∂ ∂ + + = ∂ ∂ 
∑                     (17) 

( )1, , ...i
i mcf s c

t

σ λ σ σ∂ =
∂

                    (18) 

( )( )1

11 ( , , ... ) ( , )rw m w rn

p
k s c c k s c

x
σ σ µ − ∂= − +

∂
                  (19) 

Eq (19) separates from the rest of the system (16-18), which consists of m+2 equations for 

m+2 unknowns s, c, σ1,…σm. 

Consider the normalised inverse to relative permeability for wetting phase as monotonically 
increasing function of retained concentrations. Keeping zero and first order terms in Taylor’s 

expansion over retained concentrations σ1,…σm for this function yields 

( )
( ) 11

, ,0...0
1

, , ...

m
rw

i i
irw m

k s c

k s c
β σ

σ σ =

= +∑                     (20) 
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resulting in explicit expression for relative permeability of water vs retained concentrations. 

The effects of individual retained concentrations σk on relative permeability are expressed via 

the formation damage coefficients βk.  

2.4. Initial-boundary value problem for one-dimensional flows 

Initial conditions for one-dimensional flow correspond to connate water saturation with no 
particles in the porous medium (so-called clean-bed filtration): 

0,    0,    0,    I
it c s sσ= = = =                   (21) 

Injection of suspension with constant particle concentration correspond to boundary 
conditions with the fixed injected fractional flow and injected concentration 

( ) ( )( )10,    1,  ,1, 0, ..., 0, 1J
mx c f s t tσ σ= = =                  (22) 

For concentrations of immobile (retained) components, the Goursat boundary conditions are 
formulated [Tikhonov and Samarskii, 1990]. Substituting c=1 and f=1 from the boundary 
condition (22) into rate equations (18) yields: 

( ) ( )1

0,
0,  ...i

i m

d t
x

dt

σ
λ σ σ= =                   (23) 

forming a system of m ordinary equations for retained concentrations at the inlet σk(0,t), 
i= 1…m.  

3. Splitting method 

The solution of the governing system (16-18) subject to initial and boundary conditions, 
formulated in the previous Section, is solved using the splitting method [Wagner, 1987; Pires 
et al., 2006; Borazjani et al., 2016]. Introduction of stream-function and splitting the system 
into the retention-kinetics auxiliary system and the lifting equation for unknown saturation is 
performed in Section 3.1. Section 3.2 presents the reduction of the auxiliary system with m 
different retention mechanisms to that with a single “aggregated” mechanism of the particle 
capture. The exact solution for auxiliary problem with an overall capture mechanism is 
derived in Section 3.3. Sections 3.4 and 3.5 present the solution of the lifting problem and 
inverse mapping, respectively. Finally, (m+2)×(m+2) system of quasilinear hyperbolic 
equations (16-18) is reduced to one scalar hyperbolic equation.  

3.1. Stream function and splitting mapping 
Let us introduce a stream function associated with the conservation law (16): 

,s f
x t

ϕ ϕ∂ ∂= − =
∂ ∂

                   (24) 

The corresponding differential form for two-phase flux is 
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d fdt sdxϕ = −                      (25) 

It determines the stream-function ϕ(x,t) 

( )
( ),

00

,
x t

x t fdt sdxϕ = −∫                     (26) 

Stream-lines correspond to the curves where ϕ=const (Figure 2). The difference ϕ(x,t+τ)-

ϕ(x,t) is equal to the water volume flowing through the cross-section x during the period τ 
[Landau and Lifshitz, 1987]. 

Consider change of independent variables in system (16-18) from (x, t) to (x,ϕ), which 

corresponds to the following mapping from (x,t)-plane to (x,ϕ)-plane (Figure 2): 

( ):( , ) ,x t x ϕΚ →                      (27) 

Let us express differential form dt from (25) 

d sdx
dt

f f

ϕ= +                      (28) 

The equality of mixed partials of t(x,ϕ) yields the Κ-transformation of eq (16), which is 
called the lifting equation 

( )
( ) ( )

1

1 1

, ... , 1
0,     ,     

, , ... , , ...
m

m m

F G c G s
F G

x f s c f s c

σ σ
ϕ σ σ σ σ

∂ ∂+ = = − =
∂ ∂

              (29) 

Variables F and G are called the density and the flux in the lifting equation, respectively. 

Figure 3 shows curves F=F(G,c,σ1,…σm) for (c=1, σ1,…σm=0), (c=0 σ1,…σm=0) and (c=c*, 

σ1=σ1
*…σm=σm

*) for a S-shaped fractional flow function f(s,c,σ1,…σm). Eq (29) defines the 

solution G(x,ϕ) or s(x,ϕ) provided the concentrations c(x,ϕ) and σk(x,ϕ) are known.  

Integrating both sides of eq (17) over any arbitrary closed simply-connected domain in plane 
(x, t) and applying Green’s theorem [Wagner, 1987; Rhee et al., 2001] yield 

1 1 1 1

n m m m

i i i i
i i i iD D D D

cf c
sc dxdt cfdt scdx dx cd dx dxd

t x x
ϕ

σ σ ϕ σ σ ϕ
ϕ= = = =∂ ∂

   ∂ ∂ ∂ ∂       + + = − − = − = +          ∂ ∂ ∂ ∂          
∑ ∑ ∑ ∑∫∫ ∫ ∫ ∫∫� �

       (30) 

resulting in an independent-variable transformation (27) in eq (17):  

1

0
m

i
i

c

x
σ

ϕ =

 
 
 

∂ ∂+ =
∂ ∂∑                     (31) 

The calculations analogous to (30) as performed with eq (18) results in: 

( )1... , 1,2...     i
i m c i m

σ λ σ σ
ϕ

∂ = =
∂

                   (32) 
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System (31, 32) consists of scalar eq (31) and m equations (32); it defines the unknowns c 

and σ. 
The initial and boundary conditions (21, 22) for auxiliary system become: 

:   0,   0I
is x cϕ σ= − = =                    (33) 

( ) ( )1

0,
0 :    1,   ...i

i m

d
x c

d

σ ϕ
λ σ σ

ϕ
= = =                   (34) 

For lifting equation (29), the initial and boundary conditions become: 

:   I Is x s sϕ = − =                     (35) 

( ) ( )( )10 :    ,1, 0, ... 0, 1J
mx f s σ ϕ σ ϕ= =                  (36) 

For uniform initial conditions (21), those are set in (x,ϕ)-plane along the straight line ϕ=-sIx 
(33, 35). Figure 2 also shows the image of the initial-condition axis t=0 for non-uniform 

initial conditions (33) with given s(x,0), c(x,0) and σ(x,0).  

So, in the system of co-ordinates (x,ϕ), the auxiliary problem (31,32) separates from the 

lifting problem (29). The auxiliary system contains the kinetics variables c and σk, while the 
lifting equation depends on saturation s also; it includes the relative permeability (9) and 

phase viscosities. The solution of auxiliary problem (31, 32) c(x, ϕ), σ1(x, ϕ),…, σm(x, ϕ) as 

obtained by method of characteristics can be presented in (x, ϕ)-plane (Figure 4). Here the 

uniform initial conditions (21) are set along the straight line ϕ=-sIx, which is the image of 

axes t=0 with Κ-transformation. The solution of lifting equation (29) G(x,ϕ) is also presented 

in the plane (x,ϕ). Figure 5 presents the projection of solution of the system (29, 31-32) 

s(x,ϕ), σ(x,ϕ), c(x,ϕ) into the solution of the auxiliary system σ(x,ϕ), c(x,ϕ) (31-32), given by 
the splitting mapping.  

3.2. Shock waves 

Consider a trajectory x(t) and its image x(ϕ) with the mapping K (Figure 2). Substitution of 

the trajectories x(t) and x(ϕ) into differential form (25) yields  

d dt
f s

dx dx

ϕ = −                      (37) 

resulting in the following relationship between the Eulerian and Lagrangian speeds speeds D 
and V [Landau and Lifshitz, 1987; Dagan et al., 1996]: 

( ) ( )1
, ,

dx t dxf
s D V

V D dt d

ϕ
ϕ

= − = =                   (38) 

Formula (38) is interpreted geometrically in (s, f)-plane (Figure 2(c)).  

The mass balance conditions on shock waves (Hugoniot-Rankine conditions) for eqs (16-18), 
are formulated as equality of out- and incoming fluxes for the discontinuity trajectory (see 
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[Landau and Lifshitz, 1987; Bedrikovetsky, 1993] for detailed derivations) for water, 
suspended particles and retained particles 

[ ] ( )1, , ... ms D f s cσ σ=                        (39) 

( )1
1

, , ...
m

i m
i

cs D cf s cσ σ σ
=

 + =    
 

∑                   (40) 

[ ] 0i Dσ =                      (41) 

where the jump of the parameter A across the front [A]=A+-A- is the difference between A-
values ahead and behind the front. 

Eqs (41) show that the retained concentrations σi are continuous for D≠0. As it follows from 

eqs (39) and (40), the velocity of a concentration and saturation c-shock with c-≠c+ is 

( ) ( )1 1, , ... , , ...m m

c

f s c f s c
D

s s

σ σ σ σ− − + +

− += =                  (42) 

Formula (42) shows that three points (0,0), “-“ and “+” are located on the same straight line 
in plane (s,f) for c-shocks (Figure 2(c)). 

The velocity of the saturation s-shock with c-=c+, as it follows from eq (39), is 

( ) ( )1 1, , ... , , ...m mf s c f s c
D

s s

σ σ σ σ− +

− +

−
=

−
                 (43) 

Speeds of both c-and s- shocks are equal to tangents of straight lines connecting points “-“ and 
“+” in plane (s,f) (Figure 2(c)). 

The mass balance (Hugoniot-Rankine) conditions for auxiliary equations (31) and (32) are 

[ ] [ ]V cσ =                       (44) 

[ ] 0i Vσ =                       (45) 

respectively. As it follows from eq (45), the retained concentrations are continuous for V≠0. 

Therefore, eq (44) can be fulfilled for c-shocks with V=∞ only, corresponding to shock 

trajectory ϕ=0. The value of c-jump [c] can be any arbitrary number. The speeds for c-shocks 
V and Dc (42) fulfil eq (38). Finally, c-shocks can occur along the axis x only. 

Consider shock conditions for lifting equation (29):  

1
[ ]

s
V

f f

 
− =  

 
                                (46) 
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Formula (46) defines speeds for s-shocks with c-=c+. For c-shocks propagating with infinite 
speed, eq (46) degenerates into the continuity condition for function s/f. Figure 5 shows the 
projection of shocks of the general system (39-41) into those in auxiliary system (44, 45). 

3.3. Aggregation in the auxiliary system  

Now let us derive an exact solution for the auxiliary problem (31-32).  

