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ABSTRACT
Conservation of the Sumatran orangutans’ (Pongo abelii) habitat is
threatened by change in land use/land cover (LULCC), due to the
logging of its native primary forest habitat, and the primary forest
conversion to oil palm, rubber tree, and coffee plantations. Frequent
LULCC monitoring is vital to rapid conservation interventions. Due to
the costs of high-resolution satellite imagery, researchers are forced to
rely on cost-free sources (e.g. Landsat), those, however, provide images
at a moderate-to-low resolution (e.g. 15–250 m), permitting identifica-
tion only general LULC classes, and limit the detection of small-scale
deforestation or degradation. Here, we combine Landsat imagery with
very high-resolution imagery obtained from an unmanned aircraft
system (UAS). The UAS imagery was used as ‘drone truthing’ data to
train image classification algorithms. Our results show that UAS data
can successfully be used to help discriminate similar land-cover/use
classes (oil palm plantation vs. reforestation vs. logged forest) with
consistently high identification of over 75%on the generated thematic
map, where the oil palm detection rate was as high as 89%. Because
UAS is employed increasingly in conservation proWjects, this approach
can be used in a large variety of them to improve land-cover classifica-
tion or aid-specific mapping needs.
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1. Introduction

Global biodiversity is declining at an unprecedented rate, mostly due to habitat destruction
and hunting (Achard et al. 2014; Butchart et al. 2010). The Sumatran orangutan (Pongo
abelii) is a species that has been mostly affected by this process, due to the conversion of
lowland primary forests to oil palm, rubber tree, and coffee plantations. This, together with
poaching, has reduced orangutan numbers extensively during the last century (Singleton,
Wich, and Griffiths 2015). Sumatran orangutans not only have their highest densities in
intact lowland forest on peat swamps and onmineral soils, but also occur at lower densities
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in selectively logged forests and primary forests at higher elevations (Wich et al. 2016). The
peat swamp forests where orangutans occur are predominantly converted to oil palm
plantations (78% of all forests converted), whereas forests on mineral soils are converted
to agroforestry (31%), oil palm (19%), and other mixed crops (12%) as the main land-use
classes (Wich et al. 2011 ).

The current abundance estimate for the Sumatran orangutan, which is listed as
Critically Endangered by IUCN, consists of 14,600 individuals in the wild (Wich et al.
2016). This number is alarming because the orangutans are split in several smaller
populations which make them more vulnerable for local extinction, especially consider-
ing that only ~25% of the Sumatran orangutan’s current distribution range falls within
the Indonesian Forest Estate, with the remaining range being unprotected. Furthermore,
even in the protected areas, orangutan habitat is being lost (Wich et al. 2011).

Constant monitoring of land-use/land-cover (LULC) types aimed at tracking where
changes happen (and how fast) is paramount to identify conservation priorities and to
plan actions. Although map products from organizations such as the Global Forest Watch
(http://www.globalforestwatch.org/) can aid such purpose, however, they are limited, as
only forest and non-forest land cover is distinguished. In addition, such products often
cannot discriminate between heavily degraded forests and primary forests (Wich et al.
2008). There is, therefore, need (and room) for improvement.

On-the-ground surveys would permit a highly accurate LULC classification, but they are
arduous, time-consuming, and expensive, which makes remote sensing an obvious and
preferred alternative. Clearly, there exists a trade-off between the quality (in terms of
resolution) and the costs of satellite imagery. This makes monitoring LULC changes by
remote sensing extremely challenging, as its effectiveness depends on both spatial and
temporal resolution of the available data. Generally, lower resolution multispectral products
fromMODIS, MERIS, or AVHRR would allow continental scale land-cover mapping even with
daily frequency; however, detailed mapping of heterogeneous landscapes is unfeasible
(Hansen et al. 2016). Medium spatial resolution data, such as that from the Landsat and
SPOT or from the most recent Sentinel 2, are suitable for land cover or vegetation mapping
at regional the local scale (Xie, Sha, and Yu 2008). For example, Landsat (8 OLI, 7 ETM+, and 5
TM) was effectively used for large-scale forest classification (Hansen et al. 2013); however, its
relatively large instantaneous field of view (30 m) limits its classification specificity, often
leading to the inclusion of non-natural forests into a standard ‘forest’ class, and making the
resulting LULC maps poor (Tropek et al. 2014; Achard et al. 2014). High-resolution imagery
such as WorldView and GeoEye is excellent sources to map highly heterogeneous areas
(Bassa et al. 2016); however, they have some drawback, most notably their cost and relative
narrow swaths. High-resolution imagery’s price is high (€17.50 km2) (www.landinfo.com
2016) making it prohibitory expensive when mapping and monitoring as large an area as
the orangutan range. However, such imagery can be used for classification validation on
Landsat-based land-cover maps (Giri and Long 2014).

