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Highlights

• Phylogenetic endemism (PE) measures range-restricted phylogenetic diversity (PD).
• Previous PE implementations measured range restriction via area of occupancy (AOO).
• The R functions map PE using AOO or extent of occurrence (EOO) with simple inputs.
• Range sizes and PE scores are poorly correlated between AOO and EOO methods.
• The functions provide new spatial information on biodiversity with R functionality.

Abstract

Applications are needed to map biodiversity from large-scale species occurrence datasets whilst seamlessly integrating with existing functions
in R. Phylogenetic endemism (PE) is a biodiversity measure based on range-restricted phylogenetic diversity (PD). Current implementations
use area of occupancy (AOO) or frequency to estimate the spatial range of branch-length (i.e. phylogenetic range-rarity), rather than extent of
occurrence (EOO; i.e. georeferenced phylogenetic endemism), which is known to produce different range estimates. We present R functions to map
PD or PE weighted by AOO or EOO (new georeferenced implementation), taking as inputs georeferenced species occurrences and a phylogeny.
Non-parametric statistics distinguish PD/PE from trivial correlates of species richness and sampling intensity.
c⃝ 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/

by/4.0/).
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1. Motivation and significance

The geographic restriction of biodiversity is of interest to the
fields of biogeography and conservation biology [1,2], and in
particular the historical development and conservation value of
concentrations of endemic species [3,4]. Increasingly sophisti-
cated and numerical methods have been developed to measure
range-restricted biodiversity. For example, the sum of in-
verse range-sizes or ‘SIR’ [5,6] of a set of species in a
community sample, is a numerically continuous alternative
biodiversity measure to counts of species that have been
categorically assigned as endemic to a pre-defined area.

Rosauer et al. [7] extended the concept of SIR metrics to
Faith’s phylogenetic diversity (PD), which is a measure of the
evolutionary history represented among a set of species, calcu-
lated as the sum of the branch lengths of a phylogenetic tree
containing species in a particular community sample [8–10].
This phylogenetic endemism [7] (PE) was defined as (1):

PE =


{c∈C}

Lc

Rc

read as the sum of the lengths of each branch in a tree contain-
ing a community sample of species divided by the geographic
range of each branch (i.e. based on the species terminating from
that branch), where L is branch length, R is range size, C is the
tree and c is a particular branch of the tree.

While a number of methods exist for estimating range
sizes [11,12], previously only the number of occupied map
grid cells (based on recorded or modelled species occurrences)
has been used to estimate ranges that weight this metric.
Guerin et al. [13] showed that species ranges, and resulting
SIR for map grid cells, estimated with alternative methods were
poorly correlated. Specifically, the number of occupied cells
(equivalent to frequency or area of occupancy—AOO) was not
rank equivalent to measures of extent of occurrence (EOO),
leading to recognition of different SIR measures, range-rarity
richness (RRR) and georeferenced weighted endemism (GWE),
respectively [5].

Since the concepts of range-restricted PD and SIR metrics
are linked, we extend here the georeferenced implementation
of SIR [13] to its PD equivalent and present new self-contained
R [14] functions for calculating and mapping PD and PE,
based on species records and relevant phylogenetic trees. The
functions can calculate either the existing implementation of
PE, where branch length is weighted by its spatial range in
terms of the number of occupied grid cells (phylogenetic range-
rarity; PRR), or our novel georeferenced implementation,
where branch length is weighted by the ‘span’ of constituent
species occurrences (georeferenced phylogenetic endemism;
GPE). Alternatively, unweighted PD can be mapped. Non-
parametric statistics are used to detect outlying grid cells
(explained below).

These functions address two gaps in current research
software: (1) georeferenced calculation of EOO as a weight for
calculating PE, to provide different information on the range-
restriction of biodiversity than current AOO implementations;
(2) functionality in the R environment to map biodiversity
metrics including PD/PE from large-scale species occurrence
datasets, and to seamlessly integrate inputs and outputs with
existing analysis packages. The functions are currently used by
loading source into R and calling the functions on simple input
data.

