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affect the exactitude of the test of the null hypothesis that they are drawn
from the same population, Such a case as you mention, supposing ¢ to be
non-significant on ‘Student’s’ test, would seem to be nicely treated by the
supplementary z which I suggest for the differences between the variances,
for this would show that the variances were very significantly different,
although on the data it could not be said that the means were different.

Now in practice this would advance the investigation as much as in the
standard case; for, supposing the test were made between two varieties of the
plant, the fact of a real difference in the variances shows that in some
circumstances one variety is the better and in other circumstances that it is the
worse. The situation is thus proved to be more complicated than perhaps the
experimenter originally thought. He will see now that it is useless to compare
the means unless he has some specification of the circumstances, or range of
circumstances, in which the test is to be made. His preliminary enquiry ‘Are
the samples from the same population?’ is answered definitely in the negative
and, this being so, it will depend entirely on the circumstances of the case
whether any comparison of the means is desired at all,

The point has, [ think, received the rather large amount of theoretical
attention that it has chiefly through lack of contact with the practical
experimental situation. Some years ago Behrens published a test of signi-
ficance appropriate to the rather academic question ‘Might these samples
have been drawn from different normal populations having the same mean?’,
and more recently Sukhatme has been preparing tables needed for Behrens’
test. I have, however, always doubted whether the test has any real
importance.

Fisher to G. Darmois: 5 June 1936

I write to thank you most heartily for your excellent little book on Methods of
Estimation, which you were kind enough to send to me. I do not know any
other publication of the same length which gives so good an introduction to
the subject.

There is one point to which perhaps I may draw your attention, in respect
of the propositions you ascribe on p. 19 to J.L. Doob. I have little doubt that
the estimate obtained by the method of maximum likelihood always con-
verges, and, if so, it certainly is consistent, or correct, It is not, however,
always true that its limiting sampling distribution, when the sample is
increased, is Gaussian. This is only true in general when the amount of
information, gy in your notation, is finite, i.e. neither zero nor infinity. For
particular values of the parameter it may always be made zero or infinity by
an appropriate transformation of the parameter, but such failures of the
measure of information are only trivial. When, however, the likelihood is a
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discontinuous function, as it is for the probability distribution
e~ C-mgdy

for which the least observation in the sample supplies a sufficient estimate of
., we have, nevertheless, no measurement of the amount of information, and
the limiting distribution is not Gaussian, These cases, therefore, where the
measurement of information is not a convergent integral for all values of the
parameter, deserve special study to ascertain whether any measure of the
value of the estimate can be found by which such cases might be compared.

On another point, on which I think you do not touch, I believe it must be
true that the maximum likelihood estimate has always a higher intrinsic
precision than any other estimate which can be made, but I have only proved
this as true in the limit for large samples, where the loss of information is
certainly minimised by using the method of maximum likelihood.

I notice you use the term ‘exhaustive estimation’ for what 1 speak of as
‘sufficient statistics’. I should like, if you approve, to use the term ‘exhaustive
estimation’ in a somewhat wider sense, including net only the cases in which
sufficient statistics exist, but also those cases described in my paper ‘Two new
properties of mathematical likelihood’ [CP 108], in which the whole of the
ancillary information may be utilised by taking account of characteristics of
the sample, which, by themselves, yield no information respecting the
parameter scught., Estimation in these cases also may be said to be exhaus-
tive, and it seems to me likely that further research may enlarge the field of
application of this method. Indeed exhaustive estimation in this sense would
be possible if it were always true:- that whenever xy, ..., x, have a
simultaneous distribution depending on a parameter @ it is possible to find
n — 1 functionally independent functions of the variates, the distribution of
each of which is independent of 8. It would be interesting to know if you could
form an intuitive judgement of the probable truth of this proposition.

Fisher to G. Darmois: 2 April 1940

I am very glad to have your letter. . . .

I should be very much surprised in a practical case to get a divergent series’
by the process which I think is easiest in principle, namely:

I m 0y, ...6,),whenr=1,, ., s5,is the expected frequency in class r for
given values of the parameters 8, to 8,,, let

L1 dm, dm,

= 3 —
1 :Zhn, a6, dey

and let Vj, be the corresponding element in the reciprocal matrix, then if a, is
the observed frequency, let

g

a, dm
Zi — L =4
= m, do;




66 Statistical Inference and Analysis

then
P
B} = B,~+ ;1 ijAk

gives a second approximation. The matrices are determined at the trial
values, and for more precise values of the variances and co-variances of the
values fitted may usefully be redetermined from the improved values. From
my own experience I should expect in practice that this would fail to give a
convergent series of approximations only if the trial values were exceptionally
unfortunate. I think, however, I should have time in the near future to try my
hand at any batch of data which has been giving trouble. An approximation
based on percentiles is often quicker to obtain than one based on moments,
and is likely to be more accurate if the data are heavily grouped. If Iran into a
divergent series 1 should more readily suspect that the theoretical form
chosen was unsuitable to the data, i.e. that the goodness of fit was very
unsatisfactory, than that my starting point, supposing this to be ordinarily
plausible, was the cause of the trouble. . .

! Darmaois had asked if the method of successive approximations could lead to a divergent series
when used with maximum likelihood estimation.

