DEPARTMENT OF AGRICULTURE, SOUTH AUSTRALIA ### Agronomy Branch Report INVESTIGATIONS ON DRAINAGE AND IRRIGATION AT LONG FLAT, 1960-1968 Compiled by P.J. Cole #### FOREWARD Research at Long Flat, near Murray Bridge, South Australia from 1961 to 1967 was supported by the Australian Dairy Produce Board. Dr. C. L. Watson, formerly Research Officer, Department of Agriculture, and later of the Department of Soils and Plant Nutrition, Riverside, California, U.S.A., and Research Fellow (Soil Physics), University of the West Indies, carried out the bulk of the investigations.* Other former officers of the Department of Agriculture who were involved in the project included Mr. P. Judd, Mr. R.C. Shearer, Mr. J.A. Edwards and Mr. L. Wallace. Professor J.W. Holmes, Department of Earth Sciences, Flinders University (formerly Principal Research Officer, Division of Soils, C.S.I.R.O.), assisted in a number of projects. Mr. R. Culver, Reader in Civil Engineering, University of Adelaide, assisted in design of equipment. Statistical analysis of some of the data was carried out by Mr. J.V. Ellis (Biometrician, Department of Agriculture). After the termination of the projects at Long Flat, Mr. P.J. Cole (Department of Agriculture) examined unpublished reports and data collected during the course of the projects, to present in this report. The Department of Agriculture is indebted to Mr. R.L. Eves, on whose property many of the projects were carried out, the South Australian Department of Lands, in particular officers at Murray Bridge and Mr. E. Taylor, pump master at Long Flat. Examination of some of the data is incomplete. This is presented in full in this report to provide a basis for further investigations. (P.M. Barrow) CHIEF AGRONOMIST. ^{*} Since this material was prepared Dr. C. L. Watson has taken up. of the same position with Ch.S. ItiR. O., Division of Soils in Canberra. #### INDEX | | <u>P</u> | age | |-----|--------------------------------------|-----| | 1, | Introduction | 1 | | 2. | Papers Published | 1 | | 3. | Soil Type | 2 | | 4, | Hydraulic Permeability | 2 | | 5. | Seasonal Pasture Production 1961-63 | 5 | | 6. | Water Table Level 1961-63 | 7, | | 7. | Soil Water Tension 1961-63 | 8 | | 8. | Water Balance | 9 | | 9. | Drainage System | 10 | | 10. | Design of System | 11 | | 11. | Soil Moisture Tension 1964-66 | 11 | | 12. | Tile Line Flow | 12. | | 13, | Water Table Levels 1964-66 | 12 | | 14. | Water Analyses | 13 | | 15. | Pasture Production 1964-66 | 15 | | 16. | Yield Oats, Sudax and resown pasture | 15 | | 17. | Summary of results | 17 | | 18. | References | 18 | | 19. | Appendices | | # INVESTIGATIONS ON DRAINAGE AND IRRIGATION ON THE LOWER MURRAY SWAMPS: - EXPERIMENTS AT LONG FLAT (1960 - 1968) #### 1. INTRODUCTION The Lower Murray Swamps, in South Australia, have now been irrigated for over 50 years. These areas carry dairy cattle supplying city milk markets. The permanent grass-legume pastures are flood irrigated from the adjacent river at three weekly intervals during the dry season from September to May, and are drained by a system of ditches 60 cm deep. Long Flat, Hd. of Burdett, situated on the eastern side of the river 2 miles south of Murray Bridge, is one of the reclaimed swamps on the lower River Murray, and was the site of a number of experimental projects carried out by the Department of Agriculture and C.S.I.R.O. Division of Soils during the period 1960-68. Both these organisations considered that drainage was the most important factor in pasture management on the swamps, although no accurate measurements had been taken (see Wells, C.B. (1955) and Williams, S.G. (1961)). In 1960 experiments were initiated by the South Australian Department of Agriculture to measure precisely soil water tables, soil water tension and pasture growth, to determine the precise relationship between irrigation, drainage and pasture production on the swamps, with the view to improving pasture production. It had been suggested that excessive irrigation inputs and poor drainage had led to decreasing pasture growth. This report presents the relevant data collected during the course of these experiments. #### 2. PAPERS PUBLISHED ON EXPERIMENTS AT LONG FLAT - 1. Watson, C. L. (1967) S. A. Journal of Agriculture 70 270-279 "Improving Pasture Production on the Lower Murray Swamps". - Holmes, J.W. and Watson, C.L. (1967) Agricultural Meteorology 4 177-188. "The Water Budget of Irrigated Pasture Land near Murray Bridge, South Australia". - 3. Edwards, J.A. and Culver, R. (1967) Agricultural Engineering 48 90-91. "An Integrating Flowmeter" - Cole, P.J. and Watson, C.L. Experimental Record (in press) "Drainage Investigations on the Lower Murray Swamps. (1) Water tensions and water levels on an irrigated pasture at Long Flat. (2) Effect of a Drainage Scheme on soil water tensions and water tables". #### 3. SOIL TYPE OF LONG FLAT EXPERIMENTAL AREA The soils of Long Flat were surveyed in 1931, by Taylor and Poole. At Long Flat, the principal soils are: (1) Type 2A, covering 2/3 of Long Flat 0-58 cm - Black clay 58-66 cm - Brown clay 66-81 cm - Grey brown clay 81 cm - Grey clay (2) Type 2, covering 1/3rd of area, mainly located in a strip bordering the river bank 0-76 cm - Black clay 76-91 cm - Brown clay 91-99 cm - Grey brown clay 99 cm - Grey clay #### 4. HYDRAULIC PERMEABILITY OF THE SOILS OF LONG FLAT In the design of experiments at Long Flat, it was envisaged that a drainage system would be constructed to observe the effects of deeper drainage on pasture production. As estimate of optimum drain depth and spacing can be made from a knowledge of the permeability of the various soil horizons. The C.S.I.R.O. Division of Soil Physics, had field apparatus available to measure hydraulic permeability, and a project was initiated with the Department of Agriculture to survey the permeability of the Soils of the Long Flat I.A. to a depth of 1.8 meters. #### Design of experiment Measurements of permeability were made at 3-4 sites selected along four representative transects, 300 to 600 meters in length. Two methods, viz. the Two-well method (after Childs) and the Single-tube (after Kirkman) were used at each site. Both methods measure the soil permeability below a water table. The two well method measures horizontal permeability while the single-tube primarily measures the vertical component. Details and theory of the techniques are given in Jnl. Soil Sci. 8:27 (1957) (1) Two-well method The method utilises one pair of wells, between which a steady water flow is induced by establishing a difference in water head. Two wells, I meter between centres, were excavated to a depth of 100 cm. On one transect the wells were then deepened to 180 cm. With the aid of a small centrifugal impeller pump, water was pumped out of one well into the other, until the water levels in both wells were steady. The rate of flow was then determined by using a measuring cylinder and stop-watch. At the same time, water from another container was poured at a similar rate into the receiving well to prevent disturbance of Replication was obtained by reversing the flow, i.e. equilibrim. by transferring the pump to the other well. At each site, readings were taken from two sets of wells, 9 m apart. During the measurements the water-table averaged 41 cm (ranging from 30 cm to 61 cm) below the ground surface. Results refer either to the 100 cm or to the 41cm - 180 cm soil horizon. (2) Single-tube method Measurements are taken of the rate of rise of water in an encased well into which water can only enter through the base. Wells dug to depths of 100 cm or 180cm, were lined with a steel tube. Water was pumped out of this tube and the rate of rise was noted at regular intervals. At each site two replicate tubes were installed some 9 m apart. Results The hydraulic permeability values have been analysed with respect to: - (a) Method of measurement, viz. Two-well or Single-tube. - (b) Soil type, viz. Alluvial clay Type 2 or 2A - (c) Depth of horizon measured, viz 41-100 cm or 40-180 cm The following table (Table 1) shows the effect of technique and horizon on permeability. Table 1 - Effect of Method and Depth of Measurement on Hydraulic Permeability at Long Flat Irrigation Area | | Depth of | Met | hod | Signifi- | |----------------------------------|--------------------------|------------------------|------------------------|------------------| | Site | measurement
(cm below | Two-well | Single-tube | cance | | | surface) | Geometric | Means cm/sec | Cance | | Sect. 70, 77, 79 & 84 (15 sites) | | 1.0 x 10 ⁻² | 0.9×10^{-2} | No Sig.
Diff. | | Sect. 77 (4 sites) | 41-180 cm | 4.4×10^{-2} | 2.0 x 10 ⁻² | No Sig.
Diff. | For the purposes of this analysis the readings obtained from both soil types 2 and 2A, have been combined. The two measuring techniques have given similar values. This indicates that horizontal and vertical permeabilities are the same. The single-tube method values were more variable. There is a slight increase in permeability with depth but this increase does not appear to be significant. The permeability values were then grouped into soil types for statistical analysis (Table 2) Table 2 - Effect of Soil Type and Method of Measurement on Hydraulic Permeability at Long Flat Irrigation Area | | | Method | | |--------------|--------------------------|--------------------------|----------------| | Soil Type | Two-well | Single-tube | Significance | | | Geometric M | Means cm/sec | | | 2 (8 sites) | 0.63×10^{-2} | 0.50×10^{-2} | No. sig. diff. | | 2A (7 sites) | 2.9 x 10 ⁻² | 2.8 × 10 ⁻² | No. sig. diff. | | Significance | Sig. diff.
(P <0.001) | Sig. diff.
(P < 0.05) | | The two measuring techniques have again given similar values. Soil Type 2 with its greater depth of black clay has a significantly lower permeability. #### Discussion Permeability values are discussed in Comm. Bureau of Soils Tech. Comm. No. 50,
1959. Values greater than 0.7×10^{-2} cm/sec are classed as very rapid. As these figures are of this order, it appears that the Long Flat alluvial clays are very permeable for the top 1.8 m at least. Gravelly sands and silts commonly have permeabilities similar to this, while clays are often less than 0.003×10^{-2} cm/sec. However, as cracks and fissures were observed at Long Flat during well excavations, high hydraulic permeability values could be expected. J. Holmes of C.S.I.R.O. Soils Division used these values to estimate desirable drain depth and spacing. One appropriate system could have drains 1.2 - 1.8 m deep and 61 m apart. #### 5. SEASONAL PASTURE PRODUCTION ON THE LOWER MURRAY SWAMPS From 21/6/61 to 2/7/63 pasture production measurements were taken on Section 77, Long Flat. Sites were chosen on perennial pastures typical of the Murray Swamps. The areas were flood irrigated every three weeks from September to May, and were drained by a system of open ditches 60 cm deep. An annual application of 210 Kg superphosphate per hectare was applied prior to 1961. In 1962 the soils were topdressed with 224Kg superphosphate in both January and August. There was no top dressing in the first 6 months of 1963. Preliminary observations had shown that the depth of the water table on Section 77 rose not only during irrigation of the section, but also during irrigation of adjacent sections due to lack of boundary drains between sections. Seasonal trends in production and botanical composition of the existing pastures were measured at two sites. Site 1 the pasture was primarily N.Z. white clover (Trifolium repens), with N.Z. perennial ryegrass (Lolium perenne), paspalum, (Paspalum dilatatum) and dock (Rumex spp.) This pasture had been sown in 1958 with tyegrass and white clover. Site 2 was Paspalum dominant. Ryegrass and white clover had been sown in 1956. At each site 16 grazing quadrats, 1.2×1.2 meters were placed in a square grid system on an area of 1,600 sq. meters. Following harvesting, each quadrat was moved to one of four random positions. Harvests were taken when pasture growth in the quadrats reached 15 cm. An area of 1.0 sq. meters was cut from each quadrat. These cuts were made at a height of 2.5 - 5.0 cm to simulate grazing. The new position to which the quadrat was moved was also cut to the same height. Following harvesting the experimental area was topped if necessary. Fourteen harvests were taken, dry weights determined and botanical composition determined (botanical composition determined by hand sorting for 8 harvests and by visual estimation for 6 harvests). #### Results Table 3 gives seasonal growth rate of pasture and components. The figures are averages of the two year period 21/6/61 to 2/7/63. 2 YEAR AV. 1961-3. June July Aug. Sept. Oct. Nov. Dec. Jan. Feb. Mar. April May Table 3 - Seasonal Growth Rate at Long Flat Irrigation Area Section 77 | | | 1 | Growth Rat | te (Dry Mat | ter - Kg/h | na/day) | |-----------------------------------|---|---|-----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | Site | Period | Total | Perennial
Ryegrass | Paspalum | White
Clover | Others | | l.
