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Abstract

Dissection of the genetic pathways and mechanisms by which anther development occurs in grasses is crucial for 
both a basic understanding of plant development and for examining traits of agronomic importance such as male 
sterility. In rice, MULTIPLE SPOROCYTES1 (MSP1), a leucine-rich-repeat receptor kinase, plays an important role 
in anther development by limiting the number of sporocytes. OsTDL1a (a TPD1-like gene in rice) encodes a small 
protein that acts as a cofactor of MSP1 in the same regulatory pathway. In this study, we analyzed small RNA and 
mRNA changes in different stages of spikelets from wild-type rice, and from msp1 and ostdl1a mutants. Analysis of 
the small RNA data identified miRNAs demonstrating differential abundances. miR2275 was depleted in the two rice 
mutants; this miRNA is specifically enriched in anthers and functions to trigger the production of 24-nt phased sec-
ondary siRNAs (phasiRNAs) from PHAS loci. We observed that the 24-nt phasiRNAs as well as their precursor PHAS 
mRNAs were also depleted in the two mutants. An analysis of co-expression identified three Argonaute-encoding 
genes (OsAGO1d, OsAGO2b, and OsAGO18) that accumulate transcripts coordinately with phasiRNAs, suggesting a 
functional relationship. By mRNA in situ analysis, we demonstrated a strong correlation between the spatiotemporal 
pattern of these OsAGO transcripts and phasiRNA accumulations.
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Introduction

Rice (Oryza sativa), as a major crop, has been widely used as a 
monocot model species to explore the genetic basis of flower 
development in higher plants (Yoshida and Nagato, 2011). 
Rice anther development is one of the major topics studied 

in rice flower development, and changes in the cytological 
morphology in different developmental stages of rice anthers 
have been well-described (Zhang and Wilson, 2009; Zhang 
et  al., 2011). Tapetum and microsporocyte specification is 
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a crucial event in male fertility, occurring at early stages of 
anther development in plants; a number of genes have been 
discovered as regulators of cell fate specification (Zhang and 
Yang, 2014). For example, EXCESS MICROSPOROCYTES 
1 (EMS1, or EXTRA SPOROGENOUS CELLS, EXS), a 
member of the leucine-rich repeat receptor-like kinase (LRR-
RLK) family, specifies tapetal identity and limits the num-
ber of pollen mother cells (PMCs) in Arabidopsis (Canales 
et  al., 2002; Zhao et  al., 2002). The small secreted protein, 
TAPETAL DETERMINANT 1 (TPD1), has been reported 
as a ligand of EMS1/EXS with a deterministic role in the cell 
fate of the tapetum (Jia et al., 2008).

The EMS1/EXS ortholog in rice is MULTIPLE 
SPOROCYTE (MSP1) (Nonomura et  al., 2003), while the 
ligand protein TPD1 has two TPD1-like orthologs in rice, 
including OsTDL1A and OsTDL1B, among which OsTDL1A 
(also known as MICROSPORELESS2, MIL2) may interact 
with MSP1 (Zhao et al., 2008; Hong et al., 2012). Although 
msp1 and ostdl1a mutants display defects in anther and ovule 
development, both show a phenotype of complete male ste-
rility, while partially maintaining female fertility (Nonomura 
et  al., 2003; Hong et  al., 2012; Yang et  al., 2016). MSP1, 
as a receptor-like kinase in an upstream signaling pathway, 
affects many other downstream genes involved in rice anther 
development. For example, a loss of function of MSP1 will 
largely down-regulate the expression of other genes involved 
in rice anther development, such as Undeveloped Tapetum1 
(UDT1) and Tapetum Degeneration Retardation (TDR) (Jung 
et al., 2005; Li et al., 2006). Maize MAC1 is the ortholog of 
OsTDL1A, having similar functions in limiting archespo-
rial cell proliferation in maize anthers (Wang et  al., 2012). 
Therefore, the OsTDL1A-MSP1 pathway plays a central role 
in early stages of rice anther development to simultaneously 
specify the tapetum and limit the number of pollen mother 
cells (Zhang and Yang, 2014).

Small RNA pathways play roles in both flower develop-
ment and gametogenesis in plants. Some conserved miR-
NAs appear to function similarly in flower development 
across different plant species, such as Arabidopsis, tomato, 
petunia, rice, and maize (Luo et al., 2013). In rice, miR172 
targets APETALA2 (AP2) genes controlling inflorescence 
architecture and spikelet meristem identity (Zhu et al., 2009; 
Lee and An, 2012). A number of rice SQUAMOSA Promoter 
Binding Protein-Like (OsSPL) genes, including OsSPL14, 
are targeted by miR156; this pathway has a role in flower-
ing time, panicle architecture, grain yield, and other develop-
mental phenotypes (Xie et al., 2006; Jiao et al., 2010; Miura 
et al., 2010). Other miRNAs, such as miR159 and miR164, 
are also reported to be involved in rice floral development 
(Tsuji et al., 2006; Adam et al., 2011). In addition to miR-
NAs, trans-acting siRNAs (tasiRNAs), dependent on the 
activities of RNA-DEPENDENT RNA POLYMERASE 6 
(RDR6) and DICER-LIKE 4 (DCL4), generated from non-
coding transcripts such as TAS3, play roles in both vegeta-
tive and reproductive development in both rice and maize 
by targeting genes encoding auxin response factors (ARFs). 
For example, the rice mutant of SHOOTLESS2 (SHL2), the 
ortholog of Arabidopsis RDR6, displays a severe phenotype 