Fisher to G. Darmois: 27 July 1940

I am sending herewith some of the material you want . . .

We are much looking forward to seeing you on Tuesday and certainly hope
that you will meet with no official obstructions, though anything is possible in
these days. I am enclosing also what [ have just written out, in the hope that
you may be interested, an example of ancillary information which I think you
have seen before, though perhaps not so fully worked out. 1 have not,
however, delayed to enlarge upon the question of its relation to the problem
of the Nile. I believe, however, that this problem is equivalent to the finding

of appropriate ancillary statistics in general.
[Enclosure]

Example of ancillary information supplied by characteristics of the data other
than the fotal nurmber of observations

Consider a distribution of two observable values x, y such that the element of
frequency is
' df= e—(0x+yl‘0)dx dy

where x and y each may take positive values from 0 to @, The parameter 0 is
unknown but may be estimated from the observations.
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Estimation

If we have a sample of » observations, and apply the Method of Maximal
Likelihood, we find

log L= —~65(x) - S()/8,

% "=~ S(x) + S()/e.
Equating this to zero, we have the Equation of Estimation
0% = S(y)/S(x), (1)
and may define our estimate T by the equation
T? = S()IS(); . -

we shall then be interested in the distribution of T for given 6.

Distribution

I anciliary information is ignored, we consider the distribution of T for
different samples of n observations each. If for brevity we write X for S(x)
and Y for S(y), it is easy to see that the simultaneous distribution of X and Yis

1 ‘
- n—1 yn—1_,—-0X-V/
Yolope ™ Ve Xy )
Substituting ¥ = T2X,
dY = Xd(T?),
we have
1
[ e ——, T’Zn—Zd TZ . Zn—1,—X(8+T%0)

and integrating from 0 to e with respect to X
_(2n—1) T2=2d(T?
(n— D 0+ T%0)>

which is the distribution of T given 8 and n.

df (5)

Amount of information available, and amount utilised.
From the original distribution

df = e~ dxdy
we ascertain the mean value or expectation of
{d(log £)/de}?,
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‘This is the mean value of
(x = y/6*)?*

which by simple integration is found to be 2/6%.
The amount of informaticn about & contained in # observations is therefore

I=2n/0% (6)

For the amount available in the distribution of T for given 8 and », we require
the mean value of
,{ 1= T%6*\?
an\ ——
0+ T</a

using the Eulerian integral of the first kind it appears that

bl

E{ 1 }_"n(rﬂ-l) 1
0+ 7% | 2m2n+1) 6

R 1
0+ T2 ] 2n(2n+1) 67

[=-]

E[ T ]g nnt1) 1
(8 + T%8)> m2n+1) 6*
giving in all
4n*(2n + 1)0°, ¢))

This is less than the total information available by one part in 2a + 1; or,
when n = 1, only 2/3 of the available information is utilised.

Ancillary statistic :
Suppose now we propose to ignore n, and consider in its place the ancillary
statistic N defined by

N =XY.

The simultaneous distribution of T and N for given n is found by
substituting

N/Tfor Xand NTfor Y;
then dXdY = 2N/T)dNdT
1 : 2dT
and df = NZM-— ldN —NO/T+TH0) 22" g
If n-DE e 7 (8)
Now T o~ MOIT+TI0) a7 _ T o= N(z+1/2) dz
0 z

is independent of 6, but is some function K{N) of N. Hence the distribution of
Nis
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2
df = ————N¥"1Kd
if PN N )
and the distribution of T for given N is
1 dT
df = — N(O/T+-T/0) 10
f=xe T )

which is independent of #n. Now when a sample is observed we know n and
equally we know N. If we prefer it we have equally good grounds for

Eefarding (10) as the sampling distribution of T as for so regarding equation
5

It may now be shown that the information supplied by (10) is the whole of
that available.
Since by definition

K= T e—N(z-i-l.’z) Ei’
0 z
2K 7 d
—= = oMt 4y (11)
0 F4
But Iy is the expectation of { N(1/T — T/6*)}* which is
NZ «

e e-—N(z+l.’z) (Z - 1/2)2 E_
0K [1] z

N [d2K
" 7K \ae ) (2

We now evaluate the mean value of this expression for samples having fixed n,

df = 2 N1 R AN,
n—DE "
Now N?"K = 0 when N = 0 and when N is o;
hence | N — dN=-20 [N""TKaN,
0 dN 0

Similarly

T ? dK 2 &K
[ 2n2n + DN KdN + 2 [ 20+ DN o N [ nwer =
1} 0 0

o7 V=0
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But the mean value of I+ n

1 2 T d’K 1 8 7
L2 A S8 v [ AIKAN
& (n — NP i dN? 02 (n—1)1? -(l;
1 2 2 dK T
=——" 3 22n+1)| N* —dN-20(2n +1 NZ”_IKdN]—' .-
6% (n— 1)!2{ (@ )i AN ( )l
1 2
= ra 2n(2n + 1) — 4n
2n
arYl (13)

which is equal to the whole of the informaticn available,

Whereas the estimate T is not sufficient, on the convention that n only is
used in jts distribution, the pair of values N and T supplies exhaustive
information, N being an ancillary statistic capable in this case of replacing the
sample number .