Clover
Dominant
Sward | June-Sept. October NovDec. January February March-April | .21
57
54
47
50
37
12 | 10
24
8
6
2
2
2 | 2
7
20
22
19
2 | 6
28
38
20
26
20
4 | 4
3
1
2
1
2
2
2 | | 2. Paspalum Dominant Sward | June-Sept. October NovDec. January February March-April May | 15
57
75
100
72
49
11 | 3
8
1
2
-
- | 3
13
45
83
69
41
4 | 8
35
30
15
3
9
6 | 1
2
-
1
- | #### See also figure 1 The annual dry matter production (two year average) is given in Table 4. Table 4 - Annual Pasture Yield Section 77 Long Flat IA | | | | Yield (Dry | Matter Kg/ | ha/annum | .) | : | |-----|-------------------------------|---------|-----------------------|------------|-----------------|--------|---| | Sit | e | Total | Perennial
Ryegrass | Paspalum | White
Clover | Others | | | 1. | Clover
dominant
sward | 12, 700 | 3,000 | 2,700 | 6,200 | 900 | | | 2. | Paspalum
dominant
sward | 15,800 | 700 | 1,000 | 4,700 | 300 | | #### Discussion Winter production at both sites was similar (13-16 Kg D. M./ha/day). Differences in summer production are due to the vigorous growth of paspalum over the summer months while the other pasture grasses tend to grow most rapidly in spring. High yields are obtainable from the paspalum swards, but management problems arise since these swards tend to become sod bound with suppression of clover and winter growing grasses. This may lead to feed shortage in winter even though summer growth is adequate. Seasonal pasture component composition showed marked fluctuation following the growth pattern of each species - the proportion of paspalum increasing in summer and the proportion of ryegrass in spring. It appears that summer growth of clover may be suppressed by vigorous paspalum growth in this season. Richardson and Gallus (1932), measured pasture growth at Wood's Point, another irrigated swamp on the Lower Murray, at 27,000 Kg D.M./ha/annum, which is considerably greater than any yield obtained at Long Flat. The species composition of the pastures at Wood's Point was predominantly white clover - perennial ryegrass, suggesting that either the predominance of paspalum at Long Flat may be restricting optimal pasture growth or soil condition may be unsatisfactory. Examination of water level data and soil water tension data (see part 7) suggests that soil conditions may be limiting pasture growth of the species not adapted to very wet soil. Poor growth is most marked during winter months when paspalum is dormant, and the other pasture species are most likely to be affected by water logging or low soil temperatures. #### 6. WATER TABLE LEVEL It has been noted on numerous occasions (e.g. Roe (1937)) that high soil water tables and consequently water logged soil conditions will restrict plant growth. Soil water table levels were measured at Long Flat to observe the proportion of any irrigation period when soil horizons may be excessively wet due to high soil water tables. #### Design of Experiment Soil water tables were recorded by automatic water level recorders, measurements commencing in 1960. There were 6 well positions on the experimental area. | Well No. | Distanc | e from | river bank | (metres) | |----------|---------|--------|------------|--------------| | 1 | 4.5 |) | | | | 2 | 156 |) | Site 1 | Soil type 2 | | 3 | 274 | ·) | | , -, - | | 4 | 475 |) | • | | | 5 | 590 |) | Site 2 | Soil type 2A | | 6 | 680 |) | | 71 | #### Results Actual water table levels at wells 2, 3, 4 and 5 from 13/10/60 to 26/9/61 are presented in Appendix 1. In table 5 the data from wells 2 and 4 from 20/9/61 to 5/1/63 has been presented as the number of days during any irrigation period that the water table is at any particular level. These results are averaged in figure 2. #### Discussion The data indicates water table levels are close to the surface (above 60 cms) for considerable periods of all irrigation cycles. Consequently plant roots will either be restricted to the surface soil or have to grow in soil that is waterlogged for long periods, both of which are likely to inhibit optimum root growth. #### 7. SOIL WATER TENSION Tensiometers were used to measure soil water tension at two sites on Section 77, Long Flat. One site was adjacent to well 2, 155 metres from the river bank (Site 1). The other site was adjacent to well 4, 490 metres from the river bank (Site 2). Duplicate tensiometers were installed at depths of 5 cm, 10 cm, 20cm, 40cm and at 60 or 80 cm. No deeper installations were made since water tables were usually above 80 cm. The tension range of the tensiometers was up to 700 cm suction. The instruments were constructed locally according to C.S.I.R.O. Division of Soils Tech. Memo, 8/59. #### Results Results are presented in Appendices, I I and III and table 6, as number of days water tensions are in any particular range. In figure 3 the data has been averaged and presented graphically. SECTION 77 NATER TABLE LEVELS 1961-63 Soil Water Table Level Barre (calping aufine) | Irrigation Period | Days | 0 A
10 | బిట్ట | 84 | స్తే | -73 | 200 | 8 | 150 | NA
MA | 25 | 45- | 32 | rg | &
& | |--|-----------|-----------------------|----------|----------------------|------------|------------------|-----------|----------|------------|---|-----------------|-------------------|-----------|--------------|----------| | | | | en | Site 1
Da | 1 (Well | 11 2) | | | | Site | 2
Day | Well 4 | 3 | | | | Burner (Nov-Feb) Incl. 9-11-61 to 30-11-61 30-11-61 to 21-12-61 21-12-61 to 11-1-62 11-1-62 to 12-62 5-11-62 to 25-11-62 25-11-62 to 16-12-62 16-12-62 to 16-12-62 | 22228829 | 401 ፋቴ ፋቴ ሎ ፋ
የህፃህ | 40+0×++0 | ดพด++พพ
พพ้ท์ | 10+10+++40 | 0005400 <i>w</i> | たみのとなるでき | 00000tw0 | W000++0+ | 4m der der der der der der der der O | 6000 € + € 10 € | จะบดตบบอิต | 034000mn0 | 202 - 200 C | ೦೦೪೦೦೪೦೦ | | Mean No. days | 20°6 | 101 | 9°0 | 2.7 | 2.4 | 4.4 | 7.7 | 2.2 | 9.0 | 6.0 | 4°2 | 3.6 | 6.0 | 8. | 8.0 | | Dorrog | | 5 | 12 | 13 | 12 | 21 | 37 | 11 | 3 | ተ | 12 | 17 | 53 | ጸ | 10 | | Autuan and Spring
20-9-61 to 19-1061
19-10-61 to 9-11-61
21-2-62 to 15-3-62
15-3-62 to 11-4-62
11-4-62 to 18-5-62
1-10-62 to 5-11-62 | 84884X | 01 | -+4M00 | ಇ ಚಿಕ್ಕಾಗುಗಳು | 20WL-10 | ∾മസസ്പ്മ
സ് |
えてろらてら | 000040 | 00 | 4-4-0-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4 | ∞-40-w | ±พพ๛ฬ | L-4999 t | 0 W W 4 7 40 | 0000±0 | | Mean No. days | 28.5 | 1.3 | 7- | 5.1 | 50 | 7.04 | 9.9 | 200 | 0.7 | | | 7.0 | 908 | 20 | 6, | | Non-irrigation period | | + | ÷ | ٥ | 9 | - | 3 | | V | ٥ | 5 | S | 23 | ē. | 4 | | Winter
17-5-61 to 20-9-61
5-7-62 to 10-9-62 | 122
67 | 00 | +0 | 4. | 5€
18€ | ጸ ኡ | 16 | 27 | 00 | 40 | £2. | 献 | 3 0 | 4 0 | 00 | | Meen No. days | 204.5 | 0 | · | 7 | 35 | 33 | 8 | 177 | 0 | | 8 | 2 | £ | 6 | G | | A period | | ٥ | - | - | 37 | 武 | 20 | 3 | 4 - | | 23 | 24 | 8 | 24 | o | | | | | | | | | | | | | 1 | | | Фифии | | Figure 2. WATER TABLE LEVELS FOLLOWING IRRIGATION 1961-63 SECT. 77. LONG FLAT IA AV. SITE 1 2 #### TABLE 6 #### SOIL WATER TENSION Number of days water tension is in given range Average of sites 1 and 2 Sect. 77 Long Flat | · | | | T | | | | | | | |-------------------------------------|-------------------|--|---------------|--------------|-------|-------|-------|-------|------| | Tensio-
meter
depth
in cm. | Period* | Average
days per
Irriga-
tion | <100
cm Wa | 1-200
ter | 2-300 | 3-400 | 4-500 | 5-600 | >600 | | 10 | Summer | 20.6 | 5.0 | 1.5 | 2.0 | 3.3 | 3.1 | 3.3 | 2.2 | | | Autumn-
Spring | 28.5 | 11,6 | 3.6 | 1.3 | 1.5 | 5.0 | 2.4 | 3.3 | | | Winter | 114 | 37 | 29.3 | 10.3 | 11.3 | 8.8 | 10.0 | 7.0 | | 20 | Summer | 20.6 | 8.6 | 3,8 | 2.3 | 2,5 | 1.7 | 1.3 | 0,3 | | | Autumn-
Spring | 28.5 | 16.3 | 2.1 | 3,1 | 2.8 | 2.7 | 1.5 | 0.1 | | | Winter | 114 | 65.3 | 21.8 | 7.3 | 4.3 | 4.8 | 6.3 | 4.3 | | 40 | Summer | 20.6 | 14.4 | 2.6 | 1.4 | 1.1 | 0.6 | 0.5 | - | | | Autumn-
Spring | 28.5 | 22.5 | 4.9 | 1.0 | 0.4 | | _ | _ | | | Winter | 114 | 106.0 | 5.3 | 2.8 | μ | _ | - | _ | ^{*} Summer period from November to February (inclusive) - 8 irrigation period Autumn-Spring periods September, October, March to May - 6 irrigation periods Winter period (2 winter periods) - Non irrigation. - (1) Water tensions are less than 100 cms suction, and probably unsatisfactory for normal plant root growth, for long periods. This is particularly noticeable at 40 cm depth at site 2, where tensions rarely exceed 100 cm suction. - (2) Soil water tensions greater than 400 cm suction are likely to be excessive for normal root growth. Again, tensions lie in this range for long periods. #### Discussion Soil water tensions lie in range unsatisfactory for normal plant growth for long periods. It is likely that growth would be restricted by these unsatisfactory soil conditions. Soil horizons below 40 cm appear to be nearly continuously saturated. The surface 30 cm of soil take over one week after an irrigation to rise to a tension considered satisfactory for plant growth. The results suggest that improved drainage is necessary to rapidly remove excess water after irrigation. The existing drainage system on the Swamps consisted of a system of lateral ditches connecting with a main drainage channel. The depth of this channel limited the depth of lateral drains, and the depth of the main drain was determined by pumping installations. The pumps were set at a level which would allow removal of water to a depth of about 90 cm below the surface at the furthermost point of the swamp. It was considered that by lowering pumps, deepening drains, and decreasing spacing between drains, more efficient drainage could be effected. However, more frequent irrigation may then be necessary. If the area was irrigated when soil moisture tensions reached critical values, and more efficiently drained, it was considered that improved soil conditions would result. Testing of these ideas led to the design of a drainage trial on which it was attempted to improve pasture growth by improved management. 8. WATER BALANCE (Section 77 Long Flat) (Joint Project - Department of Agriculture and C.S.I.R.O., Division of Soil Physics) See Holmes and Watson (1967) From 1962 to 1965 detailed records were kept of rainfall, surface irrigation and drainage into the river of this area. The aim was to measure rainfall, evaporation losses, volume of water applied, volume of drainage water pumped out and seepage water flowing in beneath the levee banks. (See table 7). These measurements supplied the following information. - (i) The efficiency of water use. It was suspected that excess water usage through poor application mentods was aggravating drainage problems. - (ii) The information of seepage into the irrigation area and the practicability of lowering water levels on the swamps economically without increasing seepage. - (iii) The establishment of pasture water requirement based on rainfall and evaporation loss records. This was to provide a sound basis for establishing a suitable roster system for irrigation. A rain gauge was installed and rainfall records kept. A net radiometer was also installed to assess evaporation. Special piezometer tubes were designed and installed on a transect from the river to the back of the swamp to investigate seepage and the general hydrology of the area. Special water meters to measure the flow and quantity of water passing through the sluice gate were designed and installed, operating an automatic recorder. Drainage pumps were accurately calibrated. Seepage from the River Murray was small and is not included in the data of table 7. To summarise: - (1) Drainage (SD) is approximately half of irrigation water supplied (I) Allowing for an annual leaching requirement (e.g. 150 mm) it appears that irrigation volumes are far in excess of requirements. - (2) Comparison in input (P + I) and output (E + SD) indicates a good correlation of data. - (3) Water input from rainfall is minor when compared with input from irrigation. #### 9. DRAINAGE SYSTEM Experimental measurements on the Long Flat IA indicated soil water tensions and water tables were unsatisfactory for normal plant growth over most of the year. In an attempt to overcome these problems, a drainage system was installed on Sect. 80 to lower the water table and increase soil water tensions. Soil water tension, water table level, tile line flow and pasture production were measured after the installation of the system to observe changes brought about by drainage. These measurements were taken during the 1964-65 and 1965-66 irrigation Table 7 The water budget of irrigated pasture land at Long Flat 4A All components in m.m. | Re | ainfall
(P) | Irrigation (I) | P + I | Evaporation | Drainage
(SD) | E + 800 | |--------------------------------|----------------------------------|----------------------------------|--------------------------------------|--|------------------------------------|--------------------------------------| | 1962
Oct.
