

Polygenic Disease: A Study of Genetic Risk in an Australian Stroke Population

The Adelaide Genetic Stroke Study

Jim Jannes

Department of Medicine The University of Adelaide South Australia

A thesis submitted in fulfilment of the requirements for the degree of PhD in Medicine February 2004

Table of Contents

Thesis Abstract	
Acknowledgements	
Declaration	
Conference Presentations	9
List of Figures	
List of Tables	
Abbreviations	14

Chapter 1: Introduction

1.1	The Global Burden of Stroke	
	Stroke: an Australian Perspective	
13		
110	1.3.1 Stroke Subtypes	
	1.3.2 Pathophysiological Classification of Ischemic Stroke	
1.4	Thesis Overview	

Chapter 2: Genetics and Ischemic Stroke

2.1	The At	tributable Risk of Known Risk Factors	
2.2	Eviden	ce of a Genetic Predisposition to Stroke	
	2.2.1	Twin Studies	
	2.2.2		
	2.2.3	Animal Studies	
2.3		enetic Heterogeneity of Ischemic Stroke	
2.4	Candia	late Genes for Ischemic Stroke	
2.7	2.4.1	Paraoxonase (PON1)	
	2.4.2	Glycoprotein 1b	
	2.4.3	Glycoprotein IIb/IIIa	
	2.4.4	Fibrinogen	41
	2.4.5	Prothrombin	
	2.4.6	Tissue Plasminogen Activator (TPA)	
	2.4.0	Plasminogen Activator Inhibitor – 1 (PAI-1)	
	2.4.7	Conclusions	49
	∠.4.0	Conclusions	

Chapter 3: Thesis Aims and Rationale

3.1	Thesis Aims
	Selection of Study Design
	Selection of Candidate SNP's
3.4	Sample Size Estimation

Chapter 4: Research Methods

4.1	Clinical	Methods	59
		Participating Hospitals	
	4.1.2	Recruitment of Ischemic Stroke Cases	60
	4.1.3	Questionnaire Assessment of Ischemic Stroke Cases	61
	4.1.4	Clinical Assessment of Ischemic Stroke Cases	62
	4.1.5	Case Procedures	64
	4.1.6	Recruitment of Community Controls	64
	4.1.7	Questionnaire Assessment of Community Controls	65
	4.1.8	Clinical Evaluation of Community Controls	66
	4.1.9	Control Procedures	66
4.2	Laborat	ory Methods	66
	4.2.1	Glucose and Cholesterol Determination	66
	4.2.2	DNA Extraction	66
	4.2.3	Genotyping Methods	66
	4.2.4	Oligonucleotide Primer Design	67
	4.2.5	PCR-SSP Method	70
	4.2.6	Genotype Determination	72
	4.2.7	Quality Assurance Measures	73
4.3	Statistic	cal Methods	74
	4.3.1	Descriptive Statistics	74
	4.3.2	Univariate Analysis	15
	4.3.3	Multivariate Analysis	76
	4.3.4	Interactions	77

Chapter 5: Results

5.1	Study Population	78
5.2	Univariate Analysis: Stroke Risk Factors	80
5.3	Univariate Analysis: Medication	83
5.4	Univariate Analysis: SNP's	84
5.5	Bivariate Analysis: Identification of Confounders	86
5.6	Multivariate Analysis: SNP's	87
5.7	Subgroup Analysis: Lacunar Stroke	92
5.8	Subgroup Analysis: Cardioembolic Stroke	96
5.9	Gene-Risk Factor Interactions	99
5.10	Gene-Gene Interactions	
5.11		

Chapter 6: Discussion

6.1	Introduction	
6.2	TPA –7351 C/T SNP and Ischemic Stroke	
6.3	PAI-1 5G/4G SNP and Ischemic Stroke	
6.4	PON1 SNP's and Ischemic Stroke	
6.5	β Fibrinogen -148C/T SNP and Ischemic Stroke	
6.6	Prothrombin 20210G/A SNP and Ischemic Stroke	
6.7	Platelet Glycoprotein SNP's and Ischemic Stroke	
6.8	Study Limitations	