As an alternative to satellite imagery for training and validation purposes of medium
spatial resolution-based classification is to use unmanned aircraft systems (UAS). These,
when equipped with high-resolution digital single-lens reflex cameras, can capture
images of high enough quality to surrogate for on-the-ground verification of land
cover (Smith 2010). UAS have been successfully used in habitat and wildlife monitoring
in Sumatra to identify LULC types and to monitor primate populations (Van Andel et al.
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2015; Wich et al. 2015), showing great potential to increase the efficiency and reduce the
cost of primate surveys and LULC change assessment.

Various machine-learning algorithms can be employed to produce LULC maps, espe-
cially when the underlying data are complex and dimensional (Rodriguez-Galiano et al.
2012). One of the most robust, yet fairly simple, algorithm compared to Artificial Neural
Networks or Support Vector Machines is the utilization of classification ensembles such
as the decision tree-based Random Forest (RF) algorithm (Rodriguez-Galiano et al. 2012;
Bassa et al. 2016; Belgiu and Lucian 2016). As Belgiu and Lucian (2016) recently noted in
a comprehensive review of the RF classifier, it is less sensitive to the quality of training
samples than other machine-learning algorithms (ANN, SVM), as, generally, a great
number of individual decision trees are constructed using randomly selected training
samples and variables for splitting the tree nodes (Belgiu and Lucian 2016).

Here, we propose a further usage for UAS-derived images demonstrating how they
can aid a supervised classification (RF) method of Landsat imagery focusing on orangu-
tan habitat. Besides improving the value and usefulness of the Landsat derived LULC
maps, this approach makes it possible to sensibly refine the detail of land-cover classes.
This latter point is particularly important in the context of orangutan conservation. In a
recent study, Wich et al. (2016) reported that orangutans might unexpectedly inhabit
certain land covers neglected by previous studies such as logged forests and reforested
cover types. Thus, detailed LULC maps such as those achievable with our proposed
method, when combined with orangutan occurrence data, could sensibly improve
population estimate models, considering that they rely heavily on simple land-cover
classes (Wich et al. 2016) as of now.

2. Methodology and measurements

2.1 Study area

The study was conducted in the northeastern part of Gunung Leuser National Park (GLNP,
Figure 1) in northern Sumatra, Indonesia (N4°02ʹ21.40″; E98°03ʹ32.71″). The park is one of the
last remaining areas for Sumatran orangutans, Sumatran rhinoceros (Dicerorhinus sumatren-
sis), Sumatran tigers (Panthera tigris sumatrae), and Sumatran elephants (Elephas maximus
sumatranus) (Le Saout et al. 2013). The area is mainly covered by lower and upper montane
forests and freshwater rivers. Throughout the past decade, Sumatra has suffered the highest
relative loss of primary forest extent (approximately 18% of land area) among all Indonesian
islands (Margono et al. 2014), as it has been logged for several decades (Koh and Wich 2012).

The climate in the area is fairly uniform with temperatures between 15°C and 32°C
(averaging around 25°C), while the rainfall regime ranges from humid (1500–
2000 mm year−1, in lowlands) to very humid (2500–3000 mm year−1, in the mountains)
(Laumonier 1997). We identified up-to-date orangutan distribution in the area from the
map produced by Wich and his colleagues (2016) which covers the States of Aceh and
North Sumatra (Sumatra Utara).

INTERNATIONAL JOURNAL OF REMOTE SENSING 2233
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2.2 Satellite imagery preprocessing and classification

We used Landsat 8 OLI imagery taken on the 7 June 2013 covering the study area. We
preprocessed the scene, including georeferencing to subpixel accuracy and spectral
normalization. For the latter, we corrected the spectral values by applying a ‘forest
normalization’ algorithm (Bodart et al. 2011), where all spectral bands (values) were
adjusted based on acquisition dates and reference data collected form evergreen forest
cover by applying a linear shift. Although the imagery had <10% cloud cover, we
masked out clouds during the preprocessing according to Szantoi and Simonetti
(2013). Landsat imagery parameters (band-specific multiplicative rescaling factor,
band-specific additive rescaling factor, quantized and calibrated standard product
pixel values, recording date/time, and local solar zenith angle) were collected from the
imagery metadata.