Nov.
Dec. | 73
14
40 | 1 03
254
201 | 176
268
241 | 9 3
133
166 | 104
99
85 | 197
232
251 | | 1963
Jan.
Feb.
Mar. | 42
2
1 | 240
197
211 | 282
199
212 | 176
130
115 | 105
84
103 | 281
214
218 | | Total for 6 wonths | 172 | 1206 | 1 378 | 81 3 | 580 · | 1 393 | | April May June July Aug. Sept. | 54
84
63
56
43
23 | 135
0
0
0
0
128 | 1 89
84
63
56
43
151 | 64
28
31
31
57
112 | 1 04
69
56
20
18
50 | 168
97
87
51
75
162 | | Total for 6 wonths | 323 | 263 | 586 | 323 | 317 | 640 | | Oct.
Nov.
Dec. | 49
4
1 | 186
214
314 | 235
218
315 | 1 <i>3</i> 9
1 <i>5</i> 7
1 <i>6</i> 3 | 89
111
113 | 228
268
2 7 6 | | 1964
Jan.
Feb.
Mar. | 8
16
5 | 264
· 277
240 | 272
293
245 | 184
135
108 | 94
97
108 | 278
232
216 | | Total for 6 months | 83 | 1495 | 1578 | ප8 6 | 612 | 1498 | | April May June July Aug. Sept. | 41
19
38
51
33
50 | 86
156
0
0
115
95 | 127
175
38
51
148
145 | 50
38
22
27
56
82 | 53
77
17
17
73
68 | 103
115
39
44
129
150 | | Total for 6 wonths | 232 | 452 | 684 | 275 | 305 | 580 | | Oct
Nov
Dec | 37
67
22 | 128
183
234 | 165
250
256 | 123
129
152 | 71
97
137 | 194
226
289 | | 1965
Jan
Feb.
Mar. | 1
0
2 | 21/4
29/4
235 | 245
294
237 | 161
147
120 | 96
108
121 | 257
255
241 | | Total for 6 months | 129 | 1 318 | 1447 | 832 | 630 | 1462 | #### 10. DESIGN OF DRAINAGE SYSTEM The design of the drainage system can be seen from diagram 1. Three tile lines, each 107 m long and constructed of 10 cm slotted PVC pipe, were installed at a minimum depth of 1.5 m on a grade of 0.25%. Coarse sand was placed around the pipe to act as a filter for silt. The tile lines emptied into concrete sumps from which the drainage water was removed by an automatic pumping unit. From the design of the drainage system a site 3.1 metres from the drainage line could be expected to be well drained and a site 48.8 metres from the drainage line poorly drained. A comparison of results from a well drained site and a poorly drained site should give some indication of the functioning of the drainage scheme. #### 11. SOIL MOISTURE TENSION MEASUREMENTS Three sets of tensiometers were installed on the trial area 3.1, 6.1, 12.2, 24.4 and 48.8 metres from drainage lines and were at depths of 10, 20, 40, and 60 cm. The installations were 40 m from the eastern PVC mainlines, site C being closest to the river bank and site A furthest from the bank (diagram 1). Commencing on 4/1/65, soil water tension values were recorded. Measurements were usually taken just after irrigation and then about 14 days later, except for two irrigation cycles (18/3/65 to 15/4/65 and 22/2/66 to 10/3/66) where six or seven measurements were taken during the irrigation cycle
(Appendices IV and V). Readings were taken at regular intervals during the 1965 non-irrigation cycle (Appendix VI). Approximately equal volumes of water were applied to the irrigation bay during each irrigation. #### Discussion Soil water tensions at depths of 10 cm and 40 cm were representative of the results obtained, and show the change in water tension with increased soil depth. These results, measured 3.1 and 48.8 m from the drainage line, for the two irrigation periods 18/3/65 to 15/4/65 and 22/2/66 to 10/3/66 are plotted in figures 4 and 5. The tension readings are averages from the three sets of tensiometers. Figure 4 suggests drainage had some effect on soil water tension during the first season of operation. At a soil depth of 10 cm, soil water tensions exceeded 100 cms by day 6 for a drained site as compared with 9 days for a non-drained site. Also, on the drained site soil water tensions rapidly increased after 20 days, while this was not as marked on the non-drained site. With measurements taken at a depth of 40 cm soil water tension exceeded 100 cm in 13 days on a drained site as compared with 22 days on a non-drained site. ### DRAINAGE DESIGN SECT 80 LONG FLAT I.A. In the 1965 non-irrigation season, differences in soil water tension between the drained and non-drained sites, as indicated by measurements at a depth of 10 cm, were not marked (Figure 6). However, tensions rarely fell below 100 cm, indicating that, at 10 cm the soil rarely became excessively wet for normal plant growth during this season. During the irrigation period in 1966 (Figure 5), differences in soil water tension between the two sites and at both 10 cm and 40 cm were minimal, and apparently drainage was not occurring. #### 12. TILE LINE FLOW following irrigation Tile line flows along drainline B were measured at intervals after irrigations on 18/3/65 and 22/2/66 using a bucket and stopwatch at the sump (See Figure 7). Tile line flows were high immediately after irrigation, and fell rapidly in the first 40 to 60 hours to become almost constant by 80 hours. Tile line flows were lower in the second year of measurement than in the first. This may have been due to silting of the drainlines and surrounding soil by iron oxides, as samples of iron oxides were collected from the drainlines. #### 13. WATER TABLE LEVELS Self recording water level recorders were located a few metres west of the tensiometers on the trial area, 6.1, 12.2, 24.4 and 48.8 metres south of drainline B. Levels during one irrigation cycle in the 1964/65 irrigation season and for three cycles in the 1965/66 season, and during the 1965 non-irrigation season are presented in appendices VII, VIII, IX, X and XII. The difference in water levels between sites 6.1 and 48.8 m from drainlines is also presented in appendices XI and XII. #### Discussion Water levels fell most rapidly close to the drainline, and at 48.8m from the drainline may have been little influenced by drainage. During the non-irrigation cycle, the water table became closer to the surface with increasing distance from the drainline. However, during the 1965/66 irrigation season water levels near the drainline did not fall as rapidly as during the 1964/65 season, possibly due to reduced drainage occurring since reduced tile line flows were observed. Water levels tended to be lower on the drainage trial area both during irrigation and non-irrigation seasons than in 1962 on section 77. Winter rainfall in 1965 was 175 mm, in 1961 151 mm and 1962 58mm so that differences in winter rainfall will not explain these differences. ### TILE LINE FLOWS FOLLOWING IRRIGATION Drainage or the change in site (1961-3 Sect. 77; 1965 Sect. 80) may account for lower water tables in 1965. #### 14. ANALYSIS OF TILE DRAIN EFFLUENT Tile drains were installed in October, 1964. These were below the water table until the beginning of February, 1965, when the pumping unit commenced operation. Before this the water table on the experimental area would not have dropped more than 0.6 - 1.0 metres from the surface. Previously the area had been drained by a grid of shallow ditches 46 cm - 76 cm. deep. The central ditch on the trial area was refilled in September, 1964. Consequently on the trial area, water tables following irrigation would have been higher than hitherto. Moreover a build up of salts would be expected near the soil surface since the area was in a fallow condition in October, and much of November 1964. The area was rotary hoed at the beginning of October and sown to pasture on 9/10/65. It was not until mid-November that there was good vegetative cover. #### Objective To measure - (1) the salt content of the water table - (2) changes in salt content following irrigation #### <u>Method</u> Water samples were collected from two tile drain outlets, (B and C) shortly after the pasture area was irrigated on two occasions, 18/3/65 and 22/2/66. Samples were also taken on the 31/8/65 at the end of winter period before irrigations had recommenced. Tile flows at this stage were small - approximately 2 l/min. By comparison tile line flows during the two irrigation cycles ranged from 90-270 l/min. immediately after irrigation to 9-23 l/min. some 160 hours later. Apart from the samples of River Murray water, all samples were analysed in April, 1966 by the South Australian Department of Chemistry for Total Sol. Salts, (T.S.S.), Sodium (Na), Potassium (K), Magnesium (Mg), Chloride (Cl), Phosphorus (P), Carbonate (CO₃), Sulphate (SO₄), Nitrate (NO₃) Iron (Fe) and Silica (SiO₂) and expressed as parts per million (ppm) soluble salts. Samples of River Murray water were taken monthly by the Engineering and Water Supply Department at Murray Bridge. The analyses are given in appendices XIII and XIV. #### Results: Changes in salt content following irrigation are illustrated in the following analyses taken from tile line B. Table 8 also shows the reduction in salt that has occurred following 12 months of drainage. Table 8 - Water Analyses Following Irrigation(ppm) March, 1965, (Tile line B) February, 1966 | Hours | T.S | . s. | N | a | C1 | | SO | 4 | |-------------------------|--------------|--------------|--------------|------------|-------------|------------|--------------|--------------| | following
irrigation | Mar,
1965 | Feb,
1966 | Mar.
1965 | Feb. | 1 | Feb. | Mar.
1965 | Feb.
1966 | | ļ | 1,530 | 1,420 | | 390 | 640 | 580 | 256 | 280 | | 1 | 2,200 | 1,750 | 589
622 | 450
450 | 990
1090 | 730
780 | 359
382 | 335
350 | The T.S.S., Na, and Cl values are higher in March, 1965 than February, 1966. The SO_4 values however are of the same order. Immediately following irrigation T.S., Na, and Cl are at their minimum levels, the most rapid rise is in the 30 hours following irrigation; for the remainder of the irrigation interval the rise in T.S.S. is more gradual. #### Discussion The T.S.S. Values, which range from 1400 to 2400 ppm., show that the water table is much more saline than the irrigation water (300 p.p.m. average). The effect of this water table salt on pasture growth may be serious unless drainage rapidly lowers the water table to a point where capillary rise of salts to the root zone is small. It was anticipated that salt levels would be high on this trial section. Drainage had been previously poor, and moreover the tiles were not functioning until the end of the summer, by which time a concentration of salts at the surface would be expected. A fall in salt content was observed by February, 1966, so it was expected that salt content would continue to fall provided the quality of the irrigation water from the River Murray did not deteriorate. #### 15. PASTURE PRODUCTION ON TRIAL AREA The trial area was rotary hoed in October, 1964, and sown to pasture (white clover and perennial rye) on 9/10/65. The pasture established well although Paspalum was still present. Diagram 1 shows the general drainage trial design. On each of the three replicates (sites A, B, C) pasture cuts were made 3.1, 6.1, 12.2, 24.4 and 48.8 m from drainlines. At each of these distances on each site, four positions were marked, between 30 and 50 m from the eastern mainlines. Closed cages were placed at each of these positions since pasture yields were measured under grazing. At each harvest, the pasture was sampled (pasture cuts made to 5 cm) from within the closed cages. Each cage was then resited at an adjacent position with the pasture trimmed to 5 cm. Half the pasture samples were subsampled for botanical composition determinations. #### Results and Discussions Pasture production data and botanical composition data was analysed by computer. There were no significant differences in pasture yields with varying distances from the drainlines, and only one significant difference in botanical composition changes with varying distances from the drainline. Table 9 presents mean yield results; appendix XV includes results at each distance from the drainline. Although there are no obvious differences in pasture growth with varying distances from the drainline, pasture yields are greater than those observed in section 77 (see earlier). There is no indication that yields increased through improved drainage; water tension data suggests that drainage was ineffective. The higher yields may be due to better pasture or naturally better soil conditions - ground water levels appear to have been lower on section 80 at nondrained sites, than on section 77. #### 16. GROWTH OF OATS AND SUDAX ON TRIAL AREA During 1966 the drainage trial area was sown to oats and sudax to determine if these fodder crops would show a yield response to the lower water tables on the drained sites. This planting was part of a renovation cycle prior to the sowing of new pasture species on the area. Establishment (sudax only), yield under g4azing, and % N in plant tops were determined in relation to distance from drainage line. #### Results (1) Early Kherson Oats TABLE 9
PASTURE PRODUCTION #### DRAINAGE TRIAL 2/12/64 - 5/4/66 Section 80 Long Flat | Date | No. days | | Dry M | latter Kg | /ha/day | | | Total | |--|------------------------------|-------------|---------------|-----------------|------------------|--------|-------|--| | of
Harvest | since
pervious
harvest | Per.