of misregulation of adaxial-abaxial polarity patterning in 
both the lemma and anther (Toriba et  al., 2010), while the 
maize mutant leafbladeless1 (lbl1, a loss of function of an 
SGS3 ortholog, SUPPRESSOR OF GENE SILENCING 3) 
is defective in tasiRNA biogenesis and shows a pleotropic 
phenotype, including sterile male inflorescences (Nogueira 
et  al., 2007). The RDR6-dependent small RNA biogenesis 
pathway not only produces tasiRNAs, but also yields two 
large populations of phased secondary siRNAs (phasiRNAs) 
in the reproductive tissues of monocots (reviewed in Fei et al., 
2013). Data have suggested that these 21- and 24-nt reproduc-
tive phasiRNAs, triggered by miR2118 and miR2275, respec-
tively, may play crucial roles in microgametogenesis in maize, 
because the accumulation of phasiRNAs shows highly stage-
specific patterns in maize anther development (Zhai et  al., 
2015). In addition, the Argonaute (AGO) protein MEIOSIS 
ARRESTED AT LEPTOTENE1 (MEL1), previously dem-
onstrated to be essential for sporogenesis in rice anthers 
(Nonomura et al., 2007), has recently been shown to recruit 
21-nt phasiRNAs (Komiya et al., 2014).

In a recent study, we showed that the MSP1-OsTDL1A 
partners are master regulators of downstream transcrip-
tion factors that are involved in plant anther development 
(Yang et al., 2016). Therefore, we hypothesized that loss-of-
function of MSP1-OsTDL1A may also cause great down-
stream changes in non-coding RNAs and small RNAs. Here, 
we systematically characterized changes in small RNA and 
mRNA, especially non-coding PHAS transcripts, across 
early developmental stages of rice spikelets in wild-type, 
msp1 and ostdl1a backgrounds using deep sequencing data. 
We found comprehensive changes of miRNAs, phasiRNAs, 
and PHAS transcripts in early stages of rice spikelet devel-
opment. Importantly, the reproductive phasiRNAs displayed 
stage-specific expression patterns during early stages of 
anther development, suggesting that the timing of phasiRNA 
biogenesis is crucial in rice microsporogenesis. Furthermore, 
phasiRNA and mRNA changes in different developmental 
stages and mutant backgrounds facilitated the identification 
of several rice AGOs, in addition to MEL1, that potentially 
load phasiRNAs.

Materials and methods

Plant materials and growth conditions
All the rice plants used in this study were in a genetic background of 
variety 9522, a japonica rice. The two male-sterile mutants, ostdl1a 
and msp1-4, are from a rice mutant library made by 60Co γ-ray radia-
tion; the molecular details of these mutants are described in Yang 
et al. (2016). Plants were grown in the paddy field of Shanghai Jiao 
Tong University in China.

Small RNA and RNA-seq library construction
For small RNA library construction, total RNA enriched for small 
RNA was extracted. The small RNA faction between 18 to 30 nt in 
length was collected by gel separation, then ligated to 5´ and 3´ adap-
tors and purified. These small RNAs were reverse transcribed by 
RT-PCR and finally amplified via PCR. For RNA-seq libraries, after 
the total RNA extraction and DNase I treatment, magnetic beads with 
oligo(dT) were used to isolate mRNA. Mixed with the fragmentation 
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buffer, the mRNA was fragmented into short fragments. The cDNA 
was synthesized using the mRNA fragments as templates. Short frag-
ments were purified for end repair and single nucleotide A (adenine) 
addition, ligated to adapters, and then the second strand was degraded 
using UNG (Uracil-N-Glycosylase). After agarose gel electrophoresis, 
the suitable fragments were selected for PCR amplification as tem-
plates. All the small RNA and RNA-seq libraries were sequenced on 
an Illumina HiSeq 2000 platform by BGI (BGI-Shenzhen, China).

Small RNA data analysis
Small RNA sequencing data were preprocessed by removing adapt-
ers, and then mapped to the version 7.0 of the rice genome assembly 
from the Rice Genome Annotation Project Database (http://rice.
plantbiology.msu.edu, accessed 23 September 2016) using the pro-
gram Bowtie (Langmead et al., 2009). Small RNA reads that were 
mapped to the tRNAs and rRNAs were filtered, and reads mapped 
to the rice genome from different libraries were normalized to reads 
per 5 million reads (RP5M) for comparisons. The Bioconductor 
(www.bioconductor.org) package ‘edgeR’ was used for small RNA 
differential analysis (P<0.05, FDR<0.05). Rice miRNA sequences 
were downloaded from miRBase (Release 21; http://www.mirbase.
org/, accessed 23 September 2016) (Kozomara and Griffiths-Jones, 
2014). The R (www.r-project.org, accessed 23 September 2016) 
package ‘pheatmap’ was used to represent the average abundance 
of miRNAs from three biological replicates. PHAS locus identifica-
tion was performed using the same method described previously by 
Zhai et al. (2011). Briefly, small RNA sequencing data from different 
libraries were combined together to increase the sequencing depth 
for PHAS loci identification. A phasing score of 25 was used as a 
stringent cut-off, followed by a manual check to remove loci pro-
ducing highly abundant small RNAs in other sizes, which are most 
likely degradation products from t/rRNAs. The overall phasiRNA 
abundance for each PHAS locus was calculated by summing up the 
normalized abundance of 21- or 24-nt small RNAs generated from 
each corresponding 21-PHAS and 24-PHAS locus.

RNA-seq data analysis
Paired-end strand-specific RNA-seq reads (90 bp × 2) were mapped 
to the rice genome sequences allowing no more than two mismatches 
using ‘Tophat’ (Trapnell et  al., 2009). The BAM files generated 
by ‘Tophat’ were sorted and indexed using ‘SAMtools’ (Li et  al., 
2009), and then visualized via Integrative Genomics Viewer (IGV) 
(Robinson et  al., 2011). The program ‘Cufflinks’ (Trapnell et  al., 
2012) was used for transcriptome assembly, differential analysis of 
gene expression, and calculation of the FPKM value (fragments per 
kilobase of transcript per million mapped reads). For differential 
analysis of gene expression, we used ‘q-value<0.01’ and ‘fold change 
> 2’ as cut-offs. Bar graphs and line charts representing FPKM val-
ues of gene expression were plotted using the Bioconductor package 
‘cummeRbund’ (Trapnell et al., 2012).

