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Abstract

Cryptosporidium is one of the most common zoonotic waterborne parasitic diseases world-

wide and represents a major public health concern of water utilities in developed nations. As

animals in catchments can shed human-infectious Cryptosporidium oocysts, determining

the potential role of animals in dissemination of zoonotic Cryptosporidium to drinking water

sources is crucial. In the present study, a total of 952 animal faecal samples from four domi-

nant species (kangaroos, rabbits, cattle and sheep) inhabiting Sydney’s drinking water

catchments were screened for the presence of Cryptosporidium using a quantitative PCR

(qPCR) and positives sequenced at multiple loci. Cryptosporidium species were detected in

3.6% (21/576) of kangaroos, 7.0% (10/142) of cattle, 2.3% (3/128) of sheep and 13.2%

(14/106) of rabbit samples screened. Sequence analysis of a region of the 18S rRNA locus

identified C. macropodum and C. hominis in 4 and 17 isolates from kangaroos respectively,

C. hominis and C. parvum in 6 and 4 isolates respectively each from cattle, C. ubiquitum in 3

isolates from sheep and C. cuniculus in 14 isolates from rabbits. All the Cryptosporidium

species identified were zoonotic species with the exception of C. macropodum. Subtyping

using the 5’ half of gp60 identified C. hominis IbA10G2 (n = 12) and IdA15G1 (n = 2) in kan-

garoo faecal samples; C. hominis IbA10G2 (n = 4) and C. parvum IIaA18G3R1 (n = 4) in cat-

tle faecal samples, C. ubiquitum subtype XIIa (n = 1) in sheep and C. cuniculus VbA23

(n = 9) in rabbits. Additional analysis of a subset of samples using primers targeting con-

served regions of the MIC1 gene and the 3’ end of gp60 suggests that the C. hominis

detected in these animals represent substantial variants that failed to amplify as expected.

The significance of this finding requires further investigation but might be reflective of the

ability of this C. hominis variant to infect animals. The finding of zoonotic Cryptosporidium

species in these animals may have important implications for the management of drinking

water catchments to minimize risk to public health.
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Introduction

Cryptosporidium is one of the most prevalent waterborne parasitic infections [1] and repre-

sents a public health concern of water utilities in developed countries, including Australia.

Currently, 31 Cryptosporidium species have been recognised based on biological and molecular

characteristics including two recently described species; C. proliferans and C. avium [2, 3, 4, 5,

6]. Of these, C. parvum and C. hominis have been responsible for all waterborne outbreaks

typed to date, with the exception of a single outbreak in the UK caused by C. cuniculus [7, 8, 9].

In Australia, marsupials, rabbits, sheep and cattle are the dominant animals inhabiting

drinking water catchments and can contribute large volumes of manure to water sources [10].

Therefore, it is important to understand the potential contribution from these animals in

terms of Cryptosporidium oocyst loads into surface water. A number of genotyping studies

have been conducted on animals in Australian water catchments to date and have reported a

range of species including C. parvum, C. hominis, C. cuniculus, C. ubiquitum, C. bovis, C. rya-
nae, C. canis, C. macropodum, C. fayeri, C. xiaoi, C. scrofarum, and C. andersoni [11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21, 22, 23]. To date, in humans in Australia, C. hominis, C. parvum, C.

meleagridis, C. fayeri, C. andersoni, C. bovis, C. cuniculus, a novel Cryptosporidium species most

closely related to C. wrairi and the Cryptosporidium mink genotype have been reported [24, 25,

26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42]. The aim of the present study was

to use molecular tools to identify the Cryptosporidium sp. infecting the kangaroos, rabbits, cat-

tle and sheep population inhabiting Sydney’s drinking water catchments and so better under-

stand the potential health risks they pose.

Materials and Methods

Sample collection and processing

Animal faecal samples were collected by WaterNSW staff from watersheds within the

WaterNSW area of operations. Sampling was carried out either on land owned by

WaterNSW or on private land owned by farmers who gave permission to WaterNSW staff

to conduct this study on their property. To minimize cross-contamination and avoid re-

sampling the same animals, animals were observed defecating and then samples were col-

lected randomly from freshly deposited faces from the ground, using a scrapper to expose

and scoop from the center of the scat pile. Samples were collected on a monthly interval

over an 18 months period (July, 2013 to February, 2015) into individual 75 ml faecal collec-

tion pots, and stored at 4˚C until required (no animal was sacrificed). As faecal samples

were collected from the ground and not per rectum, animal ethics approval was not

required. Instead, an animal cadaver/tissue notification covering all the samples collected

was supplied to the Murdoch University Animal Ethics Committee. The animal sources of

the faecal samples were confirmed by watching the host defecate prior to collection and also

with the aid of a scat and tracking manual published for Australian animals [43]. Faecal

samples were collected from two previously identified hotspot zones from eastern grey kan-

garoos (Macropus giganteus) (n = 576), cattle (n = 142), sheep (n = 128) and rabbits

(n = 106). This study did not involve collecting samples from endangered or protected ani-

mal species. Samples were shipped to Murdoch University and stored at 4˚C until required.

Enumeration of Cryptosporidium oocysts in faecal samples

Enumeration of Cryptosporidium oocysts by microscopy was conducted in duplicate for a sub-

set of samples (n = 8) by Australian Laboratory Services (Scoresby, Vic). To quantify recovery

efficiency, each individual faecal composite or homogenate was seeded with ColorSeed
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(Biotechnology Frontiers Ltd. [BTF], Sydney, Australia). Cryptosporidium oocysts were puri-

fied from faecal samples using immunomagnetic separation (IMS) employing the Dynal GC

Combo kit (Dynal, Oslo, Norway) as described by Cox et al., (2005) [44]. Oocysts were stained

with Easystain and 4’,6’,-diamidino-2-phenylindole (DAPI; 0.8 μg.ml-1) (Biotechnology Fron-

tiers Ltd. [BTF], Sydney, Australia) and examined with an Axioskop epifluorescence micro-

scope (Zeiss, Germany) using filter set 09 (blue light excitation) for Easystain (BTF), filter set

02 (UV light excitation) for DAPI staining, and filter set 15 (green light excitation) for Color-

Seed (BTF). The identification criteria described in U.S. EPA method 1623 [45] were used for

Easystain-labeled and DAPI-stained objects.