Rye | Pas-
palum | White
Clover | Other
Grasses | Others | Total | dry
matter
per
harvest
Kg/ha | | 11/1/65 | 39 | 7.1 | 23.0 | 6.4 | 1.1 | 16.6 | 56.4 | 2,200 | | 16/2/65 | 36 | 4.4 | 33,5 | 8.1 | 1.8 | .7.6 | 57.7 | 2,078 | | 23/3/65 | 35 | 2.2 | 36.7 | 6.7 | 1.3 | 6.4 | 58.2 | 2,042 | | 1/6/65 | 70 | 6.5 | 5.3 | 9.0 | 0.2 | 1.1 | 22.4 | 1,572 | | * Missing Harvest cut on 13/8/65 Pata Lost | | | | | | | | | | 22/9/65 | 40 | 9.7 | 0.4 | 17.3 | 2.9 | 1.6 | 31.4 | 1,252 | | 18/10/65 | 26 | 17.9 | 5.4 | 35.3 | 7.4 | 2.4 | 71.3 | 1,854 | | 9/11/65 | 22 | 24.6 | 14.9 | 54.2 | 7.1 | 5.0 | 105.6 | 2,323 | | 7/12/65 | 28 | 10.6 | 28.9 | 30.8 | 6.5 | 3,2 | 77.3 | 2,267 | | 4/1/66 | 28 | 0.2 | 54.4 | 28.6 | 3.6 | 2.9 | 93.4 | 2.616 | | 25/1/66 | 21 | 0.7 | 63.8 | 19.0 | 1.0 | 1.1 | 81.5 | 1,712 | | 15/2/66 | 21 | 0.8 | 65.0 | 13.4 | 4.4 | 1.3 | 85.1 | 1,788 | | 7/3/66 | 20 | 0.3 | 66.1 | 4.8 | 1.0 | 1.3 | 71.9 | 1,438 | | 5/4/66 | 29 | 0.6 | 39.2 | 5.4 | 1.5 | 1.6 | 46.5 | 1,348 | ^{*} Assume 18 Kg/ha/day for 73 days to 13/8/65 then total dry matter in harvest = 1308 Kg. Total annual Dry Matter Production from 16/2/65 to 15/2/66 is 18,736 Kg/ha Results from three experimental sites have been averaged (Table 10). The area was sown on 11/5/66. #### Table 10 | Distance from drainline (m) | 6.1 | 12.2 | 24.4 | 48.8 | |---|--------------|----------------|--------------|--------------| | Yield (Kg dry matter/ha) | | | | .: | | Harvest 1 (14/7/66)
Harvest 2 (15/11/66) | | 1,200
7,347 | | | | % Nitrogen | | | | | | Harvest 1 (14/7/66) Harvest 2 (15/11/66) | 4.44
1.21 | 4.60
1.24 | 4.48
1.16 | 4.84
1.14 | There appeared to be some yield decrease at 48.8m from drainline. Nitrogen levels show no consistent change with distances from drainlines, but appear to be low at harvest 2. #### (2) Sudax Results from three experimental sites have been averaged. (Table 11). The same sites as for the oat fodder crop were sown on 16/12/66. Establishment (plants per 0.04 sq. m; mean of 10 samples from each of 3 replicates). | Distance from drain | 3, lm | 6.lm | 12,2m | 24.4m | 48.8m | |---------------------|-------|------|-------|-------|-------| | Establishment | 1.97 | 1.61 | 1,57 | 1.47 | 0.92 | With increasing distance from the drainline, establishment decreased. #### Table 11 | Distance from drain (m) Yield (cut at 15 cm) Kg dry m | 3.1
atter/ha | 6.1 | 12.2 | 24.4 | 48.8 | |---|-----------------|------|------|------|------| | Harvest 1 (7/ 2/67) | 948 | 886 | 748 | 843 | 504 | | Harvest 2 (15/ 3/67) | 385 | 373 | 338 | 357 | 268 | | Harvest 3 (5/ 4/67) | 801 | 790 | 806 | 766 | 619 | | % Nitrogen - harvest 2 and 3 | only | | | | | | Harvest 2 (15/ 3/67) | 1.69 | 1.66 | 1.59 | 1,58 | 1.53 | | Harvest 3 (5/ 4/67) | 2.43 | 2.33 | 2.28 | 2,25 | 2.14 | Yields decrease with increasing distance from drainline. % N may also have decreased with increasing distance from drainlines. In general, the yield of the fodder crops was greatest closest to the drainlines, indicating that there may have been some response in terms of plant yield to the fall in water tables observed, although water tensions had apparently been little influenced by the drainage system. #### Yield of resown pastures The trial area was sown with N.Z. ryegrass, H.I. ryegrass, Demeter fescue and Ladino White clover on 14/4/67, and the area irrigated on 18/4/67. The pasture was to be cut at regular intervals during the following season, but technical difficulties led to the trial being concluded before yield data was satisfactorily collected. #### 17. SUMMARY OF RESULTS - 1. Seasonal pasture production during 1961-3 was apparently below that which had been recorded on similar soils in 1932. - 2. Water tables 1961-3 were observed to be close to the surface for long periods of the year. - 3. Soil moisture tension ranges 1961-3 appeared to be unsatisfactory for much of the year. - 4. The water budget determined for Long Flat indicated that water applications were in excess of evapotranspiration and leaching requirements. - 5. Hydraulic permeability of soils of Long Flat high. - 6. Results from a drainage trial suggest: - (1) Soil water tensions were little influenced by the drainage system after one year. - (2) Ground water tables fell much less in the second season of operation than the first. - (3) Tileline flows were reduced in the second year of operation. - (4) The salinity of ground water indicated the necessity for good drainage. - (5) Pasture yields were not increased on trial area. - (6) Yields and %N of oats and sudax show no marked increase on trial area. Soil water conditions are far from ideal for optimum plant growth on the Long Flat Irrigation Area. The type of drainage system constructed on a trial basis would not appear to be satisfactory for improving these conditions. #### 18. REFERENCES - Holmes, J.W., and Watson, C.L. (1967) "The Water Budget of Irrigated Pasture Land Near Murray Bridge, South Australia" Agricultural Meteorology 4 177-188 - Richardson, A.E.V., and Gallus, H.P.C. (1932) "Investigations on Irrigated Pastures". C.S.I.R.O. Bulletin No. 71 - Roe, H.B. (1937) "Influence of depth of groundwater on yields of crops grown on Peat Lands" Minnesota Ag. Exp. Sta. Bull. 330 - Spencer, W.F., Patrick, R., and Ford, M.W. (1963) "The occurence and cause of iron oxide deposits in tile drains" Soil Science Society of America, Proc. 27 134-137 - Taylor, J.K. and Poole, M.G. (1931) "A Soil Survey of the Swamps of the Lower River Murray" C.S.I.R.O. Bulletin No. 51 - Williams, S.G. (1961) "Drainage comes first in improving Murray Swamps pastures", S.A. Dept. Ag. J. 65 173-179; 235-240. - Wells, C.B. (1955) "Irrigated Pastures of the Jervois Irrigation Area" C.S.I.R.O. Div. Soils, Div. Report 2/55 #### APPENDIX I ## Section 77 LONG FLAT 1A WATER TABLE LEVELS (cm below natural surface) ### 13/10/60-26/9/61 #### WELL | TI All had | | | | | |--|-----|-----|------|-----| | Date | 1 | 2 | 3 | 4 | | 13/10/60 | 62 | 66 | 55 | 54 | | 14/10/60 | 65 | 62 | 57 | 57 | | 17/10/70 | 76 | 80 | 68 | 74 | | 20/10/60 | 26 | 37 | 31 | 25 | | 22/10/60 | 40 | 42 | 32 | 45 | | 24/10/60 | 63 | 58 | 53 | 57 | | 26/10/60 | 71 | 66 | 58 | 63 | | 31/10/60 | 41 | 62 | . 63 | 64 | | 2/11/60 | 59 | 73 | 63 | 68 | | 4/11/60 | 62 | 77 | 64 | 69 | | 7/11/60 | 72 | 74 | 64 | 68 | | 9/11/60 | 76 | 86 | 71 | 74 | | 11/11/60 | 81 | 90 | ` 74 | 78 | | 14/11/60 | 56 | 66 | 53 | 57 | | 16/11/60 | 70 | 83 | 68 | 70 | | 18/11/60 | 71 | 83 | 70 | 71 | | 21/11/60 | 84 | 94 | 77 | 82 | | 23/11/60 | 91 | 97 | 81 | 82 | | 28/11/60 | 105 | 98 | 79 | 71 | | 2/12/60 | 16 | 25 | 8 | 6 | | 5/12/60 | 40 | 42 | 42 | 47 | | 7/12/60 | 58 | 55 | 47 | 49 | | 9/12/60 | 64 | 61 | 54 | 56 | | 12/12/60 | 82 | 77 | 68 | 67 | | 14/12/60 | 89 | 8.3 | 73 | 73 | | 19/12/60 | 98 | 94 | 81 | 77 | | 21/12/60 | 31 | 55 | 46 | 53 | | 23/12/60 | 58 | 69 | 58 | 62 | | 29/12/60 | 19 | 8 | 3 | . 0 | | 2/ 1/61 | 62 | 54 | 47 | 48 | | 6/ 1/61 | 7.5 | 66 | 58 | 60 | | 9/ 1/61 | 63 | 83 | 72 | 72 | | 11/ 1/61 | 25 | 40 | 40 | 50 | | 12/ 1/61 | 49 | 52 | 48 | 53 | | 16/ 1/61 | 78 | 76 | 69 | 71 | | 20/ 1/61 | 82 | 87 | 76 | 80 | | 23/ 1/61 | 93 | 93 | 83 | 87 | | Date | 2 | 3 | 4 | 5 | |------------------|------------|------|------------|------------| | 27/ 1/61 | 46 | 45 | 44 | 47 | | 29/ 1/61 | 72 | 66 | 64 | 63 | | 2/ 2/61 | 17 | 37 | 35 | 47 | | 6/ 2/61 | 53 | 58 | 52 | 61 | | 9/ 2/61 | 49 | 57 | 46 | 48 | | 12/ 2/61 | 72 | 72 | 66 | 72 | | 15/ 2/61 | 79 | 82 | 64 | 61 | | 17/ 2/61 | 64 | 87 | 74 | 7 5 | | | 27 | 25 | 21 | 23 | | 22/ 2/61 | 16 | 0 | 0 | 26 | | 24/ 2/61 | 55 | 49 | 42 | 44 | | 1/ 3/61 | 59 | 55 | 49 | 52 | | 3/ 3/61 | 68 | 62 | 57 | 60 | | 6/ 3/61 | 7 5 | . 70 | 57 | 56 | | 10/ 3/61 | 83 | 71 | 60 | 56 | | 13/ 3/61 | 93 | 87 | 70 | 61 | | 17/ 3/61 | 98 | 92 | 7 5 | 74 | | 20/ 3/61 | 28 | 35 | 37 | 42 | | 27/ 3/61 | 53 | 47 | 43 | 46 | | 29/ 3/61 | | 48 | 47 | 48 | | 31/ 3/61 | 58
71 | 66 | 54 | 53 | | 5/ 4/61 | | 49 | 26 | 26 | | 7/ 4/61 | 50
56 | 51 | 33 | ·33 | | 10/ 4/61 | | 58 | 46 | 51 | | 12/ 4/61 | 64 | 56 | 44 | 46 | | 17/ 4/61 | 56 | 56 | 4 5 | 49 | | 19/ 4/61 | 61 | 59 | 52 | 56 | | 24/ 4/61 | 66 | 63 | 52 | 56, | | 26/ 4/61 | 68 | 63 | 56 | 58 | | 28/ 4/61 | 70 | 65 | 57 | 58 | | 1/ 5/61 | 72 | 65 | 51 | 54 | | 3/ 5/61 | 67 | 63 | 49 | 52 | | 5/ 5/61 | 68 | 66 | 53 | 55 | | 8/ 5/61 | 70 | 69 | 55 | 57 | | 10/ 5/61 | 78 | 73 | 59 | 62 | | 15/ 5/6 1 | 77 | 75 | 63 | 64 | | 19/ 5/61 | 81 | 80 | 66 | 68 | | 22/ 5/61 | 85 | 62 | 50 | 53 | | 8/8/61 | 65 | 67 | 57 | 58 | | 15/ 8/61 | 71 | 77 | 63 | 65 | | 28/ 8/61 | 77 | 59 | 48 | 53 | | 13/ 9/61 | 54 | 56 | 53 | 55 | | 26/ 9/61 | 65 | 90 | | | | TENSTON | |----------| | HOTSTITE | | DTT, | 1961-63 LONG PLAT SECT. 77 SITE 4 5-600 **¥600** ٣₫ 0.7 3 4100 200 300 10.5 5.3 19.8 5.8 2 **=**9 10.3 88 328824 98 9.5 12.5 8.5 2- 3- 4- 5-300 400 500 600 >600 Tensiometers Depth (see.) ı 4 20 c 50 11.8 2.7 3.7 4.3 125 85 46 69 -8 2 Жŧ 22.540 8 -₽ 우우쿠라 5-600≯600 6.5 52 # 9.2 2.5 1.3 1.2 3.2 4.5 3.1 **85** 20 ₹2 8 귅크 7 Õ Ϋ́ 20 11 200 300 1.4 2.1 50 ∞ 22 46 8017 7.5 23 23 20.6 28.5 Irrigation Period | Days 42888822 114 28kb3 17/ 5/61 -20/ 9/61 5/ 6/62 - 1/10/62 AV. AV. AT. Sept. Nov. to Feb. (incl New Winter * oms. water tension | A A see Ct | | | | | | Z Z | Tenelonsters | | Jepth (| (4.45) | | | | | | and the same of th | | |
--|----------------|---|--------------|--------------------------|--------------------------------|----------------|--|---------------|---------|----------------------------|-------------------|----------|----------------------------|-----------------|---------|--|--------------|-----------| | Irrigation Feriod | URU W | | | | 10 | | | | 20 | 6 | | | | | 3 | | | | | | | \$ 1-
300 200 | 0 300
300 | 3- 4 | 4- 5-
500 600 | 009 < € | 00₹ | 200 | 300 1 | 3- th | 4- 5-
500 6005 | 003
4 | № | 28 ⁺ | 28 | 150
140
140 | 18
8
8 | 500 ¥ 600 | | 9/11/61 -30/11/61
30/11/61 -31/12/61
NOT. 21/12/61-11/1/62
to 11/1/62-12/62 | 22888 | 4
4
4
7
7
7
7
7
7
7
7
7
7 | - 4-6-4 | 0.00 + 0.0
0.4 + €0.6 | 20 1 M RUR | LIMI | ************************************** | ナ をころり | | M4-4m | 1 1 1 1 1 | | 22288 | 1 101 1 | | | | | | (Ind) 5/11/62-25/11/62
25/11/62-16/12/62
16/12/62-5/1/63 | 822 | 666
422 | 1 | 100 I | | , • • • | | 14 2 6 | ., . | 1 | ויי ו | 1 1 1 | 32.25 | 1001 | 1 4 1 1 | | | • • • | | AV. | 20.6 | 20.6 6.51.6 | Z 9 | 3.5 2 | 2.9 3.4 | † ° 0 † | +0+ | 1,0 | £. | 2 | o.8 1.3 | | 18.4 | ر.