Microarray data analysis
Gene lists were inputted into the webserver Rice Oligonucleotide 
Array Database (http://www.ricearray.org/, accessed 23 September 
2016; Cao et al., 2012). Specific public microarray datasets were 
selected to acquire the abundance values of each gene. The nor-
malized gene expression values were further visualized as heatmaps 
using the R package ‘pheatmap’.

In situ hybridizations
Freshly collected samples were fixed in formalin-acetic acid-alcohol 
(FAA) and dehydrated in a series of graded ethanol concentrations; 
these samples were then infiltrated with Histo-clear II, embedded in 
Paraplast Plus, and subsequently processed into 6-μm thick sections 
using a Leica RM2245 rotary microtome. Templates for RNA probe 

synthesis were amplified by PCR from the cDNA. Probes were 
transcribed in vitro under the T7 promoter with RNA polymerase, 
using the DIG RNA labeling kit (Roche). The RNA in situ hybridi-
zations were carried out as described by Kouchi and Hata (1993) 
and Li et al. (2006). The forward and reverse RT-PCR primers were 
as follows: OsAGO1d, 5´-GCAATACCACCCACAAGGAC-3´ and 
5´-GGTTCCAATACTCCCACTTCC-3´; OsAGO18, 5´-CAGTAT 
AACAGTACGGAACGC-3´ and 5´-TGTCATTACAACAAGTAG 
GAGG-3´.

Accession numbers
RNA-seq and small RNA data are available from Genbank, under 
GEO accession number GSE77300.

Results

Comparative analysis of small RNAs in spikelets of 
wild-type and mutant rice

Small RNAs play crucial roles in mediating both transcription 
and translation, with different classes distinguishable by their 
distinct biogenesis pathways (Axtell, 2013). The recent discov-
ery of reproductive phasiRNAs in monocots indicates that this 
special class of small RNAs may be important for male repro-
duction, although the underlying mechanism remains to be 
elucidated (Johnson et al., 2009; Song et al., 2012; Zhai et al., 
2015). To assess small RNA and mRNA changes across differ-
ent stages of rice spikelet development and to understand how 
they are impacted by perturbation of the OsTDL1A-MSP1 
pathway, we prepared small RNA and RNA-seq libraries 
from spikelets of wild-type rice cultivar 9522, and the mutants 
msp1-4 (‘msp1’ hereafter) and ostdl1a [library information is 
listed in Supplementary Table S1 at JXB online; mutant infor-
mation is described in Yang et al. (2016), and is also shown in 
Supplementary Fig. S1]. We performed three biological repli-
cates for each genotype and stage. The lengths of rice spikelets 
correspond to different anther developmental stages (Fig. 1). 
Specifically, stage 3 (0.15–0.2 mm), stage 5 (0.25–0.3 mm), 
and stage 7 (0.4–0.45 mm) of rice anthers correspond to 0.5–
0.6 mm, 1.0–1.5 mm, and 2.5–3.0 mm rice spikelets, respec-
tively (Zhang et al., 2011) (Fig. 1A); hereafter, we will refer 
to these sizes of rice spikelets as stage 3, stage 5, and stage 
7 spikelets, respectively. Samples were collected at these three 
stages because MSP1 and OsTDL1A mainly function at early 
stages (stage 3 to stage 5) of rice anther development (Yang 
et al., 2016), while stage 5–7 is an important stage at which 
meiocytes start meiosis (Zhang et al., 2011).

Sequencing reads of small RNAs were aligned to the rice 
genome and normalized to 5 million (5M), and the distribu-
tion of lengths in different stages was analyzed. The three rep-
licates were nearly identical (Fig.1). The 24-nt small RNAs 
account for ~75% of all small RNAs at stage 3 in wild-type 
rice. Interestingly, with the development of spikelets, there was 
a shift in the predominant size class, with 21-nt small RNAs 
the largest proportion (nearly 50%) in the profile at stage 
5.  In stage 7, the proportion (~55%) of 24-nt small RNAs 
was once again larger than the 21-nt counterpart (<40%), 
but was far smaller than that in stage 3. The fluctuation of 
small RNA percentages in different sizes that accompanied 

http://rice.plantbiology.msu.edu
http://rice.plantbiology.msu.edu
http://www.bioconductor.org
http://www.mirbase.org/
http://www.mirbase.org/
http://www.r-project.org
http://www.ricearray.org/﻿
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw361/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw361/-/DC1


6040  |  Fei et al.

spikelet development may represent shifts in small RNA bio-
genesis and transcriptome changes in rice reproductive tis-
sues, consistent with prior reports in maize (Zhai et al., 2015). 
Similar to the wild-type spikelets, in the two mutants changes 
in small RNA size proportions occurred more significantly 
in the transition from stage 3 to stage 5 than from stage 5 to 
stage 7. The only apparent difference was a reduction in the 
proportion of 21-nt small RNAs in the mutants in stage 5 
spikelets (Fig. 1B). To investigate this difference, and others 

less readily apparent, we checked the levels of small RNAs 
that are often 21 nt in length, miRNAs and phasiRNAs.

miRNA expression patterns in different developmental 
stages of rice spikelets

A number of miRNAs have characterized roles in plant devel-
opment, targeting several families of transcription factors 
or other development-related genes (Jones-Rhoades et  al., 