Chapter 7: Future Directions

7.1	Selection of Appropriate Study Design 12:	5
7.2	The Importance of Stroke Sub-typing 12'	7
7.3	Adjustment for Population Stratification	0
7.4	Alternate Disease Phenotypes	1
	Final Considerations	

Bibliography	
Appendix I: The OCSP Classification Criteria	
Appendix II: Study Information Sheet 155	
Appendix III: Study Consent Form	
Appendix IV: Bivariate Analysis: Identification of Confounders	5
Publication	

Thesis Abstract

Twin, family and animal studies support this thesis that ischemic stroke is a polygenic disease. The magnitude of this predisposition varies according to stroke subtype, with the greatest risk associated with lacunar and atherothromboembolic stroke. To date, the precise genetic determinants remain unknown.

The primary aim of this thesis was to determine the risk of ischemic stroke associated with eight single nucleotide polymorphisms (SNPs) that were selected using a candidate gene approach: Paraoxonase (PON1) –107T/C and M54L, Glycoprotein 1b 145Thr/Met, Glycoprotein IIb/IIIa PIA1/A2, β fibrinogen –148 C/T, Prothrombin 20210 G/A, Tissue Plasminogen Activator (TPA) –7,351 C/T and Plasminogen Activator Inhibitor (PAI-1) 5G/4G. This thesis also aimed to determine the relevance of each SNP to ischemic stroke subtypes and to determine the effect of interaction between each SNP and known cerebrovascular risk factors.

The objectives were met using a case-control study that recruited hospital inpatients with a diagnosis of acute ischemic stroke. Patients were evaluated for known cerebrovascular risk factors and classified for stroke subtype. A cerebrovascular risk factor profile was also determined in a randomly selected, age and gender matched control group. The SNP genotypes were determined using a polymerase chain reaction (PCR) method. Logistic regression was used to determine the risk of ischemic stroke associated with each SNP.

During a 26-month period, 182 patients and 301 non-hospitalised controls consented to participate. In a multivariate model that adjusted for important confounders, a 1.9-fold (95%CI 1.01-3.6) increased risk of ischemic stroke was associated with the TPA - 7,351 TT genotype. This association, however, was not significant in a multivariate model that incorporated all potential confounders (OR 1.8, 95%CI 0.9-3.4). In a subgroup analysis, a statistically significant 2.6 and 2.4-fold increased risk of lacunar

stroke was associated with the TPA -7,351 TT and PON1 -107 CC genotypes respectively. No other association or effect of interaction was observed.

The findings suggest that TPA -7,351 C/T and PON1 -107 T/C SNP's may play a role in the pathogenesis of lacunar stroke. Confirmation by a larger study of greater statistical power is required, which may then provide a better means to predict the risk of lacunar stroke.

Acknowledgements

This thesis would not be possible without the input from many people. I am sincerely grateful to my main supervisor, Dr Simon Koblar, for his belief in my ability, guidance and mentorship throughout this PhD. Dr Koblar's influence has extended beyond enhancing my capacity to perform scientific research, for which I am truly grateful. I also thank my other supervisors, Associate Professors Brian Smith and Louis Pilotto for their advice, particularly during the planning phase of this thesis.

My sincere gratitude also extends to Dr Anne Hamilton-Bruce for her tireless effort towards many aspects of this thesis. I am particularly grateful for her assistance in the recruitment of community controls and the numerous hours spent reviewing manuscripts and thesis chapters.

I also thank Mr Anthony Condina, Mr Steven Davis, Ms Robyn Attewell, Ms Bernadette Kenny, Dr Charles Mulligan, Dr Warren Flood and The Australian Red Cross (South Australia) tissue-typing laboratory for their technical assistance.