د | 0.3 | 0.4 | e | ı | | Sept.20/9/61 -19/10/61
0ct. 19/10/61-9/11/61
ar. 21/2/62-15/3/62
to 15/3/62-1/11/62 | 8 8 888 | | 0M-+ | るろりる | 14.
14.
12.
12.
1. | 1 1 1 1 | 90 E E E | ೧೯೮೩ | Man I | שמטו
ש ^{אט} וו | ~!!! | -111 | 25
25
27
27
28 | 0111 | | | 111 | | | ay 11/4/62-18/5/62
1/10/62 -5/11/62 | নন | 24
24
8
3
8 | | 1 + 1 | | , , | 23 | | 110 | | | 11 | たは | | 11 | 11 | 1 1 | 1 1 | | AV. | 28.5 | C34.7 | 1.2 | 1.76 | 6.7 0.3 | - 5 | 20.7 | 1.5 | 2.5 | 1.2 1 | 2 1 02 | 0.2 | 28 | 0.3 | | | ٠ | | | Inter 17/5/61 -20/9/61
Period 15/6/62 -1/10/62 | | 57 to | | 1 5 5 | | • • | 418
99 | 4m | 1.2 | 1 1 | | , , | 122
10 6 | | 1 1 | | | | | | 114 | gon 6h | \$ 1258.5 | 8.5 | ره
د ک | • | 406 | 3.5 | 2 | | | | 114 | | |]. | | - | SECT. 77 1961-63 LOKE FLAT SITS 3 SOIL MOISTURE TRASLOM Tobbe Appende !!! | 5 | • | | | 501 | SOIL MOISTURE TENSION DRAINAGE | R TENS | ON DI | RAINAG | TRIAL | SECTION | 8 | | | | | | | |------------|------------------------------|-------------------------------|-------------------|--------------|--------------------------------|---------------------|-------------------|--|--|-------------------|------------|------------|----------------------|--|---------------|------------|--| | | | | | 18.7 | ,65 to 1 | 5,4,65 | 0110 | ring i | 18.3.65 to 15.4.65 following irrigation on 18.3.65 | n on 18, | 3,65 | | | | | | | | | Distance | | | | | | | - | Tensiometer Depth | er Dept | त् | | | | | | | | after | of tensiometer
from drain | | 9 | E | | | 8 | 800 | | | 3 | u c | | | 8 | G | | | Irrigation | (metres) | | | | | | | - | Tensiometer | ß | _ | | | | | | | | | | A | æ | ပ | Av. | V | Д | ပ | Av. | . A | m | ဎ | AV. | ۷ | m | ပ | AV. | | o | 3.1 | 42 | 62 | 13 | 32 | t | 12 | 28 | 2 | -19 | -50 | 8 | -23 | -2 | -2 | 8 | -25 | | | 6.1 | 0 | 52 | -25 | დ , | . 55 | φi | 5, | ٥,6 | 7. | * C | 724 | -12 | <u> </u> | 7 | 4 | 4 | | | 12.2 | ر
در ټ | ~ 0 | -25
23 | ,
L | J. £ | # -4 | , ,
V k | <u>0</u> ₹ | 7 6 | - 7 | 0 0 | ر ار | 2 | t
6 | Ŗ | - | | | 4.8.8 | -1- | -21 | 35 | -15
- | - * | - 4 | 12 | φ | 142 | 9 | -7± | 清. | | | | | | 0.25 | 3.1 | -28 | 63 | 25 | 38 | 8 | 12 | 33 | 17 | -17 | . 18 | -21 | -19 | 7 | 5, | 55. | -24 | | | 1.00 | 2 - |)
()
() | 7,7 | %
" | 2 1 | 4
ال | + 4 | - 2 | 2 % | <u>ک</u> ۲ | ,
 | 9
V #V | - 20 | 14 | , % | , 6
7 | | | 1424 | £4- | - 6 - 1 | 25 | , ጐራ | ,54 | 4 4 | .25. | , - φ | 1,42 | 79 | 42 | 179 | | • | | 1 | | М | 3.1 | 79 | 56 | 38 | 52 | 9 | 112 | \$\$ | 54 | 14 | 15 | \$ 8 | 24 | æ ; | 56 | 5 | ጸ- | | | 6.1 | 25.
25. | 3 ኒ | % 2 % | 4, 9 | - 10 | ደየ | δ _Q | | 29 | ١,٠, | 77 | 16 | 170 | 44 | , ç | 18 | | | 24.4 | , L , L | 32, | 7 % | ۲۶ م | ₩ 8 | 55
25 | 41
-43 | 77.0 | 5 3 | <u>4</u> | -23 | -12 | | | | | | īV | £.7 | 89 | 93 | 8 | 94
86 | , 28
7
7
8 | 111 | 2,8 | 53 | 33 | 50 | 52 | 7,7 | 69 | ሺሜ | တူ ဇု | ጜጸ | | • | 12.2 | 1881 | 73 K; | 67 | 724 | . 1 8 5 | ** | 8 67 | % & <u>;</u> | 2 X 2 | ზ∞ • | 0 4 6 | ~ ¢ ; | ٠ | . # | Έ | 2 | | 1 | 3.1 | £ & | 256 | 238 | 213 | 114 | 8,4 | 120 | 5 5 | , , <u>8</u> | 8 | . & l | : % i | 98 | ጸ፥ | # 0 | 8: | | | 12°2
24°4 | 204
230 | 233
212
129 | 180
175 | 166
787
787 | 107 | 372
372
178 | 8,2,6 | 25
25
25
25 | 55.5 | .55 rv | なるな | 2. 2. 8.
2. 2. 8. | 28 | 35 | 9 | 2 | | | 48.8 | 75 | 181 | 164 | 1 . | 84 | 134 | . 28 | 66 | 8 | φ | ŗ. | 8 | | | å | • | | 17 | w.o.t | 126
129
58 | 327
325
325 | 275 | 293
230
35 | 275
274
80 | 158
72 | 157
49
75
75 | 5 58 | 166
154
154 | ₹£3 | 25,7 | 1 22 | 255 | 0,00 → | 228 | የ
የ | | | 24.4
48.8 | 358
196 | 193
312 | 32 | 297
283 | 221 | 302 | 220 | 203
249 | 122 | 89 | 23 | % ⊋ | | | | | | | | | | | | | | The state of s | | | | | | A Separate Control of the | | | AND DESCRIPTION OF THE PERSON NAMED IN | # Appendix IV (cont) | 5 6 6
0 0 0 | | 35
35
36 | |---|-------------------|--| | 145
737
113 | | 1 | | 34.6 | | 0 12 A | | 223
136
149 | | 138
138
25 | | | | | | 278
278
277
125
158 | | 70
172
79
255
99 | | 182
203
143
12 | | 46
152
155
148
159 | | 250
325
138
77 | | 103
103
103
103
103
103
103
103
103
103 | | 224
30 5
326
225
225 | | 66
37
37
66
105 | | | | | | 276
273
307
257
406 | | 222
258
182
381
271 | | 232
101
266
63
568 | • | 110
180
354
337
318 | | 142
236
469
477
460 | | 440
181
105
627
349 | | 453
482
187
230
391 | | 117
413
88
179
147 | | | | | | 670
317
380
376
376 | | 427
442
415
589
438 | | 572
358
392
471
430 | | 553
508
478
500 | | 510
429
522
522
417 | | 550 5 | | 99
166
225
522
230 | | 192 6
296 3
342
540 7 | | | | 7 19 11 12 119 | | | | | | 22 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | _ | N= & | | ***** | ا
ف | 5 5 4 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | 5 | | | | .5
To | | | 15 | hppendir vi (cont | 14.9.65 | | | | # | SCIL NOILTURE THREIGH DE IRAGE TRIAL SECTION 80 | | | B C WA | -63 -23 -63 -50
-66 -36 -62 -55
-43 -60 -52 | -27 -23 -38 -29
-24 -36 -38 -35
-29 -43 -32 -35 | -5 0 -19 -8
-16 -11 -22 -16
-8 -25 -23 -19 | 14 -1 -13 · 3 | 19 6 24 16
1 8 3 4
17 5 21 14 | 292 - 440 366
345 - 138 242
204 104 263 190 | |--|--|-----------|--|--|--|---|--|--| | n on 22,2,66 | r Depth
40 cm
r Site | a B C AV. | | 23 - 19
23 - 52
- 17
- 19
- 13 | 4440w | 55 -3 -4 -4 -5 -5 -4 -4 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 | 29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 294 561
402 473
358 316
190 419
508 | | 22.2.66 to 10.3.66 following irrigation on 22.2.66 | Tensiometer
20 cm
Tensiometer | A B C AV. | 23 -12
-22 -25
-13 -21
-17 -14
-18 | 20045
4500N | 30
19
13
15
15
15
24
21
24 | 23 23 12 28 20 23 23 23 12 14 47 26 16 26 16 26 17 18 47 26 18 34 26 26 | 25 25 25 25 25 25 25 25 25 25 25 25 25 2 | 588 558
338 -
612 572
608 522
607 556 | | 22,2,566 to | 10 cm | A B C AV. | | | | 131 56 56 57 57 57 57 58 57 57 57 57 57 58 57 57 57 57 57 58 57 57 57 57 57 57 57 57 57 57 57 57 57 | | 569 672 645 628
499 458 - 479
204 510 631 448
513 656 648 607
- 613 623 618 | | - | Distance
of tensioneter
from drain
(metres) | | とって なって なって なって なって なって なっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱ | 20 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 64 64 65
64 64 65
64 66 64 66 | 50 50 50 50 50 50 50 50 50 50 50 50 50 5 | 3.1
6.1
12.2
24.4
48.8 | | • | Days
after
irrigation | | • | economical deconomical and a seconomical s | N | | • | M. Control of the Con | ä 2 to 5 2 6 13 202 ** 1224 XXX 844 **\$**38 ぎょか 204 525 <u>పిఫ్రేళ</u> ፠ጜጙ 522 AV. O M -4 SOIL MOISTURE TENSION (CM WATER) DRAINAGE TRIAL SECTION 80 | | | | Av. | 67
121
88 | 98
119
87 | 133
147
137 | 158
158
158 | 38
173
45 | 120
149
167 | |------------------------------|-------------------|------------------------------|----------|--|--
--|--|--|--| | | | | ပ | 108
121
101 | 111
122
88 | 171
162
141 | 295
172
271 | 201
45 | 151
80
108 | | | | 60 cm | 80 | =88 | -
87
72 | 143 | - 82
151 | 117
45 | -
122
323 | | 08 NOI | | | ∢ | 888 | 85
147
91 | 963
208
126 | 101
2228
140 | 117
202
46 | 852 | | DRAINAGE TRIAL SECTION 80 | | | Å. | 351
151
151
151
151
151
151
151
151
151 | 169
136
174
178 | 190
250
172
123 | 189
223
148
131 | 202
222
168
103
51 | 04
89
84
84
84 | | NAGE TR | | | ပ | 208
246
197
122 | 170
285
116
223
129 | 170
276
191
67
216 | 174
335
226
263
263 | - 205
123
69 | 259
206
183
183
193 | | DRA | | 40 cm | 80 | 25 2 8 2
2 2 8 8 2 | 172
184
115
4 | 207
249
200
197
37 | 22
22
17
17 | 199
328
280
1 | 109
28
109
109
4 | | | r Depth | r Site | ∢ | 138
138
138
138 |
85
82
82
85
85
85
85
85
85
85
85
85
85
85
85
85 | 224
224
253
115 | 198
223
317
122 | 217
58
38
773
773 | -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | | n season | Tensiometer Depth | Tensiometer Site | Av. | 282
226
262
288 | 325
342
342
342 | 304
352
361
388
451 | 38.