Fig. 1.  Small RNA size distribution in different developmental stages and backgrounds of rice spikelets. (A) Schematic representation of rice anther 
structures in different stages of spiklets of wild-type rice. Each layer of cells is indicated by an arrow: epidermis (E); primary parietal cell (PPC); 
archesporial cell (Ar); endothecium (En); middle layer (ML); tapetum (Ta); sporogenous cell (Sp). Small RNA size distributions in the different stages of 
wild-type rice spikelets are shown below. (B) Schematic representation of rice anther structures in different stages of spiklets of the msp1 and ostdl1a 
mutants. Excessive archesporial cell (eAr); unknown identity cell (UIC); excessive sporogenous cell (eSp). Small RNA size distributions in the different 
stages of the mutant spikelets are shown below.
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2006; Chen, 2009). miRNAs, such as miR156 and miR172, 
have been proven to control flower development at a post-
transcriptional level in both Arabidopsis and rice (Aukerman 
and Sakai, 2003; Chen, 2004; Xie et  al., 2006; Wu et  al., 
2009a; Zhu et al., 2009; Jiao et al., 2010; Lee and An, 2012). 
Therefore, the expression patterns of miRNAs are important 
to our understanding of rice spikelet development.

Genome-wide differential analysis of miRNA expression 
was performed in wild-type rice across different stages of 
spikelet development (see Supplementary Tables S2 and S3). 
From stage 3 to stage 5, >60 miRNAs increased significantly, 
while only 18 miRNAs decreased during the same time 
period; from stage 5 to stage 7, the numbers of miRNAs with 
significantly different levels (up or down) were both fewer 
than 20 (Fig. 2A; Table 1). Comparing different stages in the 
msp1 and ostdl1a mutant backgrounds, similar sets (both 
qualitatively and quantitatively) of differentially accumulat-
ing miRNAs were observed, suggesting that the male sterile 
phenotype of these mutants has a limited impact on miRNA 
levels, relative to the wild-type. This was further confirmed 
by the observation that very few miRNAs were identified as 
significantly different in their levels when comparing the two 
mutants with the wild-type (Table 1). Interestingly, among the 
few impacted miRNAs in the two mutants, miR2275, which 

triggers 24-nt phasiRNA production, was totally abolished 
(Supplementary Table S3, and see below).

Among the miRNAs differentially expressed in wild-type 
rice across the developmental stages, the level of  miR164 
showed a ~7-fold increase from stage 3 to stage 7, whereas 
miR172 showed a dramatic decline of  ~4-fold from stage 
3 to stage 5, then remained relatively steady to stage 7 (see 
Supplementary Fig. S2A). Prior work using PARE/degra-
dome data confirmed the targets of  a number of  miRNAs 
in rice (Li et al., 2010; Zhou et al., 2010). From RNA-seq 
data, we obtained the expression levels of  both miR164 
and miR172 target genes. Transcript levels of  the most 
abundant miR164 target (LOC_Os12g05260) decreased 
from 180 FPKM (stage 3)  to 125 FPKM (stage 5), and 
the expression level increased slightly in stage 7 compared 
to stage 5, and a similar trend was observed for the tar-
get gene LOC_Os06g23650 (Supplementary Fig. S2B); 
these were the only two targets that showed an inverse 
relationship with miR164 abundance. Three miR172 tar-
gets showed an inverse correlation with miR172 levels 
(Supplementary Fig. S2C). miR156 showed an interest-
ing pattern across the developmental stages of  rice spike-
lets: a 21-nt miR156 isoform increased gradually from 
stage 3 to stage 7, while the 20-nt miR156 firstly decreased 

Fig. 2.  miRNA expression in different developmental stages of spikelets in wild-type rice cultivar 9522. (A) Differentially expressed miRNAs in different 
developmental stages of spikelets. Only miRNAs with abundance greater than 50 RP5M are included in the heatmap. (B) 20-nt miR156 and 21-nt 
isoforms display distinct expression patterns; levels indicated as ‘20/21’ show the sum of abundance of the 20 and 21 nt isoforms. (C) Expression levels 
of miR156 target genes in different stages of rice spikelet development.

http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw361/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw361/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw361/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw361/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw361/-/DC1
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from stage 3 to stage 5, and then increased at stage 7  
(Fig.  2B). The underlying mechanism is unknown, but it 
is possible that these two isoforms of  miR156 are gener-
ated from different MIR156 genes, and are differentially 
regulated with distinct targets or cellular expression pat-
terns, exerting distinct patterns of  control on the expres-
sion of  OsSPLs. Therefore, studies of  individual MIR156 
genes would be important in the future to demonstrate how 
the miR156 family members differentially control spikelet 
or panicle development. Similar to miR164 and miR172, 
a subset of  miR156 targets showed an inverse correlation 
with miR156 (Fig.  2C). Overall, the abundance levels of 
miRNA target transcripts in the two mutants were quite 
similar to those in wild-type, indicating that mutations 
in the OsTDL1A-MSP1 pathway had a limited impact 
on rice miRNAs and their targets in spikelets (Table  1; 
Supplementary Fig. S2B–D). Among the miRNA targets 
validated from prior work, only a subset had the expected 
inverse correlation with miRNA levels; thus, other factors 
may impact target transcript levels, including both tran-
scriptional (e.g. transcription factors and epigenetic regu-
lation) and post-transcriptional (e.g. mRNA turnover or 
sequestration) factors. Taken together, these data indicate 
that miRNAs together with their target genes are dynami-
cally modulated during early stages of  rice spikelet develop-
ment, and are largely independent of  the OsTDL1A-MSP1 
pathway.