DNA isolation

Genomic DNA was extracted from 250mg of each faecal sample using a Power Soil DNA Kit

(MO BIO, Carlsbad, California). A negative control (no faecal sample) was used in each extrac-

tion group.

PCR amplification of the 18S rRNA gene

All samples were screened for the presence of Cryptosporidium at the 18S rRNA locus using a

quantitative PCR (qPCR) previously described [46, 47]. qPCR standards were Cryptosporidium
oocysts (purified and haemocytometer counted), diluted to a concentration of 10,000 oocysts/

μl. DNA was extracted from this stock using a Powersoil DNA extraction kit (MO BIO, Carls-

bad, California, USA). The 10,000 oocyst/μl DNA stock was then serially diluted to create

oocyst DNA concentrations equivalent to 1000, 100, 10, 1 oocysts/μl DNA respectively to be

used for standard curve generation using Rotor-Gene 6.0.14 software. Absolute numbers of

Cryptosporidium oocysts in these standards were determined using droplet digital PCR

(ddPCR) at the 18S locus using the same primer set and these ddPCR calibrated standards

were used for qPCR as previously described [47]. Each 10 μl PCR mixture contained 1x Go

Taq PCR buffer (KAPA Biosystems), 3.75 mM MgCl2, 400 μM of each dNTP, 0.5 μM 18SiF

primer, 0.5 μM 18SiR primer, 0.2 μM probe and 1U/reaction Kapa DNA polymerase (KAPA

Biosystems). The PCR cycling conditions consisted of one pre-melt cycle at 95˚C for 6 min

and then 50 cycles of 94˚C for 20 sec and 60˚C for 90 sec.

Samples that were positive by qPCR were amplified at the 18S locus using primers which

produced a 611 bp product (Table 1) as previously described [48] with minor modifications;

the annealing temperature used in the present study was 57˚C for 30 sec and the number of

cycles was increased from 39 to 47 cycles for both primary and secondary reactions. PCR

contamination controls were used including negative controls and separation of preparation

and amplification areas. A spike analysis (addition of 0.5 μL of positive control DNA into

each sample) at the 18S locus by qPCR, was conducted on randomly selected negative sam-

ples from each group of DNA extractions to determine if negative results were due to PCR

inhibition, by comparing the Ct of the spike and the positive control (both with same amount

of DNA).

PCR amplification of the lectin (Clec) gene

Samples that were typed as C. parvum,C. hominis and C. cuniculus at the 18S locus were also

typed using sequence analysis at a unique Cryptosporidium specific gene (Clec) that codes for a

novel mucin-like glycoprotein that contains a C-type lectin domain [55, 56]. Hemi-nested

primers were designed for this study using MacVector 12.6 (http://www.macvector.com). The

external primers Lectin F1 5’ TCAACTAACGAAGGAGGGGA3’ and Lectin R1 5’ GTGGTGT
AGAATCGTGGCCT3’ produced a fragment size of 668 bp for C. hominis and 656 bp for C.
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parvum. The secondary reaction consisted of primers, Lectin F2 5’ CCAACATACCATCCT
TTGG 3’ and Lectin R1 5’ GTGGTGTAGAATCGTGGCCT 3’ (Table 1), which produced a

fragment of 518 bp for C. hominis, 506 bp for C. parvum and 498 bp for C. cuniculus. The

cycling conditions for the primary amplification was 94˚C for 3 min, followed by 94˚C for 30

sec, 58˚C for 30 sec, 72˚C for 1 min for 40 cycles, plus 5 min at 72˚C for the final extension.

The same cycling conditions were used for the secondary PCR, with the exception that the

number of cycles was increased to 47 cycles. The 25 μl PCR mixture consisted of 1 μl of DNA,

1x Go Taq PCR buffer (KAPA Biosystems), 200 μM of each dNTP (Promega, Australia), 2 mM

MgCl2, 0.4 μM of each primer, 0.5 units of Kapa DNA polymerase (KAPA Biosystems). The

specificity of this locus for Cryptosporidium has been previously confirmed [41]. Enumeration

of Cryptosporidium oocysts by qPCR was conducted using a specific C. hominis and C. parvum
assay targeting the Clec gene as previously described [41].

PCR amplification of the gp60 gene

Samples that were typed as C. hominis, C. parvum,C. cuniculus and C. ubiquitum at the 18S

locus were subtyped at the 60 kDa glycoprotein (gp60) locus using nested PCR as previously

described (Table 1) [57, 49 50, 58].

Sequence analysis and phylogenetic analysis

The amplified DNA from secondary PCR products were separated by gel electrophoresis and

purified for sequencing using an in house filter tip method [41]. Purified PCR products from

all three loci, were sequenced independently using an ABI Prism™ Dye Terminator Cycle

Sequencing kit (Applied Biosystems, Foster City, California) according to the manufacturer’s

instructions at 57˚C, 58˚C and 54˚C annealing temperature for the 18S rRNA, lectin and gp60
loci, respectively. Sanger sequencing chromatogram files were imported into Geneious Pro

8.1.6 [59], edited, analysed and aligned with reference sequences from GenBank using Clus-

talW (http://www.clustalw.genome.jp). Distance, parsimony and maximum likelihood trees

were constructed using MEGA version 7 [60].

Table 1. List of primers used in this study to amplify Cryptosporidium species at 18S, lectin (Clec), gp60, lib13 and MIC1 gene loci.