28.
38.
36.
36.
36.
36. | 152
182
210
70
36 | 4.08.28
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
88.32
86.32
86.32
86.32
86.32
86.32
86.32
86.32
86.32
86.32
86.32
86.3 | | During Non-irrigation season | ۲ | | ပ | 202
203
233
317 | 222222 | 167
228
398
517
467 | 24 4 4 8 E | \$ 325 g 4 | 128
16
50
87
87 | | uring No | | 20 cm | 60 | 270
270
304
366 | 325
233
235
235
235
235
235
235
235
235 | 323
382
414
528
526 | 33.0
386
586
116 | 243
243
126
126 | 135
6
126
1 | | ۵ | | | ∢ | 258
258
128
258
11 | 333
225
238
238
238
238 | 289
289
380
380
380
380 | 43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43.305
43 | 55
52
52
52 | 8888 | | | | | A. | 326
348
317
204
204 | 406
441
508
342 | 526
431
556
668
516 | 461
513
713
560 | 277
329
179
227
115 | 8
1
2
1
2
1
2
1
2
1 | | | | 10 cm | ပ | 247
408
397
_
279 | श्रद्धक्ष । श्र | 507
616
603
603 | 219
222
888 | 8348c | 4 7 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | | | | 5 | c | 335
335
135
135
135 | 88888
8888
8888
8888 | 675
337
598
616 | 727
688
689
644 |
25.25.25
129.05.25
129.05.25
129.05.25
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.05
129.0 | 25 8 8 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | | | ∢ | 290
261
504
199 | 322
282
282
283
284
285
286
286
286
286
286
286
286
286
286
286 | 397
497
700
328 | 526
737
367 | 32 88 8 <u>4</u> | 35
45
45
75
75
75
75
75
75
75
75
75
75
75
75
75 | | | Dietance | of tensiometer
from drain | (usedes) | 3.1
6.1
28.4
88.8 | 3.1
6.1
24.4
88.8 | 3.1
6.1
28.4
8.8 | 3.1
6.1
24.4
48.8 | 3.1
6.1
22.2
48.8 | 3.1
6.1
24.4
48.8 | | | Date | | | 24/5/65 | 31/5/65 | 3/6/65 | 15/6/85 | 23/6/65 | 29/8/85 | SOIL MOISTURE TENSION (CM WATER) DRAINAGE TRIAL SECTION 80 During Non-Irrigation Season | | | Ą. | 120
172
80 | 117
143
85 | 118
132
121 | 115
135
88 | 106
121
90 | |-------------------|------------------------------|---------|--|------------------------------------|--|--|------------------------------------| | | | ပ | 158
287
117 | 151
189
122 | 146
179
232 | 87.75
8.25
8.25
8.25
8.25
8.25
8.25
8.25
8.2 | 134
142 | | | 60 cm | 8 | 1 24 43 | 613 | -
97
55 | 1 2 E | . 50 g | | Depth | Site | ∢ | 83
135
73 | 83
147
73 | 90
120
37 | 85.28 | 181
4 68 | | Tensiometer Depth | Tensiometer | Av. | 115
22
67
67
54 | 88
104
112
35 | 129
221
138
146 | 25.
25.
27.
28.
27.
28. | 217
324
176
223
122 | | 亘 | Ţ | ပ | 123
192
192
193 | 126
198
158
158 | 139
322
196
194
96 | 305
203
212
122 | 196
314
280
319
161 | | | 40 cm | 80 | 92
23
6
6 | 114
106
45
112 | 124
120
 | 222
132
75
132
36 | 188
144
159
215
134 | | | | ∢ | <u>6</u> 20
62
63
63
63 | 129
132
11
65
65 | 124
79
97
68 | 75
10
10
10
10
10
10
10
10
10
10
10
10
10 | 266
513
88
134 | | | | Å. | 108
126
126
126
126
127 | 164
164
172 | 174
211
175
249
128 | 73
208
162
272
116 | 261
175
183
356
156 | | | ٤ | ပ | 125
131
110
123 | 72
151
232
184
190 | 161
289
252 | 185
323
294
93 | 38
353
385
135 | | | 20 cm | 8 | 271
88
101
801 | 249
138
268
200
200 | 28
34
20
20
20
20
20 | 225
288
288
288
288 | 340
182
114
209 | | | | ∢ | 111
124
137
127 | 203
78
137
127 | 289
117
84
84 | 30
30
30
30
30
30
30 | ភិឌ ខ ឌ | | | | Š | 281
270
353
258 | 366
358
296
415
351 | 443
220
220
160 | 65
230
216
6 5
6 5 | 229
289
154
163 | | | Ę | ပ | 101
212
353
275
358 | 175
301
456
387
485 | 220
44
344
344 | 332
332
38
38
38 | 332
304
230
182 | | | 10 cm | 8 | 261
261
330
289 | 500
310
404
41
41 | 337
337
12
93 | 85 ¥ 2 8 | 300
307
149
559
199 | | | | ∢ | 336
336
87
127 | 415
464
152
453
127 | 94
711
883
1484 | ភិទិន្នខន | . 387
228
182
109 | | Distance | of tensiometer
from drain | (medes) | 3.1
6.1
12.2
24.4
48.8 | 3.1
6.1
12.2
24.4
48.8 | 3.1
6.1
22.2
48.8 | 3.1
6.1
12.2
24.4
48.8 | 3.1
6.1
12.2
24.4
48.8 | | Date | | | 9/1/65 | 13/7/65 | 20/1/65 | 27/7/65 | 3/8/65 | SOIL MOISTURE TENSION (CM WATER) DRAINAGE TRIAL SECTION 80 Non-Irrigation Sesson **8888** 82 Ş \$ B ⊃ 883 육육육 **485** 72 -3 425 114 ងឱង 282 848 ပ 80 cm 7=1 989 182 2g0 338 4 2 4 汚路額 584 15 72 被した 823 ឧខ្ពន 28 1 28 22 28 1 28 22 88882 **88833** 28822 95782 **អន្តង**ន្ត 121 27 27 27 27 E 88 1 28 **88 1 교원** ¥8558 86888 40 cm **第**8111 - 正確なめ もと形象と なるお**挙**記 **P4848 84888** \$25.55 \$2.55 255258 324 18 28424 **Tensiometer Depth** Tensiometer Site 38232 752<u>3</u>22 388872 28282 333 237 ş. 282222 82228 482228 235 236 237 237 237 ပ 20 cm 84288 85-750 R8887 827.8 27.8 27.8 27.8 27.8 81 223 8288E 25252 25758 45 57 69 88 8 222 **885** 8 1 222528 138 ± 54 1 38 ± 54 33223 33.33 33.33 45.72 45.73 45.73 885288 å 1 1 2 2 2 4 । ឌីឌី । ജ 1 \$ 88 8 4 - 167 272 282 187 18881 12825 10 cm 274 133 118 555 239 8 1815 52533 23 1 2 1 23 33332 **克格智能で 200828 4 1 2 4 8** 82882 21 \$ 12 82828 Distance tensiometer from drain (metres) 3.1 6.1 24.4
8.8 3.1 6.1 24.4 48.8 3.1 6.1 24.4 48.8 3.1 6.1 74.4 8.8 3.1 6.1 24.4 8.8 70 10/8/65 13/8/65 24/8/65 31/8/65 8/9/65 Date APPENDIX VII Water table level (cm below surface) following irrigation on 18/3/65 | Date | Hours
following
irrigation | Annia and a second | ce of water
metres) | level recor | der from | |---------|----------------------------------|--------------------|------------------------|-------------|----------| | si. | | 6,1 | 12.2 | 24.4 | 48.8 | | 18/3/65 | 2 | 11 | 11 | 8 | i | | | 8 | 14 | 12 | 9 | 2 | | 19/3/65 | 20 | 56 | 26 | 11 | 4 | | 20/3/65 | 44 | 101 | 64 | 40 | 31 | | 21/3/65 | 68 | 114 | 82 | 55 | 45 | | 22/3/65 | 92 | .131 | 93 | 68 | 59 | | 23/3/65 | 116 | 126 | 100 | 78 | 71 | | 24/3/65 | 140 | 130 | 107 | 87 | 79 | | 25/3/65 | 164 | 133 | 111 | 92 | 83 | | 26/3/65 | 188 | 135 | 116 | 97 | 87 | ## APPENDIX VIII Water table level (cm below surface) following irrigation on 23/9/65 | Date | Hours
following
irrigation | Distanc
drain (r | | level record | ler from | |---------|----------------------------------|---------------------|------|--------------|----------| | | | 6.1 | 12,2 | 24.4 | 48.8 | | 23/9/65 | 2 | 11 | 11 | 8 | 3 | | | 8 | 17 | 14 | 11 | 6 | | 24/9/65 | 20 | 44 | 31 | 23 | 17 | | 25/9/65 | 44 | 68 | 57 | 49 | 46 | | 26/9/65 | 68 | 79 | 68 | 59 | 57 | | 27/9/65 | 92 | 89 | 78 | 68 | 67 | | 28/9/65 | 116 | 96 | 85 | 75 | 74 | | 29/9/65 | 140 | 101 | 91 | 80 | 80 | | 30/9/65 | 164 | 106 | 96 | 85 | 83 | | 1/10/65 | 188 | 109 | 100 | 88 | 86 | | 2/10/65 | 212 | 113 | 104 | 92 | 90 | | 3/10/65 | 236 | 116 | 107 | 95 | 92 | | 4/10/65 | 260 | 119 | 110 | 99 | - | | 5/10/65 | 284 | 122 | 114 | 102 | _ | ### APPENDIX IX Water Table Level (cm below surface) following irrigation on 17/12/65 | Date | Hours
following
irrigation | | ce of wate
(metres) | er level i | ecorder | from | |----------|----------------------------------|-----|------------------------|------------|---------|------| | | | 6.1 | 12.2 | 24.4 | 48.8 | | | 17/12/65 | 2 | 11 | 10 | 8 | 3 | | | | 8 | 16 | 14 | 10 | 5 | | | 18/12/65 | 20 | 32 | 20 | 16 | 13 | | | 19/12/65 | 44 | 63 | 53 | 46 | 42 | | | 20/12/65 | 68 | 79 | 68 | 59 | 55 | | | 21/12/65 | 92 | 91 | 80 | 70 | 67 | | | 22/12/65 | 116 | 100 | 89 | 80 . | 76 | | | 24/12/65 | 164 | 107 | 98 | 90 | 85 | | | 25/12/65 | 188 | 110 | 102 | 94 | 88 | | APPENDIX X Water table level (cm below surface) following irrigation on 22/2/66 | Date | Hours
following
irrigation | | ce of water
