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Abstract

This thesis summarises my PhD research towards applying nano-scale dielectric res-

onators (DRs) to optical metasurfaces for achieving various functionalities, high effi-

ciency, and reconfigurability. Additionally, the thesis also provides brief introductions

to dielectric resonator antennas, plasmonics, and a short review of optical metasurfaces.

The major contributions are briefly summarised as follows:

In Chapter 3, resonance properties of cylindrical nano-scale DRs on metallic substrates

are analysed. At optical frequencies, subwavelength DRs with metallic substrates

can support horizontal magnetic dipole resonance, which can be used for efficient

coupling of surface plasmons. However, two types of resonance breakdown can occur

in such DRs, and the cause for both types are analysed in detail. Of particular interest

is the negatively-matched resonance breakdown, which occurs when real parts of

the permittivities of a DR and its metallic substrate are negatively matched. The

negatively-matched resonance breakdown is undesired for optical metasurfaces and

can be avoided by inserting a low-permittivity dielectric spacer between the DR and its

metallic substrate.

In Chapter 4, unidirectional launching of surface plasmons based on non-uniform

arrays of DRs is proposed and investigated. By comparing the principles of DR-based

anomalous reflection and surface plasmon unidirectional launching, it is concluded

that the optimal launching can be achieved by avoiding the first-order diffraction. The

optimal launching condition is verified with numerical simulations and linear array

theory.

In Chapter 5, a narrowband plasmonic absorber made of a uniform array of nano-scale

DRs on metallic substrates is experimentally demonstrated at visible frequencies. It

relies on the surface plasmon standing waves coupled by the locally resonant nano-scale

DRs for the high absorption. The simulation and measurement results are presented

and analysed with coupled mode theory.

In Chapter 6, a mechanically tunable DR metasurface is experimentally demonstrated

at visible frequencies. The tunable metasurface is realised by embedding a uniform

array of DRs into an elastomeric encapsulation. The transmission responses of the

metasurface can be tuned when the encapsulation is deformed with an external strain.
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Abstract

Measurement results confirm the predictions of simulations and shows a remarkable

tuning range. A Lagrangian model is developed to rigorously analyse the simulation

and measurement results. Such a design provides a preliminary concept usable in

reconfigurable optical devices, and after further development can also be potentially

commercialised for smart contact lenses.

In Chapter 7, metasurfaces made of metal-loaded DR arrays are proposed to realise

the functionality of selective thermal emission. Two metasurface designs are presented.

The first design is based on a uniform array of square metal-loaded DRs, which are

made of doped silicon. Theoretical and numerical analysis demonstrate stable emission

peaking at nearly 8 µm across a wide temperature range. The second further-developed

thermal emission metasurface is designed to have broadband emission from 8 to 13 µm

atmosphere window range and low emission at all other wavelengths. In this way, it

can realise the function of radiative cooling.

These studies along with corresponding simulations or experimental validations demon-

strate various functionalities can be realised with DR metasurfaces at optical frequencies.

Furthermore, these nanostructure designs suggest a promising route for achieving the

next generation highly-efficient integrated optical systems based on nano-scale DRs.
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