Gene Forward Primer Reverse Primer Reference

18S 50 ACCTATCAGCTTTAGACGGTAGGGTAT 30 50 TTCTCATAAGGTGCTGAAGGAGTAAGG 30 [48]

50 ACAGGGAGGTAGTGA CAAGAAATAACA 30 50 AAGGAGTAAGGAACAACCTCCA 30

lectin (Clec) 50 TCAACTAACGAAGGAGGGGA 3’ 50 GTGGTGTAGAATCGTGGCCT 30 Present Study

50 CCAACATACCATCCTTTGG 30 50 GTGGTGTAGAATCGTGGCCT 30

gp60 50 ATAGTCTCGCTGTATTC30 50 GCAGAGGAACCAGCATC30 [49, 50]

50 TCCGCTGTATTCTCAGCC 30 50 GAGATATATCTTGGTGCG 30

18S 50 TTCTAGAGCTAATACATGCG 30 50 CCCATTTCCTTCGAAACAGGA 30 [51, 52]

50 CCCATTTCCTTCGAAACAGGA 30 50 CTCATAAGGTGCTGAAGGAGTA 30

gp60 50 ATAGTCTCCGCTGTATTC 30 50 GGAAGGAACGATGTATCT 30 [52, 53]

50 GGAAGGGTTGTATTTATTAGATAAAG 30 50 GCAGAG GAA CCAGCAT30

lib13 50 TCCTTGAAATGAATATTTGTGACTCG 30 50 AAATGTGGTAGTTGCGGTTGAAA 30 [54]

Probe: VIC-CTTACTTCGTGGCGGCGTMGB-NFQ

MIC1 50 TGCAGCACAAACAGTAGATGTG 30 50 ATAAGGATCTGCCAAAGGAACA 30 [52]

50 ACCGGAATTGATGAGAAATCTG 30 50 CATTGAAAGGTTGACCTGGAT 30

doi:10.1371/journal.pone.0168169.t001
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Independent confirmation by the Australian Water Quality Centre

(AWQC)

A total of eight blinded faecal samples consisting of seven C. hominis positives and one Crypto-
sporidium negative were sent to the Australian Water Quality Centre (AWQC) for indepen-

dent analysis. DNA was extracted using a QIAamp DNA Mini extraction kit (Qiagen,

Australia). Samples were screened using primers targeting the 18S rRNA locus (Xiao et al.,

2000 as modified by Webber at al., 2014) [51, 52], gp60 using producing an approx. 871 bp sec-

ondary product (Alves et al., 2003 as modified by Webber at al., 2014) [53, 52] and an approx.

400 bp primary product [50] as well as the lib13 [54] and MIC1 gene loci [52] as previously

described (Table 1). PCRs were conducted on a RotorGene 6000 HRM (Qiagen) or LightCy-

cler 96 (Roche) and amplification of the correct product was determined by DNA melting

curve analysis [52]. Amplicons with atypical DNA melting profiles were further characterized

by capillary electrophoresis using a DNA 1000 chip on a Bioanalyzer 2100 (Agilent) as per the

manufacturer’s instructions. The amplicons from all positive PCRs were purified using a Qia-

gen PCR purification kit according to the manufacturer’s instructions and submitted to the

Australian Genome Research Facility for DNA sequencing using BigDye3 chemistry on an

Applied Biosystems AB3730xl capillary DNA sequencer. Sequences were analyzed using Gen-

eious Pro 6.1.8 (Biomatters).

PCR amplification of open reading frames flanking gp60 and MIC1

Open reading frames flanking both ends of gp60 and MIC1 in the C. parvum genome were

used in BLAST searches (http://blast.ncbi.nlm.nih.gov/) to obtain homologous C. hominis
sequences. Alignments of the C. parvum and C. hominis open reading frame pairs were con-

structed using Geneious Pro 6.1.8 (Biomatters). Conserved primers were designed for each

alignment using the default settings and a target amplicon size of approximately 400 bp. The

resulting primers (Table 2) were subjected to BLAST searches to verify specificity.

Each 25 μl qPCR reaction contained 0.5 x GoTaq PCR Buffer (Promega), 1.5 mM MgCl2,

0.2 mM dNTP, 3.3 μM SYTO 9, 100 ng GP32, 0.5 μM forward primer, 0.5 μM reverse primer,

1 unit Promega GoTaq HS, and 2 μl of DNA extract. The qPCR was performed on a Light

Cycler96 (Roche), and cycling conditions consisted of one pre-melt cycle at 95˚C for 6 min

and then 40 cycles of 94˚C for 45 sec, 60˚C for 45 sec and 72˚C for 60 sec. High-resolution

DNA melting curve analysis was conducted from 65˚C to 97˚C using an acquisition rate of 25

reads /˚C. Blastocystis hominis DNA was used as a negative control and nuclease free water

was used as a no template control. Positive controls included C. parvum Iowa 2a (BTF, Sydney,

Australia) and C. hominis IbA10G2 (kindly provided by Ika Sari). Amplicons were sized by

capillary electrophoresis using a DNA 1000 chip on a Bioanalyzer 2100 (Agilent) as per the

manufacturer’s instructions.

Table 2. List of primers designed in the present study to amplify regions flanking the 5’ and 3’ ends of MIC1 and gp60.