metres) | level record | ler from | |---------|----------------------------------|-----|------------------------|--------------|----------| | | | 6.1 | 12.2 | 24.4 | 48.8 | | 22/2/66 | 2 | 14 | 14 | 9 | 4 | | | . 8 | 21 | 17 | 12 | 8 | | 23/2/66 | 20 | 43 | 35 | 28 | 24 | | 24/2/66 | 44 | 68 | 58 | 50 | 46 | | 25/2/66 | 68 | - | 72 | - | 58 | | 26/2/66 | 92 | 91 | 82 | 73 | 68 | | 27/2/66 | 116 | 98 | 90 | 81 | 76 | | 28/2/66 | 140 | 104 | 96 | 87 | 82 | | 1/3/66 | 164 | 110 | 102 | 93 | 88 | | 2/3/66 | 188 | 114 | 107 | , 99 | 91 | | 3/3/66 | 212 | 118 | 112 | 103 | 95 | | 4/3/66 | 236 | 122 | 116 | 106 | 98 | | 5/3/66 | 260 | 126 | 120 | 111 | 101 | | 6/3/66 | 284 | 129 | 124 | 114 | 104 | ### APPENDIX XI Water table level (cm below surface) during non-irrigated season | Data | Distan | ce of water | level recor | der from | X* | |---------|--------|-------------|---------------|--------------|---| | Date | Drainl | ine B (metr | es) | | 23 | | | 6,1 | 12.2 | 24.4 | 48.8 | | | 16/4/65 | 43 | 43 | 11' | 6 | 37 | | 20/4/65 | 67 | 60 | 50 | 54 | 13 | | 25/4/65 | 73 | 97 | . | 66 | . 7 | | 30/4/65 | 137 | 120 | 99 | 90 | 47 | | 5/5/65 | 144 | 137 | 125 | 98 | 46 | | 10/5/65 | 148 | 141 | 122 | 1 0 5 | 43 | | 15/5/65 | 146 | 142 | 122 | 107. | 39 | | 20/5/65 | 150 | 143 | 119 | 109 | 41 | | 25/5/65 | 146 | 144 | 118 | 111 | 35 | | 30/5/65 | 143 | 136 | 117 | | - | | 4/6/65 | 150 | 147 | - | - | - | | 9/6/65 | 154 | - . | 136 | 118 | 36 | | 14/6/65 | 155 | ~ | 139 | 121 | 34 | | 19/6/65 | 142 | - | 138 | 122 | 20 | | 24/6/65 | 142 | - | 132 | 116 | 26 | | 29/6/65 | 115 | 138 | 133 | 114 | 1 | | 4/7/65 | 132 | 130 | 134 | 116 | 16 | | 9/7/65 | 147 | 145 | 134 | 118 | 29 | | 14/7/65 | 151 | 148 | 138 | 119 | 32 | | 19/7/65 | 145 | - | 139 | 122 | 23 | | 24/7/65 | 144 | 140 | 139 | 123 | 21 | | 29/7/65 | 140 | 138 | 137 | 124 | 16 | | 3/8/65 | 134 | 133 | - | 126 | 8 | | 8/8/65 | 132 | 132 | 134 | 126 | 6 | | 13/8/65 | 132 | 131 | 132 | 126 | 6 | | 18/8/65 | 142 | 137 | 138 | 122 | 20 | | 23/8/65 | 150 | 146 | 141 | 124 | 26 | | 28/8/65 | 151 | 150 | 142 | 126 | 25 | | 2/9/65 | 154 | 150 | 143 | 118 | 36 | | 7/9/65 | 151 | 148 | 140 | 117 | 34 | | 12/9/65 | 150 | 147 | 139 | 122 | 28 | | 17/9/65 | 152 | 149 | - | 117 | 35 | | 22/9/65 | 153 | 152 | - | - ' | . · · · · · · · · · · · · · · · · · · · | Tile line depth 165 cm. X* = difference in water table 48.8 m from drainline and 6.1 m from drainline. ### APPENDIX XII Difference in water table level between recorder 48.8 m from drain and recorder 6.1 m from drain (cm) following irrigation on: | 1 | 2 | 3 | 4 | |---------|---|---|---| | 18/3/65 | 23/9/65 | 17/12/65 | 22/2/65 | | 10 | 8 | 8 | 10 | | 12 | 11 | 11 | 17 | | 52 | 27 | 19 | 19 | | 70 | 22 | 21 | 22 | | 69 | 22 | 24 | - | | 62 | 22 | 24 | 23 | | 55 | 22 | 24 | 22 | | 51 | 21 | 22 | 22 | | 50 | 23 | 22 | 22 | | 48 | 23 | | 23 | | | 23 | | | | | 23 | | | | | 18/3/65
10
12
52
70
69
62
55
51
50 | 18/3/65 23/9/65 10 8 12 11 52 27 70 22 69 22 62 22 55 22 51 21 50 23 48 23 23 | 18/3/65 23/9/65 17/12/65 10 8 8 12 11 11 52 27 19 70 22 21 69 22 24 62 22 24 55 22 24 51 21 22 50 23 22 48 23 23 23 | ## APPENDIX XIII ## WATER ANALYSIS FROM RIVER MURRAY BRIDGE (ppm) E & W.S. Figures | Date | T,S.S. | C1 | 50_4 | HCO ₃ | Na | Ca | Mg | SiO ₂ | Fe | |----------|--------|-----|--------|------------------|-----|-----------------|----|------------------|-------| | 12/10/64 | 145 | 48 | 13 | 55 | 32 | 11 | 7 | 7 | 0.74 | | 9/11/64 | 123 | 37 | 10 | 61 | 25 | 12 | 7 | 2 | 0.94 | | 14/12/64 | 151 | 45 | 10 | 79 | 31 | 14 | 8 | 4 | 0.70 | | 11/ 1/65 | 157 | 47 | 15 | 73 | 34 | 14 | 8 | 3 | 0.56 | | 8/ 2/65 | 272 | 102 | 29 | 79 | 66 | 18 | 13 | 5 | 0.24 | | 8/ 3/65 | 542 | 230 | 67 | 98 | 147 | ² 26 | 21 | 3 | ∢0.1 | | 12/ 4/65 | 602 | 264 | 72 | 98 | 169 | 24 | 24 | 1 | ∢0.1 | | 10/ 5/65 | 590 | 260 | 67 | 98 | 166 | 24 | 23 | 2 | ∢0.1 | | 14/ 6/65 | 609 | 256 | 67 | 122 | 166 | 30 | 23 | 7 | ∢0.1 | | 13/ 7/65 | 669 | 280 | 77 | 134 | 179 | 32 | 28 | 7 | ⊲0,1 | | 9/ 8/65 | 699 | 292 | 77 | 146 | 189 | 34 | 28 | 7 | 0.1 | | 13/ 9/65 | 580 | 268 | 67 | 67 | 167 | 22 | 21 | 2 | 0.1 | | 11/10/65 | 210 | 92 | 15 | 43 | 54 | 10 | 10 | 8 | 0.54 | | 8/11/65 | 231 | 108 | 17 | 37 | 56 | 13 | 11 | 8 | ⁴0.54 | | 13/12/65 | 290 | 130 | 21 | 55 | 77 | 14 | 12 | 9 | .0.5 | | 10/ 1/66 | 426 | 198 | 37 | 61 | 120 | 17 | 16 | 7 | 0.24 | | 14/ 2/66 | 453 | 216 | 38 | 67 | 126 | 18 | 19 | 3 | 0.12 | | 14/ 3/66 | 486 | 240 | 34 | 67 | 137 | 16 | 22 | 4 | 0.12 | Approve XIV # WATER AWALYSIS IN P.P. A. Sect. 80 Drainage Trial Long rlat TILE LINE B | Silica (S ₁ 0 ₂) | 47.0
58.6
67.0 | 42.9
52.9
54.3
55.7
60.0 | 64.3
42.9
4.8.6
5.14 | 148.6
142.9
145.7
50.0
54.3 | 57.2 | |---|--|--|--|---|------------| | Iron
(Fe) | 20.0
6.6
3.0 | 7.6
7.8
7.6
7.6 | 4.3
2.72
0.11 | 43.7
2.29
0.11
20.9
17.1 | • | | Witric (NO ₃) | [| 01111 | 1 1 4 | t t t t | ' | | Sulph-
uric
(SO ₄) | 255.8
358.7
381.5 | 144.3
322.9
340.0
360.0
371.5 | 394.4
180.0
142.9
144.3 | 302.9
155.8
144.0
145.8
118.6 | 122.9 | | Carb-
onic
(CO ₃) | 38.6
38.6
51.4 | 124.3
38.6
42.9
42 .9
55.7 | 0.57 47.2
6.14 115.7
7.57 175.8
7.0 184.3 | 1.7 51.4
2.29 158.6
3.57 158.6
1.57 180.0
9.15 201.5 | 2.14 214.4 | | Fnos-
phate
(Calc.
as P.) | 0.86
0.57
2.14 | 2.3
1.57
0.29
0.14
0.14 | 6.14
7.57
7.0 | 2.29
3.57
1.57
9.15 | 2.14 | | Chlor-
ide
(Jelc.
as Jl.) | 640.2
990.3
1090.3 | 530.2
720.2
760.2
800.2
840.3 | 530.2
720.2
820.2 | 710.2
640.2
670.2
700.2
740.2 | 5.049 | | wagnes-
ium
(wg) | 47.9
71.5
80.0 | 42.9
64.4
57.0
58.6
64.3 | 80.0
47.2
61.4
71.5 | 51.4
50.0
55.7
57.0
64.3 | 87.2 | | Calc-
ium
(Ca) | 42.9
68.6
74.3 | 40.0
37.0
54.3
57.0
60.0 | 77.2 | 46.58
51.4
48.58
54.3 | 74.3 | | Potas-
sium
(K) | 10.0
11.4
15.7 | 11.4
15.7
12.9
11.4 | 2.85
8.57
7.15 | 20.0
5.7
7.15
4.29
7.15 | 5.7 | | Sodium (Na) | 1442
589
622 | 370
452
442
494 | 633
361.5
494.4
551.6 | 460.0
418.7
471.6
483.0
528.7 | 0*099 | | r.s.s. | 1529
2201
2401 | 1315
1715
1801
1886
1972 | 2344
1328.9
1714.8
1914.9 |
1700.5
1543.3
1614.8
1686.2
1786.3 | 2200.6 | | Sample
Code
No. | 11
12
13 | - a w o o | 日 C 日 14 14 15 16 | υ t- ω - 1 υ | 18 | | hours
Follow-
ing Irrig-
ation | 5 ₂
30
96 | 2
24
49
445
319 | - IIII EIIN 52 50 50 96 | 4
26
54
147
324 | ı | | 1 me | 1730
1715
1200 | 1210
940
1130
1700 | 1730 | 1210
940
1100
1130
1700 | • | | Date | 18/3/65 1730
19/3/65 1715
22/3/65 1200 | 22/2/65 1210
23/2/66 940
24/2/66 1100
28/2/66 1130
7/3/66 1700 | 31/2/65
18/3/65
19/3/65
22/3/65 | 22/2/66 1210
23/2/66 940
24/2/66 1100
28 /2 /66 1130
7/3/66 1700 | 31/8/65 | ## APPENDIX XV # PASTURE PRODUCTION ## DRAINAGE TRIAL Section 80 Long Flat | | Total
Kg/ha/day | 50 | 64 | 59 | 62 | . 29 | | 57 | 53 | 55 | 69 | 79 | | 62 | 63 | 57 | 52 | 59 | | |------------|--------------------|---------|------|------|------|------|------|---------|------|------|------|-----------|------|---------|------|------|------|------|------| | | Total | 1977 | 1938 | 2305 | 2391 | 2388 | 2200 | 2074 | 1895 | 1963 | 2167 | 2287 | 2078 | 2138 | 2196 | 1995 | 1803 | 2079 | 2042 | | | Sundry | 475 | 470 | 465 | 200 | 1124 | 249 | 797 | 560 | 250 | 337 | 560 | 274 | 129 | 265 | 225 | 188 | 319 | 225 | | (Kg/ha) | Other
Grasses | 31 | 43 | 47 | 35 | 55 | 43 | 47 | 128 | 52 | 28 | 26 | 63 | 27 | 50 | 118 | 16 | 28 | 47 | | Dry Matter | White
Clover | 216 | 190 | 199 | 242 | 414 | 252 | 207 | 506 | 307 | 317 | 420 | 291 | 196 | 204 | 237 | 312 | 225 | 235 | | Q | Pasp-
alum | 298 | 981 | 797 | 868 | 941 | 897 | 1177 | 1260 | 1329 | 1279 | 972 | 1204 | 1294 | 1662 | 1499 | 953 | 1207 | 1323 | | | Per. Rye | 298 | 199 | 265 | 365 | 250 | 276 | 132 | 108 | 106 | 190 | 242 | 156 | 58 | 72 | 74 | 108 | 26 | 82 | | Treatment | from (drains) | 3.1 | 6.1 | 12.2 | 24.4 | 48.8 | Ave. | 3.1 | 6.1 | 12.2 | 24.4 | 48.8 | Ave | 3.1 | 6.1 | 12.2 | 24.4 | 8.84 | | | Growth | reriod
(days) | | | 39 | | | | | | 36 | | | | | | 35 | | | | | Date of | harvest | 11/1/65 | | | | | | 16/2/65 | | | | | | 23/3/65 | | | | | | | | Total
Kg/ha/day | 25 | 25 | 22 | 24 | 18 | | 32 | 31 | 31 | 30 | 31 | | 26 | 71 | 99 . | 69 | 74 | | 109 | 104 | 102 | 105 | |--------------------|---------------------------------|--------|------|------|------|------|------|---------|------|------|------|------|------|----------|------|------|------|------|------|---------|------|------|------| | , | Tota1 | 1696 | 1689 | 1596 | 1636 | 1248 | 1572 | 1319 | 1241 | 1247 | 1212 | 1240 | 1252 | 1988 | 1848 | 1718 | 1804 | 1916 | 1855 | 2389 | 2303 | 2253 | 2324 | | | Sundry | 22 | 102 | 98 | 99 | 41 | 75 | 7/ | 69 | 71 | 30 | 101 | 63 | 69 | 72 | 84 | 35 | 82 | 62 | 114 | 29 | 98 | 148 | | Dry Matter (Kg/ha) | Other
Grasses | 54 | 22 | 20 | 7 | 7 | 16 | 114 | 115 | 123 | 128 | 104 | 118 | 226 | 139 | 242 | 157 | 195 | 192 | 225 | 112 | 129 | 91 | | Dry Matt | White
Clover | 992 | 629 | 598 | 528 | 596 | 633 | 771 | 691 | 681 | 652 | 654 | 069 | 1021 | 872 | 823 | 1009 | 856 | 916 | 1200 | 1174 | 1152 | 1370 | | | Pasp-
alum | 392 | 374 | 470 | 374 | 250 | 372 | 28 | 12 | 12 | 16 | 13 | 17 | 183 | 147 | 100 | 129 | 142 | 140 | 339 | 310 | 330 | 351 | | | Per. Rye | 410 | 379 | 532 | 464 | 674 | 454 | 379 | 343 | 433 | 389 | 357 | 390 | 473 | 461 | 385 | 571 | 877 | 894 | 497 | 525 | 624 | 099 | | Treatment | <pre>(metres from drains)</pre> | 3.1 | 6.1 | 12.2 | 7.42 | 48.8 | Ave. | 3.1 | 6.1 | 12.2 | 24.4 | 48.8 | Ave | 3.1 | 6.1 | 12.2 | 7.42 | 48.8 | Ave | 3.1 | 6.1 | 12.2 | 24.4 | | Growth | Period