Summing eqs (32) and introducing the overall retained concentration σ and filtration 

coefficient λ yield  

( ) ( ) ( )1 1 1
1 1

,... , , ,... ,...
m m

m i m i m
i i

c
σ λ σ σ σ σ λ σ σ λ σ σ
ϕ = =

∂ = = =
∂ ∑ ∑                 (47) 

Let us show that the total filtration coefficient λ is a function of a single variable, which is the 

overall retained concentration σ. Looking for solution of eqs (32, 47) in the form σi=σi(σ) 
results in system of m ordinary differential equations 

( ) ( )( )
( )

i iid

d

λ σ σσ σ
σ λ σ

=                     (48) 

subject to initial conditions 

0: 0, 1,2...i i mσ σ= = =                   (49) 

Substituting the solution of the problem (48, 49) into the expressions (47) yield the σ-
dependency for the overall filtration coefficient: 

( ) ( ) ( )( )1
1

,...
m

i m
i

λ σ λ σ σ σ σ
=

=∑                              (50) 

Assume that the functions in right hand side of system (48) have bounded first derivatives. 
Substituting the solution of system (48) into eqs (31, 47) yields the 2×2 system 

( ) ,  0 
c

x
c

σ σλ σ
ϕϕ

∂ ∂+
∂

∂
∂

= =
∂

                  (51) 

subject to initial and boundary conditions 

:   0,   0Is x cϕ σ= − = =                    (52) 

( )
( )0,

0

0 :    1,   
du

x c
u

σ ϕ

ϕ
λ

= = =∫                    (53) 

Here the Goursat boundary condition (53) is obtained from first eq (51) by separation of 
variables. 
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So, the procedure (47) aggregates the (m+1)×(m+1) auxiliary system into 2×2 system (51) 
(see analogous derivations by Polyanin and Zaitsev [2003]; Polyanin and Manzhirov [2006]). 
Finally, the system (51) allows for exact solution, which is derived in the next Section.  
Below are some examples of aggregation. 

Example 1. Consider the case of small particle retention, where all filtration coefficient λi are 
constant (see the discussion of the cases where the filtration coefficient can considered to be 
constant in Bedrikovetsky [2008]; Herzig et al. [1970]). The result of the aggregation 
procedure (47) is: 

1 1

,   
m m

i i
i i

constσ σ λ λ
= =

= = =∑ ∑                    (54) 

Example 2. Consider the case where each filtration coefficient depends on the corresponding 

retention concentration only, i.e. λ=λi(σi), i=1,2…m. Keeping zero and first order terms in 

Taylor expansions near to points σi=σimax for functions λi(σi) results in so-called blocking 
(Langmuir) filtration function with the form of blocking filtration function (13).    

The system (48) becomes 

( ) ( )
1

1 1
0 1max 0 1max

1

1 1
m

i
i i i i

i

d

d

σ λ σ σ λ σ σ
σ

−
− −

=

 = − − 
 
∑                 (55) 

Let us change the independent variable in (55) from σ to σ1: 

( ) ( ) 1
1 1

0 1max 01 1max
1

1 1 , 2,3...i
i i i

d
i m

d

σ λ σ σ λ σ σ
σ

−− − = − − =                 (56) 

Separation of variables in (56) yields the solution in the implicit form 

( ) ( )
2 max m max

1max 1max1 1
1 1max 2 2max mmax mmax1 1 ... 1 1 me e

σ σ
σ σσ σ σ σ σ σ σ− −

   
= − − = = − −   

   
   

            (57) 

allowing for the implicit expression of all retained concentrations σi via their total σ by 

solving the following transcendental equation in σ1: 

( ) ( )1 2 1 1... mσ σ σ σ σ σ= + + +                   (58) 

Substituting the solution of (58) into third eq (47) yields the expression for the overall 
filtration coefficient: 

( ) ( )( )( )1
0 1 imax

1

1
n

i i
i

λ σ λ σ σ σ σ −

=

= −∑                   (59) 

Example 3. Let us discuss the case for two commingled particle capture mechanisms. The 
filtration coefficient corresponding to the first mechanism is given by a blocking (Langmuir) 
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function (13) of the first retained concentration. The retention concentration for the particles 
captured by the second mechanism is small, so the corresponding filtration coefficient is 
assumed to be constant: 

( )1
1 0 1 max 21 ,   constλ λ σ σ λ−= − =                   (60) 

The system (48) becomes: 

( )
( ) ( )

1
0 1 max1 2 2

1 1
0 1 max 2 0 1 max 2

1
,    

1 1

d d

d d

λ σ σσ σ λ
σ σλ σ σ λ λ σ σ λ

−

− −

−
= =

− + − +
               (61) 

Changing the independent variable in (61) from σ to σ1 and separating the variable in the 
obtained ordinary differential equation results in 

( )1 1
2 0 2 max 1 maxln 1σ λ λ σ σ σ− −= − −                   (62) 

The aggregation result for σ and λ(σ) is given in the following implicit forms for: 

( )1 1
0 2 max 1 max 1ln 1σ λ λ σ σ σ σ− −= − − +                   (63) 

( ) ( )( )1
0 1 max 21λ σ λ σ σ σ λ−= − +                   (64) 

3.4. Exact solution for an aggregated auxiliary system  

Introduction of the concentration potential Φ(σ)  

( ) ( )0

dz

z

σ

σ
λ

Φ = ∫                     (65) 

transforms first eq (51) into 

( )
c

σ
ϕ

∂Φ
=

∂
                     (66) 

Substituting the expression for suspended concentration (66) into second eq (51) and 

integrating in ϕ yields 

( ) ( )a x
x

σ
σ

∂Φ
+ =

∂
                    (67) 

where the right hand side can be determined from initial conditions (33). The retained 

concentration is equal to zero along the line ϕ=-sIx. Since c=0 along this line, x-derivative of 

σ is zero also. Therefore, a(x)=0.  

Boundary condition (34) accounting for definition of the potential function (65) becomes 



139 

 

( )0,    1,   0,x c σ ϕ ϕ= = Φ =                    (68) 

Separation of variables in ordinary differential equation (67) with a(x)=0 and accounting 

for boundary condition (34) yields 

( )
( )

( ),
1

0,

, 0
x

d
x

σ ϕ

σ ϕ

σλ σ ϕ
σ

− = − >∫                   (69) 

Since boundary value σ(0,ϕ) is already determined by eq (53), the unknown σ(x,ϕ) can be 
uniquely determined from the above transcendental equation. Afterwards, suspension 

concentration c(x,ϕ) is determined by eq (66) for ϕ>0. For ϕ<0, we obtain c=σ=0. 

Example 4. For the case of low retained concentrations where λ constant, integration (53) 
results in the following retained concentration at the inlet: 

( )0 :    0,x σ ϕ λϕ= =                    (70) 

Integration in (69) for this case yields the following auxiliary solution:  

( )        0
,

0      0

x

I

e
x

s x

λσ λϕ ϕσ ϕ
σ ϕ

− = >
= 

= − < <
                  (71) 

Suspended concentration is determined by substituting solution (71) into second eq (51): 

( )            0
,  

0     0

x

I

c e
c x

c s x

λ ϕϕ
ϕ

− = >
= 

= − < <
                  (72) 

Example 5. For the case of the Langmuir filtration coefficient ( )1
0 max1λ λ σσ −= − , the 

concentration potential is 

( ) ( )1max
max

0

ln 1
σσ σσ
λ

−Φ = − −                   (73) 

It allows for explicit expression for the boundary retained concentration (53): 

0

max
max0,   1x e

λ ϕ
σσ σ −

 
= = − 

 
 

                   (74) 

Performing integration (69) for two cases of negative and positiveϕ, the solution for retained 
concentration is 
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( )
0 0

max max 0

1

max 1 1 1 0

0 0

x

I

e e e

s x

λ ϕ λ ϕ
σ σ λσ ϕσ

ϕ

−

− −
    
 − − − >   

 =      


− < <

               (75) 

Suspended concentration is calculated from second eq (51) after substitution of the solution 
(75) 

( )
0

max 0

1

1 1 0

0 0

x

I

e e
c

s x

λ ϕ
σ λ ϕ

ϕ

−

−
 
 − − > 
 =  


− < <

                 (76) 

At ϕ=0, function σ is continuous while c is discontinuous.   

3.5. Lifting equation 
Let us discuss lifting equation (29) assuming that suspended and retained concentrations are 
already known from the solution of the auxiliary problem (51-53, 66, 69). The lifting 
equation (29) subject to initial and boundary conditions (35-36) is a hyperbolic PDE and has 
the conservation law type.  
The characteristic form of the lifting equation (29) is 

( ) ( ) ( ), , , , , ,
,   

F G c F G c F G cd dG c

dx G dx c

σ σ σϕ σ
ϕ σ ϕ

∂ ∂ ∂∂ ∂= =− −
∂ ∂ ∂ ∂ ∂

                (77) 

Substituting the expression for functions F and G from second and third terms in (29) into 
(77) yields 

( )
( ) ( ) ( ) ( )

( ) ( )

( )

, ,
, , , , , , ,

, ,

, , , ,

, ,

s
s

s

s cd
s c f s c sf s c

dx f s c

f s c f s c c
s

x c xds

dx f s c

σϕ σ σ σ
σ
σ σσ σ

σ ϕ
σ

∆
′= ∆ = −

′

∂ ∂ ∂ ∂ ∂ − + −  ∂ ∂ ∂ ∂ ∂  =
′

                 (78) 

The geometric interpretation of the characteristic speed for lifting equation is presented in 

Figures 2c and 3. The point with abscissa ∆/fs
/ that is equal to the characteristic speed (78) is 

shown in Figure 2c. It allows determining the characteristic speed during the solution of the 
lifting problem graphically, which is used with derivation of the exact solution in Section 4. 

As it follows from eq (78), for ϕ<0 where c=σ=0, saturation is constant along the 
characteristics, which become straight lines.  

Consider the solution of the lifting problem for small x and ϕ, i.e. in the neighbourhood of 

point (0,0) in (x,ϕ)-plane. The retention concentration in small vicinity is equal zero. So, the 
solution of auxiliary system (51) in small neighbourhood of point (0,0) degenerates into 
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( ) 1, 0
,

0, 0
c x

ϕ
ϕ

ϕ
>

=  <
                     (79) 

Solution of the lifting equation in this neighbourhood is self-similar (see Polyanin and 
Manzhirov, [2006]; Polyanin and Zaitsev, [2003] for method of characteristics and the 
solution of the Riemann problem of one hyperbolic conservation-law equation). It 
corresponds to the sequence of rarefaction wave J-2, c-shock 2→3 and s-shock 3→I: 

( ) ( )1

3

( ,1,0)

( ,1,0)
, , 0

0

J
J

J

I

F s
s

x G

F s
s x s x

x G

s s x
x

ϕ

ϕϕ ϕ

ϕ

 ∂> ∂
∂= < < ∂

 − < <


                 (80) 

Here s1(x, ϕ) is expressed implicitly from rarefaction wave 

( ,1,0)F G

x G

ϕ ∂=
∂

                     (81) 

Points 2 and 3 corresponds to the tangent and intersection points shown in Figure 3; the 
points are determined by the following relationships 

2( ,1,0)
0

F G

G

∂ =
∂

 2 3( ,1,0) ( ,0,0)F G F G=                 (82) 

The graphical solution (81-82) is presented in Figure 3 by the path –sJ-2→3→I.  