Finally, I sincerely thank my wife Mary and my two daughters, Kathryn and Nicola, for their patience and loving support. Gratitude also extends to my mother and fatherin-law and my parents for providing the opportunity to pursue my career aspirations. I hope that their sacrifice is at least in part rewarded by the completion of this thesis.

Declaration

4

a sure and a sure of the sure

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference is made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Signed:....

Date: 24/2/04

Conference Presentations

Poster Presentation:

"Polygenic Disease: A Study of Genetic Risk in an Australian Stroke Population" Australasian Association of Neurologists Annual Scientific Meeting, Adelaide, May 2000.

Poster Presentation:

"Polygenic Disease: A Study of Genetic Risk in an Australian Stroke Population" Australian Neuroscience Society, 23rd Annual Scientific Meeting, Adelaide, January 2003.

Platform Presentation:

"Tissue Plasminogen Activator –7,351 Enhancer Polymorphism is a Risk Factor for Lacunar Stroke". The Stroke Society of Australasia Annual Scientific Meeting, Sydney, September 2003.

Recipient of the "New Investigator Award for Scientific Research"

Platform Presentation:

"Tissue Plasminogen Activator -7,351 Enhancer Polymorphism is a Risk Factor for Lacunar Stroke". The Queen Elizabeth Hospital Research Day, Adelaide, October 2003.

Recipient of the "Best Higher Degree Research Award" and the "Allan Kerr Grant Most Outstanding Postgraduate Learner Award".

Platform Presentation:

"Tissue Plasminogen Activator –7,351 Enhancer Polymorphism is a Risk Factor for Lacunar Stroke". ASMR 42nd National Scientific Conference, Adelaide, November 2003.

List of Figures

Figure 2.1 Attributable Risks of a Combination of Risk Factors for First Ischemic Stroke. The Rochester Minnesota Study:
Figure 2.2 Threshold Model for the Inheritance of Common Ischemic Stroke
Figure 2.3 Genetic Candidates for Common Ischemic Stroke
Figure 2.4 Structure of the Glycoprotein Ib/IX/V Complex
Figure 2.5 Structure of the Glycoprotein IIb/IIIa Complex
Figure 2.6 Structure of the β fibrinogen gene
Figure 2.7 The Human Fibrinolytic Pathway46
Figure 2.8 Structure of the TPA Gene
Figure 4.1 Genotype Determination by Visual Inspection: Glycoprotein Ib T/M, Glycoprotein IIIaPIA1/A2, PAI 5G/4G and Fibrinogen 148 C/T Genotype In One Subject
Figure 4.2 Chromatogram Showing DNA Sequence of TPA –7351 C/T SNP74
Figure 7.1 Comparison of Linkage and Association Analysis for Detecting Genetic Effects 126

List of Tables

Table 2.1 Monogenic Disorders Causing Ischemic Stroke
Table 2.2Odds Ratios, Confidence Intervals and Probability Values for Risk Factors for FirstIschemic Stroke: The Rochester, Minnesota Study
Table 2.3Odds Ratios and Confidence Intervals for Proband Stroke by Familial History:The Family Heart Study
Table 3.1Sample size estimations for selected single nucleotide SNP's based on genotypefrequency data in a Caucasian population
Table 3.2Sample size estimations for selected single nucleotide SNP's based on previouspositive case-control studies of ischemic stroke57
Table 4.1 Oligonucleotide Primer Sequences, Genebank Accession Numbers and PCR Product Sizes
Table 4.2Primer Reaction Mix for each SNP
Table 5.1 Gender and Age Characteristics of Consenters and Non-Consenters
Table 5.2 Demographic Characteristics Between Controls and Cases. 80
Table 5.3 Cerebrovascular Risk Factor Characteristics Between Controls and Cases
Table 5.4 Hypertension Between Controls and Cases.
Table 5.5 Hypercholesterolemia Between Controls and Cases.