The functions are principally suited to mapping regional
biodiversity to identify conservation priorities. An example
of this application would be to convert georeferenced species
inventory data into gridded biodiversity heat maps. The outputs
are also useful for ecological models in situations where coarse
resolution (i.e. map cells rather than field plots) is relevant, or
that are based on existing regional inventory data.

The existing implementation of PE (and other biodiver-
sity metrics) is available within the perl-based ‘biodiverse’
software [15] with mapping functionality, as well as in
the ‘phylo.endemism.R’ function of David Nipperess (re-
leased under the GNU GPL: http://davidnipperess.blogspot.
com.au/2012/07/phyloendemism-r-function-for.html, accessed
4/2/2015), which calculates a numeric vector of PE for sites in
an occurrence matrix but does not have mapping functionality.
Our intention, therefore, is to provide a novel implementation
with alternative branch weights and to make these functions
available in the R environment with automated integration of
point data with maps, without requiring sophisticated custom
programming from the user. We modified coding for the con-
version of phylogenetic data to matrix representation [16] from
David Nipperess’ function, while all other coding is new.

2. Software description

2.1. Overview

The software consists of two functions with separate source
code, ‘phylogenetic.endemism.R’ and ‘pe.null.test.R’. Once
source code and desired input data are loaded into R, func-
tion ‘phylogenetic.endemism.R’ can be called on the input
data and with arguments adjusted for desired settings, and
‘pe.null.test.R’ can subsequently be called on the returned ob-
ject. Both functions automatically produce plots, mainly rasters
(see example in Fig. 1): ‘phylogenetic.endemism.R’ returns a
‘list’ containing a numeric vector and a raster map of PD/PE
scores, the weights used, binary matrices of species occurrences
against grid cells, branches against species and branches against
grid cells, and a vector of branch lengths; ‘pe.null.test.R’ re-
turns a list containing numeric vectors of expected interquartile
ranges for each species richness value, a vector and raster each
for categorical and continuous outlier scores for cells and their
statistical significance (p-value), and finally a numeric vector
of species richness values. With these returned outputs, the user
can then, if desired, reproduce plots with customised format-
ting, such as alternative colour schemes and axis labels, or use
the items returned in downstream analysis.

2.2. Mapping raw phylogenetic endemism

The function ‘phylogenetic.endemism.R’ calculates and
maps PE based on two alternative range weights, ‘cell’ (the
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Fig. 1. Examples of default outputs from the phylogenetic endemism (PE)
functions presented in this paper, based on the mite dataset (see main text). (a)
Raw PE from example in main text, displayed on a raster map. Each grid cell
in which species were recorded receives a score. (b) Observed PE scores from
example in main text plotted against the observed species richness for the same
cells (black) over a null distribution (red) representing PE from random draws
from the species pool [observed values were re-plotted over red points using
outputs from the functions (PE and richness scores) to make them clearer].
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

number of cells occupied) and ‘span’ (greatest distance across
the range), which are equivalent to PRR and GPE, respectively.
The function can also accept user-supplied range weights or
calculate and map unweighted PD. Occurrence input data can
either be individual species records with fields for species
name, longitude and latitude, or a species by sites matrix
combined with an associated coordinates (longlat) by sites
matrix. The phylogenetic data input is a tree with branch lengths
of class ‘phylo’ [17]. Although the tree should obviously cover
as many of the species in the incidence data as possible,
the function strips species that do not occur in both datasets.
Some difference in species name formatting (genus–species
separator) is catered for between occurrence and phylogenetic
datasets to deal with common input formats.

For GPE, species presences, georeferenced by the centroid
coordinates for cells in which they have records and matched
to a phylogenetic tree, are used to map the minimum convex
polygon (hull) spanning occurrences of each branch, with the
option of excluding geographical outliers. This process involves
several computational steps: (1) converting the phylogenetic
tree to a binary matrix [16]; (2) generating a species by grid
cells occurrence matrix from the input point data; (3) intersect-
ing the matrix-representation tree with the species occurrence
matrix to generate a binary matrix of branch occurrences within
grid cells [18]; (4) finally reconciling presences for particular
branches with cell centroids and exclusion of geographical out-
liers; (5) a convex polygon is then drawn around the resulting
set of coordinates.