At small times, particle capture and retention can be neglected. So, solution (80-82) described 
the displacement of initial fluid I without particles (c=0) by more viscous suspension J with 

c=1 without particle capture, i.e. λ=0. 

3.6. Inverse mapping  

In order to obtain the solution of the problem (16-18), let us consider the inverse 
transformation of independent variable in the solution of auxiliary and lifting problems 

( )1 : , ( , )K x x tϕ− →                      (83) 

As it follows from (28) 

( ) ( )
( )
( )

,

0,0

,1
,

, ,

x s x
t x d dx

f x f x

ϕ ϕ
ϕ ϕ

ϕ ϕ
 

= +  
 

∫                  (84) 

expressing the inverse mapping. Substitution of (84) into auxiliary and lifting solutions yields 
the solution of the general problem (16-19). 
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4. Exact solution for the case of fractional flow independent of retained concentrations 

Consider the injection of high-concentration suspension that affects the aqueous phase 
viscosity. The particular case under consideration in this Section corresponds to small capture 

rate, low values of formation damage coefficients βi, low injected concentration or small 
times, where the effect of retained concentration on relative permeability of water in eq (20) 
can be neglected. So, the process is described by system (16-19) where the formation damage 
coefficients are equal zero, fractional flow is independent of retention concentrations and 

filtration coefficients are constant, λi =const. Therefore, the aggregation in system (12) 
corresponds to overall retained concentration with the constant total filtration coefficient, see 
eq (54) of Example 1. The solution of auxiliary problem (51-53) is given by eqs (71, 72).  

The characteristic form of lifting eq (77, 78) for ϕ>0 becomes  

( )( ),
,   0

F G c xd dG

dx G dx

ϕ ∂
= =

∂
                   (85) 

i.e. G(s,c) is a Riemann invariant. As it follows from expression (29) for density G(s,c), the 
fractional flow function f(s,c) conserves along the characteristics. Recalculation of the 
characteristic speed (81) in terms of s and f(s,c) yields 

( )( )
( )( )

( )
/

, ,
,   0

,s

s c x df s cd

dx dxf s c x

ϕ ∆
= =                   (86) 

The characteristic speed (86) as shown in Figure 2c allows to determine it graphically along 
with the solution of the lifting problem (29, 35, 36) in (s,f) plane (Figure 6a). 

Let us first consider the case of convex fractional flow curve (Figure 6a). It corresponds to 
the convex relative phase permeability that appears at the length scale above the core-scale as 
a result of upscaling ; it can be also encountered at the core scale [Honarpour et al., 1986].  

The phase portrait of characteristics is presented in Figure 6a for fractional flow curves and in 
Figure 6b for density and flux in lifting equation (29).The curve 2-s--5 corresponds to 
tangents to the fractional flow curves drawn from the origin of co-ordinates. The area above 
this curve corresponds to dF/dG>0, in the area below the curve dF/dG<0 (see Bedrikovetsky 
[1993], Chapter 5 for detailed derivations). The shock wave trajectories and the characteristic 
lines and shown in Figure 6c. 

Now, let us solve the lifting problem using the method of characteristics. First we discuss the 
characteristic lines that start at the axis x=0, which corresponds to zone I (Figure 6c). The 
solution has self-similar asymptotical limit (80-82) in the vicinity of point (0, 0). The 
corresponding self-similar path is –sJ–2→3–I. Zone II is covered by the characteristic lines 
that are continuation of centred wave s1(x,ϕ), eq (81). In zone III, the characteristic curves 

start at the axis ϕ=0 and propagate inside the area ϕ>0. Zone IV is formed by straight 

characteristic lines that start at the axis ϕ=0 and propagate inside the area ϕ<0. Zone V is a 
rarefaction s-wave 3-sI for c=0. 
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Saturation is constant in zone I, s(x,ϕ)=sJ. The characteristic curves ϕ(x) are obtained by 
substitution of solution (72) into first eq (85) and integration in x; the explicit formula is 
presented in first line and fifth column of Table 1. This formula with ϕ0=0 gives a separation 
curve between zones I and II. 

In zone II, consider a characteristic that starts in point (0, 0) and corresponds to any arbitrary 
value s0, s2<s0<sJ. Here point 2 is determined by eq (82). The characteristic line leaves the 
singular point (0,0) with velocity determined by the equation of rarefaction wave (81) with 
the fractional flow independent of σ. The solution s=sII(x,s0) is determined from the condition 

of fractional flow conservation along the characteristic ϕ=ϕ(x): 

( ) ( ) ( )( )0 (,1 , ,)f s f s x x c xϕ=                   (87) 

Substituting eqs (87) and (72) into eq (86), we obtain the equation of the characteristic curve, 
presented in second line of fifth column (Table 1). The curve with s0=s2 separates zones II 
and III.  

Change of parameters along characteristic curves in zone II corresponds to straight horizontal 
lines f=const that start at the fractional flow c=1 in the saturation interval [2, sJ] and finish up 
at the fractional flow c=0 in the saturation interval [4, sJ] (Figure 6a). The wave values are 
located above the tangent-point curve 2-5, so the tangent dF/dG>0 increases along the 
characteristic curves. Therefore, the characteristic curves do not intersect in zone II. No s-
shocks appear in zone II. 

In zone III, all characteristic lines start at axis ϕ=0. Concentration c above this line is given 
by eq (72); below this line, concentration c is equal zero. The concentration-saturation shock 
occurs along this line; the speed V of the shock is infinity. It determines the saturation s(x0) 

above the line ϕ=0 for each point x0: 

( )0( ,exp )
0

F G x

G

λ−∂ −
=

∂
                   (88) 

Saturation s(x0) above the axis ϕ=0 change from s2 for x0=0 to s5 with x0 tending to infinity. 
The points 2…5 behind the shock front correspond to maxima of curves F(G,c) (Figure 6b). 

The fractional flow is constant along the characteristics ϕ=ϕ(x): 

( )( ) ( )( ) ( ) ( )( )0 0, ,exp ,expf s x x x f s x xϕ λ λ−− = −                 (89) 

Expressing s(x, ϕ(x)) from (89) and substituting it into first eq (86) yields the explicit 
expression for the characteristic line presented in third line of the fifth column in Table 1.  

Now let us consider saturation distribution in zone IV. Saturation s+ ahead of c-shock (at 

ϕ<0) is calculated from mass balance eq (46) for the shock with infinite speed, i.e. by 
continuity of the density F. In Figure 6b, the points above and below the shock are located on 
the same horizontal straight line. Points 2 and 3 in Figure 3 are found from eqs (82) for c=1. 
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At the point (x0, 0), x0>0, saturation s- is determined by eq (88). As it follows from the 
conditions on c-shock, 

( )( ) ( )1 1

0, ,0s f s c x s f s
− −− − + +− = −                      (90) 

So, the points above and below the shock trajectory in plane (G, F) are located on the same 
horizontal lines (Figure 6b). Eq (90) shows that the points below and above axes ϕ=0 in 
plane (s, f) are located on the straight line that crosses three points s-=s2, s

+=s3, and (0,0) 
(Figure 6a). 

Below the axes ϕ=0, the solution is given by the characteristics emanating from a point (x0,0). 
In this zone, c=0, so the characteristics are straight lines and given by the equation presented 
in Table 1 (fourth line and fifth column). 

In zone V, c=0 and the solution is given by a centred wave presented in Table 1 (fifth line and 
fifth column). The boundaries between five zones are given in Table 2.  

Eqs (86-90) and those in Table 1 allows expressing the images of s(x,ϕ) with given c(x,ϕ) on 
(s,f) plane. Figure 6a shows convex fractional flow curves for c=0 and c=1 along with 
intermediate curves. Lines f=const correspond to movement along the characteristics. 
Applying formula (84) for inverse mapping of independent co-ordinate t results in the 
representation of the solution in plane (x, t) (Figure 6d). The explicit formulae for saturation 
distribution in six zones are presented in Table 3, where the boundaries between six zones are 
given in Table 4. The c-s-shocks are exhibited in suspended-concentration and saturation 
profiles in Figures 7a and 7b; the continuous retention profiles are shown in Figure 7c. 

The exact solution of eqs (16-18) exhibits the following structure of two-phase flow with the 
clean-bed injection of colloid or suspension (Figure 6d): 

VI - unperturbed zone with initial saturation and no particles; 

V - first particle-free bank where water saturation increases from sI to s3; 

IV - second particle-free bank with further increase of water saturation; 

III - first two-phase flow zone with suspended and retained particles behind the concentration 
front; 

II - two-phase flow zone with suspended and retained particles where saturation increases up 
to SJ-value; 

I- suspension-flow zone expanding from the core inlet, where saturation is equal to its 
maximum value sJ. 

The exact solution presented in Table 1 allows deriving the explicit formulae for propagation 
depths of suspended and retained particles, presented in Figure 8. 
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In the case of more common S-shaped fractional flow function, the slope f/s increases from 
point I to point 3 in Figure 9a, while it decreases in Figure 6a for a convex fractional flow 
curve. Therefore, the centred waves 3-I in zone V of Figure 6c and d is replaced by a s-shock 
in Figure 9c and d. The slope of S-shaped fractional flow function in the point sJ is assumed 
to be zero, so zone I disappears in Figure 6c,d disappears. The fractional flows curves, the 
lifting density-flux curves along with characteristic lines and different flow zones are 
presented in Figures. 9a, b, c and d,  respectively. Formulae for zones II, III and IVare the 
same as those in Tables 1-4. In zone V, s=s3 instead of rarefaction wave sV. 

5. Results 

Let us first analyse the case where the fractional flow curves are independent of retained 
concentration, using the exact solution obtained in Section 4. We start by discussing convex 
fractional flow curves. 

Figure 7 shows the profiles of saturation, suspended and retained concentrations for three 
different filtration coefficients, and also for the cases with the particle-free water injection 
(c=0) and with the capture-free flow (λ=0) the profile correspond to the moment t=0.2. Here 
dimensionless wetting phase viscosity is (1+4c)/10; swi =0.2 and snr =0.3. The relative phase 
permeability for wetting and non-wetting phases correspond to segregated flow of immiscible 
fluids in homogeneous reservoir [Barenblatt et al., 1989] 0.75(s-swi)/(1-snr-swi), 0.75(1-snr-s)/ 
(1-snr-swi). The corresponding fractional flow curves and flux function for lifting equation and 
shown in Figures. 6a and 6b, respectively. 