Gene Flanking openreading frame Forward Primer Reverse Primer Product size (C. parvum

and C. hominis)

MIC1 cgd6_770 Chro. 60100(3’ end)hypothetical

proteinCDS

5’TGCGGTTGTATGACACCATCA3’ 5’TCTCTGGTGTTTGGCCTGAC 3’ 511

cgd6_810 Chro. 60105(5’ end)BRCT 5’AGACACCAAGATGGAAAAGGCA
3’

5’GGGAAGACCTTTTGATATTGCCC
3’

467

gp60 cgd6_1070 Chro. 60137(3’ end)

conservedhypothetical protein

5’AGCAAGACCGCAACTCAAGT 3’ 5’CCCATAGTGCCCAGCTTGAA 3’ 430

cgd6_1090 Chro. 60141(5’ end) hsp40 5’TATTTGGAGGTGGGGCCAAG 3’ 5’AAAACGGGTTTAGGGGTGGT 3’ 367

doi:10.1371/journal.pone.0168169.t002
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Statistical Analysis

The prevalence of Cryptosporidium in faecal samples collected from each host species was

expressed as the percentage of samples positive by qPCR, with 95% confidence intervals calcu-

lated assuming a binomial distribution, using the software Quantitative Parasitology 3.0 [61].

Linear coefficients of determination (R2) and Spearman’s rank correlation coefficient (Spear-

man’s rho) were used for the analysis of agreement (correlation) between oocyst numbers per

gram of faeces determined by qPCR calibrated with ddPCR standards and enumeration of

Cryptosporidium oocysts by microscopy (IMS) using SPSS 21.0 for Windows (SPSS Inc. Chi-

cago, USA).

Results

Prevalence of Cryptosporidium in faecal samples collected from various

hosts

The overall PCR prevalence of Cryptosporidium species in 952 faecal samples collected from

four different host species was 5% (48/952) (Table 3). Cryptosporidium species were detected

in 3.6% (21/576) of the kangaroo faecal samples, 7.0% (10/142) of cattle faeces, 2.3% (3/128) of

sheep faeces and 13.2% (14/106) of rabbit faecal samples based on qPCR and sequence analysis

of the 18S rRNA locus (Table 3).

Cryptosporidium species detected in various hosts

Sequencing of secondary PCR amplicons at the 18S rRNA locus identified four of the 21 posi-

tive isolates from kangaroo faecal samples as C. macropodum, while the other 17 isolates were

identified as C. hominis (100% similarity for 550bp) (Table 4). Of the ten positives detected in

cattle faecal samples, six were C. hominis and four were C. parvum (Table 4). The three sheep

positive samples were identified as C. ubiquitum and all fourteen positives detected in rabbit

faecal samples were C. cuniculus (Table 4).

Sequence analysis at the lectin (Clec) locus was consistent with 18S gene results. Eleven of

17 C. hominis isolates from kangaroos were successfully amplified and confirmed as C. hominis
sequences. Eight of the 14 positives from rabbits successfully amplified at this locus and were

identified as C. cuniculus. Four of six C. hominis and all four C. parvum isolates from cattle

were also confirmed at this locus.

Table 3. Prevalence of Cryptosporidium species in faecal samples collected from four different host species in Sydney water catchments*. 95%

confidence intervals are given in parenthesis.

Host species Number of

samples

Number of

positives

Prevalence% Species and subtype

Eastern grey

kangaroo

576 21 3.6 (95% CI: 2.3–5.5) C. hominis (n = 17)**,IbA10G2 (n = 12),IdA15G1 (n = 2),C.

macropodum (n = 4)

Cattle 142 10 7 (95% CI: 3.4–12.6) C. hominis (n = 6)**,IbA10G2 (n = 4),C. parvum (n = 4),

IIaA18G3R1 (n = 4)

Sheep 128 3 2.3 (95% CI: 0.5–6.7) C. ubiquitum (n = 3)**,XIIa (1)

Rabbit 106 14 13.2 (95% CI: 7.4–

21.2)

C. cuniculus (n = 14)**,VbA 23 (n = 9)

Total 952 48 5 (95% CI: 3.7–6.6)

* Based on PCR amplification and sequencing at the 18S rRNA gene, with subtyping based on DNA sequence analysis of a 400 bp amplicon from the 5’

end of the gp60 locus.

** Not all positive samples were successfully typed.

doi:10.1371/journal.pone.0168169.t003
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Table 4. Species and subtypes of Cryptosporidium identified in faecal samples from various hosts (and their GPS co-ordinates) at the 18S and

gp60 loci.