Range ‘span’ is determined by calculating the maximum
pairwise (great circle) distance between vertices of the convex
polygon spanning occurrences of particular phylogenetic
branches. Calculating pairwise distances between vertices,
rather than all coordinates, significantly improves efficiency
and computation time. If there are too few locations to form a
polygon, the maximum distance is calculated from all pairwise
comparisons, instead of polygon vertices. Using the calculated
range weights for branches, PE is calculated and mapped for
each grid cell that has data.

By default, the function automatically generates a raster
map with the same geographical extent as the input data at
a resolution of 0.25 degrees. The user can either specify an
extent and resolution or define these by providing a reference
raster object. Point records lying outside of the frame raster are
excluded, so that a smaller extent can be analysed than that of
the point records, if desired.

2.3. Non-parametric statistics

The function ‘pe.null.test.R’, takes the output of the
‘phylogenetic.endemism.R’ function and performs downstream
tests for significant deviance from null expectations of PD/PE
based on observed species richness (e.g. see [2,13,19]), an
alternative to correcting for richness directly. The rationale is
to determine whether observed PE represents an ‘enrichment’
of range-restricted branch length, or simply a trivial correlate
of observed species richness, and therefore suffering the same
sampling biases [20]. The expected distribution of PD/PE for a
given species richness is determined by taking replicate (100
default, 1000 recommended) random draws of that number
of species from the available pool without replacement, and
comparing this to observed PD/PE. p-values are calculated
based on the proportion of random replicates that are higher or
lower that observed. Outlying PD/PE is also identified based
on either a categorical cut-off (user-defined, with a default
of more than 1.5 times outside the interquartile range of the
null distribution) or a continuous measure [the factor of the
interquartile range by which the score differs from the 50%
quantile (≡median of the null distribution)]. These calculations
are outputted as numeric vectors and gridded maps.

3. Illustrative examples

We present two examples of the use and application,
respectively, of the software. The first example demonstrates
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the basic use of the functions in R and uses the Oribatid mite
dataset [21] for convenience because it is available via the
commonly used community ecology R package ‘vegan’ [22].
The dataset consists of a table (‘data frame’) of species
occurrences against sites and a second table of map coordinates
for the sites. Note the site coordinates in this example are
metres along a Cartesian plane and are not geographic (longlat)
coordinates as assumed by the function. Below is a simple
introduction to the use of the functions in R (see also Fig. 1).
Comments are preceded below by the # character.

####Preparation for this example:

library(vegan) #We load the vegan package

data(mite)

data(mite.xy) #We load the datasets from vegan

library(ape) #This package is required for the
phylogenetic functions to follow:

mite.tree<- rtree(n=ncol(mite),
tip.label=colnames(mite)) #Here, for this
example, we generate a phylogenetic tree of the
species in the mite dataset with random
relationships and branch lengths

###Using the functions to calculate and
test GPE:

source(‘‘phylogenetic.endemism.R’’)

mite.PE<- phylogenetic.endemism(mite,
records=‘‘site’’, site.coords=mite.xy,
sep.comm.spp=‘‘none’’, phylo.tree=mite.tree,
sep.phylo.spp=‘‘none’’, weight.type=‘‘geo’’)

source(‘‘pe.null.test.R’’)

pe.null.test(mite.PE)
The second example illustrates an empirical application

of the functions to plant species recorded in systematically
surveyed field plots from the Biological Survey of South
Australia and AusPlots (Terrestrial Ecosystem Research Net-
work) programs [23,24], a combined dataset of some 14,355
plots covering the state of South Australia. A phylogenetic
tree of all species in the dataset was generated from Phy-
lomatic Version 3 (http://phylodiversity.net/phylomatic/) and
tree R20120829 [25], with node age constraints and branch-
length adjustment [26,27]. We calculated PE for this dataset
using, alternatively, cell-occupancy weights (i.e. PRR) and
range-span weights (i.e. GPE). Specifically, we ran the phyloge-
netic.endemism function with weight.type set to either “cell” or
“geo”. We then calculated correlation coefficients between the
methods using Kendall’s τ , while partialling out the correlation
between species richness and PE scores, because we would ex-
pect high rank correlation if the range estimation methods were
equivalent (Fig. 2).