For one-phase flow, the c-jump trajectory coincides with the water-particle trajectory, i.e. it is 
independent of filtration coefficient. So, c-jump speed is equal to one, and it propagates in the 
overall porous space. For convex fractional flow functions, velocity of water f/s is higher  
than water velocity for a single-phase flow, which is equal to one. Other c- and s-fronts in 
Figures 7a and 7b are significantly ahead of the position x=0.2 of c-front for a single-phase 
flow, since those fronts propagate in water-filled fraction of the porous space.  

In Figures 7, two-phase suspension-colloidal flow is compared with the case of particle-free 
water injection (c=0, black curve for s-profile), and also with the case where particles are not 
captured (λ=0, brown curves for s- and c-profiles). For the particle-free water injection, the 
problem degenerates into solution of one equation (16) subject to initial and boundary 
conditions (21, 22) with c=σ=0. The Riemann solution for this problem is self-similar and 
given by the rarefaction wave sJ-sI along the curve c=0 [Barenblatt et al., 1989; 
Bedrikovetsky, 1993]. If the suspended concentration does not affect the fractional flow, the 
saturation s(x, t) for suspension injection is the same as that with the particle-free water 
injection. In this case, the solution also contains c-shock 5→5 with the concentration jump 
from one to zero (this case is denoted as c=0+ in the legends to Figures 7). The profile of this 
c-shock is shown in black in in Figures 7b; its breakthrough is shown in Figures 7e also in 
black. The capture-free solution corresponds to σi=0 in system (16-18).The Riemann solution 
is also self-similar and is given by the rarefaction wave sJ-2 at c=1, jump 2→3 and 
rarefaction 3-sI at c=0 (see Figures 6a and 6b). The corresponding profiles and breakthrough 
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curves are presented in Figure 7 in brown. Blue, red and green curves correspond to the 
increasing filtration coefficient.  

The penetration depths of retained and suspended particles for single- and two-phase flows 
for different filtration coefficients are presented in Figure 8. The retention depth for two-
phase flow is given by the following formula 

( ) ( ) ( ) ( ) ( )
1

0 0

, , , ,x t x x t s x t dx x t s x t dxσ σ σ
−∞ ∞ 

=  
 

∫ ∫                  (91) 

Changing the retained concentration σ(x,t) to suspended concentration c(x,t) in eq (91) results 
in the definition of the suspension penetration depth xc(t). Exact solution for a single-phase 

deep bed filtration (s=1) shows that at t→∞ both depths xc and xσ tend to 1/λ [Herzig et al., 

1970]. For two-phase flow, saturation tends to sJ, so the limits for xc and xσ also tend to 1/λ. 
In Figure 8, red and blue continuous and dotted curve tend to the same limit. 

Now let us discuss more common S-shaped fractional flow curves, corresponding to concave 
relative permeability, which is typical for core-scale [Barenblatt et al., 1989]. Figures 6a and 
9a show that in this case the shock 3→sI substitutes the rarefaction wave 3-sI for the capture-
free particle transport. The decay configuration for the particle-free water injection becomes 
sJ-2→3→sI (Figure 9a). Here relative phase permeability for wetting and non-wetting phases 
are 0.75((s-swi)/(1-snr-swi))

2 and 0.75((1-snr-s)/ (1-snr-swi))
2, other coefficients are the same as 

in the previous example [Barenblatt et al., 1989]. Figures 10 a, b and c present the calculated 
saturation and concentration profiles; the breakthrough histories of water flux and 
concentration are presented in Figures 10d and e.   

Now consider the effect of formation damage coefficient on two-phase suspended-colloidal 

flow. In this case, the fractional flow depends on saturation and both concentrations c and σ. 
Intermediate values of retained concentration are considered, so the Langmuir filtration 
function (13) is assumed. The auxiliary solution is taken from Example 5. The following data 
are used for calculations: initial filtration coefficient λ0=7, maximum retention concentration 

σmax=1. Relative permeability for non-wetting phase is the same as in the previous example. 

For wetting phase, the relative permeability from the previous example is divided by 1+4σ. 

The exact solution for auxiliary problem is given by formulae (75) and (76). The lifting 
problem (78) is solved numerically using the computer code presented by Shampine, [2005] 
and available from http://faculty.smu.edu/shampine/current.html, which implements the 
second order Richtmyer's two-step variant of the Lax-Wendroff method. The software was 
compared with the MATLAB-based numerical method of characteristics. The ordinary 
differential equations (78), which are the characteristic form of the lifting equation (29) have 
been solved by the fifth order Runge-Kutta method with a variable time step (MATLAB, 
Version 7.10.0499). The coincidence of the results calculated by two different codes has been 
observed.   
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Figure 11 presents the saturation and concentration profiles for the above-described case of c- 
and σ-dependencies of the fractional flow curve. As in the previous example, the fractional 

flow curve is S-shaped. The phase portraits of characteristic lines and the flow zones in (x,ϕ)- 
and (x,t)-planes are the same as that shown in Figure 9a,b.  The two-phase bank without 
particles (c=0) follow the water-breakthrough front. The solution contains one s-shock and 
one c-shock. The higher is the formation damage coefficient the lower is the water velocity 
and the lower is the fractional flow. So, the increase in formation damage coefficient delays 
both s- and c-fronts and reduces water-flux after the particle breakthrough, as it is shown in 
Figures 11 a, b.  The formation damage coefficient increase causes also increase in saturation 
at the late stage with more complete displacement by less mobile phase with reduced relative 

permeability. The saturation profile behind the c-jump change the form from concave at β=20 

to convex at β=2000. Figure 11 shows the early stage profile at t=0.1. After reaching the 

maximum retention value σ=100, the retention profile stabilises, and the breakthrough 
concentration is equal one. 

During waterflooding of oilfields, the recovery factor is the ratio between the produced and 
initial oil in the reservoir 

( ) ( ) ( )
1

1

0

, 1wi wiRF t s x t dx s s
− 

= − − 
 
∫                (92) 

Solid particles and oleic droplets are always present in the injected water. For the previous 
example, Figure 12 shows that the formation damage coefficient enhances the recovery 
factor. The higher is the formation damage coefficient, the lower is the aqueous phase 
velocity and, consequently, the higher is the oil flux 1-f.   

6. Summary and Discussions 

The mathematical model for two-phase suspended-colloidal flow with the multiple particle-
capture mechanisms and water deceleration by the retained particles exhibits several 
competitive effects. The particle capture decreases the suspended concentration and aqueous 
phase viscosity, yielding the enhanced water mobility, while the particle retention decreases 
relative permeability for water causing its mobility reduction. The suspended concentration 
reduction due to particle capture and water acceleration due to its viscosity reduction are also 
competitive factors. The analytical modelling allows for detailed investigation of this 
complex behavior.  

The system of two-phase suspension transport with m particle retention mechanisms consists 
of m+2 equations. It was found out that introduction of the stream function (25) and using it 
as an independent variable instead of time separates (m+1)×(m+1) auxiliary equations with 
unknowns c, σ1…σm from one scalar lifting equation for unknown saturation s. The auxiliary 
system has m-1 first integrals and can be reduced to system 2×2 for unknown overall retained 
concentration and suspended concentration; this 2×2 auxiliary problem with uniform initial 
and boundary data allows for exact solution.  
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The solution exhibits the following flow zone structure: the undisturbed zone with initial 
saturation and no particles is followed by the particle-free two-phase bank with enhanced 
saturation; then follows the concentration front with saturation increasing up to the core inlet. 
Suspension concentration jumps across the concentration front while all retained 
concentrations corresponding to all different retention mechanisms are continuous. In the 
case of convex fractional flow, the particle-free two-phase bank enters the undisturbed zone 
by the continuous simple wave and zone with maximum saturation expands from the core 
inlet. For S-shaped fractional flow, the saturation front separates the particle-free two-phase 
bank and undisturbed zone; the maximum-saturation zone adjacent to the core inlet may 
disappear. So, the solution always contains c-jump; it also contains the fast s-shock in the 
wide-spread case of an S-shape fractional flow. 
 
Consider the case of small retained concentrations, which corresponds either to constant 
filtration coefficients or small flow times. However, the effect of retained concentration on 
relative permeability for aqueous phase is accounted for. The solution shows that the 
suspension concentration is zero ahead of the concentration front; it instantly becomes 
steady-state in any reservoir point behind the front after the front pass this point. All retained 
concentrations are proportional to the amount of particles that pass this point; the 
proportionality coefficient for each retained concentration is the corresponding filtration 
coefficient. 
 
The above quantitative observations are important for interpreting the breakthrough data 
during laboratory experiments and production data from the field tests. 
 

The formation damage coefficients βk exhibit a significant variation depending on the particle 
capture mechanism. In the case of size exclusion, even small amounts of retained fines yield 
a significant permeability reduction, so the formation damage coefficient is high [Civan, 
2010; Bedrikovetsky et al., 2011]. If the particle attachment results in the grain coating, the 
permeability variation is negligible [Civan, 2015]. Yet, in the case of dendritic growth of the 
attached particles, the formation damage coefficient is high. Gravity segregation of fine 
particles yields low permeability decline. For diffusion of particles into the stagnant flow 
zones, the formation damage coefficient can be assumed to be zero.      
In the case of negligible formation damage coefficients, where the effect of retained 
concentration on relative permeability for aqueous phase is not accounted for, the lifting 
equation allows for exact solution. The formulae are presented in the Tables 1-4. Otherwise, 
the lifting problem is solved numerically.   

Let us analyse the effects of particle capture on the suspension-colloidal flow. The higher is 
the filtration coefficient, the lower is the suspended concentration, the smaller is the aqueous 
phase viscosity the higher is the fractional flow and the higher is its velocity. The increase of 
filtration coefficient increases the fractional flow. It results in the increase of c-shock speed 
2→3, in the decrease of saturation behind the front and increase of saturation ahead of the 
front (Figures 6a, b). In Figure 7b, the c-shocks in order of decreasing their speed are green, 
red, blue and brown; it corresponds to the decrease in filtration coefficient. The c-profile 
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curves correspond to the same sequence of suspended concentration increase. The higher is 
the filtration coefficient the lower is the breakthrough moment due to water viscosity increase 
(Figure 7e). The water viscosity is lowest for the case c=0, so the black c-profiles in Figure 7 
b are ahead of all other profiles. The effects of water flux delay with decreasing of filtration 
coefficient are shown in Figure 7a for saturation profile and in Figure 7d for water flux 
breakthrough. The higher is the filtration coefficient, the faster is the concentration front and 
the higher is the retention profile (Figure 7c). Since the suspension concentration is steady-
state behind the concentration front, the breakthrough concentration is constant (Figure 7e).   

The propagation depths xc and xσ increase with time. For the constant filtration coefficient in 

two and one phase flow as time tends to infinity xc and xσ tend to the same limit 1/λ (Figure 

8). Both lengths xc and xσ propagate faster for two-phase flow, since the particles are 
transported by water that occupies only a fraction of porous space in the case of two-phase 
flow, while the particles occupy the overall space during the one-phase transport.  