For the same number n the value of N will be sometimes greater sometimes
less; the change of convention which makes the estimation exhaustive is that
we judge of the precision of the estimate from the value of N observed, and
can then totally ignore the size of the sample on which the estimate is based.

In other cases both the size of the sample # and some other characteristics
of it will be required as ancillary information, The phrase ‘conditionally
sufficient’ has been used by Bartlett and others for such a statistic as T in this
case. I do not think this helpful, since it gives the impression that the
sufficiency referred to is an intrinsic property of the estimate per se, whereas I
do not know that almost any estimate has not the same property when
interpreted in relation to some chosen set of ancillary statistics.

The choice of N in this case is suggested by the Likelihood function. It is
justifiable from the fact that the distribution of N for given (#,0) is indepen-
dent of 0. That is, the series of rectangular hyperbolas specified by constant
values of N does in fact divide up the field of variation of x and y, or of X and
Y, in such a way that the total frequency expected between any two contours
is independent of 8. This is the connection with the Problem of the Nile.

G. Darmois to Fisher: 20 August 1940

Je vous envoie quelques remarques sur le probléme du Nil et les résumés
exhaustifs. Ce que je dis aux pages 1 et 2 est fait depuis assez longtemps, j'y
avais réfléchi aprés votre passage 4 Paris et votre Conférence 2 la Société de
Biotypologie [CP 156]. Le reste provient de la lecture des pages que vous
m’avez envoyées. . . .
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Probiéme du Nil — Résumés exhaustifs

Le probléme du Nil se pose pour une loi de probabilité & deux (ou plusieurs)
variables, dépendant d’un (ou plusieurs) paramétres. Soit, pour fixer les idées
flxy,8) d(xy). Il faut voir si une fonction convenablement choisie X(xy) a une
loi de probabilité indépendante de 8. Bien entendu, on peut construire tout
de suite toutes les lois ayant cette propriété. Il suffit de prendre

A(X)AX Bx(Y,0)dY

A(X) étant la diversité de probabilité marginale de X, indépendante de 8,
Bx(Y,0) est une fonction de X, Y, 8, qui est la densité de probabilité lice de ¥
quand X est fixé. Ces deux fonctions peuvent &tre les plus générales de leur
définition, 11 suffit ensuite de remplacer X par une fonction arbitraire de xy, et
de remplacer Y par y. Dans ces conditions, les courbes X(xy) = C* limitent
des aires ol la probabilité totale est indépendante de .

Si I'on envisage I'information qu’une telle loi de probabilité peut apporter,
relativement au paramétre 8, on sait qu’on peut le représenter par:

] 2 3%
j = F{—1| = =] .
l E{aa ng] {662 ng}

D'autre part un théoréme général relatif 2 une décomposition de la loi de
probabilité sous la forme

A(X,0)dX Bx(Y,8)dY

olt X et ¥ sont deux fonctions distinctes de xy, indique que Pinformation i est
la somme de l'information qu'on peut déduire de la loi marginale de X, et de
I'information qu’on peut déduire de la loi de probabilité lice de Y.

On voit que, dans le cas du probléme du Nil, pour toute solution de ce
probléme, I'information totale est fournie par la seule loi de probabilité de ¥
quand X est connu (espérance mathématique dans la loi totale). La forme
générale de solution que nous avons donnée plus haut permet de former
aisément une infinité de solutions particuliéres. En voici une trés simple:

L exp (— X32) dX exp (— {Y — m(X,8)}%/20%(X,8)} dY.

1
Vin V2mo(X,8)

La loi liée est gaussienne si, pour simplifier encore, on suppose o indépendant

de 8 ou aux

) 2

i = ! 1_{.6’_?1(}(’0)} exp (— X%2) dX.
VIn 2o oX(X)| a0

On peut trouver des formes explicites de solutions par un procédé moins
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général, mais qui donne un mécanisme pour I'étalement de la probabilité
dans labande X, X + dX.

Un moyen trés simple d’obtenir le résultat est en effet de soumettre les points
de cette bande a une transfermation ponctuelle, dépendant de 8, mais laissant
invariants, 4 la fois la fonction X et I'élément de probabilité. On voit qu’on est
amené A considérer un groupe de transformations qui échange les éléments de
probabilité en conservant leur valeur,

SiTon prend le groupe de transformations:

X =z,
Y-t =y,

on voit que I’élément de probabilité a la forme
FX,Y -y d(XY).

Le probléme du Nil est résalu par les bandes X = C*, et les éléments de
probabilité se correspondant dans une translation ¢,

L’exemple de R A. Fisher. L'élément a pour expressions

Isx<oo,
e 0¥y dy { Isy<ow,
0=sf<oo,
11 est clair que si, au point xy,y,, on faif correspondre x,y, tels que:
118 = b,
ylfﬂl = y'ztlﬁz.

On laisse invariants  la fois la grandeur xy et I’élément de probabilité. Cest
la transformation ponctuelle indiquée, laissant invariantes les hyperboles
xy = C'°,

On peut mettre 'exemple de R.A. Fisher sous la forme canonigue.