Timing of reproductive phasiRNA biogenesis

PhasiRNAs, in addition to miRNAs, represent another 
class of small RNAs of great interest, because two popula-
tions are exclusively abundant in the reproductive tissues of 
monocots (Arikit et  al., 2013). More specifically, miR2118 
and miR2275 are triggers of 21-nt and 24-nt reproductive 
phasiRNAs, respectively, in both rice and maize (Song et al., 
2012; Zhai et al., 2015). We checked the abundance levels of 
both miRNAs in different stages and backgrounds; miR2118 
abundance peaked at stage 5 in wild-type spikelet libraries, 
reaching 320 reads per 5 million reads (RP5M), and then 

dropped to 130 RP5M at stage 7 (Fig.  3A). Similar abun-
dances were observed in msp1 and ostdl1a mutants, indicat-
ing that miR2118 is not impacted in both mutants, possibly 
explained by miR2118 accumulation in the epidermis of 
anthers (Zhai et al., 2015), a cell layer apparently not defective 
in the msp1 and ostdl1a mutants or in the mac1 maize mutant. 
In contrast to miR2118, in wild-type spikelets, miR2275 was 
not expressed in stage 3, and then increased in stage 5 (~85 
RP5M) and stage 7 (~240 RP5M) (Fig.  3B); miR2275, as 
mentioned above, is essentially absent in both msp1 and ost-
dl1a mutants, at all stages.

We calculated both 21- and 24-nt phasiRNA abundances 
to see how phasiRNAs change during rice spikelet devel-
opment and whether they are affected in the two mutants. 
Phasing analysis resulted in 1843 21-PHAS loci and 50 
24-PHAS loci (see Supplementary Table S4). By summing 
phasiRNA abundances from each PHAS locus, we obtained 
the overall phasiRNA abundances for both 21- and 24-nt 
phasiRNAs. In wild-type rice spikelets, the overall abun-
dance of  21-nt phasiRNAs was ~120 000 RP5M in stage 
3, increasing by >10-fold in stage 5, and then decreasing by 
<30% in stage 7 (Fig. 3C). Compared to the wild-type, 21-nt 
phasiRNAs had a very similar pattern in the two mutants, 
although with a slightly lower total abundance in stage 
5. The 24-nt counterparts had only a few hundred reads in 
stage 3 and stage 5, but then increased to more than 180 
000 RP5M in stage 7 of  the wild-type spikelets (Fig. 3D). 
Consistent with the observation that miR2275 is absent 
in msp1 and ostdl1a mutants at all stages, 24-nt phasiR-
NAs were also diminished in both mutants. Considering 
the developmental defect in these mutants is largely in the 
anthers and not other tissues in the spikelets (Yang et al., 
2016), we infer that the loss of  24-nt phasiRNAs is due to 
the defective anther development. Furthermore, as in maize 
(Zhai et  al., 2015), rice 21-nt phasiRNAs initiated at an 
early stage in anther development, the 24-nt phasiRNAs 
appeared later, coincident with or just before meiosis, and 
the absence of  miR2275 and 24-nt phasiRNAs in msp1 and 
ostdl1a mutants is similar to maize mac1 (the ortholog of 
ostdl1a in maize).

Table 1.  Numbers of differentially abundant miRNAs, identified by pairwise comparisons of rice spikelets in different stages and 
backgrounds.

9522_S3 9522_S5 9522_S7 msp1_S3 msp1_S5 msp1_S7 ostdl1a_S3 ostdl1a_S5 ostdl1a_S7

9522_S3 – 63 ↑ 18 ↓ 82 ↑ 28 ↓ 0 ↑ 1 ↓ – – 0 ↑ 2↓ – –

9522_S5 – 19 ↑ 11 ↓ – 0 ↑ 9 ↓ – – 2 ↑ 6↓ –

9522_S7 – – – 8 ↑ 4 ↓ – – 13 ↑ 5 ↓
msp1_S3 – 62 ↑ 20 ↓ 74 ↑ 26 ↓ – – –

msp1_S5 – 27 ↑ 16 ↓ – – –

msp1_S7 – – – –
ostdl1a_S3 – 57 ↑ 13 ↓ 72 ↑ 14 ↓

ostdl1a_S5 – 28 ↑ 3 ↓

ostdl1a_S7 –

Numbers of significantly up- and down-regulated miRNAs, as indicated by the arrows (P<0.05, FDR<0.05). miRNAs are from the miRBase 
release 21. ‘S3’, ‘S5’, and ‘S7’ refer to stages 3, 5, and 7, respectively.

http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw361/-/DC1
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We next calculated the proportion of  21- and 24-nt pha-
siRNAs in the entire genome-matched populations of  the 21- 
and 24-nt small RNAs in rice spikelets (Fig. 3E). We found 
that 21-nt phasiRNAs accounted for 24% of total 21-nt 
siRNAs in wild-type rice spikelets, increased to a remark-
able 74% of the total in stage 5, and then reduced slightly to 
68% at stage 7. This compares to 60% of all 21-mers at the 
peak in maize (Zhai et al., 2015); this higher proportion in 
rice spikelets versus isolated maize anthers may reflect the 

fact that there are ~4-fold as many genomic loci generating 
21-nt phasiRNAs in rice compared to maize. The 24-nt pha-
siRNAs were almost absent at stages 3 and 5, followed by a 
substantial increase to 7% of the total at stage 7 (Fig. 3E). 
This compares to 64% of the total 24-mers in isolated maize 
anthers (Zhai et  al., 2015); this much lower proportion in 
rice may reflect the fact that there are fewer loci, or that 
the peak abundance of  24-nt phasiRNAs is later than stage 
7. Overall, these results reveal that both miRNA triggers and 

Fig. 3.  miR2118, miR2275, and phasiRNA abundances in rice spikelets. Levels of miR2118 (A), miR2275 (B), miR2118-triggered 21-nt phasiRNAs 
(C), and miR2275-triggered 24-nt phasiRNAs (D) in different stages and backgrounds of rice spikelets. (E) The percentage of 21-nt (top, blue slices with 
percentage numbers) and 24-nt phasiRNAs (bottom, orange slices with percentage numbers) out of the total population of 21-nt and 24-nt genome-
matched small RNAs in wild-type rice spikelets.
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phasiRNAs are largely up-regulated at specific stages in rice 
anthers.