The propagation depths xc(t) and xσ(t) decrease as filtration coefficient increases, due to 
suspension concentration reduction. However, the filtration coefficient increase causes 
increase of aqueous phase velocity and deeper particle penetration. The propagation depths 
curves for larger λ in Figure 8 are located below those for lower λ. So, the effect of 
suspension concentration reduction dominates over the water acceleration effect. 

In the case of more common S-shaped fractional flow, the fractional flows curves, the lifting 
density-flux curves along with characteristic lines and different flow zones in planes (x,ϕ) 
and (x,t) are presented in Figures 9a, b, c and d, respectively. Both fractional flow function 
and the flux function for the lifting equation have an inflection point; both curves are concave 
in the interval between the inflection point and point I. Therefore, the centred wave in zone V 
in the convex case is replaced by a s-shock; saturation profiles in Figure 10a exhibit two 
jumps while the profiles in Figure 7a continuously tend to sI ahead of the c-s-shock. The 
breakthrough water flux histories in Figure 10d have two shocks while those in Figure 7d 
exhibit only one jump.  

The S-shaped fractional flow curve is assumed to have zero derivative at the point sJ, so zone 
I disappears (Figures 6 and 9, c and d). The formulae for zones I-IV are the same as those in 
Tables 1-4. In zone V, s=s3 instead of rarefaction wave sV(x,t).  

The qualitative observations about the forms and dynamics of saturation and concentration 
profiles and histories are useful for interpretation of the laboratory coreflood data and for the 
analysis of field data. The saturation and concentration profiles are important for selection of 
the drilling fluid causing minimum formation damage in artesian, geothermal and oil wells. 
The retention profiles allow selecting the perforation depths with re-perforation of the 
damaged wells; they also permit the definition of the acid volume for the damage removal. 
The penetration depths facilitate interpretation of simultaneous shallow and deep electrical 
logging.   
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The paper discusses initial connate water saturation in the reservoir. For higher initial 
saturation, solution for particle-free injection corresponds to rarefaction wave sJ-s(x,0). If 
s(x,0)>s3, the solution for the capture-free injection contains shock 3→s(x,0) instead of 
rarefaction wave 3-sI. The speculations about the competition between filtration and 
formation damage coefficients with regards to their effects on fractional flow with 
consequent alternation of two-phase flux remain the same for any initial saturation. 

So far, the suspended-colloidal injection into clean bed, corresponding to initial and boundary 
conditions (21, 22) has been discussed in the paper. Fine particle detachment with further 
fines migration and capture corresponds to the same system (16-19) [Civan, 2010; 
Bedrikovetsky et al., 2011] subject to another initial and boundary conditions: 
 

10 : 1, ... 0; 0 : 0nt c x cσ σ= = = = = = =                   (93) 

 
The developed splitting procedure allows for exact solution derivations for the process of 
natural reservoir fines migration and retention too. It permits the analysis of the effects of 
suspended and retained particles on two-phase flow in porous media.  
 
The developed splitting procedure is also applied to two-phase colloidal-suspension transport 
in axi-symmetric geometry, allowing analyzing particle propagation and permeability damage 
during the injection into vertical well. 
 
The work considers the particles wetted by either of phases, assuming that the wetted phase 
transports the particles [Civan, 2010]. The mixed-wet particles are transported by the water-
air menisci, where the model must involve the flux and density of the phase interface 
[Hassanizadeh and Gray, 1993; Zhang et al., 2013, 2014; Shapiro, 2015].  

One-dimensional (x, t)-flow is discussed. It corresponds to laboratory coreflood and injection 
into fractured well. It also describes the situation of injection with the “line” like irrigation or 
seawater invasion into aquifers. Besides, the one-dimensional exact solutions obtained can be 
applied for three-dimensional reservoir simulation using the stream-line or front-tracking 
technique [Oladyshkin, Panfilov, 2007; Holden, Risebro, 2013]. 

7. Conclusions 

The analytical modelling of two-phase suspension-colloidal flow in porous media allows 
drawing the following conclusions: 

1. Using the stream-function as an independent variable instead of time in the 
(m+2)×(m+2)-system of two-phase suspension-colloidal flow with m different retention 
mechanisms, splits the system into auxiliary (m+1)×(m+1)-system and one scalar lifting 
equation. The auxiliary problem allows for exact solution.  

2. In the case of small retention concentrations, the suspended concentration is zero 
ahead of the particle motion front and instantly become steady-state after the front passes a 
given reservoir point; the breakthrough suspended concentration is constant. The retained 
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concentration is proportional to the amount of particles that pass this point; the 
proportionality coefficient is the filtration coefficient.  

3. In the case of negligible formation damage coefficients, the lifting equation is solved 
analytically. 

4. The larger are the filtration coefficients the faster move the concentration-saturation 
front, the lower is the breakthrough saturation the higher are retained concentrations and the 
lower is the breakthrough concentration.  

5. At finite times, the particle penetration depth is higher for two-phase flows than for a 
single-phase transport. The maximum penetration depths for suspended and retained particles 
are the same and equal to inverse to filtration coefficient; i.e. they are the same for two-phase 
and one-phase transport.  

6. For S-shaped fractional flow function, the particle-free two-phase flux with 
intermediate saturation follows the un-disturbed zone with initial saturation and the saturation 
front, while the saturation decreases continuously ahead of c-front until sI for a convex 
fractional flow. 

7. Increase in formation damage coefficient delays s- and c-shocks and decrease water 
flux behind the c-front. It increases saturation at the late stage of suspension-colloidal 
injection. In the case of waterflooding in oilfield, the Increase in formation damage 
coefficient results in delay of water breakthrough, and increase of oil production during 
arrival of particle-free oil-water bank and sometime after particle breakthrough. It also yields 
more complete displacement at the late stage of the suspension-colloidal injection. 

Acknowledgements. The authors thank Prof. A. Roberts for multiple fruitful discussions. 

References 

Alvarez, A. C., G. Hime, D. Marchesin, and P. G. Bedrikovetsky (2007), The inverse problem of 
determining the filtration function and permeability reduction in flow of water with particles in porous 
media, Transport in Porous Media, 70(1), 43-62. 

Araújo, J. A., and A. Santos (2013), Analytic model for DBF under multiple particle retention 
mechanisms, Transport in porous media, 97(2), 135-145. 

Barenblatt, G. I., V. M. Entov, and V. M. Ryzhik (1989), Theory of fluid flows through natural rocks, 
Kluwer Academic Publishers, London. 

Bedrikovetsky, P. (1993), Mathematical theory of oil and gas recovery: with applications to ex-USSR 
oil and gas fields, Kluwer Academic, Boston. 

Bedrikovetsky, P. (2008), Upscaling of stochastic micro model for suspension transport in porous 
media, Transport in Porous Media, 75(3), 335-369. 

Bedrikovetsky, P., F. D. Siqueira, C. A. Furtado, and A. L. S. Souza (2011), Modified particle 
detachment model for colloidal transport in porous media, Transport in porous media, 86(2), 353-383. 

Benson, S. M., A. F. White, S. Halfman, S. Flexser, and M. Alavi (1991), Groundwater contamination 
at the Kesterson Reservoir, California: 1. Hydrogeologic setting and conservative solute transport, 
Water resources research, 27(6), 1071-1084. 



152 

 

Borazjani, S., A. Roberts, and P. Bedrikovetsky (2016), Splitting in systems of PDEs for two-phase 
multicomponent flow in porous media, Applied Mathematics Letters, 53, 25-32. 

Bradford, S. A., S. Torkzaban, and J. Simunek (2011), Modeling colloid transport and retention in 
saturated porous media under unfavorable attachment conditions, Water Resources Research, 47(10). 

Bradford, S. A., S. Torkzaban, H. Kim, and J. Simunek (2012), Modeling colloid and microorganism 
transport and release with transients in solution ionic strength, Water Resources Research, 48(9). 

Bradford, S. A., S. Torkzaban, and A. Shapiro (2013), A theoretical analysis of colloid attachment and 
straining in chemically heterogeneous porous media, Langmuir, 29(23), 6944-6952. 

Braginskaya, G., and V. Entov (1980), Nonisothermal displacement of oil by a solution of an active 
additive, Fluid Dynamics, 15(6), 873-880. 

Chrysikopoulos, C. V., V. I. Syngouna, I. A. Vasiliadou, and V. E. Katzourakis (2012), Transport of 
pseudomonas putida in a 3-D bench scale experimental aquifer, Transport in porous media, 94(3), 
617-642. 

Civan, F. (2010), Non-isothermal permeability impairment by fines migration and deposition in 
porous media including dispersive transport, Transport in porous media, 85(1), 233-258. 

Civan, F. (2015), Reservoir formation damage, Gulf Professional Publishing. 

Dagan, G., A. Bellin, and Y. Rubin (1996), Lagrangian analysis of transport in heterogeneous 
formations under transient flow conditions, Water Resources Research, 32(4), 891-899. 

Elimelech, M., J. Gregory, and X. Jia (2013), Particle deposition and aggregation: measurement, 
modelling and simulation, Butterworth-Heinemann. 

Entov, V., and A. Zazovskii (1989), Hydrodynamics of Enhanced Oil Recovery Processes, Nedra, 
Moscow. 

Fayers, F. (1962), Some theoretical results concerning the displacement of a viscous oil by a hot fluid 
in a porous medium, Journal of Fluid Mechanics, 13, 65-76. 

Hassanizadeh, S. M., and W. G. Gray (1993), Thermodynamic basis of capillary pressure in porous 
media, Water Resources Research, 29(10), 3389-3405. 

Herzig, J., D. Leclerk, and P. Legoff (1970), Flow of suspensions through porous media, Industrial 
and Engineering Chemistry, 62(5), 8-35. 

Holden, H., and N. H. Risebro (2013), Front tracking for hyperbolic conservation laws, Springer. 

Honarpour, M., F. Koederitz, and A. Herbert (1986), Relative permeability of petroleum reservoirs. 

Johansen, T., and R. Winther (1988), The solution of the Riemann problem for a hyperbolic system of 
conservation laws modeling polymer flooding, SIAM journal on mathematical analysis, 19(3), 541-
566. 

Katzourakis, V. E., and C. V. Chrysikopoulos (2014), Mathematical modeling of colloid and virus 
cotransport in porous media: Application to experimental data, Advances in Water Resources, 68, 62-
73. 



153 

 

Katzourakis, V. E., and C. V. Chrysikopoulos (2015), Modeling dense-colloid and virus cotransport in 
three-dimensional porous media, Journal of Contaminant Hydrology. 

Krevor, S., R. Pini, L. Zuo, and S. M. Benson (2012), Relative permeability and trapping of CO2 and 
water in sandstone rocks at reservoir conditions, Water Resources Research, 48(2). 

Kuhnen, F., K. Barmettler, S. Bhattacharjee, M. Elimelech, and R. Kretzschmar (2000), Transport of 
iron oxide colloids in packed quartz sand media: monolayer and multilayer deposition, Journal of 
Colloid and Interface Science, 231(1), 32-41. 