Following preprocessing, we used a RF supervised classifier algorithm (Belgiu and
Lucian 2016) within the Environmental Mapping and Analysis Program’s EnMAP Box
(Van Der Linden et al. 2015) to discriminate land-cover classes. The RF classifier is a tree-
based ensemble learning method that grows multiple decision trees at a time using a
bootstrapping procedure (Van Der Linden et al. 2015). Individual decision trees are
grown using a random subset of selected independent variables and the final classifica-
tion is decided by applying a majority vote criterion to all the decision trees in the
ensemble. Samples excluded from tree generation are used to rank variables according

Figure 1. Study area location, Gunung Leuser National Park in Northern Sumatra, Indonesia.
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to their importance (in terms of predictive power) and to assess model accuracy (Van
Der Linden et al. 2015). To train the RF algorithm, we used UAS collected data to
discriminate seven different LULC classes, such as (1) water, (2) logged forest, (3) refor-
ested, (4) bare soil, (5) mature oil palm plantation, (6) riverine forest, and (7) young oil palm
plantation, as shown in Figure 2. According to Wich et al. (2016), the two LULC types
where orangutans can be generally found are logged forest and the reforested.

2.2.1 Unmanned autonomous vehicle imagery
A Hornbill Survey’s ‘Skywalker’ UAS was used in this study and is shown in Figure 3.
Although the aircraft flies using a preprogrammed flight plan stored on the autopilot
(http://www.ondrone.com/products/apm-2-7-autopilot), it was under the supervision of
a pilot. Skywalker’s specifications are shown in Table 1. Although regulations for UAS
flights in Indonesia have been recently adopted, these were not in place at the time of
this study. Nevertheless, we were authorized to operate flights by the National Park
Authority and took safety precautions.

Topographic relief is a critical element in planning UAS missions since these are usually
conducted at low altitudes. Aceh and North Sumatra (Sumatera Utara) is characterized by
rugged terrain with elevation ranging from near sea level to over 3400 m. Our surveys
were conducted in relatively flat terrain, which made planning simple. Another important
aspect we had to consider was the identification of suitable launching and landing areas
for the UAS, taking into account vegetation and other land features, which required open,
non-vegetated, or grassy areas of approximately 50 m by 100 m.

We planned the UAS flight missions with approximately 70% forward overlap and
approximately 30% side overlap between photographs to generate geo-referenced
mosaics (Figure 4). Flights had an altitude of 180 m above ground level, and an average

Figure 2. Examples of training data collected from UAS imagery. Total area of each class used to
train the RF algorithm is expressed in number of Landsat pixels.
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speed of 12 m s−1. Because wind makes it difficult to maintain a constant flying speed,
we operated flights only in windless conditions.

The UAS sensor package was connected to a field computer through a telemetry
system that allowed real-time monitoring, including direct viewing of the location of the
UAS and to adjust flight parameters. The camera, a Canon S100 (12.1 MP), was mounted
horizontally in the fuselage of the UAS, with the top of the camera facing forward. No
filters were used and photographs were taken every 2 s using the KAP script (http://
chdk.wikia.com/wiki/KAP_UAS_Exposure_Control_Script) with a ground spatial footprint
of 0.05 m per pixel side.

Images were geotagged by the internal GPS of the Canon S100 camera. The photo-
grammetry software calculated the optimized positions of the camera, reducing the
overall ground inaccuracy in GPS locations. This made it possible to superimpose
satellite images and orthomosaic photographs. Since the UAS-based image collecting
period corresponded to that of the Landsat scene’s recording data, the seasonality did
not affect our study. To produce the orthomosaic, we took into account minor devia-
tions in flight elevation and flight attitude (pitch, roll, yaw), using the photogrammetry
software Pix4Dmapper Pro (www.pix4d.com) to apply the required corrections.

Figure 3. The skywalker UAS. The payload including the navigation unit is placed inside the frame
under the wings while the autopilot and the radio antenna are accessible through the ‘cockpit’.

Table 1. Specifications of the skywalker UAS.
Name Skywalker Motor SunnySky 2820–800 kV

Manufacturer Hornbillsurveys.com Sensor payload Canon S100 with 24 mm lens
Navigation system Strap down GPS system Spectral resolution Red–green–blue
Autopilot HK APM 2.7 Flight Controller Spatial resolution 0.05 m at 180 m altitude
Radio control system Futaba T 8J Wingspan 1800 mm
Telemetry system RDF 900 (ground) and 3DR 900 (air) Weight 2.4 kg
Flight duration 45 min Cost ±4000 USDa

aContact corresponding author for more details.
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2.3 Ground data collection and accuracy assessment

While we used data collected from UAS imagery to train the supervised classifier (Figures
2 and 4), Worldview 2 and 3 (WV, DigitalGlobe Inc.) multispectral satellite imagery with a
ground cell size of 1.8 and 1.24 m respectively was employed to assess the accuracy of
the produced thematic map. For this, we sampled at random 350 points within the study
area (Figure 1) and identified the corresponding land-cover/use classes based on the WV
imagery (dates: WV-2 – 29 April 2013, centre latitude 4.505° and longitude 98.103°; and
centre latitude 4.504° and longitude 97.972°; WV-3 – 21 November 2014, centre latitude
3.503° and longitude 98.055°).