Interconnected PHAS locus transcription and 
phasiRNA bursts

We next examined the phasiRNA precursors (PHAS tran-
scripts) in the RNA-seq data to assess the correlation of 
phasiRNA and PHAS mRNA levels. As many 21-PHAS loci 
are found in large clusters in the rice genome (Johnson et al., 
2009) (see Supplementary Table S4), we selected a representa-
tive cluster on chromosome 3 for this analysis. Our earlier 
observations in wild-type rice showed a stage 5 peak for 21-nt 
phasiRNAs, which reduced slightly at stage 7 (Fig. 3C); in the 
RNA-seq data at stage 3 and stage 5, 21-PHAS transcripts 
levels were generally consistent with phasiRNA production; 
however, at stage 7, 21-PHAS transcripts levels were very low 
(Fig. 4) while phasiRNA levels were still high. This is an indi-
cation that 21-nt phasiRNAs persist longer than their precur-
sor transcripts, possibly for a prolonged role in later stages of 
spikelet development. As for msp1 and ostdl1a mutants, levels 
of neither 21-nt phasiRNAs nor 21-PHAS transcripts were 
impacted (stage 5 for both mutants is shown in Supplementary 
Fig. S3; stage 7 data are not shown but were not appreciably 
different from the wild-type). Consistent with the precursor 
molecules consisting of a polyadenylated mRNA paired with 
an RDR6-derived antisense strand, the strand-specific RNA-
seq reads were mapped to only one strand at a given PHAS 
locus (Fig.  4). An examination of the RNA-seq data for 
24-PHAS loci showed a strong boost in transcript levels from 
stage 5 to stage 7 in wild-type rice anthers (Supplementary 
Fig. S4A). However, unlike 21-PHAS loci, both 24-nt pha-
siRNAs and 24-PHAS mRNAs were absent in the RNA-seq 
data from msp1 and ostdl1a mutants (Supplementary Fig. 
S4A, B). In summary, sequencing data revealed the develop-
mental modulation of phasiRNA biogenesis in rice anthers, 
with 24-phasiRNAs and their precursors disrupted in the 
msp1 and ostdl1a mutants, reflecting an intimate association 
of these transcripts with anther development and microspor-
ogenesis in rice.

Identification of specialized Argonautes that load 
reproductive phasiRNAs

Argonautes (AGOs) are core effector proteins in small RNA-
mediated silencing pathways. Different small RNAs are pref-
erentially recruited into specific AGOs, mainly determined 
by the 5´-terminal nucleotide of  the small RNA (Mi et al., 
2008). The ten AGO proteins of  Arabidopsis are reasonably 
well studied, but the functional roles of  the ~17 to 19 AGOs 
in grass genomes are less well described (Zhang et al., 2015). 
The naming for OsAGOs in this study is consistent with the 
description by Zhang et al. (2015). Moreover, it is still unclear 
which AGOs recruit the abundant reproductive phasiRNAs 
of grasses. A recent study in rice showed that the germline-
specific AGO protein MEL1 associates with 21-nt phasiR-
NAs that have 5´-terminal cytosine (Komiya et al., 2014). In 
addition, the AGO(s) that recruits 24-nt phasiRNAs is still 

unknown, although ZmAGO18b is enriched in tapetum and 
germ cells in maize anthers (Zhai et al., 2014), where 24-nt 
phasiRNAs accumulate (Zhai et al., 2015). Considering the 
dramatic changes of  phasiRNA abundances across differ-
ent stages of  rice spikelet development, we hypothesized 
that AGO proteins that recruit phasiRNAs may show a 
gene expression pattern correlated with phasiRNA abun-
dances. Therefore, we examined the expression of  all AGOs 
in rice from stages 3 to 7 (Fig. 5A). We found that MEL1 
peaked at stage 5, the same stage as the peak of  accumula-
tion of  21-nt phasiRNAs; therefore, MEL1 expression was 
indeed correlated with phasiRNA production. In the RNA-
seq data, MEL1 levels were slightly higher in both mutants 
(see Supplementary Fig. S5), perhaps because of  the exces-
sive number of  sporocytes, where MEL1 is expressed, in 
mutants (Nonomura et  al., 2007). Intriguingly, we found 
that OsAGO1d showed the same pattern as MEL1, suggest-
ing a possible functional connection between the OsAGO1d 
protein and reproductive phasiRNAs (Fig.  5A). Similar to 
MEL1, OsAGO1d expression was barely impacted in msp1 
and ostdl1a mutants (Supplementary Fig. S5).

We speculated that AGOs that accumulate in stage 
7 could function with 24-nt phasiRNAs. Gene expres-
sion analysis showed that only three OsAGOs, namely 
OsAGO2b, OsAGO5b, and OsAGO18, displayed a substan-
tial up-regulation at stage 7 compared to stages 3 and 5 
(Fig.  5B). Since 24-nt phasiRNA accumulation was defi-
cient in msp1 and ostdl1a mutants, the result of  defects 
in cell layers important for their biogenesis, it is possible 
that the OsAGOs that load 24-nt phasiRNAs are simi-
larly impacted in both mutants. We found that the levels 
of  OsAGO2b and OsAGO18, but not OsAGO5b, were par-
tially reduced in the msp1 and ostdl1a mutants (Fig.  5B), 
suggesting that OsAGO2b and OsAGO18 are candidates 
for roles with 24-nt phasiRNAs. To further confirm their 
specificity to anthers, we checked their expression patterns 
using published rice anther microarray datasets. Consistent 
with our RNA-seq data, OsAGO2b and OsAGO18, but not 
OsAGO5b, showed a meiosis-specific expression pattern in 
rice anthers (see Supplementary Fig. S6).