Kuo, C.-W., and S. M. Benson (2015), Numerical and analytical study of effects of small scale 
heterogeneity on CO 2/brine multiphase flow system in horizontal corefloods, Advances in Water 
Resources, 79, 1-17. 

LaForce, T., and K. Jessen (2010), Analytical and numerical investigation of multicomponent 
multiphase WAG displacements, Computational Geosciences, 14(4), 745-754. 

LaForce, T., K. Jessen, and F. M. Orr Jr (2008), Four-component gas/water/oil displacements in one 
dimension: Part I. structure of the conservation law, Transport in Porous Media, 71(2), 199-216. 

Lake, L. W. (1989), Enhanced oil recovery, Prentice Hall: Englewood Cliffs, NJ. 

Landau, L. D., and E. M. Lifshitz (1987), Fluid mechanics, Elsevier, Oxford. 

Lin, H.-K., L. P. Pryadko, S. Walker, and R. Zandi (2009), Attachment and detachment rate 
distributions in deep-bed filtration, Physical Review E, 79(4), 046321. 

MATLAB version 7.10.0. Natick, Massachusetts: The MathWorks Inc., 2010. 

Mijic, A., T. C. LaForce, and A. H. Muggeridge (2014), CO2 injectivity in saline aquifers: The impact 
of non‐Darcy flow, phase miscibility, and gas compressibility, Water Resources Research, 50(5), 
4163-4185. 

Mitropoulou, P. N., V. I. Syngouna, and C. V. Chrysikopoulos (2013), Transport of colloids in 
unsaturated packed columns: Role of ionic strength and sand grain size, Chemical Engineering 
Journal, 232, 237-248. 

Molnar, I. L., W. P. Johnson, J. I. Gerhard, C. S. Willson, and D. M. O'Carroll (2015), Predicting 
colloid transport through saturated porous media: A critical review, Water Resources Research, 51(9), 
6804-6845. 

Oladyshkin, S., and M. Panfilov (2007), Streamline splitting between thermodynamics and 
hydrodynamics in a compositional gas–liquid flow through porous media, Comptes Rendus 
Mécanique, 335(1), 7-12. 

Payatakes, A., R. Rajagopalan, and C. Tien (1974), Application of porous media models to the study 
of deep bed filtration, The canadian journal of chemical engineering, 52(6), 722-731. 

Perrin, J.-C., and S. Benson (2010), An experimental study on the influence of sub-core scale 
heterogeneities on CO2 distribution in reservoir rocks, Transport in porous media, 82(1), 93-109. 



154 

 

Pires, A. P., P. G. Bedrikovetsky, and A. A. Shapiro (2006), A splitting technique for analytical 
modelling of two-phase multicomponent flow in porous media, Journal of Petroleum Science and 
Engineering, 51(1), 54-67. 

Polyanin, A. D., and V. F. Zaitsev (2003), Handbook of nonlinear partial differential equations, CRC 
press, Boca Raton. 

Polyanin, A. D., and A. V. Manzhirov (2006), Handbook of mathematics for engineers and scientists, 
CRC Press, Boca Raton, London. 

Pope, G. A. (1980), The application of fractional flow theory to enhanced oil recovery, Society of 
Petroleum Engineers Journal, 20(03), 191-205. 

Rhee, H., R. Aris, and N. R. Amundson (2001), First-order Partial Differential Equations: Theory and 
application of hyperbolic systems of quasilinear equations, Dover publications, INC., New York. 

Santos, A., and J. Araújo (2015), Modeling Deep Bed Filtration Considering Limited Particle 
Retention, Transport in Porous Media, 1-16. 

Schmid, K., S. Geiger, and K. Sorbie (2011), Semianalytical solutions for cocurrent and 
countercurrent imbibition and dispersion of solutes in immiscible two‐phase flow, Water Resources 
Research, 47(2). 

Shampine, L. (2005), Solving hyperbolic PDEs in MATLAB, Applied Numerical Analysis and 
Computational Mathematics, 2(3), 346. 

Shapiro, A. A. (2007), Elliptic equation for random walks. Application to transport in microporous 
media, Physica A: Statistical Mechanics and its Applications, 375(1), 81-96. 

Shapiro, A. A. (2015), Two-Phase Immiscible Flows in Porous Media: The Mesocopic Maxwell–
Stefan Approach, Transport in Porous Media, 107(2), 335-363. 

Sharma, M., and Y. Yortsos (1987), Transport of particulate suspensions in porous media: model 
formulation, AIChE Journal, 33(10), 1636-1643. 

Syngouna, V. I., and C. V. Chrysikopoulos (2013), Cotransport of clay colloids and viruses in water 
saturated porous media, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 416, 56-
65. 

Tikhonov, A. N., and A. A. Samarskii (1990), Equations of mathematical physics, Courier 
Corporation, Dover, New York. 

Tufenkji, N., and M. Elimelech (2004), Correlation equation for predicting single-collector efficiency 
in physicochemical filtration in saturated porous media, Environmental science & technology, 38(2), 
529-536. 

Wagner, D. H. (1987), Equivalence of the Euler and Lagrangian equations of gas dynamics for weak 
solutions, Journal of differential equations, 68(1), 118-136. 

You, Z., P. Bedrikovetsky, and L. Kuzmina (2013), Exact solution for long-term size exclusion 
suspension-colloidal transport in porous media, paper presented at Abstract and Applied Analysis, 
Hindawi Publishing Corporation. 



155 

 

Yuan, H., and A. A. Shapiro (2010), Modeling non-Fickian transport and hyperexponential deposition 
for deep bed filtration, Chemical Engineering Journal, 162(3), 974-988. 

Yuan, H., A. Shapiro, Z. You, and A. Badalyan (2012), Estimating filtration coefficients for straining 
from percolation and random walk theories, Chemical Engineering Journal, 210, 63-73. 

Zhang, Q., S. Hassanizadeh, N. Karadimitriou, A. Raoof, B. Liu, P. Kleingeld, and A. Imhof (2013), 
Retention and remobilization of colloids during steady‐state and transient two‐phase flow, Water 
Resources Research, 49(12), 8005-8016. 

Zhang, Q., S. Hassanizadeh, B. Liu, J. Schijven, and N. Karadimitriou (2014), Effect of 
hydrophobicity on colloid transport during two‐phase flow in a micromodel, Water Resources 
Research, 50(10), 7677-7691. 

  



156 

 

 

                     

Figure 1. Schema of particle capture and placing in the porous space during suspension 
transport: (a) different mechanisms of particle capture pores, (b) suspension and retained 
particles in porous media   

Figure 2. Mapping Κ: (x,t)→(x,ϕ) using a stream function ϕ(x,t): (a) initial and boundary 

conditions in the plane (x, t); (b) mapped initial and boundary conditions in the plane (x, ϕ); 
(c) geometric relationships between the speeds D in general system and V in the auxiliary 
system   
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Figure 3. Density G and flux F in the lifting equation for different suspended and retained 
concentrations; path –sJ-2→3→I corresponds to self-similar solution for two-phase capture-
free flow 

 

 

Figure 4. The solutions of the auxillary and lifting systems 

   

Figure 5. Elementary waves, projection and lifting for auxiliary and general systems 
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Figure 6. Exact solution for the case of concave fractional flow function, which is 
independent of retained concentrations: (a) graphical solution in the plane of fractional flow 
curves; (b) the solution representation in the plane (G,F) of the density and flux for the lifting 

equation; (c) five-zone solution in (x,ϕ) plane, (d) shocks and characteristics in (x,t) plane  
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Figure 7. Saturation and concentration profiles and histories as obtained from the exact 
solution for different filtration coefficients λ in the case of negligible formation damage 
coefficients and concave fractional flow: (a) water saturation profiles at the moment t=0.2, 
(b) suspended particle concentration profiles, (c) retained particle concentration profiles, (d) 
water flux breakthrough at x=1, (e) breakthrough concentration.  
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Figure 8. The penetration depths for suspension and retained particles (xc and xσ) with a 
single- and two-phase flows and different filtration coefficients 

 

 

Figure 9. Exact solution for the case of S-shaped fractional flow function that is independent 
of retained concentration: (a) presentation of solution in the plane of fractional flow curves; 
(b) solution in the plane of density and flux for the lifting equation; (c) five-zone solution in 

(x,ϕ) plane, (d) six-zone solution in (x,t) plane  
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Figure 10. Saturation and concentration profiles and histories as obtained from the exact 
solution for different filtration coefficients λ for S-shape fractional flow, which is 
independent of particle retention concentration (a) water saturation profiles at the moment 
t=0.2, (b) retained particle concentration and (c) suspended particle concentration profiles for 
three different λ at t=0.2 (d) water flux breakthrough at x=1 (e) concentration breakthrough 
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Figure 11. Effects of formation damage coefficient β on two-phase suspension-colloidal flow 
with the Langmuir blocking function for the particle capture (a) saturation profiles for 

different β for t=0.1, (b) suspended particle concentration, (c) retained concentration profiles  

 

 

 

Figure 12. Effect of formation damage coefficient β on recovery factor, for the case of the 
blocking filtration function 
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Table 1. Exact solution of the auxiliary and lifting problems in (x, ϕ)-plane   

Zones  c σ s characteristic 
I xc e λ−=

 

xe λσ λϕ −=
 

Js  ( ) ( ) 1

0

0

, ,
x

J u J u
ss e f s e duλ λϕ ϕ
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II xc e λ−=
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( ),IIs x ϕ  ( ) ( )( ) ( ) ( )( ) 1
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, ,
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II s IIs u c u f s u c u duϕ
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( ),IIIs x ϕ
 

( ) ( )( ) ( ) ( )( ) 1

0

, ,
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III s III
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s u c u f s u c u duϕ
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( ) ( ) ( ) ( )
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0
0

,0 ,0 , , ,0s IVs f s s x s x
x x

ϕ ϕ
−+ + + ′= ∆ = −

 
V 0c =  0σ =  ( ),Vs x ϕ  ( ) ( ) 1

,0 ,0V s Vs f s
x

ϕ −′= ∆     

 

Table 2. Five flow zones in (x, ϕ)-plane for the solution of auxiliary and lifting problems  

Zones  domain 
I ( ) ( ) 1
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x

J u J u
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Table 3. Exact solution in (x, t) plane after the inverse mapping   
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Table 4. Six flow zones in (x, t)-plane for the solution of 1-d flow problem  
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Nomenclature  
c Concentration of particles suspended in aqueous phase 
D Front velocity in (x, t) coordinates 

dc Average grain diameter 

f Fractional flow for wetting phase  
F Density in lifting equation 
G Flux in lifting equation 
k Absolute permeability, L2 
kr Relative permeability 
L Reservoir size, L 
u Flow velocity, LT-1 
U Overall flow velocity, LT-1 
p Pressure 
s Saturation 
t Time  
V Front velocity in (x, ϕ) coordinates 
x Coordinate 
RF Recovery factor 
 
Greek letters 

 