Posons:

xy=e*, yx=e¥, 4=¢"
La probabilité élémentaire devient
Soxp — (eXTHIE 4 oXHV-0RY oX X (Y.
C’est bien la forme F(X,Y — ) dX dY.
On y trouve en évidence la loi marginale de X
AX[F(X ) du

o, évidemment, t ne figure plus. L'exemple de R.A. Fisher posséde, du
point de vue de U'estimation, d’autres propriétés sur lesquelles nous revien-
drons.
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Que)lques exemples. Une loi de Gauss & deux variables, ol la forme de
Iellipse de probabilité est connue, mais ol le centre est inconnu sur une
droite, peut évidemment se mettre sous la forme
2 2

x  0-9

Kexp—3% {5 +

@ b

} dixy).

Ay

lA/x

—10

La direction de Ox est conjuguée de la direction de la droite A, lieu du centre.
Il est clair qu’ici 'information est tout entiére dans y. x est inutile.

Exemple de rotation, Une loi de Gauss circulaire, dont le centre seul est
inconnu sur un cercle de centre O:

Kexp — #{(x — rcos )% + (y — rsin 8)%} d(xy),
X=pcosw,y=psinw,
Kexp — 3{p? + r? — 2pr cos (0 — 8)}pdpde,
On voit bien la forme caractéristique
Fip,0 — 6) dpdew.

Ici, les bandes qui donnent la solution du probléme du Nil sont des anneaux
circulaires de centre O. '

Information, réswmés exhaustifs, estimation. Supposons maintenant que nous
considérons n couples X1y, Xa¥a, . . . suivant une méme loi de probabilité.
Nous voulons en extraire tout ou partie de l'information relative & un
paramétre 0. Il y a lieu d’introduire la notion générale de résumé d'une série
d’observations, et particulierement de résumé exhaustif. Un résumé sera
constitué par une suite d'éléments aléatoires fonctions des observations. Par
exemple, centre de gravité des points observés, moments . . ., point de plus
grande abscisse . . ., etc.

Par exemple, pour la loi 3 une variable

Ae 0y
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aux observations xy,x;, . . . X,, nous ferons correspondre le résumé:
Ex,-, Ex,-z, Ex,'S,

formé par les trois premiers moments.

Dans le cas le plus général, le résumé posséde une certaine loi de probabilité,
et le reste des observations posséde une loi de probabilité liée (ou le résumé
est supposé fixé).

L'information totale est toujours égale & la somme de I'information fournie
par le résumé et de I'information contenue dans la loi de probabilité lie.

Si cette derniére loi ne contient plus le paramétre 8, nous dirons que le
résumé est exhaustif. Il contient alors toute I'information. Il est clair que ces
notions sont absolument générales et que, soit dans ’espace des observations,
soit dans I’espace des paramétres, le nombre des coordonnées peut étre
absclument quelconque.

Exemple. La loi considérée plus haut donne, pour 1 observations:
A" exp — (n6* — 40°8, + 6075, — 485y + S,y dxy dxy . . dx,,.

11 est clair que si 'on prend comme nouvelles coordonnées:

S], Sz, Sa, §4, e E,,, on aura
A" {exp — (n8* — 4835 + 6025, — 4053)} ™% AdS; S, dSa dEy . . . dE,.
L'intégrale J.. . f Ae™Svdg,. .. dE,
3
H—

étendu & la multiplicité ot S, Sz, S sont fixés, est une fonction de 5y, S5, S5,
$(S1, S2, 53), et la loi de probabilité lide est danc

e—Sq A(Sl) SZsSZh §4’ o En) d§4 e dg!n
(b(SI) SZ# S?)

ou 0 a disparu.

Ainsi, U'ensemble S, Sz, S; constitue un résumé exhaustif, pour tout ce qui
regarde la connaissance du parametre 6.

Estitnation. On a évidemment  E(x) =0,
E(x,- - 9)2 = (2, E(.Xf - B)Fi = (.

On pourrait construire diverses estimations de 8. La plus s1mple est Sy/n, dont
la précision est donnée par ay/n. a; ~ 1/3. Lefficacité 1/1243 vaut en gros
70/100.

Ainsi, pour # trés grand, I'estimation de P'optimum donne, & une quantité
finie prés, toute Iinformation. Le premier moment perd environ 30/100 des
observations.

Pour n quelconque, I’information tout entiére est comprise dans le résumé
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81, 85, 83. L’estimation de 'optimum serait fournie par:

8 S
@302 a2 Sy
n noon
11 est facile de voir que cette équation n’a qu'une racine réelle, é(Sl 282,84).
Vraisemblablement, elle fournit une trés grande partie de l’mformatlon Peut
&tre les dérivées suivanies, prise pour la valeur

qui certainement fournissent avec § toute 'information, en fournissent celles
des parties de plus en plus petites.

Forme des lois & résumés exhaustifs. On peut trouver, sous certaines hypoth-
éses, la forme générale de ces lois, qui comprennent évidemment les lois a
estimations exhaustives. J'ai donné cette forme dans une note aux Compies
Rendus T.200 — 1°" semestre p. 1265 et dans une communication 3 la session
d’'Athénes de 'Institut International de Statistique, en Septembre 1936.