Temporal-spatial expression of phasiRNA-associated 
AGOs revealed by in situ hybridizations

To connect the temporal specificity of transcript accumula-
tion with spatial patterns, we performed in situ hybridiza-
tions or examined published images for selected rice AGO 
genes. Published images for OsAGO2b demonstrate its accu-
mulation in sporocytes and wall layers of rice anthers at 
pre-meiotic stages, and in later meiosis stage the transcript 
is restricted predominantly to the tapetum layer and micro-
spores (Deveshwar et al., 2011). We performed in situ hybridi-
zations in rice anthers to examine the transcript accumulation 
patterns of OsAGO1d and OsAGO18 (Fig. 6). These results 
showed that OsAGO1d accumulates highly in the distal epi-
dermis and primary parietal cells of the anther lobe at stage 
3. This OsAGO1d pattern is reminiscent of miR2118, which 
accumulates in the distal cells of the epidermis in maize 

http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw361/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw361/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw361/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw361/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw361/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw361/-/DC1
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anthers (Zhai et al., 2015). In stage 5, OsAGO1d accumulates 
highly in the middle layer and the tapetal layer, which are 
both differentiated from the primary parietal cells. In stage 
7, the level of OsAGO1d is much lower than that of stage 

5 (Fig.  6A). As for OsAGO18, its abundance was enriched 
in tapetal and sporogenous cells at stages 5 and 7 (Fig. 6B). 
Therefore, the patterns of OsAGO1d and OsAGO18 across 
different developmental stages of rice anthers are consistent 

Fig. 4.  21-nt PHAS precursor transcripts peak coincidentally with their phasiRNA products. We examined a randomly selected 21-PHAS locus on rice 
chromosome 3 in wild-type (cultivar 9522) rice to assess the peak of abundance relative to the 21-phasiRNAs that peak at stage 5. Because PHAS 
loci are highly clustered in the rice genome, we selected a region of ~24 kb as an example; in this case, the PHAS loci are interlaced with repetitive 
sequences. Each dot is a small RNA; light blue represent 21-nt sRNAs, green represent 22-nt, and orange represent 24-nt. Yellow shaded regions are 
predicted DNA transposons; pink shaded regions are predicted retrotransposons; orange shaded regions are inverted repeats. The small pink box is an 
annotated miRNA. The phasiRNA loci are essentially the distinct blocks of 21-nt sRNAs (light blue dots). The strand-specific RNA-seq data is represented 
as an IGV screenshot; blue bars are top-strand reads, and red bars are bottom-strand reads. There was a paucity of RNA-seq reads from these PHAS 
loci data in stage 7 at this cluster of loci, whereas 21-phasiRNAs were still abundant at stage 7.
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Fig. 5.  Abundance of OsAGO transcripts in different stages and backgrounds of anther development. (A) mRNA levels of all nineteen OsAGOs in wild-
type rice. OsAGO1d and MEL1 are highlighted because only these two AGO transcripts peaked at stage 5. (B) OsAGO2b, OsAGO18, and OsAGO5b 
displayed substantial up-regulation at stage 7 compared to stages 3 and 5. OsAGO2b and OsAGO18, but not OsAGO5b, is defective in the msp1 and 
ostdl1a mutants at stage 7. Significant differences (Student’s t-test) are indicated: *P<0.01 and **P<0.05; ‘ns’ indicates no significant difference.

Fig. 6.  RNA in situ hybridization of OsAGO1d and OsAGO18 in different stages and backgrounds of rice anthers. Expression patterns of OsAGO1d (A) 
and OsAGO18 (B), performed in stages 3, 5, and 7 of anthers, from either wild-type cultivar 9522 or the msp1 or ostdl1a mutants, as indicated. Each 
image shows one anther lobe. Cell layers are labeled as in Fig. 1. Scale bars indicate 20 μm.
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with the results of RNA-seq data from rice spikelets, and 
these OsAGO transcripts are highly correlated both spatially 
and temporally with reproductive phasiRNAs (comparing 
our in situs with those of the phasiRNAs in maize anthers 
in Zhai et al., 2015). Taken together, these analyses suggest 
a possible functional connection between grass reproduc-
tive phasiRNAs and the three AGO proteins encoded by 
OsAGO1d, OsAGO2b, and OsAGO18.

Discussion

Like most complex developmental changes, rice spikelet devel-
opment entails widespread changes in mRNAs and small 
RNAs. Similar data for mutants in MSP1 and OsTDL1A, 
which encode interacting proteins with crucial roles in initi-
ating early stage reproductive development, demonstrate the 
impact of disordered cell specification in rice reproductive tis-
sues (Yang et al., 2016).

miRNAs play important roles in plant development. We 
identified miRNAs with differential accumulation patterns 
during rice spikelet development, including conserved miR-
NAs (miR156, miR172, and miR164). Among these, the role 
of miR164 in development is not well studied, although it 
accumulates in spikelet and floral meristems (Adam et  al., 
2011). While variation in miRNA levels in different stages of 
rice spikelets suggests that miRNAs are active, one interesting 
observation from the msp1 and ostdl1a mutants is that levels 
of most miRNAs and their targets were largely not impacted 
in the mutants, despite the block in development (Fig. 2B, C; 
Supplementary Fig. S2). This suggests that these miRNA-
involved gene silencing pathways are genetically independent 
or upstream of the OsTDL1A-MSP1 pathway.

We also assessed phasiRNA production in rice spikelets. 
Two classes of phasiRNAs have distinct accumulation pat-
terns in grass anthers (Zhai et al., 2015); as in maize, we found 
that rice phasiRNAs peak at specific stages during spikelet 
development. We showed that miR2118, the trigger of 21-nt 
phasiRNAs, accumulates to the highest level at stage 5 and 
drops severely in stage 7, while 21-nt phasiRNAs are rela-
tively slightly retarded, peaking at stage 5 but decreasing only 
slightly at stage 7. As in maize, miR2275 peaks later (stage 
7), at the stage at which 24-nt phasiRNAs reached the high-
est abundance that we measured. In the msp1 and ostdl1a 
mutants, 24- but not 21-nt phasiRNAs were depleted – con-
sistent with data from the maize mutant mac1 (the ortholog 
of rice OsTDL1A) (Wang et al., 2012). Therefore, the timing 
of phasiRNA biogenesis is conserved in rice and maize, two 
Poaceae evolutionarily separated by ~50 million years (Wolfe 
et al., 1989).