Classification accuracies were summarized in a confusion (i.e. error) matrix where the
user’s, producer’s, and overall accuracy values were calculated taking into account the

Figure 4. Geo-referenced mosaics of the two UAS sites (a and b) and the corresponding training
data polygons. Total area of each class is expressed in number of Landsat pixels.
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different sampling intensities within the strata, and the error-adjusted (true) areas of
each LULC class (Olofsson et al. 2013) were also estimated.

We also used a Sumatran orangutan’s predicted density layer based on Wich et al.
(2016) to calculate the areas of various land-cover/use classes within the primate’s range
in our study area. The predicted density layer (Wich et al. 2016) was generated by a
covariate model by using a large set of line transect data of orangutan nests in the area.
An orangutan distribution (range) map (see Figure 5) for our study area was derived
from the predicted density layer by extracting the actual density boundaries. The
generated LULC map of the area was overlaid on the orangutan distribution map and
the extent of each LULC class was calculated within the primate’s distribution.

Figure 5. Land-use/land-cover map generated by the random forest classifier and the orangutan
distribution map of the area.
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4. Results

Table 2 reports the error matrix of the sample counts, the weighted matrix based on the
estimated area proportions, and the unbiased overall accuracy for the thematic map.
The overall accuracy of the classification was 75.82% (Table 2), calculated from the error
matrix, taking into account the different estimation weights, which are associated with
each sample and determined by the sampling design (random sampling). The land-cover
and land-use classes most strongly associated to orangutan presence/absence were
detected with a consistent, high accuracy. Specifically, reforestation and logged forest
both were discriminated with a producer’s accuracy of 76%, while oil palm class (which
has a fundamental importance in monitoring orangutan habitat destruction) was dis-
criminated with a very high rate (89%).

The class corresponding to young oil palm, which had very small representation on
the ground, was not detected. Additional classes, such as bare soil, were identified with
approximately 76% accuracy, and small water bodies such as streams or tributaries were
partially identified (59%) on the map (Figure 5). Riverine forest was poorly identified with
a producer’s accuracy of 23%, confused many times with the oil palm class. As per visual
observation, based on the delivered thematic map (Figure 5), one can see that the
border of the national park is fairly well maintained, at least form the north. However, a
closer look can reveal (Figure 6) edge effects, where, for example, oil palm plantations
(or preparation for plantation – i.e. bare land) are encroaching through the boundary.
Moreover, within approximately 1 km of the border, almost no logged (i.e. primary)
forest exists except for reforested areas which could also be considered degraded forest.
Also, Figure 5 shows that orangutan distribution closely follows certain land-cover
classes as can be seen in the eastern part of the GLNP, where protection of the park is
less prevalent as bare areas and oil palm plantations encroached into its territory.

We quantified the spatial coverage of various LULC types within the predicted
orangutan distribution range (Figure 5) while accounting for the corresponding detec-
tion accuracy of the thematic map (Table 3). The full extent of the orangutan’s distribu-
tion, according to Wich et al. (2016), is approximately 17,870 km2 for the entire region, of
which roughly 6600 km2 lays within the Gunung Leuser National Park. Our study area
was partially within the GLNP and overlapped with the orangutan range in there
(207 km2). The dominant LULC type within the orangutan range is the logged forest
class, accounting for approximately 3/4 of the entire area (164 km2). Furthermore, the
supervised classification identified a large area covered by the reforestation class
(27 km2) and almost 9 km2 of mature oil palm plantation and close to 5 km2 bare classes.

5. Discussion

The Sumatran orangutan is threatened by habitat loss, degradation, fragmentation, and
hunting (Wich et al. 2016, 2008). Frequent monitoring of its habitat is crucial to design
effective conservation strategies. However, to be effective, monitoring strategies should
rely on methods capable of discriminating among several land-cover and use types with
a high level of accuracy in order to ensure that even small changes are promptly
detected. Our results provide an important step towards this direction showing how
satellite imagery at moderate spatial resolution, such as that from Landsat 8 when used
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in conjunction with UAS-derived images, can be utilized to produce accurate LULC maps
including classes with high relevance for orangutan conservation, such as oil palm
plantations and reforested areas (Figures 5 and 6).