Cas de la loi de R.A. Fisher, solution du probléme du Nil
L’élément de probabilité a la forme
df = (@B BB O )+ (yy)
qui convient aux résumés exhaustifs, Le résumé est, dans ce cas
= Z a(xy),
p2 =2 Blxy).
Dans le cas spécial =3x;, P2 = LY,
ces variables pq, p; fournissent donc un résumé exhaustif. Si on les appelle
£,m, leur loi de probabilité est de la forme:
d a1 u—le—mj—nmd dm.
¢ = (e 1),}2 £ £dn
Toute 'information est donc contenue dans cette loi de probabilité.
Or, il se trouve que la loi en &7 est aussi une solution du probléme du Nil,
puisque la transformation

0.8, = B1fy, MO =m/0,

laisse invariante la fonction En et Pélément d’intégrale. Par conséquent, le
résumé exhaustif, mis sous la forme

X=f, Y=n/t
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est tel que toute 'information est fournie par la loi de probabilité de Y liée.
On voit que cette loi trés simple posséde 4 [a fois les propri€tés de résumés
exhaustifs et de solution du probléme du Nil.

Recherche d’autres solutions. 11 suffit de trouver une solution de la forme
e~ 0dxdy

ol la fonction ¢ permette un résumé exhaustif, On peut en trouver trés

aisément de deux types:

1) ¢(x,y—¢) est un polynome en y—¢, dont les coefficients sont des fonctions
de x. Par exemple

A exp—(x* 2% +y") d(xy)
fournit une solution en remplacant y par y—¢,

oy

2) d’(xry - t) = ZAf(x) et '

On voit que la solution de R.A. Fisher appartient  ce deuxiéme type,

La solution générale du probléme qui consiste & mettre §(x,y — {} sous une
forme capable de résumé exhaustif ne présente aucune difficulté.

Il est sans doute plus difficile de s’arranger pour que le résumé lui-méme soit
solution du probléme du Nil. Toutefois, 'exemple de la page [73] tiré de la
rotation, est une solution. En effet, sous la forme

1
5o exP 3{(x ~ rcos 8)> + (y — rsin 8)%} dxdy
T

on apergoit que cette loi comporte un résumé exhauvstif Zx, Zy. En posant
Sxlin = & Zy/n = v, laloi de §,m est évidemment

L oexp ( —-'2'—{(5 — 1¢0s 8) + (n — rsin 9)2}) 7 dE dn.

2m
Par conséquent, elle a la méme propriété que la loi primitive
£ = Rcos (2,
n= Rsin {2,
H n
——exp ( ——{R*%+ 7* — 2Rr cos({) — 9)}) R dR dQ.
2w 2
Laloide R est donc
n n 2y
—expy ——(R*+r*) } RdR J exp {nRrcos u) du.
2 2 b

Elle ne dépend pas de 6; par conséquent, la loi de probabilité liée de {) fournit
toute I'information.
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On pourrait peut étre, sans trop de peine, trouver d’autres exemples.

Il est & remarquer que I’exemple de R.A. Fisher a une autre propriété, c’est
que la loi de probabilité liée qui fournit toute 'information est indépendante
de n, nombre des observations.

Fisher to G, Darmois: 26 August 1940

I have been reading your letter of August 20th and its extremely interesting
enclosure. I am extremely sorry to hear of your accident with the automabile,
which must have been most troublesome, though, from your letter, I am glad
to see that you can now write perfectly.

With respect to your enclosure, of which I hope you have a copy, I believe
it would be helpful as a matter of exposition to bring the size of the sample, let
us say 5, into the foreground at an early stage. Thus for the amount of
information available an the average from a sample of n we have

i= E,{a(log f)/a8)>

but after observing the ancillary statistic X the actual amount of information
which our sample contains may be more or less than this expectation, namely

Ep x(3(log f)/20)%.

At this stage 1 think it is recognisable that the more general expectation is less
appropriate to our particular experience than the more limited expectation,
and that it was only by a thoughtless convention, or perhaps faute de mieux,
through our not having discovered the ancillary function X, that the general
expectation ever came to be adopted. '

If the distribution of our estimate for given X still depends also on n, thenn
has been replaced by the pair of values # and X. Sometimes, as in the example
I gave, and indeed not infrequently, X can be chosen so as to absorb »n
altogether, so that the knowledge of precision for which we formerly relied on
n is now supplied by X only,

In elementary work this cccurs for example when a regression coefficient is
calculated by the familiar formula

b= S{y(x — B)}S(x — ).

For any set of samples having given values xy, . . . x, it is easily shown that
if y is normally distributed with variance v for each value of x, the sampling
variance of b is

wS(x — 5

b is normally distributed about the true regression § as mean, with this
variance.

From this it follows that if we extend our aggregate of samples to include alil
having the same value of S(x — #)* as we have observed, the same distribu-
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tion is true of the estimates b we should obtain from them, Thus the number
of pairs of values (x,y) observed in the sample is irrelevant, so soon as we
have taken note of the value of S(x — %)*. This is true whatever may be the
sampling distribution of the variate x. Even if this were normal, however, the
question—‘What is the distribution of b for samples of-a given size #?7” would
be not only more complex, but less useful, to answer than the question of the
distribution of & for a given value of S(x — £)2. This quantity completely
replaces or supplants » in determining the precision of our estimate. The pair
of values (b,n) is not an exhaustive résumé (i.e. b is not a Sufficient estimate),
but the pair {b,S(x — £)*} constitutes an exhaustive résumé, I suggest that
whenever # is required it should appear explicitly in the specification of a
résumé,

In your pretty example of rotation I imagine that v'§ 2(x) + S%(y) replaces
n in the same way.