Host species Southing Easting 18S locus gp60 locus

Eastern grey kangaroo 1 -34.18861 150.2918 C. hominis C. hominis IbA10G2

Eastern grey kangaroo 2 -34.203794 150.284394 C. macropodum -

Eastern grey kangaroo 3 -34.20207 150.2742 C. hominis C. hominis IbA10G2

Eastern grey kangaroo 4 -34.193631 150.273387 C. macropodum -

Eastern grey kangaroo 5 -34.188607 150.291818 C. macropodum -

Eastern grey kangaroo 6 -34.20458 150.2881 C. hominis C. hominis IbA10G2

Eastern grey kangaroo 7 -34.61547 150.59756 C. hominis no amplification

Eastern grey kangaroo 8 -34.23796 150.2598 C. hominis C. hominis IbA10G2

Eastern grey kangaroo 9 N/A N/A C. hominis C. hominis IbA10G2

Eastern grey kangaroo 10 N/A N/A C. hominis C. hominis IbA10G2

Eastern grey kangaroo 11 N/A N/A C. hominis C. hominis IbA10G2

Eastern grey kangaroo 12 N/A N/A C. hominis C. hominis IbA10G2

Eastern grey kangaroo 13 -34.61686 150.68794 C. hominis C. hominis IbA10G2

Eastern grey kangaroo 14 -34.63269 150.619 C. hominis C. hominis IbA10G2

Eastern grey kangaroo 15 -34.63269 150.61897 C. hominis no amplification

Eastern grey kangaroo 16 -34.61422 150.59331 C. hominis C. hominis IbA15G1

Eastern grey kangaroo 17 -34.61415 150.59376 C. hominis C. hominis IbA10G2

Eastern grey kangaroo 18 -34.61686 150.68794 C. hominis no amplification

Eastern grey kangaroo 19 -31.60846 150.60819 C. macropodum -

Eastern grey kangaroo 20 -34.61472 150.68475 C. hominis C. hominis IbA10G2

Eastern grey kangaroo 21 -34.61472 150.68475 C. hominis C. hominis IbA15G1

Cattle 1 -34.61278 150.585 C. hominis no amplification

Cattle 2 -34.60429 150.60170 C. hominis C. hominis IbA10G2

Cattle 3 -34.61283 150.58514 C. hominis no amplification

Cattle 4 -34.60429 150.60170 C. parvum C. parvum IIaA18G3R1

Cattle 5 -34.60642 150.60126 C. parvum C. parvum IIaA18G3R1

Cattle 6 -34.61373 150.5876 C. parvum C. parvum IIaA18G3R1

Cattle 7 -34.61373 150.5876 C. hominis C. hominis IbA10G2

Cattle 8 -34.6195 150.5242 C. hominis C. hominis IbA10G2

Cattle 9 -34.60429 150.60170 C. hominis C. hominis IbA10G2

Cattle 10 -34.63269 150.619 C. parvum C. parvum IIaA18G3R1

Sheep 1 -34.61556 150.68353 C. ubiquitum no amplification

Sheep 2 -34.61556 150.68353 C. ubiquitum no amplification

Sheep 3 -34.61743 150.68674 C. ubiquitum C. ubiquitum XIIa

Rabbit 1 -34.61954 150.62169 C. cuniculus no amplification

Rabbit 2 -34.61959 150.62172 C. cuniculus C. cuniculus VbA23

Rabbit 3 -34.61937 150.62178 C. cuniculus C. cuniculus VbA23

Rabbit 4 -34.61479 150.68492 C. cuniculus C. cuniculus VbA23

Rabbit 5 -34.61954 150.62169 C. cuniculus no amplification

Rabbit 6 -34.6195 150.52415 C. cuniculus no amplification

Rabbit 7 -34.61937 150.62178 C. cuniculus C. cuniculus VbA23

Rabbit 8 -34.61283 150.58514 C. cuniculus C. cuniculus VbA23

Rabbit 9 -34.61556 150.68353 C. cuniculus C. cuniculus VbA23

Rabbit 10 -34.61278 150.585 C. cuniculus no amplification

Rabbit 11 -34.61479 150.68492 C. cuniculus C. cuniculus VbA23

Rabbit 12 -34.60429 150.60170 C. cuniculus C. cuniculus VbA23

Rabbit 13 -34.18951 150.2885 C. cuniculus no amplification

Rabbit 14 -34.6327 150.619 C. cuniculus C. cuniculus VbA23

doi:10.1371/journal.pone.0168169.t004
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Sequences at the gp60 locus were obtained for 14 kangaroo and four cattle isolates that were

typed as C. hominis at the 18S rRNA locus. These samples failed to amplify at gp60 using the

primers of Strong et al., (2000) or Alves et al., (2003) [57, 53], which amplify an approx. 832 bp

fragment, but were successfully amplified using the nested primers by Zhou et al., (2003) [53],

which amplify a 400 bp product. In approx. 50% of samples, the primary reaction did not pro-

duce a visible band by gel electrophoresis but a band of the correct size was visible for the sec-

ondary PCR, which was then confirmed by sequencing.

The C. hominis subtypes IbA10G2 and IdA15G1 were identified in 12 and 2 kangaroo sam-

ples respectively and the IbA10G2 subtype was also identified in four cattle samples (Table 4

and Fig 1A). The four C. parvum isolates from cattle were identified as subtype IIaA18G3R1

and the C. cuniculus isolates were subtyped as VbA23 (n = 9) (Table 4 and Fig 1B and 1D). Of

the three C. ubiquitum positive isolates at 18S locus, only one isolate was successfully subtyped

and identified as C. ubiquitum subtype XIIa (Table 4 and Fig 1C). Nucleotide sequences

reported in this paper are available in the GenBank database under accession numbers;

KX375346, KX375347, KX375348, KX375349, KX375350, KX375351, KX375352, KX375353,

KX375354, KX375355.

Fig 1. Phylogenetic relationships of Cryptosporidium subtypes inferred from Neighbor-Joining (NJ) analysis of Kimura’s

distances calculated from pair-wise comparisons of gp60 sequences. (A) Relationships among C. hominis subtypes. (B)

Relationships among C. parvum subtypes. (C) Relationships between C. ubiquitum subtypes. (D) Relationships between C. cuniculus

subtypes. Percentage support (>50%) from 1000 pseudoreplicates from NJ analyses is indicated at the left of the supported node.

doi:10.1371/journal.pone.0168169.g001
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Independent confirmation by the Australian Water Quality Centre

(AWQC)

Blind independent analysis conducted by AWQC using the 18S rRNA nested PCR of Xiao

et al., (2000) [51] identified C. hominis in six samples, corresponding with the six positive sam-

ples from kangaroos, and failed to detect Cryptosporidium in the other two samples, one of

which corresponded with the negative sample. Amplification of a region of gp60 using the pro-

tocol described by Alves et al. [53] failed to produce an amplicon for either the primary or sec-

ondary reactions. Amplification of gp60using the protocol described by Zhou et al., (2003)

[50], failed to amplify the correct-sized product for the primary PCR but produced amplicons

of the correct size for the secondary PCR for the six positive samples, which when sequenced

were confirmed as C. hominis subtype IbA10G2. Amplification at the lib13 locus was also suc-

cessful for the six positive samples, which were confirmed as C. hominis. Amplification at the

MIC1 locus failed to produce any amplicons. The gp60 and MIC1 amplification failures were

further investigated using PCR assays designed to target open reading frames (ORFs) flanking

these two loci. All four primer sets produced strong amplification of the correctly sized frag-

ments for the C. parvum and C. hominis control DNA. The cgd6-1070 ORF (located down-

stream of gp60 in C. parvum), and cgd6-810 (upstream of MIC1), both amplified from four of

the six samples identified as C. hominis. In the case of the other 2 ORFs, weak amplification

was observed for one sample for cgd6-1090 (upstream of gp60) and for two samples for cgd6-

770 (downstream of MIC1). While only single bands were observed for the C. parvum and C.

hominis controls, most of the faecal sample extracts produced multiple bands.