Table 5.6 Medication Use Between Controls and Cases. 84
Table 5.7 Univariate Analysis of SNP's (by genotype) between Controls and Cases
Table 5.8 Univariate Analysis of SNP's (by allele) between Controls and Cases
Table 5.9Multivariate Analysis of SNP's (by genotype) between Controls and Cases Adjustedfor 'Important' Confounders
Table 5.10Multivariate Analysis of SNP's (by allele) between Controls and Cases Adjusted for'Important' Confounders
Table 5.11 Multivariate Analysis of SNP's (by genotype) Between Controls and Cases Adjusted for all Potential Confounders
Table 5.12Multivariate Analysis of SNP's (by allele) between Controls and Cases Adjusted for all Potential Confounders
Table 5.13Lacunar Stroke: Univariate Analysis of SNP's Between Controls and Cases
Table 5.14Attributable Risk of Lacunar Stroke Associated With TPA -7351TT and PON1-107CC Genotypes
Table 5.15 Non-Lacunar Stroke: Univariate Analysis of SNP's Between Controls and Cases95
Table 5.16 Cardioembolic (CE) Stroke: Univariate Analysis of SNP's Between Controls and Cases
Table 5.17Non-Cardioembolic Stroke: Univariate Analysis of SNP's Between Controls and Cases
Table 5.18Probability Values for Gene-Risk Factor Interactions
Table 5.19 Probability Values for Gene-Gene Interactions

Table 6.1

Sample Size Estimation Based on Adjusted OR's Determined for Each SNP
Table 6.2Variation of PON1 -107 T/C and TPA-7351 C/T Genotype Distributions AmongstCaucasian Populations
Table 7.1Relationship Between Age of Stroke and Positive Family History of Stroke < 65 Years
Table 7.2 Estimated Sample Size Requirement for Studies Using Specific Stroke Subtypes and Age Groups
Table 7.3

Abbreviations

Adenosine	А
Adenosine Diphosphate	ADP
Computerised Tomography	СТ
Cytosine	С
Deoxyribonucleic Acid	DNA
Diastolic Blood Pressure	DBP
Disability Adjusted Life Year	DALY
Glycoprotein	Gp
Guanine	G
High Density Lipoprotein	HDL
Human Platelet Alloantigen	HPA
Lacunar Syndrome	LS
Leucine	L
Low Density Lipoprotein	LDL
Magnetic Resonance Imaging	MRI
Messenger Ribodeoxynucleic Acid	MRNA
Metaloproteases	MMP
Methionine	М
National Heart Foundation	NHF
North East Melbourne Stroke Incidence Study	NEMESIS
Oxfordshire Community Stroke Project	OCSP
Paraoxonase	PON1
Partial Anterior Circulation Syndrome	PACS
Patent Foramen Ovale	PFO
Perth Community Stroke Study	PCSS
Plasminogen Activator Inhibitor	PAI
Polymerase Chain Reaction	PCR
Population Research and Outcome Studies	PROS
Posterior Circulation Syndrome	PCS

14

Ribonucleic Acid	RNA	
Sequence Specific Primer Polymerase Chain Reaction	SSP-PCR	
Sibling Transmission Disequilibrium Test	S-TDT	
Single Nucleotide Polymorphism	SNP	
Spontaneously Hypertensive Rat	SHR	
Stroke Prone Spontaneously Hypertensive Rat	SP-SHR	
Systolic Blood Pressure	SBP	
The Trial of ORG 10172 in Acute Stroke Treatment	TOAST	
Threonine	Thr	
Thymidine	Т	
Tissue Plasminogen Activator	TPA	
Total Anterior Circulation Syndrome	TACS	
Transcription factor IID	TFIID	
Transient Ischemic Attack	TIA	
Transmission Disequilibrium Test	TDT	
World Health Organization	WHO	