The example you take with the quartic exponeni

df = (11A) exp — (x — 0)* dx

where Aisi(—Hl.
This is of the general form ¢(x — 0) dx for which complete ancillary
information is always supplied by the set of differences between successive
observations when these are arranged in order of magnitude, these differ-

ences having a distribution jointly or severally independent of 6.
In the case you take, the variance of the mean ¥ is

(—Hin(—H!
whereas the average information from a sample of » is
12n(—HU(—H1 = 4.1138n
giving an efficiency 0.70753. This is the fraction utilized by the mean for large
samples, If we take the maximal likelihood estimaie T = ¥ + u where u is the
real root of the cubic equation
W+ 3 — my =0
in which
my = S(x — XYn, may= Sx — £)n,
then T will be efficient and will utilize a fraction of the information tending to
unity for large samples. T is not sufficient, the résumé (#,T) supplying on the

average less than the total amount of information available, the limiting
amount of the deficiency for large samples being given by the formula

1 m2\? m m"?
s{—lm- 2= % —(m"———
[m(, m ) } 1S(m'2) { m m
S ( ﬁ ) " m S2 ( T_’j)
m m
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where m is the expectation in any class, m' = dm/d8, m" = d*m/de*, which
comes to 4.6231, nearly 1/8th more than the amount of information in one
observation. The loss of information in such a résumé is not, therefore, very
formidable in practice; but it is, I think, of great theoretical interest to
consider the procedure by which it may be recovered.

For samples having a given configuration # is constant, and the amount of
information supplied by T is the same as that supplied by £. For such samples
the distribution of £ is

df = (Ud) exp (— n{(% — 0)* + 6my(% — 0)* + dm,(% — 0)}) d2
where d(n,ma,my) = T exp {— n(t* + 6mo + 4myt)} di;

the amount of information supplied by # (together with the configuration) is
therefore

i=12n E{(% — 0)* + my}
of which the average value is seen without difficulty to be
12n (—-HV(-H.

In this case, although you might properly have considered the distribution of
T in samples having absolutely the same configuration, it is clear that the
sampling distribution depends only on the two elements m, and i3, which
together with # and T supply an exhaustive résumé. The particular amount of
information supplied by such a résumé may be written explicitly as

T exp (= n(t* + 6mat® + dmaf)} dt
12n { ng + ==
§ exp {— n(t* + 6myt® + 4myt)} At

If we know anything about the function ¢, it might be interesting to write
this as

2 0 ch)
—— ——s or 12nm
12nm, o om, iy + 4 ) am3

Indeed this function is full of interesting points.

Fisher to G. Darmois: 22 March 1955

.. T am writing to you now primarily to seek your assistance in a literary
reference, for [ recall about 1946 when I was on a visit to Paris, at your
invitation, that you were good enough to show me a paper of Kolmogoroff's
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in French translation; in particular you wished to show me the curious axiom
which Kolmogoroff had excogitated in wrestling with the problem of fiducial
inference.

As T am now engaged in setting out more fully, from the point of view of
mathematical logic, the bases, as I understand them, of scientific inference, 1
am wanting to recover the reference of this little essay in axiomatics.

For a time, as perhaps you know, I was doubtful whether Sir Harold
Jeffreys and others were not perhaps right in thinking that the form of
reasoning, to which I gave the name ‘fiducial’, required some special axiom,
but I am now fully satisfied that this is not so, but that the matter turns on the
fact that the word ‘probability’ was framed by our predecessors in the 17th
and 18th centuries not only with abstract and deductive inferences in view,
but with the intention of actually applying the idea to the real werld, for
example, in the advice given to gamblers, and that in consequence the true
meaning of the word includes both the specification of what is known, which
enters readily into deductive processes, but also a specific requirement as to
what is unknown, which is a type of datum we constantly have to use in
inductive reasoning, but which is not easily accommodated to the canons of
deduction,

All this confirms me in my belief that what is inferred, using the method of
fiducial probability, is a classical probability just as conceived by de Moivre or
Montmort, and not in any sense a special kind, or species, of probability, as
has been diligently insinuated. In fact there are a great many cases in which
fiducial inferences could be experimentally verified to any degree of accuracy.

It is in trying to make it clear that I am myself introducing no new axiom
that I want to refer to the attempts of Jeffreys and Kolmogoroff to cope with
the problem in this way. [ hope you will recall the reference without trouble,

Fisher to W.E. Deming: 25 September 1934

Many thanks for sending me your paper with R.T. Birge from Reviews of
Modern Physics.! 1 think the paper will be found most valuable. 1t is, I
believe, the first attempt to give to physicists, or even to astronomers, &
comprehensive account of the ways in which quite modern work has extended
and revolutionised the classical theory of errors. You ask me for criticisms,
but really 1 have found very little in substance to criticise. I think the
discussion on page 135 is somewhat hard on ‘Student’s’ z test. {By the way,
since 1925 ‘Student’ has adopted the transformation I suggested, ¢ = zVn, so
that he uses the ¢ test as much as 1 do.) T would not myself admit that
‘Student’s’ test is ever misleading, and it can ouly be called hazardous in the
strict and nonpolemical sense that it lays down and accepts a certain definite
hazard. It is the u test which requires guesswork and is, therefore, exposed to
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objection by those who want their inferences to flow from the data only.