Enumeration of Cryptosporidium oocysts in faecal samples

Oocyst numbers per gram of faeces for all PCR positive samples were determined using qPCR

at the Clec locus for 18 C. hominis and 4 C. parvum positives and for a subset of samples (n = 8)

using microscopy (Table 5). For the 8 samples for which both microscopy and qPCR data were

available, there was poor correlation between the two methods (R2� 0.0095 and ρ (rho) =

0.2026) (Table 5). Based on qPCR, the highest numbers of oocysts was detected in Eastern grey

kangaroo isolate 12 (16,890 oocysts/g-1), which was identified as C. hominis subtype IbA10G2.

No oocysts (<2g-1) were detected by microscopy in this sample.

Discussion

The present study described the prevalence and molecular characterization of Cryptosporidium
species in faecal samples collected from kangaroo, cattle, sheep and rabbit faecal samples from

Sydney’s drinking water catchments. The overall prevalence of Cryptosporidium species in the

faecal samples collected from four animal hosts was 5% and was 3.6% in kangaroos, 7% in cat-

tle, 2.3% in sheep and 13.2% in rabbits. Overall, the prevalence of infection with Cryptosporid-
ium was generally lower than that reported previously in Sydney catchments; 25.8% [44] 6.7%

[62] and 8.5% [16] and Western Australian catchments; 6.7% [13]. In the study by Ng et al.,

(2011b) [16], the prevalence in eastern grey kangaroos was much higher (16.9%−27/160) than

the 3.6% prevalence in kangaroo faecal samples in the present study. The overall prevalence of

Cryptosporidium species in faecal samples collected from different species in the present study

was similar to the 2.8% (56/2,009) prevalence identified in faecal samples from animals in Mel-

bourne water catchments [20]. The lower prevalence in the present study and the Melbourne

study may be a consequence of testing a greater numbers of samples, seasonal and/or yearly

variation in prevalence and/or proximity to agricultural land.
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Based on sequence analysis using the 18S rRNA locus, a total of five Cryptosporidium spe-

cies were identified; C. macropodum (n = 4), C. hominis (n = 23), C. parvum (n = 4), C. ubiqui-
tum (n = 3) and C. cuniculus (n = 14). The prospect of livestock and wildlife being reservoirs

for C. hominis has human-health implications, so to verify this finding, a subset of faecal sam-

ples was subjected to blinded independent analysis. This additional testing initially identified

C. hominis following sequence analysis of a large fragment of the 18S rRNA gene amplified

using the Xiao et al., (2000) [51] nested PCR. It is noteworthy that the Xiao outer 18S PCR pro-

duced a clear amplification signal (threshold cycles between 24 and 29 for positive samples),

suggesting the presence of reasonable numbers of oocysts with no evidence of PCR inhibition

for this relatively large amplicon (approx. 1.2 kilobases). The lib13 Taqman assay also identi-

fied C. hominis in these same samples. However, amplification of gp60 using the Alves et al.,

(2003) [53] nested PCR failed to amplify any Cryptosporidium, either as a nested PCR or by

direct amplification using the inner primer set. Application of the Zhou et al., (2003) [53]

outer gp60 primers (which are equivalent to the pairing of the Alves outer forward and inner

reverse primers) also appeared to be unsuccessful (only four samples produced a band close to

the expected size), but the Zhou gp60 inner PCR amplified the correctly sized amplicon, which

was confirmed to be C. hominis IbA10G2.

The failure to amplify gp60 using the Alves et al., (2003) and Strong et al., (2000) [57, 53]

assays was unexpected, especially considering the high degree of conservation for the primer

binding sites across the C. parvum and C. hominis gp60 subtypes and the successful amplifica-

tion of the large 18S rRNA gene fragment, which demonstrates that the DNA quantity and

quality was sufficient for amplification within the first round of PCR. The lack of amplification

Table 5. Cryptosporidium oocyst numbers in positive samples per gram of faeces (g-1) determined using microscopy and qPCR. Note: microscopy

data was only available for 12 samples.

Host species Cryptosporidium species (18S) Oocyst numbers/g-1 microscopy % Oocyst recovery Oocyst numbers/g-1 qPCR

Eastern grey kangaroo 1 C. hominis 210 54 11,337

Eastern grey kangaroo 3 C. hominis 11,076 78 5,458

Eastern grey kangaroo 6 C. hominis <2 61 9,528

Eastern grey kangaroo 8 C. hominis <2 45 262

Eastern grey kangaroo 9 C. hominis <2 74 648

Eastern grey kangaroo 10 C. hominis <2 51 8,735

Eastern grey kangaroo 11 C. hominis <2 67 131

Eastern grey kangaroo 12 C. hominis <2 60 16,890

Eastern grey kangaroo 13 C. hominis - - 26

Eastern grey kangaroo 14 C. hominis - - 5,458

Eastern grey kangaroo 16 C. hominis - - 7,570

Eastern grey kangaroo 17 C. hominis - - 9,626

Eastern grey kangaroo 20 C. hominis - - 8,735

Eastern grey kangaroo 21 C. hominis - - 173

Cattle 2 C. hominis - - 144

Cattle 4 C. parvum - - 936

Cattle 5 C. parvum - - 1,819

Cattle 6 C. parvum - - 2,197

Cattle 7 C. hominis - - 4,205

Cattle 8 C. hominis - - 10,827

Cattle 9 C. hominis - - 15,804

Cattle 10 C. parvum - - 1,190

doi:10.1371/journal.pone.0168169.t005
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at other loci is unlikely to be due to PCR inhibition, as spike analysis indicated no inhibition.