AGO proteins are key catalytic components that associ-
ate with small RNAs, and different AGOs function as either 
RNA binders/slicers or chromatin modifiers by loading dif-
ferent classes of small RNAs (Waterhouse, 2016). Therefore, 
to know which AGOs load these reproductive phasiRNAs 
would greatly help elucidate their functions. Considering that 
in the mutants 24-nt phasiRNAs were impacted but miRNAs 
were largely not, we may be able to infer AGOs with roles in 
phasiRNA function. Compared to 10 AGOs in Arabidopsis, 

the rice and maize genomes encode more, 19 and 17 respec-
tively (Zhang et al., 2015). AGO5 expression in Arabidopsis 
is specific to somatic ovule tissues, with a role in megagame-
togenesis (Tucker et al., 2012). A potentially conserved func-
tion of AGO5 in plant gametogenesis has been shown in rice, 
as the AGO5 relative MEL1 (OsAGO5c) binds 21-nt repro-
ductive phasiRNAs with 5´ C (Komiya et al., 2014). AGO1 in 
rice has four homologs (OsAGO1a, OsAGO1b, OsAGO1c, 
and OsAGO1d); OsAGO1a/b/c predominantly recruit miR-
NAs and other small RNAs with 5´-terminal uridine (Wu 
et al., 2009b). Our RNA-seq data showed that rice OsAGO1d 
accumulates in spikelets, synchronous with MEL1, making 
OsAGO1d a strong candidate for further functional analysis. 
In rice, OsAGO18 is induced upon viral infection, and has 
been shown to confer resistance to viruses by sequestering 
miR168, suppressing OsAGO1 expression (Wu et al., 2015). 
Maize has two homologs of AGO18; ZmAGO18b is specific 
to the tapetum and germ cells (Zhai et al., 2014). Our data 
showed that OsAGO18 and OsAGO2b transcripts increase 
substantially at stage 7, coincident with 24-nt phasiRNA 
accumulation. Moreover, a recent study on Arabidopsis 
AGO3 showed that this poorly characterized Argonaute 
mediates RdDM by binding 24-nt siRNAs (Zhang et  al., 
2016). Phylogenetic analysis showed that Arabidopsis AGO3 
and rice OsAGO2b are close to each other (Zhang et  al., 
2015), suggesting that OsAGO2b could also recruit 24-nt 
small RNAs, such as the reproductive phasiRNAs, to regu-
late epigenetic modifications. Furthermore, in situ hybridiza-
tion results for OsAGO1d, OsAGO18, and OsAGO2b showed 
that these OsAGOs have distinct expression patterns during 
rice anther development, suggesting that they may associate 
with either 21- or 24-nt phasiRNAs in a stage-specific man-
ner. In summary, our results suggest a functional relevance 
between OsAGO1d, OsAGO18, and OsAGO2b and grass 
reproductive phasiRNAs.

What might be the function of these AGO proteins loaded 
with phasiRNAs? Prior work on MEL1 (associated with 21-nt 
phasiRNAs) suggests a role in histone modifications; histone 
H3 lysine 9 dimethylation (H3K9me2) is decreased in the mel1 
mutant (Nonomura et al., 2007). Yet the reduced H3K9me2 
in mel1 could be an indirect effect of other epigenetic changes, 
as many chromatin modifications in plants and other organ-
isms are intricately linked (Castel and Martienssen, 2013). 
Considering the lack of sequence complementarity of pha-
siRNAs and other regions in the genome (Zhai et al., 2015), 
it is possible that reproductive phasiRNAs act primarily in 
cis or impact cis-adjacent regions by a spreading mechanism. 
Indeed, a recent study on maize reported that both 21- and 
24-PHAS loci showed higher levels of CHH methylation in 
meiocytes than other tissues, such as seedlings (Dukowic-
Schulze et al., 2016). This finding suggests that reproductive 
phasiRNAs may play an important role in chromatin remod-
eling in cis around the stage of meiosis. Overall, the coordi-
nated accumulation of 21- and 24-nt phasiRNAs and several 
AGO transcripts during rice reproductive development sug-
gests that more detailed and comprehensive analyses of DNA 
methylation and histone modifications are needed, particu-
larly when coupled with mutants in phasiRNA pathways.

http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw361/-/DC1
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Supplementary data

Supplementary data are available at JXB online.
Figure S1. MSP1 and OsTDL1A transcript levels in stage 

3 of rice spikelets in the wild-type cultivar 9522 and two 
mutants.

Figure S2. miRNA and target transcript levels in different 
stages and backgrounds of rice spikelets.

Figure S3. 21-nt phasiRNAs and precursor transcripts 
were unaffected in both msp1 and ostdl1a mutants at stage 5.

Figure S4. 24-nt phasiRNAs are strongly impacted in stage 
7 spikelets of the two rice mutants.

Figure S5. mRNA levels of MEL1 and OsAGO1d in differ-
ent stages and backgrounds of rice spikelets.

Figure S6. Expression of AGOs in different tissues and 
developmental stages of rice anthers in public microarray 
datasets.

Table S1. Summary information for small RNA and RNA-
seq libraries prepared in this study.

Table S2. miRNA levels in different libraries.
Table S3. Differentially expressed miRNAs in different 

stages and backgrounds of rice spikelet development.
Table S4. 21- and 24-nt phasiRNA abundance from each 

PHAS locus.
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