α Attachment efficiency 
β Formation damage coefficient 
λ Filtration coefficient, L-1 
η0 Single collector contact efficiency 
µ Viscosity, ML-1T-1 
σ Concentration of retained particles 
ρ Density, ML-3 
 φ Porosity  
ϕ Stream function 
Φ Retention concentration potential 
  
Subscripts  
n Non wetting phase 
w Wetting phase 
 
Superscript 

 

I Initial value 
J Injected value 
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The paper investigates the system of PDEs for two-phase n-component flow in
porous media consisting of hyperbolic terms for advective transport, parabolic terms
of dissipative effects and relaxation non-equilibrium equations. We found that for
several dissipative and non-equilibrium systems, using the stream-function as a free
variable instead of time separates the general (n + 1) × (n + 1) system into an
n×n auxiliary system and one scalar lifting equation. In numerous cases, where the
auxiliary system allows for exact solution, the general flow problem is reduced to
numerical or semi-analytical solution of one lifting equation.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Consider one-dimensional two-phase multicomponent flow of water and oil in porous media. The in-
dependent dimensionless variables are linear co-ordinate 0 < x < 1 and time t > 0. We seek for water
saturation s(x, t), concentration of ith component in water ci(x, t) and non-equilibrium adsorbed concentra-
tions, āi(x, t). The system consists of mass conservation laws for water and each component, and of sorption
kinetics for each component:

∂s

∂t
+ ∂q

∂x
= 0, q = f (s, c, ā)


1 + εckro (s, c, ā) ∂J (s, c, ā)

∂x


(1)

∂ (cs+ ā)
∂t

+ ∂cq

∂x
= 0, c = (c1, . . . , ci, . . . , cn) , ā = (ā1, . . . āi, . . . , ān) , i = 1, 2 . . . , n (2)

εt
∂ā

∂t
= [a (c)− ā] f (s, c, ā) , a = (a1, . . . , ai, . . . , an) , ai = ai (c) , i = 1, 2, . . . , n (3)
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where q is the water flux, f is the fractional flow of water, kro is the relative permeability for oil, J is
the capillary pressure, εc and εt are the dimensionless groups for capillary pressure and delay, respectively
[1,2]. The functions f(s, c, ā), kro(s, c, ā), J(s, c, ā) and a(c) are known. Diffusion of components is neglected
in Eq. (2).

System (1)–(3) arises in numerous areas of chemical, petroleum and environmental engineering, in geology
and petroleum exploration. For large n, even a one-dimensional numerical solution is very cumbersome.
Therefore, analytical solutions for (1)–(3) are very useful in reservoir simulation, particularly in three-
dimensional stream-line and front-tracking models [1,3]. Matched asymptotic expansion solutions and also
recently developed semi-analytical methods for the system (1)–(3) with dissipation and non-equilibrium
(εc, εt ̸= 0) allow for significant acceleration of numerical computations [4,5].

At εc = εt = 0 (large scale approximation) the system (1)–(3) becomes hyperbolic; self-similar solutions
of the Riemann problems have been presented in numerous works [6–8]. Exact solutions for non-self-similar
initial–boundary problems with piecewise-constant values have been obtained by solving the interactions of
the Riemann configurations in [2,6]. Direct projection of the system (1)–(3) onto a one-phase system causes
splitting of the Riemann problems for (1)–(3) at εc = εt = 0 into those for an auxiliary n× n system and a
scalar lifting equation [8]. Pires et al. [9] showed that using the stream-function ϕ(x, t) as an independent
variable instead of time t

s = −∂ϕ
∂x

, f = ∂ϕ

∂t
, ϕ (x, t) =

 (x,t)

(0,0)
(fdt− sdx) (4)

results in the splitting for any initial–boundary value problems for εc = εt = 0. It significantly multiplies
the number of exact solutions and encompasses those obtained previously [9].

In this work, we develop a new splitting method for system (1)–(3) accounting for the dissipative and
non-equilibrium phenomena (εc, εt ̸= 0) along with derivation of new associated exact and semi-analytical
solutions (Sections 2 and 3). For the cases of exact auxiliary solutions, the splitting reduces the general
flow problem to the solution of one non-linear lifting equation. Exact solution of the inverse problem for the
system (1), (2) under thermodynamic equilibrium (Section 2.5) is obtained. Section 4 discusses two-phase
flows with inter-phase mass transfer.

2. Splitting for two-phase multi-component flow with equilibrium sorption

This section applies the splitting procedure to system (1)–(3) with εt = 0 and finite εc, which corresponds
to low velocities flows. In this case, all adsorbed concentrations are at equilibrium, ā = a(c).

2.1. Initial–boundary value problem

The initial saturation sR and concentrations cR at t = 0 are bounded functions of x. Inlet boundary water
flux qL and concentrations cL at x = 0 are bounded functions of t. Outlet boundary condition at x = 1
corresponds to saturation, for which the capillary pressure equals zero [4].

System (1)–(3) is parabolic with respect to unknown saturation s(x, t) and hyperbolic in the unknown
concentrations ci(x, t), i = 1, 2, . . . , n.

2.2. Splitting procedure

Introduce the stream-function ϕ with respect to the conservation law (1)

s = −∂ϕ
∂x

, q = ∂ϕ

∂t
, dϕ = qdt− sdx. (5)



S. Borazjani et al. / Applied Mathematics Letters 53 (2016) 25–32 27

Let us map system (1), (2) from independent variables (x, t) to (x, ϕ). Expressing dt from (5) and calculating
its differential yield the following expressions for Eq. (1) in (x, ϕ)-coordinates with the water flux q given by
the second equation (1)

∂F

∂ϕ
+ ∂G

∂x
= 0, G = 1

q
, F = −s

q
. (6)

Integrating Eq. (2) over any simply-connected domain in plane (x, t), applying Green’s theorem and using
(5) transform Eq. (2) to (x, ϕ)-coordinates:

∂a (c)
∂ϕ

+ ∂c

∂x
= 0. (7)

For constant initial data sR and cR, the initial conditions for Eqs. (6), (7) now apply along the straight line
ϕ = −sRx, x > 0.

The system for (n + 1) unknowns (s, c) is separated into the n × n auxiliary system (7) for unknown
c(x, ϕ) and one scalar parabolic lifting equation (6) with unknown s(x, ϕ). The auxiliary system (7) contains
functions a(c) only, whereas the lifting equation contains the hydrodynamic functions f(s, c, a), J(s, c, a)
and kro(s, c).

2.3. Solution of the auxiliary problem

The auxiliary system (7) is a hyperbolic system of conservation laws [10]. Initial and boundary conditions
with constant values correspond to a Riemann problem that allows for self-similar solutions: c(x, ϕ) =
C(ϕ/x). Solution of the initial–boundary problem with piecewise-constant values is obtained by interactions
of Riemann configurations, occurring in the points of discontinuity of initial and boundary values [2,11,12].

Consider the projection of a solution s(x, t), c(x, t) of system (1)–(3) onto the auxiliary solution c(x, ϕ).
As it follows from the mapping (5), the shock trajectory x0(t) with velocity D projects into the trajectory
x0(ϕ) with velocity V

1
V

= q

D
− s, D = dx0 (t)

dt
, V = dx0 (ϕ)

dϕ
. (8)

Lemma 1. Mass balance (Hugoniot–Rankine) conditions on a discontinuity for system (1)–(3) project onto
those for the auxiliary system (7).

Lemma 2. Lax’s stability conditions for discontinuities of system (1)–(3) project onto those for the auxiliary
system (7) [13].

Now let us introduce diffusion with corresponding Peclet number 1/εd into system (1)–(3) (see [2,5] for
detailed derivations). The system (1)–(3) becomes hyperbolic for εc = εt = εd = 0. A discontinuity in the
hyperbolic system is admissible if it is a limit of continuous solutions of the system (1)–(3) with εc, εt and
εd tending to zero. The admissibility of shocks in the auxiliary system corresponds to vanishing diffusion
and non-equilibrium effects.

Lemma 3. Admissibility conditions for a discontinuity of system (1)–(3) project on those for the auxiliary
system (7) [2,12].

Now let us discuss some cases where the auxiliary problem allows for exact solution.
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Example 1. Polymer slug injection with water drive corresponds to inlet boundary conditions for water flux
q(0, t) = 1 and for concentration c(0, t) = 1, t < t0 and c(0, t) = 0 for t > t0. The solution of the auxiliary
problem for any arbitrary adsorption isotherm is presented in [2,11].

Example 2. Rhee et al. [11] derive complete integration of the auxiliary system (7) for Langmuir adsorption
isotherms

ai = NiKici

1 +
n
j=1

Kjcj

, i = 1, 2, . . . , n (9)

where Ni are the saturation concentrations and Ki are the equilibrium constants. The system (7) becomes
strictly hyperbolic. Rarefaction waves for the auxiliary system (7), corresponding to eigenvalues pkω2

k are
dϕ

dx


ωk

= pkω
2
k, pk = 1

NkKk

n
i=1,k

ωi
NiKi

,

n
i=1

Kiai
NiKi − ωi

= 1 (10)

where pk and ωk are determined by second and third Eq. (10), respectively.

Consider the shock and rarefaction waves of the ith family, ωi = const. Consider a hyper-rectangle in Rn
with opposite vertices corresponding to Riemann problem values R and L. The solution of the Riemann prob-
lem corresponds to shocks and/or rarefactions along the rectangular sides. The problem of the interactions
of rarefaction waves allows for exact solution by the hodograph method. Therefore, any initial–boundary
problem with piecewise-constant data also allows for an exact solution.

Example 3. For the case of small concentrations ci, formula (9) gives ai ≈ NiKici; the rarefaction waves
degenerate into shocks, and the global solution degenerates into a sequence of n shocks with velocities
ϕ/x = NiKi [14,15].

For the above examples, the general (n+ 1)× (n+ 1) system (1), (2) is reduced to one parabolic lifting
equation (6), where the solutions of the auxiliary system (7), ci(x, ϕ), are already known.

2.4. Lifting solution and inverse mapping

In a general case, the lifting equation (6) can be solved either numerically or by matched asymptotic
expansions [4,16]. The inverse mapping (x, ϕ)→ (x, t) is determined by

t =
 (x,ϕ)

(0,0)

dϕ

q
+ sdx

q
(11)

where s(x, ϕ) is the solution of the lifting equation (6).