When the training data based on UAS imagery was used in combination with a
supervised machine learning classifier (RF, Belgiu and Lucian 2016; Rodriguez-Galiano
et al. 2012), the overall accuracy was appropriate for the study objectives. More impor-
tantly, the three key classes that are difficult to identify and delineate with Landsat 8
imagery alone, i.e. logged forest, reforested areas and oil palm, were well discriminated by

Figure 6. A detailed portion of the generated land-use/cover map compared to the Landsat and to a
GeoEye scenes.

Table 3. The stratified area estimates of the mapped LULC classes in the mapped area and in the
orangutan extent within the GLNP..
Land-cover/use class Total area (km2) Corresponding producer’s accuracy Orangutan extent (km2)

Young oil palm 5.15 ± 6.63 N/A 0.03
Bare soil 100.32 ± 18.92 0.76 ± 0.19 5.01
Water 14.10 ± 7.20 0.59 ± 0.51 1.57
Reforestation 151.48 ± 25.95 0.76 ± 0.17 27.13
Logged forest 217.94 ± 25.85 0.76 ± 0.12 163.92
Riverine forest 3.77 ± 4.10 0.23 ± 1.09 0.97
Oil palm 274.59 ± 27.81 0.89 ± 0.10 8.82
Total 767.35 207.45

Total areas and the producer’s accuracies are presented with a 95% confidence interval.

INTERNATIONAL JOURNAL OF REMOTE SENSING 2241

D
ow

nl
oa

de
d 

by
 [

U
N

IV
E

R
SI

T
Y

 O
F 

A
D

E
L

A
ID

E
 L

IB
R

A
R

IE
S]

 a
t 0

0:
23

 2
1 

Se
pt

em
be

r 
20

17
 



our approach. It is important to note that among the mapped categories we did not
include a class for undisturbed natural forest due to the fact that this area has been
logged for over forty years (Knop, Ward, and Wich 2004). Yet, some of the areas
attributed to the reforestation class are actually covered by natural forest that has
regrown after clear cutting.

One of the main advantages of our approach is its cost-effectiveness, which makes it
a promising tool for activities requiring frequent monitoring of LULC classes, such as
wildlife conservation. Another major advantage is its timing as the UAS can be deployed
virtually any time if weather permits. Thus, if experts, NGOs, and authorities perceive
changes, the areas in question can be monitored quickly. Despite its low cost, the
method permits us to identify multiple classes of conservation importance. Previous
studies, based on Landsat imagery, attempted to discriminate oil palm plantations from
forest (binary classification) (Morel, Fisher, and Malhi 2012), but achieved only approxi-
mately 70% overall accuracy. We reached and improved this level of accuracy for several
LULC classes.

The possibility to obtain detailed land-cover map at a reasonable expense has the
potential to greatly improve predictive models of animal abundance. The most accurate
predictive model for Sumatran orangutans (Wich et al. 2016) has some accuracy limita-
tions in distinguishing density differences between various habitats due to the fact that
it is based on a 250-m resolution land-cover map (Miettinen et al. 2012) which had fewer
directly related LULC classes and lower resolution than the land-cover map we have
produced with our new approach.

To classify forest areas overlapping with Sumatran orangutan distribution, Wich et al.
(2016) referred to only three classes (peat swamp, lowland forest, and lower montane
forest), without making any distinction between these and logged forest and reforested
areas. Including more land-cover classes could lead to more detailed and accurate
predictive models. This is important for conservation of orangutans because research
has indicated that behaviour and densities differ between logged and primary forest
(Hardus et al. 2012; Husson et al. 2009; Van Schaik and Rao 1997).

Most of the previous work using UAS for wildlife studies has focused on inventories
where individual animals are counted. In this study, we demonstrated that UAS images
can also be confidently used in place of ground truth data to obtain a better classifica-
tion (i.e. thematic map) than that provided by automated algorithms. This makes our
method a valuable alternative to time consuming and costly ground truthing of LULC
classes over large and remote areas.

The caveats of our approach are (1) that the medium-resolution satellite images and
the UAS pseudo ground data need to be collected in a similar time frame (or at least in
the same period of the year) in order to avoid potential biases due to seasonality and (2)
the relative uncertain nature of flying a UAS as national regulations either does not exist
or changes without prior warning. Such concerns should be taken into consideration for
the next steps; following this study, would consist of developing a semi-automated LULC
monitoring system aided by UAS. The classification would be conducted frequently
based on freely available medium-resolution satellite imagery (satellites such as
Landsat 8 and Sentinel 2) through various cloud processing platforms.
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