4. Impact

Interpretations of endemism as georeferenced restriction
in EOO versus restriction in frequency or AOO are neither
Fig. 2. Scatterplots of phylogenetic range estimates (a; n = 2885) and resulting
phylogenetic endemism scores (b; for 919, 0.25◦ map grid cells) to compare
the use of cell frequency (phylogenetic range-rarity; PRR) to range span
(georeferenced phylogenetic endemism; GPE), as implemented in the reported
software. Numbers above plots represent partial Kendall’s tau rank correlation
coefficients, given species richness. Data are vegetation survey plots from the
Biological Survey of South Australia and AusPlots combined with a Phylomatic
tree of the species.

conceptually nor numerically equivalent [5,13]. Our second
illustrative example analysis of data from an extensive network
of vegetation survey plots in South Australia clearly shows
that PE scores are poorly correlated between the two range
estimation methods and highlight different aspects of the range-
restriction of biodiversity. For example, not all phylogenetic
branch-length that has a low AOO has a corresponding narrow
EOO (Fig. 2). This is important because such measures
may be used to rank areas for conservation value or assess
biogeographic properties [5].

The software provides new functionality and metrics for pur-
suing a common research question in biogeography: Are there
concentrations of biodiversity in a landscape? It also enables
empirical testing of the more nuanced research question: Is PE
weighted by range extent equivalent to that weighted by range
area and what are their best predictors? The software therefore
potentially informs the process of discovering hotspots of dif-
ferent aspects of biodiversity, which relate to different historical
and ecological processes. The software has been used success-
fully as part of a regional biodiversity assessment (G.R. Guerin
et al. unpubl. data).

The functions presented here enhance the pursuit of such
biogeographical research questions by allowing the user to cal-
culate and map PE onto raster maps from simple point data, us-
ing either range-weighting approach, as well as user-supplied
weights or unweighted PD, providing alternative information
on the distribution of biodiversity. This is a novel implemen-
tation of PE and contributes to much-needed self-contained

http://phylodiversity.net/phylomatic/
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functionality in R for mapping out biodiversity metrics from
inventory type data and to allow seamless integration of such
analyses with a suite of other functions in the R environment.

The functions were primarily designed for coarse-scale map-
ping of PE from inventory data for conservation and biodi-
versity management purposes, but can also provide outputs
relevant for downstream modelling where it is useful to esti-
mate PD/PE for map grid cells. For example, using this soft-
ware it would be possible to calculate PE for map grid cells at a
relevant resolution and immediately analyse the scores against
predictor variables for the same grid cells, for example topo-
graphic heterogeneity within the cell or climatic parameters.
This takes full advantage of the suite of analyses available in
R (modelling, plotting etc.) with no need for importing and ex-
porting files. For large projects and datasets, this workflow min-
imises data duplication and handling.

The functions differ from existing software through a combi-
nation of (1) automatically integrating point (species incidence)
data with gridded map outputs; (2) the metrics calculated, in-
cluding the novel GPE implementation, and; (3) integration
with other data handling and analysis functions in the R en-
vironment to minimise data import and export steps. This new
functionality enables users to map out (and subsequently anal-
yse) PD/PE without custom programming the complex under-
lying calculations, making the process more feasible and less
time-consuming.

5. Conclusions

Large species incidence datasets have become routinely
available for analysis, for example through the Global Biodi-
versity Information Facility (GBIF) [28]. This information on
species distribution, along with advances in modelling and phy-
logenetics, is enabling spatially explicit mapping and modelling
of evolutionary history [6]. The implementations of PD and PE
presented here for the R environment progress the suite of bio-
diversity metrics and software functionality available for this
field of research including user-friendly access to existing and
novel, spatially explicit metrics.
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