To investigate this further, a published PCR assay targeting the MIC1 locus from both C. par-
vum and C. hominis [52] was also tested and failed to amplify the expected fragment from

these samples. The MIC1 gene encodes a thrombospondin-like domain-containing protein,

which is secreted in sporozoites prior to host cell attachment and localized to the apical com-

plex after microneme discharge [63]. As secreted proteins often play a critical role in determin-

ing virulence and host specificity in host-pathogen relationships, it has been hypothesized that

MIC1 may play a role in the differences in host range observed between C. parvum and C.

hominis [52]. Previous analysis of the CryptoDB has identified that both the gp60 and MIC1
loci are on chromosome 6 and in close proximity (�60 kb) [52], and it has previously been

reported that these two genes are genetically linked [64]. Given that 3 different gp60 reverse

primers appear to have failed, as well as failure of at least one of the MIC1 primers, it would

require the occurrence of multiple individual single nucleotide polymorphisms for the results

to be accounted for by point mutations. Alternatively, a truncation or rearrangement on chro-

mosome 6 affecting the 3’ end of gp60 and MIC1 could affect these PCR assays. To test for any

deletions affecting these loci, PCR assays were developed targeting flanking ORFs. The PCR

assays targeting two ORFs in the region between MIC1 and gp60 (based on the C. parvum
chromosome 6 map) were positive for some of the samples tested, suggesting that a wholesale

deletion is not the cause for the failure to amplify MIC1 or the entire gp60. The other two PCR

assays produced equivocal results in the samples, although they yielded strong amplification in

the positive controls. The variable sample results may have been due to a combination of the

low amount of Cryptosporidium DNA present and non-specific amplification from other DNA

in the sample extracts. The latter is likely, considering that the positive controls produced a

single amplicon, whereas most of the sample extracts yielded multiple fragments of different

sizes.

Sequencing of chromosome 6 or the entire genome of this variant C. hominis is required to

determine the underlying cause for the failure to amplify MIC1 or the larger gp60 region. Con-

sidering the role of gp60 in host cell adhesion and the hypothesized role of MIC1 in infection,

it is possible that changes or loss of key genes involved in host specificity could explain the suc-

cess of this particular variant of C. hominis in infecting hosts other than humans. If the func-

tion of these genes has been altered to better support infection in non-human hosts, then the

infectivity of this variant in humans needs to be re-evaluated.

Of the detected species, all but C. macropodum have been reported to cause infection in

humans at varying frequencies [7, 10]. Cryptosporidium hominis and C. parvum are responsible

for the majority of human infections worldwide [7, 6]. In the present study, the prevalence of

the variant C. hominis in kangaroo and cattle faecal samples was 2.9% (95% CI: 1.7%-4.7%)

and 4.2% (95% CI: 1.6%-9%) respectively, and the prevalence of C. parvum in cattle faecal sam-

ples was 2.8% (95% CI: 0.8%-7.1%). Both of these parasites have been linked to numerous

waterborne outbreaks around the world [7, 1] and although this prevalence is relatively low,

both these host species represent a risk of waterborne transmission to humans. A number of

previous studies have identified C. hominis/C. parvum-like isolates at the 18S rRNA locus in

marsupials including bandicoots (Isoodon obesulus), brushtail possums (Trichosurus vulpe-
cula), eastern grey kangaroos (Macropus giganteus) and brush-tailed rock-wallabies (Petrogale
penicillata) [65, 66, 67]. However, in those studies, despite efforts, the identification of C. homi-
nis/C. parvum could not be confirmed at other loci. This may be due to low numbers of oocysts

and the multi-copy nature of the 18S rRNA gene, which provides better sensitivity at this

locus. Alternatively, failure to confirm identity in these other studies could be due the presence

of variants with substantial differences in the diagnostic loci used, causing those PCR assays to

fail. Such is the case in the present study, which for the first time has identified a novel C.
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hominis in kangaroo faecal samples based on analysis of multiple loci (18S rRNA, Clec, MIC1,

lib13 and gp60).

Cryptosporidium cuniculus, the most prevalent species detected here (13.2%), has been pre-

viously identified in rabbits, humans and a kangaroo in Australia [14, 20, Sari et al., 2013

unpublished—KF279538, 21]. It was implicated in a waterborne outbreak of cryptosporidiosis

in humans in England in 2008 [8, 9] and has been linked to a number of sporadic human cases

across the UK [68, 69], Nigeria [70] and France [71]. Cryptosporidium ubiquitum was detected

in three sheep samples and is a common human pathogen [7], but has not been identified in

Australia in the limited typing of Australian human Cryptosporidium isolates that has been

conducted to date [10], however it has been identified in surface waters in Australia (Monis

et al., unpublished).

Subtyping at the gp60 locus identified the C. hominis subtype IbA10G2 in twelve kangaroo

and four cattle faecal samples. This is a dominant subtype responsible for C. hominis-associ-

ated outbreaks of cryptosporidiosis in the United States, Europe and Australia [7, 72, 73, 74].

Cryptosporidium hominis has previously been reported in cattle in New Zealand [75], Scot-

land [76], India [77] and Korea [78]. Subtyping at the gp60 locus identified IbA10G2 [76,

75], and IdA15G1 [77]. It has been suggested that the IbA10G2 infects cattle naturally in par-

ticular circumstances and thus could act as a zoonotic infection source in some instances

[76]. Interestingly, the studies that detected IbA10G2 in cattle, used PCR-based assays that

only sequenced the 5’ end of gp60, similar to the assay used in this study, so it is possible that

these reports also represent detection of a variant C. hominis gp60. This is the first report of

the same subtype of C. hominis in kangaroos and cattle in the same catchment. In two kanga-

roo samples, the C. hominis IdA15G1 subtype was identified. This is also a common C. homi-
nis subtype identified in humans worldwide [28, 79, 80, 81, 74]. The source and human

health significance of the novel C. hominis detected in kangaroo and cattle samples in the

present study is currently unknown. Environmental pollution from human and domestic

animal faeces such as contamination of watersheds due to anthropogenic and agricultural

activities conducted in the catchment area, in particular livestock farming, could be a poten-

tial source for wildlife infections with C. hominis. However, further studies are required to

better understand the involvement of humans and livestock in the epidemiology of zoonotic

Cryptosporidium species in wildlife.