2.5. Solution of the inverse problem

Consider a laboratory experiment on injection of water with constant composition cL into a porous
medium with initial saturation sR and concentrations cR. The measurements of water flux q(1, t) and
breakthrough concentrations c(1, t) are carried out during the experiment. The inverse problem is the
determination of the adsorption isotherms a(c). The solution of the Riemann problem for the auxiliary
system for initial and boundary conditions cR and cL is self-similar, i.e. it is constant along each line ϕ/x =
const.
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Integration of Eq. (7) over the triangle, bounded by the contour Γ : (0, 0) → (1,−sR) → (1, ϕ) → (0, 0)
and applying Green’s theorem yields

0 =
�

Γ

cdϕ− a (c) dx = −cRsR − a (cR) +
 ϕ
−sR

c(1, u)du− c (1, ϕ)ϕ+ a (c (1, ϕ)) . (12)

It allows for explicit calculation of the sorption isotherm

a (c (1, ϕ)) = cRsR + a (cR)−
 t

0
c(1, u)q (u) du+ c (1, ϕ)ϕ, ϕ (1, t) =

 t
0
q (1, u) du+ sR. (13)

However, the solution of the inverse problem (13) involves only c-values, which are exhibited in the forward
solution of the Riemann problem. The solution of the inverse problem for a(c) does not use the direct
Riemann solution and is based on its self-similarity only.

3. Two-phase flow with non-equilibrium sorption and chemical reactions

This section considers two-phase flow at high velocities, where capillary pressure effects are negligible
(εc = 0), but thermodynamic equilibrium conditions are not valid anymore (εt > 0 is a finite value).

3.1. Two-phase multicomponent flow with non-equilibrium sorption

Eqs. (3) can be obtained from the system with finite delay [17,18] as first order approximation with
regard to small parameter εt; the zero order approximation corresponds to equilibrium sorption a(c). The
relaxation time is inversely proportional to hydrodynamic dispersion of the components, which in turn is
proportional to the velocity [2,4]. The dimensionless group εt is the ratio between the relaxation and flight
times.

The stream-function and mapping are defined by Eqs. (4). The lifting equation has the form (6), where
the density and the flux are

G = f−1 (s, c, ā) , F = −sf−1 (s, c, ā) . (14)

The auxiliary 2n× 2n system is hyperbolic with n zero-speed characteristics
∂ā

∂ϕ
+ ∂c

∂x
= 0, εt

∂ā

∂ϕ
= a (c)− ā. (15)

The Goursat values ā at x = 0 are obtained from inlet boundary conditions for c(0, ϕ) and kinetics
equations (15) [19].

Lemma 4. Goursat conditions for the general system (1)–(3) with εc = 0 project into those for auxiliary
system (15).

Example 4. The auxiliary system is linear for small concentrations, that is, ai = Γijcj for some matrix Γij ,
and is solved using Green’s functions [15]. The lifting equation is hyperbolic. Despite the lifting solution
being discontinuous, the mapping (4) is continuous.

3.2. Two-phase multicomponent flow with chemical reactions between salt components and rock

Consider r non-equilibrium reversible chemical reactions between the ith component in aqueous solution
(ci) and that adsorbed on the clay (āi) with the following stoichiometry

n
i=1

vciαci +
n
i=1

vaiαāi = 0, α = 1, 2, . . . , r (16)
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where νciα and νaiα are the stoichiometric coefficients of suspended and adsorbed component i in reaction α,
respectively [2,11]. The reaction kinetics of component i involved in nk reactions, is given by the active mass
law

εt
∂āi
∂t

=
nk
α=1


Kfα

n
i=1

(ci)ν
c

iα (āi)ν
a

iα −Kbα
n
i=1

(ci)ν
c

iα (āi)ν
a

iα


f, i = 1, 2, . . . , n. (17)

Here, the reaction kinetics coefficients are assumed to be proportional to the flow velocity; therefore, Kfα
and Kbα are the forward and backward reaction rate constants for reaction α, divided by the flow velocity.

The equations for conservation of water and component masses (1) and (2) for εc = 0 hold. Introduction
of the stream-function (4) yields the lifting equation (6) with density and flux (14); the auxiliary system
consists of conservation laws first equation (15) and the kinetics equation

εt
∂āi
∂ϕ

=
nk
α=1


Kfα

n
i=1

(ci)ν
c

iα (āi)ν
a

iα −Kbα
n
i=1

(ci)ν
c

iα (āi)ν
a

iα


, i = 1, . . . , n. (18)

At low flow velocities, εt tends to zero. The system becomes equivalent to Eqs. (1), (2) with sorption
isotherms a = a(c) expressed from (17) for εt = 0. The splitting mapping in this case is given by Eq. (5).

4. Two-phase flow with inter-phase mass transfer

Mass balance equations for two-phase flow, where n components are distributed between the aqueous and
oil phases are

∂Ci
∂t

+ ∂Fi
∂x

= 0, Ci = cis+ yi (1− s) , Fi = ciq + yi (1− q) , i = 1, 2, . . . , n− 1 (19)

where concentrations c1, c2 . . . cn−1 and y1 are thermodynamic functions of concentrations y2, y3 . . . yn−1
and q is given by second equation (1). The (n − 1) × (n − 1) system (19) defines unknowns y2, y3 . . . yn−1
and s [2,20].

Introduction of the thermodynamic variables αi and βi

αi (c2 . . . cn−1) = ci − yi
c1 − y1

, βi (c2 . . . cn−1) = yi − αi y1, i = 2, 3, . . . , n− 1 (20)

transforms system (19) into

∂C1
∂t

+ ∂F1 (C, β)
∂x

= 0, ∂ (αi (β)C1 + βi)
∂t

+ ∂ (αi (β)F1 + βi)
∂x

= 0, β = (β2, β3 . . . βn−1) . (21)

Using the potential φ and variable ψ instead of independent variables (x, t)

C = −∂φ
∂x
, F = ∂φ

∂t
, ψ = x− t (22)

separates the following auxiliary (n− 2)× (n− 2) system from the first equation (19)

∂

∂φ


C1

F1 − C1


− ∂

∂ψ


1

F1 − C1


= 0, ∂βi

∂φ
+ ∂αi (β)

∂ψ
= 0. (23)

The auxiliary system second (23) allows for exact solutions analogous to those described above for the
system with sorption (7). Besides, the inverse problem for determining the thermodynamic relationship
α = α(β) from laboratory data allows for exact solutions like (13).
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5. General applications

The splitting transformations (4) and (5) can be generalized to non-isothermal systems, where the energy
conservation law adds to system (1)–(3). Also, denoting s as oil saturation allows using system (1)–(3) for
secondary migration of hydrocarbons during the geological formation of petroleum accumulations; it allows
description of water-alternate gas injection into oilfields too [2].

The system for two-phase immiscible colloidal-suspension transport in porous media, that appears in
numerous areas of environmental and chemical engineering consists of mass balance for one of the phases
(Eq. (1) with εc = 0), mass balance of suspended and captured particles and n capture-rate equations
corresponding to different capture mechanisms [21]. It also allows for splitting using the mapping (4). For
the Riemann problem, the auxiliary (n+ 1)× (n+ 1) system allows for exact solution [14].

The governing system for compressible multi-component non-isothermal single-phase flow in porous media
consists of the overall mass balance equation and the mass balance equations for each component, accounting
for non-equilibrium sorption and chemical reactions [2]. The mapping (5) splits the overall balance equation
for unknown pressure from equations for unknown concentrations and temperature. For those cases, the
auxiliary system is hyperbolic and the lifting equation is parabolic.

Consider the general system (1)–(3) with either vanishing relaxation (ε = εt) or dispersion/diffusion
(ε = εd). The difference between the solutions is an infinitesimal quantity of the second order ε2 [22].
Therefore, the transformation (5) splits the systems with diffusion too.

The splitting method (5) can be extended to three-dimensional flows in the case where the total mobility of
two phases is constant. Introduction of a linear co-ordinate along the stream-lines splits the three-dimensional
system into one-dimensional system (1)–(3) and a Laplace equation for a real pressure distribution (see the
corresponding derivations in [2,23]). Then mapping (5) is applied to the one-dimensional system (1)–(3)
yielding the splitting.

6. Conclusions

For advective conservation systems with capillary-pressure dissipation (1), (2) or non-equilibrium kinetics
(3), (17), the introduction of the stream-function instead of time splits the system into an auxiliary system
and one lifting equation. In numerous cases, where the auxiliary problem allows for exact solution, the
general system is reduced to one scalar equation. Auxiliary systems in the models (1)–(3), (16), (17) or (19),
(20) depend on thermodynamic functions only, whereas the lifting equation (6) contains all hydrodynamic
parameters.
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7 Conclusions 

The derivation of new governing equations for low-salinity water-flooding and 

analytical modelling of two-phase multi-component flows in natural reservoirs allows 

drawing the following conclusions:  

1. The effective splitting method for PDEs of conservation laws, allowing for 

derivation of numerous exact analytical solutions for two-phase multicomponent 

flows in porous media, permits the generalization for the cases of dissipative and non-

equilibrium systems.  

2. For advective conservation law systems for two-phase multicomponent flow in 

porous media with capillary-pressure dissipation, chemical reactions or non-

equilibrium phase transitions, the introduction of the stream-function instead of time, 

splits the system into an auxiliary system and one lifting equation. In numerous cases, 

where the auxiliary problem allows for exact solution, the general system is reduced 

to one scalar equation. Auxiliary systems in the models with chemical reactions or 

non-equilibrium phase transitions depend on thermodynamics functions only, whereas 

the lifting equation contains all hydrodynamic parameters.   

3. In the general case, the lifting equation is solved numerically, using the method of 

characteristics. However, for the cases of steady-state distribution of concentrations in 

different flow zones, the lifting equation allows for exact solution. 

4. In particular, the exact solution for displacement of oil by high salinity slug 

followed by the slug with low salinity and, finally, by high salinity water chase drive 

is presented in the form of explicit formulae for saturation, salinity, suspended and 
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retained concentrations of fines during the displacement. Also, the explicit formulae 

for oil recovery follow from the exact solution. 

5. 1D problem for displacement of oil during low-salinity polymer flooding also 

allows for exact solution. The saturation, polymer concentration and salinity profiles 

and their dynamics during the displacement are described by the explicit formulae. 

The solution along with oil-recovery expressions permits for illustrative visualization 

in the plane of the fractional flow curves.   

6. The problems of 1D oil displacement by suspensions and colloids also allows for 

analytical modelling. Using the stream-function as an independent variable instead of 

time in the (m+2)×(m+2)-system of two-phase suspension-colloidal flow with m 

different retention mechanisms, splits the system into auxiliary (m+1)×(m+1)-system 

and one scalar lifting equation. The auxiliary problem allows for exact solution. In the 

case of negligible formation damage coefficients, the lifting equation is solved 

analytically. 

7. For the case of small retained concentrations, which corresponds to either constant 

filtration coefficients or small flow times, the analytical model exhibits a new feature 

of two-phase colloidal-suspended flux. However, the effect of suspension 

concentration on viscosity of aqueous phase is accounted for. The solution shows that 

the suspension concentration is zero ahead of the concentration front; it instantly 

becomes steady-state in any reservoir point behind the front after the front pass this 

point. All retained concentrations are proportional to the amount of particles that pass 

this point; the proportionality coefficient for each retained concentration is the 

corresponding filtration coefficient. 
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8. The exact solutions of 1D flow problems can be used for 3D reservoir simulation 

using stream-line or front-tracking options. 
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