As Texpect you know, up to well within the last 15 years writers on statistics
were accustomed to be extremely careless in confusing that which is estimated
with our estimate of it. The same terms and the same symbols were used for
both without distinction. In 1921, in a paper of the Phil. Trans. [CP 18],
aimed at clarifying some of the contradictions and paradoxes of the subject, T
introduced two new terms, intended to be antithetical, namely, ‘parameter’,
used to specify the parent population, and ‘statistic’, calculated from the
observed sample. I was quite deliberate in choosing unlike words for these
ideas which it was important to distinguish as clearly as possible. That work
has now been largely done, so far as concerns the better writers on the
subject, and certainly there is no confusion in your paper, where I think you
systematically use Greek and Latin letters to distinguish these two classes of
quantity; but, perhaps by a slip, you do (Section 3e, line 7) use the expressicn
‘corresponding parameter of a sample’, which on consideration you may
agree is rather a dangerous one for some classes of student. A population is
completely specified by its one or two or more parameters. A sample of »
would need n different statistics if these were to be used to specify it. They
are, in fact, not used for this purpose at all, but essentially for estimation. To
each statistic there corresponds a particular parameter or parametric function
to which the value of the statistic tends, as the sample is increased indefinite-
ly, but to each parameter there ‘corresponds’ in this sense as many different
statistics as a cat can have kittens. In fact there is no 1:1 correspondence as
suggested by your clause and I am sure it is better not to use the word
parameter for one of the fluctuating quantities obtained from samples, which
one may call statistical estimates, or something of the kind if that is preferred
to the word statistics.

I may say in this connection that I think your expesition in Section 3e of the
fiducially related values of o and s is altogether excellent; the only thing T
should add on the logical side is that the statements of fiducial probability
obtained should only be taken from distributions, such as s for given o, where
the problem of estimation of the parameters has been completely and
therefore uniquely solved, i.e. where s is known to contain the whole of the
information contained by the sample. One can sce the necessity for this
stipulation by considering what would happen if, like the astronomers, we
used an estimate of o based on the mean error, rather than on the mean
square error, If 5, is the estimate, then the distribution clearly will be a
function of sy/o only and there is nothing but hard work to prevent a
misguided astronomer from tabulating the percentile points of the distribu-
tion for different sizes of sample. Then, given sy, it would be possible,
apparently, to state the fiducial 5 per cent and 95 per cent points for ¢ and
these would not, of course, agree exactly with the values derived by the mean
square method from the same sample. The use of fiducial probability in this
precipitate way would, in fact, have led to a definite numerical contradiction,
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of a kind not unlike those which brought discredit on the use of inverse
probability, based on some form of doctrine of insufficient reason.

In the light of the theory of estimation the logical contradiction is easily
resolved. An inductive statement (unlike a deductive one) is only true if it is
the whole truth; suppression of part of the data and the treatment of the
remainder as though it were the whole, although these data are really true
and the method of treatment unexceptional if applied to the whole, will, as all
statisticians know, lead to very false results. What the theory of estimation is
capable of showing is that a definite portion of the information supplied by
the sample is omitted or thrown away in using an estimate based on the mean
error, but that the whole is retained or conserved in any estimate based on the
mean square error. Consequently when faced with such contradictory state-
ments, apparently equally well founded on the fiducial argument, we can with
the theory of estimation behind us say that one statement is true and the other
is false and why. Tt is for this reason that I think it worth while to emphasise
that the theory of fiducial probability is only an outgrowth or branch of the
theory of estimation and that the attempt which Neyman and Pearson have
made to make it stand alone without regard to the quantity of information
utilised is bound to lead to contradictions and confusion,

Again let me congratulate you most heartily on the completion of a very
fine enterprise.

! Deming, W.E. and Birge, R.T. (1934). On the statistical theory of errors. Rev. Mod. Phys. 6,
119-61.

Fisher to W.E. Deming: 19 September 1935

I am very glad to see from your letter’ that you only wish to suggest that when
@ is known the traditional theory of errors procedure (the u contours of your
paper) is appropriate. I got the impression from what you had written that
you considered that there was ground for choosing w rather than ¢, other than
the possession of definite knowledge of the value of o

If I remember right, ‘Student’ in putting forward his new test was perfectly
clear that he regarded it as a correction of the test traditional up to his time,
needed especially for small samples owing to our uncertainty of the true value
to be ascribed to the variance of the population.

There is a good deal in the approach chosen by Neyman and Pearson that 1
disagree with, but so far it seems to have led to nothing more than the
conclusion that the tests of significance which I and those who agree with me
had previously put forward were the best possible for their purpose; in fact, to
use their terminology, the u regions are uniformly the best possible in relation
to one class of alternative hypotheses, the population variance being given,
while the ¢ contours are uniformly the best possible for another ¢lass of
alternative hypotheses, the variance being unknown. It is, however, in my
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opinion, a pity that these writers have introduced the concept of ‘errors of the
second kind’, i.e. of accepting an hypothesis when it is false, seeing that until
the true hypothesis is specified, such errors are undefined both in magnitude
and in frequency. Their phraseology also encourages the very troublesome
fallacy that when a deviation is not significant the hypothesis tested should be
accepted as true.