The C. parvum subtype IIaA18G3R1 was identified in four cattle samples. IIaA18G3R1 is

also a common subtype in both humans and cattle worldwide and has been reported widely in

both calves and humans in Australia [10]. Subtyping of the single C. ubiquitum isolate from

sheep identified XIIa. To date six subtype families (XIIa to XIIf) have been identified in C. ubi-
quitum [58]. Of these, XIIa, XIIb, XIIc, and XIId have been found in humans and therefore

XIIa is a potentially zoonotic subtype [54] The C. cuniculus subtype identified in the present

study was VbA23. Two distinct gp60 subtype families, designated Va and Vb have been identi-

fied in C. cuniculus [8]. Most cases described in humans relate to clade Va and the first water-

borne outbreak was typed as VaA22 [82, 8]. Previous studies in Australia have identified

subtype VbA26 from an Eastern grey kangaroo [42], subtypes VbA23R3 and VbA26R4 [14,

20], VbA22R4, VbA24R3 and VbA25R4 [20] in rabbits and subtype VbA25 [42] and VbA27

(Sari et al., 2013 unpublished—KF279538) in a human patient.

Accurate quantification of Cryptosporidium oocysts in animal faecal deposits on land is

important for estimating catchment Cryptosporidium loads. In the present study, oocyst con-

centration (numbers per gram of faeces—g-1) was also determined for 18 C. hominis and 4 C.

parvum positives using qPCR and for a subset of samples (n = 8) by microscopy. qPCR quanti-

tation was conducted at the Clec locus rather than the 18S rRNA locus as the former is unique

to Cryptosporidium and therefore more specific than the available 18S rRNA qPCR assays.
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There was poor correlation between qPCR and microscopy for the 8 samples for which data

from both methods were available, with qPCR detecting higher numbers of oocysts than

microscopy with the exception of one sample (Eastern grey kangaroo 3). Increased sensitivity

of qPCR and the estimation of much higher numbers of oocysts in faecal samples by qPCR ver-

sus microscopy has been previously reported [83]. A major limitation of qPCR is that the

quantitative data generated are only as accurate as the standards used. A study which com-

pared droplet digital PCR (ddPCR) (which provides absolute quantitation without the need

for calibration curves) with qPCR, reported that qPCR overestimated the oocysts counts com-

pared to ddPCR [47]. In the present study, the discrepancy between qPCR and microscopy

could be due to a number of different factors; (1) IMS for microscopy and direct DNA extrac-

tion from faeces were conducted on different subsamples of each faecal sample and therefore

the numbers of oocysts present in the subsamples may differ, (2) microscopy counts intact

oocysts whereas qPCR will detect not only oocysts but also sporozoites that have been released

from oocysts, other lifecycle stages and any free DNA, therefore qPCR may produce higher

counts than microscopy. In the present study, the mean oocysts g-1 for kangaroos and cattle

that were positive for C. hominis was 6,041 (range 26–16,890) and for cattle that were positive

for C. parvumwas 1535(range 936–2,197) as determined by PCR. By microscopy, oocysts

counts were available for kangaroo samples only and the mean was 5,643 (range <0.5–11,076).

A previous study in WaterNSW catchments, reported mean Cryptosporidium oocysts g-1 of 40

(range 1–5,988) for adult cattle, 25 for juvenile cattle (range <1–17,467), 23 for adult sheep

(range <1–152,474), 49 for juvenile sheep (range <1–641) and 54 for adult kangaroos (range

<1–39,423) [84]. The age of the kangaroos and cattle sampled in the present study are

unknown, but qPCR quantitation suggests that these were actual infections and not mechani-

cal transmission. However, future studies should include oocyst purification via IMS prior to

qPCR for more accurate quantitation. In addition, homogenisation of samples is important

when comparing microscopy and qPCR i.e faecal slurries should be made, mixed well and ali-

quots of that mixture used for both microscopy and qPCR to ensure better consistency

between techniques.

It is important to note that of the numbers of oocysts detected in animal faeces in catch-

ments, only a fraction of oocysts may be infectious. For example, a recent study has shown that

the infectivity fraction of oocysts within source water samples in South Australian catchments

was low (~3.1%) [85]. While it would be expected that oocysts in faecal samples would have

much higher infectivity than oocysts in source water, reports suggest that only 50% of oocysts

in fresh faeces are infectious, and that temperature and desiccation can rapidly inactivate

oocysts in faeces while solar inactivation, predation and temperature will all impact oocyst sur-

vival in water [86].

The identification of mostly zoonotic Cryptosporidium species in animals inhabiting Sydney

catchments indicates that there is a need to diligently monitor Cryptosporidium in source

waters. Such monitoring is also critical, given the resistance of Cryptosporidium oocysts to

chlorine [87]. Further studies are essential to confirm the nature of the C. hominis variant

detected in this study and to determine if it represents an infection risk for humans.

Conclusions

Of the five Cryptosporidium species identified in this study, four species are of public health

significance. The presence of zoonotic Cryptosporidium species in both livestock and wildlife

inhabiting drinking water catchments may have implications for management of drinking

water sources. Therefore, continued identification of the sources/carriers of human pathogenic

strains would be useful to more accurately assess risk.
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