(days) | | | 70 | | | | | | 112 | | | • | | | 27 | | | , | | | 22 | | | Date of | Harvest | 1/6/65 | | | | | | 21/9/65 | | : | | | | 18/10/65 | - | | Š | , | | 9/11/65 | | | | | | Total
Kg/ha/day | 106 | 87 | 78 | 92 | 73 | 73 | | 100 | 26 | 88 | 46 | 88 | | 48 | 82 | 83 | 80 | 77 | | |--------------------|----------------------------|------------------|---------|------|------|-------|------|------|--------|------|------|------|------|------|---------|------|------|-------|------|------| | | Total | 2345 | 2433 | 2187 | 2143 | 2034 | 2038 | 2167 | 2783 | 2723 | 2477 | 2619 | 2482 | 2616 | 1766 | 1717 | 1747 | 1701 | 1628 | 1712 | | | Sundry | 138 | 136 | 124 | 63 | 73 | 59 | 91 | 108 | 82 | 82 | 92 | 72 | 83 | 25 | 22 | 31 | 54 | 23 | 25 | | Kg/ha) | Other
Grasses | 221 | 897 | 131 | 971 | 82 | 87 | 183 | 92 | 125 | 174 | 77 | 89 | 101 | 17 | 17 | 30 | 77 | 17 | 21 | | Dry Matter (Kg/ha) | White
Clover | 1075 | 895 | 829 | 678 | 809 | 924 | 861 | 862 | 717 | 737 | 713 | 396 | 466 | 371 | 395 | 418 | 405 | 437 | 405 | | Dry | Pasp-
alum | 312 | 878 | 905 | 691 | 832 | 745 | 810 | 1314 | 1688 | 1622 | 1701 | 1291 | 1523 | 1370 | 1398 | 1373 | 1144 | 1437 | 1344 | | | Per, Rye | 547 | 310 | 309 | 354 | 302 | 208 | 297 | 8 | 8 | 17 | | ∞ | 9 | 10 | 10 | 17 | 16 | 12 | 13 | | Treatment | (metres
from
drains) | 48.8 | 3.1 | 6.1 | 12.2 | 77.77 | 48.8 | | 3.1 | 6.1 | 12.2 | 7.72 | 48.8 | | 3.1 | 6.1 | 12.2 | 77.77 | 8.84 | | | Growth | (days) | | | | 28 | | | | | - | 28 | | | | | | 21 | | | | | Date of | harvest | 9/11/65
Cont. | 7/12/65 | | | | | | 4/1/66 | | | | | | 25/1/66 | | | | | | | | Total
Kg/ha/day | 93 | 88 | 48 | 78 | 82 | | 79 | 99 | 74 | 80 | 74 | | 55 | 947 | 39 | 45 | 247 | | |--------------------|----------------------------|---------|------|------|------|------|------|--------|------|------|------|------|------|--------|------|------|------|------|------| | | Tota1 | 1941 | 1864 | 1763 | 1646 | 1724 | 1788 | 1333 | 1310 | 1482 | 1589 | 1471 | 1438 | 1606 | 1344 | 1149 | 1290 | 1351 | 1348 | | | Sundry | 28 | 28 | 28 | . 12 | 38 | 29 | 12 | 28 | 22 | 21 | 77 | . 56 | 69 | 22 | 22 | 20 | 102 | 47 | | (Kg/ha) | Other
Grasses | 84 | 138 | 122 | 19 | 92 | 91 | 27 | 18 | 17 | 7 | 92 | 19 | 105 | 21 | 25 | 25 | 34 | 41 | | Dry Matter (Kg/ha) | White
Clover | 325 | 273 | 243 | 270 | 323 | 287 | 92 | 129 | 96 | 99 | 114 | 96 | 207 | 158 | 104 | 87 | 214 | 155 | | Dr | Pasp-
alum | 1447* | 1552 | 1268 | 1185 | 1363 | 1363 | 1215 | 1231 | 1322 | 1465 | 1360 | 1318 | 1322 | 1094 | 1010 | 1047 | 1136 | 1122 | | | Per.Rye | 10 | 16 | 12 | . 13 | 28 | 16 | . 60 | 7 | 3 | 7 | 13 | 7 | 12 | 1 | 10 | 20 | 16 | 17 | | Treatment | (metres
from
drains) | 3.1 | 6.1 | 12.2 | 24.4 | 48.8 | Avë | 3.1 | 6.1 | 12,2 | 24.4 | 8.84 | Ave | 3.1 | 6.1 | 12.2 | 24.4 | 48.8 | Ave. | | Growth | Period
(days) | | | 21 | | - | | | | 20 | | | | | | 29 | | | | | Date of | Harvest | 15/2/66 | | | | | | 7/3/66 | | | | | | 99/4/9 | | | | | | * L.S.D. .01 approx 330/Kg/ha Vrpendix XVI | 2 | |--------| | 00 | | L | | | | ъ | | 2 | | - | | 9 | | 8 | | | | _ | | | | C | | ņ | | | | ņ | | ctic | | imetic | | ctic | | (1) Kainfall (points) | nts) | | _ | _ | _ | _ | _ | • | - | - | | , | | |-------------------------|----------------------|----------------|--------------|---------------------------|---------|--------------|--------------|------|-------|-----------------------|------|------|------| | Year | Jan. | Feb. | Nor. | $^{\Lambda}\mathrm{pr}$. | hay | June | July | ,ug. | Sect. | Oct. | Nov. | Dec. | rots | | 1960
(Furrey Bridge) | 44 | 189 | 50 | 200 | 306 | 56 | 166 | 87 | 231 | 31 | 186 | 45 | 1591 | | 1961
(Murray Eridge) | 50 | 0.2 | 30 | 268 | 116 | 39 | 185 | 118 | 89 | σ | 112 | 55 | 1090 | | 1962
(Long Flot) | 26 | 45 | 113 | 46 | 78 | 7.1 | 08 | 162 | 55 | 268 | 47 | 123 | 1117 | | 1963
(Long Flat) | 190 | 12 | ъ | 215 | 319 | 256 | 204 | 172 | 79 | 169 | 10 | 6 | 1469 | | 1964
(Long Flat) | 32 | 1 4 | 25 | 138 | 92 | 115 | 123 | 126 | 197 | 127 | 305 | 104 | 1409 | | 1965
(Long Flat) | - | 0 | 6 | 54 | 66 | 137 | 125 | 118 | 140 | 29 | 112 | 7.1 | 895 | | (2) Mean Humidity | % nt 9.00 | 00 а.ш. | (Tailem | lem Bend) | | | | | | | , | | | | 1961 | 53.2 | 56.8 | 61.8 | 81.7 | ı | 82.7 | 88.2 | 83.8 | 66.9 | 58.8
66.8 | 65.7 | 61.0 | | | 1962
1963
1964 | 63.1 | 61.0 | 65.5
65.9 | 66.3 | 88.6 | 92.0 | 85.7 | 83.0 | 66.5 | 59.4 | 51.9 | 48.8 | | | (3) Nean Maximum | and hinimum Temper t | num Temp | er tures | (T ilem | Bend) | | | _ | | - | _ | • | | | Naximum | | | | | | | | | | | | 6 | | | 1960
1961 | 93.0 | 87.2 | 83.1 | 73.2 | 67.1 | 64.3
65.4 | 59.7
62.3 | 62.6 | 71.8 | 77.6 | 77.8 | 7828 | 74.9 | | 1962
1964 | 83.7 | 84.8
80.8 | 80.8 | 74.3 | 0.49 | 61.7 | 58.1 | 62.2 | 69.2 | 78.2 | 80.4 | 84.1 | 73.4 | | Minimum | البجائدات | | | * | | | | | | ob _e dop i | | 3 | | | 1960
1961 | 61.6 | 56.7 | 52.7 | 54.0 | 46.0 | 5.4 | 39.7 | 40.5 | 45.3 | 47.6 | 52.2 | 4.00 | 40.5 | | 1962
1963 | 57.0 | 56.5 | 53.5 | 8.94 | 49.9 | 4. | 43.8 | 42.4 | 46.1 | 48.3 | 52.9 | 52.7 | 40.0 | | 1904 | | | | | | | | | | | | | | | Murray Bridge | doe : ant | approx. 2 m | miles no | north of Long | ng Flat | | | | | | | | | Murray Bridge : approx. 2 miles north of Long Flat Tailem Bend : approx 12 miles south of Long Flat | 24. | Cloud Seeding Operations - 1968 | J.D. McAuliffe
& D.W. Kidd | |-----|--|-------------------------------| | 25. | Where is Agricultural Extension Going? | P.M.S. Potter | | 26. | Seed Certification 1970-71 Seasonal
Report | D.C. Ragless | | 27. | Possible Future Roles of the South
Australian Herbage Seed Industry | E.D. Higgs | | 28. | Weed Control in Pasture Seed Crops | | | | Part I - Legumes | P. Kloot | | 29. | Weed Control in Pasture Seed Crops | | | | Part 2 - Grasses | P. Kloot | | 30. | Annual Report 1970-71 | | ## AGRONOMY BRANCH REPORTS ## INDEX | 1. | Potassium Fertiliser Use in S.A. | P.M. Barrow | |------------------
--|-----------------------------------| | 2. | Lucerne Seed Production in S.A., 1968 | D.C. Ragless & W.O. Coleman | | * 3. | Skeleton Weed (Chondrilla juncea L.) in S.A. | A.F. Tideman, et al | | 4. | Aerial Agriculture in S.A., 1968 | P.R. Birks | | 5. | Three Studies of Barley Stored in Bulk, 1965-67 | J.B. Doolette & P.T. Sanders | | 6. | The Toxicity of Maldison on Wheat to
Various CURCULIONIDS | P.R. Birks | | 7. | Farmer Experiences with the Econ Fodder Roller in the Lower South East of S.A. | R.C. Hagerstrom | | 8. | The Extension Programme for Hill Country Improvement in S.A., 1966-68 | J.D. McAullife
& C. Phillips | | 9. | Biology & Control of Austroicetes
cruciata. The Small Plague Grasshopper
1966-68 | P.R. Birks & J.W. Goode | | 10. | Agricultural Research in the South East of S.A. & Adjacent Areas of Victoria. Crop Production | P.M. Barrow | | *11. | Agricultural Research in the South East & Adjacent Areas of Victoria. Pasture Production. | P.S. Cocks &
E.D. Higgs | | 12. | The Biology of Desiantha caudata, Pasc., (Fam. Circulionidae), the Cereal curculio. | P.G. Allen | | 13. | HCB Residues in Wheat | P.R. Gunner | | 14. | Agricultural Potential of Four Areas on
Eyre Peninsula, 1969 | J.D. McAuliffe
& K.J. Holden | | 15. | Agricultural Potential of the Area
Proposed to be Supplied with Water
from the Polda-Kimba Pipeline, S.A. | J.D. McAuliffe
& K.G. Bicknell | | 16. | The Agricultural Potential of Kangaroo Island - 1970 | F.C. Gross | | * 17. | Minor Agricultural Crops in S.A. | Agronomy Branch
Officers | | 18. | Annual Report 1969-70 | | | 19. | Part I - Dryland Lucerne Research and Extension in N.S.W. & A.C.T., 1970 | | | | Part II - Techniques of Animal Evaluation of Pastures in N.S.W. & A.C.T., 1970 | M.V. Smith | | 20. | Investigations on Drainage & Irrigation at Long Flat, 1960-68 | P.J. Cole | | 21. | Field Day on Utilisation of Dryland
Lucerne Pastures | M.V. Smith | | 22. | 1969-70 Distribution of Mice in S.A. & Broad-acre Treatment for Mice | P.G. Aller
J.D. McA | | 23. | Frost Damage in Cereals, 1970 | K.G. Bic | | | and the second of o | |