! Deming’s letter was in response to Fisher's comments on his manuscript that E.B. Wilson had
sent to Fisher for an opinien. (See Fisher's letter of 20 May 1935 to Wilson (p. 237).) In his letter,
Deming suggested that Neyman and Pearson’s papers were the source of his belief that it is nor 2
matter of complete indifference as to which samples are rejected — a view that Fisher had
criticized,

W.E. Deming to Fisher: 27 July 1937

Recently a certain question has come up involving maximum likelihood. 1t
may seem trivial, but the fact is that there is disagreement among people who
ought to be able to agree. ! appeal to you as the only person who can set us all
at ease, hoping that this encroachment on your time will not be irksome.

For the likelihood L of » normal variates having values xy, xa, . . ., X, We
have

L = (6VZw) ™" exp{-— Z(x - p)*¥20}. 1)

Now dL/dp=0givesp =% ()

dLido = 0 gives o® = 52 + (¥ — p)* (3)

(This s is the $.D. of the sample, as you perceive; not your s.)

Now the question is, what is the maximum likelihood estimate of o made
from the sample of the n observations? Professor Birge and I have taken the
estimate of o? to be s? + (£ — )? as given on the right-hand side of Eq. (3).
We say that if you don’t know p then you must go to the distribution of s and
apply maximum likelihood to it, the result being of course s2nf(n — 1) for the
estimate of o2, n being the number of observations. The distinction between
the two estimates

$2+ (£ — p)? and s*ni(n —1)

is that the former contains more information than the latter; knowledge of p.
gives us a trifle better estimate than s alone can give.

The point of disagreement comes when some people insist that Eqgs. (2) and
(3) are to be taken as simultaneous in p. and o. If one does that, he replaces p
by # in Eq. (3) and gets simply s* for the estimate of o*, To Professor Birge
and me this seems a highly arbitrary and destructive procedure.

Have you ever published anything on the simultaneous estimation of
several parameters, where the estimates by maximum likelihood involve
other parameters, as the estimate of o involves p? Has anything ever come
out in print on this subject? , . .
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Fisher to W.E. Deming: T August 1937

I have your letter of July 27. It is curious that the point you raise is one of the
first that attracted my attention to Statistics. Indeed, I wrote a juvenile paper
uponitin 1912 or 1913, It has no particular merit for your purpose.

I notice that with the definition

§%=8(x — %)¥n

you call &' the S.D. of the sample. I think this is a very arbitrary nomencla-
ture, since, whereas the standard deviation of the population sampled is
unequivocally defined, a sample can provide innumerable different estimates
of varying merit, and, without discussing the relative advantages of these, any
one of these might equally be called the S.D. of the sample, When the theory
of estimation was developed one of the points which I found most surprising is
that bias in an estimate, at least bias of the order of 1/n, where »n is the size of
the sample, is of no practical importance, whereas its variance and, in the
theory of small samples, the form of its distribution curve, is all important.
The reason is that, in estimating the value of an unknown parameter 8, you
are equally estimating the value of any given function of 8, and if one such
estimate is chosen to be unbiassed, the others will generally be found to have
positive or negative biases of order 1/n.

Now there is no denying the fact that, when there is more than one
unknown parameter, maximising the likelihood provides simultancous equa-
tions of estimation and these are solved by taking as the estimated variance
the statistic 52, as defined above, This is not the estimate I use, but it might be
used, at some later algebraic inconvenience, to lead to identically the same
tests of significance. In fact, in these tests of significance we deliberately make
exact allowance for the sampling distribution of ' or s, and avoid the older
practices of assuming the true standard deviation to be equal to 5' or 5; and
since s’ is a known function of s, to make exact allowance for the sampling
distribution of one is to do so equally for the other.

My reasen for using an unbiassed estimate, 5%, of the variance, apart from
the fact that it simplifies the algebra, of testing the significance of the
differences of two varfances drawn from samples of different sizes, is that
variances are things which one often wants to sum or to average. If this were
equally true of standard deviations, or of invariances, it would be equally
desirable to use unbiassed estimates of these; and for these, of course, s and
1/s? are not unbiassed estimates, The indifference of bias is brought cut most
clearly by the property of sufficiency. The fact that the likelihood function
involves, apart from a constant factor peculiar to the sample, only the
statistics s% and ., shows that these are jointly sufficient for the estimation of
the mean and variance of the populationi The relation is essentially a joint
cne, We cannot infer from it in general that £ is a sufficient estimate for p and
5* for the variance. Indeed, as you note, if . is known, the variance is properly
estimated by s"* + (£ — p)?. This happens also to be a sufficient estimate. But
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if, instead of p being known, there was known only some more general
functional relationship between the mean and the variance, the maximum
likelihood estimates of these will generally involve both statistics, and not
generally be sufficient. The joint sufficiency, however, of £ and s implies
equally the joint sufficieney of any two independent functions of #, £, and &2,
if such functions can be regarded as estimates at all.

In fact, I think the distinction you are drawing is one without an essential
difference, one’s choice of an unbiassed estimate being arbitrary in the sense
that it is only justifiable by the use to which the estimate is intended to be put.
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